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1. Abstract and executive summary 
 

1.1 Abstract 
The objective of the PIU4TP project is the development of a data-driven methodology for the 
trajectory prediction from long to short term before scheduled time of flight. Specifically, the 
methodology uses machine learning and data mining techniques to perform data analysis and 
to learn from past experience the aircraft future behaviour in terms of flight path selection. 
Therefore, it exploits historical data and uncertainties of current forecasts of some relevant 
mission and aircraft parameters to compute trajectory prediction outcomes enriched with 
associated probabilistic information. The project’s final aim is to build a methodology that can 
support the Network Manager with air traffic flow and capacity management, allowing the 
optimization of flight distribution among sectors and flight routes, the anticipation of air traffic 
flow requests and the identification in advance of potential conflicts. 
 
1.2 Executive summary 
The PIU4TP project aims to develop a data - driven methodology named P4T (Prediction for 
Trajectory) for the prediction of the flight trajectory in terms of selection of the most likely 
sequence of waypoints in the strategic and pre-tactical phases, starting weeks before the flight 
execution with the declared flight intention of the airspace users and ending few hours before 
the estimated off blocks time. 
The tactical management of an ordered, efficient and safe air traffic is currently highly affected 
by a number of uncertainties, which will finally require many modifications to flight plans and 
can produce relevant delays on the schedule of flights. 
The P4T methodology aims to investigate how flight plans can be better predicted, from long 
to short term before scheduled time of flight, by considering historical data and uncertainties 
on current forecasts of some relevant parameters. This methodology, providing reliable 
predictions of flight plans, is expected to allow ATFCM centres to perform a sound 
management of the uncertainties affecting the air traffic and to limit changes to the plans in 
the tactical phase, so improving ATM efficiency, punctuality and reducing environmental 
impact. Safety will be also affected by limiting ATCO workload and reducing the risk of 
hotspots occurrence. 
Actually, there is a large number of parameters that can affect the optimal flight plan selection. 
A few of these, among the most relevant ones, have been considered in the project, 
specifically the weather forecast and the estimated take-off weight. Indeed, the project is a 
proof of concept. Its objective is to consider some parameters that mainly affect the selection 
of the optimal flight plan and to investigate how the information about these parameters and 
related uncertainties, which characterize the parameters forecast before the flight, can be 
exploited in an integrated approach to perform in advance a reliable prediction of the flown 
trajectory. Although the developed methodology is demonstrated considering few uncertain 
inputs, it is generic and applicable also to a wider set of uncertain inputs. Indeed, all the steps 
that define the methodology developed in this project, described in section 2.3.2, can be 
applied to different use cases, which consider different sets of uncertain inputs (if the historical 
data and current prediction of these uncertain inputs are available). Obviously, the models 
obtained with the applied techniques need a new training, considering the new input variables, 
and this need for re-training is a primary requirement of Machine Learning, due to its data-
driven character. This re-training step allows us to always maintain a high prediction accuracy.  
The idea of P4T is to build the predictive model of flight trajectories by applying Data Mining 
and Machine Learning (ML) techniques. Instead of programming explicitly a computer to solve 
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a difficult problem, ML uses algorithms to learn from past experience (historical data) how to 
obtain behavioural models based on complex but statistically reliable rules. This model, once 
implemented, will use as input the weather forecast and take-off aircraft mass estimation, with 
related uncertainties. Indeed, the exploitation of the uncertainties on the inputs allows 
associating probabilistic information to the predicted trajectories and this is the main innovative 
feature of the proposed methodology. Therefore, PIU4TP represents a change of perspective. 
The project aimed to demonstrate that the uncertainty inherently present in a weather 
forecast and that also normally affects also the take-off weight data before the flight, could 
augment the knowledge base available to the Network Manager (NM) transforming the 
uncertainties in a valuable information for a more efficient flight trajectory planning and 
allocation.  
The trajectory prediction capability can allow the network manager anticipating air traffic flow 
requests, supporting the decision-making process of flight distribution among sectors and 
flight routes, and thus avoiding an excessive tactical management of the flights. On this path, 
the project starts from very low TRL and moves from the concept to TRL 2, first designing a 
methodology for flight plan prediction and then performing a preliminary demonstration based 
on simulated data and a simplified use case. This allows evidence to be provided of the 
proposed methodology applicability, and potential benefits arising from its use. 
 

2. Overview of catalyst project 
2.1 Operational/technical context 
Trajectory Prediction (TP) is one of the most relevant capability and need of the current and, 
above all, the future management of air traffic, in its expected implementation of the Trajectory 
Based Operations (TBO) paradigm. The TP process supports the activity of several ATM 
actors and Airspace Users (AU), which apply different tools and methodologies. The TP is 
performed iteratively from the initial planning till to the completion of the flight, as sketched in 
the Figure 1, to support operations in strategic, pre-tactical and tactical phases. 
 

 
Figure 1 – Collaborative Trajectory Planning (Source: Ballerini et al. “Trajectory Prediction Network 

Manager Demand Forecast Key Enablers to TBO”, Engage Workshop Nov. 2018) 
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Often TP methodologies and tools provide deterministic forecast of the trajectories without any 
quantification of the uncertainty affecting the prediction, as highlighted in the Thematic 
Programme description. However, the TP process is uncertain by its nature, indeed it predicts 
actual trajectories by using models, which are approximation of the reality affected by a given 
accuracy, and uncertain input data, such as weather forecast and aircraft actual performance. 
The relevance of quantification and management of uncertainties on trajectory prediction has 
emerged in the recent years, and research activities are on-going on the topic [RD1], [RD2], 
[RD3], [RD4], [RD5], [RD6], [RD7]. 
The expected outcomes of the PIU4TP project is a methodology which allows using data 
mining and machine learning techniques for 4D Trajectory Prediction, dealing with the relevant 
stochastic information inherent to the input data, and providing the stochastic characterization 
related to the predicted trajectories. The methodology developed in the study is applicable in 
strategic and pre-tactical phases. It benefits from the progressively reduced level of 
uncertainties associated with the forecast to improve the trajectory prediction as the scheduled 
time of flight approaches. Indeed, in strategic forecast, starting from the filing of the flight plan, 
large uncertainties affect the input data for the forecast and thus the predicted trajectories 
have low level of confidence; progressing in time, while approaching the flight execution, the 
uncertainties on the required input data reduce, and improved trajectory predictions could be 
gotten as well as higher level of confidence associated to the predictions. Actually, the 
proposed methodology could be further developed and suitably customized as a Decision 
Support Tool in tactical management of the airspace. In fact, it could support ground decisions 
(on tactical clearances and trajectory distribution) and airborne decision (such as airborne 
delegated medium-term separation operations and manoeuvres). However, the development 
of the methodology for the application in the tactical phase is out of the scope of the present 
project. 
In conclusion, the availability of reliable TP approach could support the improvement of the 
ATM system performance and the PIU4TP project aims contributing to fit this need. In fact, 
the integration of TP tool into the Network Manager’s, ANSPs’ and flight operations centres 
for 4D trajectory planning tools, leads to enhanced collaboration in trajectory management, 
such that capacity can be matched to demand by a better anticipation of AU behaviour. 
Moreover, improved predictability allows avoiding in advance potential conflicts and then 
enhancing air traffic safety. 
 

2.2 Project scope and objectives  
A lot of efforts have been done to develop TP algorithms that can meet the stringent safety 
requirements typical of the aviation sector. The traditional approach uses a more or less 
simplified dynamical model of the aircraft based on a number of parameters and then solve a 
set of differential equations to recover the flown trajectory, taking in consideration the influence 
of the surrounding weather conditions. This line of research has some drawbacks: the 
dynamical model can only reproduce a simplified version of the actual aircraft behaviour, the 
solution of the differential equations may be inaccurate or even unstable since many input 
parameters are difficult to be measured with sufficient precision, and many of the possible 
causes affecting the flight of the airplane cannot be adequately modelled, such as the intents 
of the pilot or airline operator and the directives of ATC. Moreover, the uncertainties on the 
parameters that influence the trajectory often are not considered at all and the value of these 
parameters are used simply to perform deterministic on-off decision. Finally, the use of model-
based techniques to predict the actual flown trajectories requires high computational burden. 
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An increasingly interesting alternative to model-based solutions is offered by a data-driven 
approach: it uses a collection of past flown trajectories to statistically predict the behaviour of 
future flights by exploiting all the information implicitly included in the historical data. With the 
improving quality and growing volume of the data collected in ATC systems, data-driven 
methods have become mainstream in current aircraft trajectory prediction research and may 
allow overcoming the limitations of model-based approach. 
The PIU4TP project aims to contribute to the research activities in the framework of the data-
driven approach. Its objective is to define and validate a methodology that provides trajectory 
prediction enriched with its relevant probabilistic information, by exploiting the uncertainty 
inherently connected to the data used as inputs by the TP process. The proposed approach 
is consequently intended to support the planning activities in terms of demand-capacity 
balance, pre-tactical identification of hotspots and potential conflicts. However, it is out of the 
scope of the proposed methodology the provision of the best trajectories’ allocation. 
Furthermore, the 4D-trajectories are considered, that is, the time is part of the information 
included in the output provided by the methodology. 
The project responds to some of the main issues highlighted in the Trajectory Prediction 
Thematic Network description, that are: 

• use of machine-learning techniques to infer airspace users’ behaviour, intentions and 
preferences from historical data and enhance tactical and pre-tactical trajectory 
prediction; 

• aggregation of probabilistic predictions into probabilistic traffic counts at a strategic and 
pre-tactical level; 

• integrating predictions about factors affecting flight planning and execution, including 
weather conditions.  

From a data-driven perspective, the objective of this project is to build a predictive model able 
to make short, medium and long-term predictions of trajectories given a set of uncertain inputs. 
Machine learning develops algorithms that learn from past experience how to obtain 
statistically optimal solutions. Much of the effort has been dedicated to the research of the 
best way to deal with the uncertainties in weather forecasts and aircraft take-off configuration. 
The defined methodology has been designed and validated using simulated data. The choice 
to use simulated data is due to the lack of open access datasets which provide a huge 
(thousands of flights) and coherent set of data including real aircraft trajectory and related 
flight plan, actual aircraft take-off weight and its forecast at different time in advance with 
related forecast uncertainties, weather data experienced during flight and their forecast at 
different time in advance with related forecast uncertainties. Moreover, the simulated data 
allow testing the methodology in a fully controlled environment, that is, the value of the 
parameters of interest and the rules and the assumptions that lead to perform the flight along 
a specific flight plan are perfectly known. The project’s purpose is to demonstrate that the 
methodology is able to catch all the useful information that are available in the data, including 
the forecast uncertainties, and to exploit them to perform in advance a reliable prediction of 
the flown trajectory. Once this result has been achieved on a simplified use case, the P4T 
methodology could be tested on more complex use cases (however it is not the objective of 
the present project), also considering actual data, if available. Indeed, P4T takes the form of 
a Lifecycle Model for the analysis and modelling of flight paths in the context of trajectory 
prediction. It is iterative and incremental since it allows to add new input variables (such as 
aircraft type, airline, variables related to passenger connections, restricted areas due to 
military or national security activity) and external parameters (such as new flight route, new 
time-frames, etc.) by iterating through the phases of the lifecycle. 
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2.3 Research carried out 
The research activity has been structured into three phases, which performed in sequence 
allowed achieving the project objective: 
Phase 1: Operational Scenario Definition 
The first phase concerned the definition of relevant reference scenario, including the 
investigation about available data, the construction and tuning of models to generate the 
simulated data, and the realization of needed databases. 
Phase 2: P4T Methodology Development 
The second project phase dealt with the P4T methodology development. An overview of 
applied and applicable Machine Learning and Data Mining techniques to the problem of 
trajectory prediction have been analyzed and the methodology implemented. 
Phase 3: P4T Methodology Evaluation 
In the third phase, the proposed methodology has been evaluated and the benefits deriving 
from the methodology application analyzed and discussed. 
 
2.3.1 Phase 1.: Operational Scenario Definition 
The definition of the operational scenario is performed through the following steps: 

• Route Selection: definition of the airspace and the routes considered for the design 
and validation of the methodology. 

• Relevant Parameters Identification: selection of the parameters considered in the 
scenario that affect the optimal trajectory selection. 

• Forecast Time Window Definition: definition of the time frame in which the methodology 
is applied. 

• Data Generation: generation of the data needed as input to design and validate the 
trajectory prediction methodology. 

• Simulated Dataset Verification: verification of the quality of the generated dataset. 
• Assessment Metrics Definition: selection of the metrics for the assessment of the 

performance of the trajectory prediction methodology. 
Since the PIU4TP project is a proof of concept, in order to assess the performance of the 
proposed methodology and without affecting the validity of the results, the scenario definition 
is based on simulated data and on some simplifying assumptions. As said above, the use of 
simulated data is justified because it allows testing the methodology in a fully controlled 
environment and provide a complete dataset which is not available in the open access 
datasets of real aircraft trajectories. Concerning the simplified assumptions, the project 
analysed only two flight routes within the European airspace, as test case for trajectory 
prediction, and considers few parameters affecting the selection of the optimal flight plan. 
Moreover, the input data were collected in a predefined time window and in a limited number 
of dates in advance with respect to the scheduled date of flight. However, it is worthy to 
highlight that the proposed methodology, once validated, could be applied to any route, at any 
time, and including any factor affecting the flight plan choice, if the required input data are 
available. 
Details about the operational scenario are provided in the next sub-sections. 
Route Selection 

To support the methodology development and validation, the European airspace has been 
considered, and two routes have been selected: 
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- London Heathrow Airport (ICAO code: EGLL) - Athens Eleftherios Venizelos 
Airport (ICAO code: LGAV) 

- London Gatwick (ICAO code: EGKK) - Malta International Airport (ICAO code: 
LMML) 

Both routes are normally executed by several airliners; they fly through different national 
airspaces and go across different airspace sectors. Some possible flight plans have been 
associated to each flight route. 
Relevant Parameters Identification 

Actually, there is a large number and types of parameters that can affect flight plan selection 
and requests for a flight plan change both during pre-flight planning and flight execution. As 
anticipated, the PIU4TP project only considers two of these parameters, that are relevant in 
the strategic and pre-tactical phases, namely: 

- actual aircraft take-off weight 
- weather conditions 

 

 
Figure 2 – Input variables into PIU4TP project for trajectory prediction 

 
In fact, the actual take-off weight affects the climbing performance of the aircraft [RD3], [RD8], 
[RD9], and the selection of the optimal flight level, as described in [RD10]. The effects of 
weather conditions on the performed flight plan are widely known and reported in several 
works in the literature [RD6], [RD7], [RD11]; for example, pilots can decide to follow a route 
because it allows to take advantage of the tail winds making the flight faster, while reducing 
fuel consumption. Those above mentioned are just two of possible inputs affecting the TP. 
Other causes of uncertainties such as the pilot intent, FMS performance, ATC tactical 
intervention, are excluded from this project. 
Forecast Time Window Definition 

Since the project focuses on the strategic and pre-tactical phases, we consider a time window 
of 15 days before the scheduled date of flight as encompassing the overall study analyses. 
Consequently, fixed a Tf as the day/time of actual operations, it is expected that the NM starts 
to manage the flight routes allocation to requiring aircraft, 15 days before Tf, denoted as time 
Tf-15. Each aircraft that intends to fly across the European controlled airspace needs to file a 
flight plan to the NM, starting 15 days and till few hours before the flight. In the planning phase, 
recurrent flights are normally considered, too, and their flight plans are well known also before 
15 days in advance. Anyway, we consider in our study to start the process at Tf-15 days; it is 
worthy to remark that this assumption has no impact on the validity and the generality of the 
project results. 
Because the methodology intends to demonstrate how the flow capacity management process 
could benefit from improvements in forecast of the meteorological conditions, two other dates 
are considered in the pre-tactical phase: 5 days before Tf (denoted as Tf-5) and 1 day before 
Tf (denoted as Tf-1). In strategic forecast, large uncertainties affect the input data and thus 



   

Engage catalyst fund project final technical report 8 

the predicted trajectories have low level of confidence; progressing in time, while the 
uncertainties on the required input data reduce, better trajectory forecasts can be obtained as 
well as a higher level of confidence associated with the flight plans prediction. 
Eventually, using the information available on actual meteorological conditions (we can 
identify this as Tf+), the flown flight trajectory is identified, and this can be compared with 
recursive forecasts at Tf-15, Tf-5 and Tf-1 in order to assess the methodology performance. 
The process timeline is sketched in Figure 3 . 
 

  
Figure 3 – Flight plan timeline for simulated data generation 

 
Data Generation 

The information about a huge number of flights shall be available to design and validate the 
methodology. For each flight the following data are required: 

• the set of possible flight plans that can be flown along the selected route (EGLL-LGAV 
or EGKK-LMML); 

• the weather forecasts (and their probabilistic characterization) along the flight route as 
above identified, at each date of the trajectory prediction computation; 

• the take-off weight estimations (and their probabilistic characterization) at each date of 
the trajectory prediction computation; 

• the actual flown trajectory the day of flight; 
• the actual weather conditions experienced in the date of the flight; 
• the actual take-off weight during the flight. 

All these data have been generated through simulation, bearing in mind the need to be as 
realistic as possible. To this end, the following open access sources of information have been 
exploited to generate the needed data: 

• flight plans for each route have been downloaded from the website 
www.flightplandatabase.com. The flight plans are defined in terms of departure and 
destination airports and the list of waypoints that defines the corresponding route. 

• ERA5 database of the European Centre of Medium-range Weather Forecast-ECMWF 
[RD12] has been used to get 3D (longitude, latitude, air pressure) weather data for a 
wide range of selectable dates. For each selected day/hour, the database provides the 
re-elaborated weather information, that is the actual weather information as derived 
from a complex assessment process of the weather info from several sources. The 
ERA5 also provides the uncertainties characterization for the weather forecasts 
[RD13]; many of these characterizations apply back till to 15 days before the date, and 
this is a sound reason for selecting in 15 days the time range of our application. The 
data used within the PIU4TP project are wind intensity and direction and atmospheric 

http://www.flightplandatabase.com/
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temperature. Exploiting the ER5 database, for each examined flight, the forecast of 
these parameters (including the uncertainty on the forecast) at Tf-15, Tf-5 and Tf-1, 
and the actual value in the day of the flight are computed. 

• The take-off weight forecast and actual values vary among two precise limits, the 
Operating Empty Weight (OEW) and the Maximum Take-Off Weight (MTOW). These 
values for most of the aircraft are available in the literature [RD14]. 

The database OpenSky network has been also investigated to assess its applicability to the 
project. This database provides real trajectory data but does not provide all the other data 
needed as input for the PIU4TP methodology design and validation, such as the take-off 
weight of the aircraft performing a recorded trajectory, neither other source of experimental 
information can be used to complement the data available in OpenSky. For that reason, the 
OpenSky data have been not used and the actual flown trajectories were computed through 
simulation. 
Twelve possible flight plans (three different lateral flight plans which can be performed at four 
different cruise flight levels) for each route have been selected. A generic short/medium range 
aircraft has been chosen to perform the flights, with take-off weight varying in the range 50-80 
tons. 
The data generation process comprises the following steps, applicable to each of the flight 
considered in the project: 

• For each date, in which trajectory prediction shall be performed (Tf-15, Tf-5 and Tf-1), 
compute: 

o the estimated take-off weight and related uncertainties; 
o the weather forecast (atmospheric temperature and wind velocity) and related 

uncertainties along each flight plan; 
o the potential No-Fly Zones due to weather conditions and of the probability to 

cross one of them; 
o the estimated time of arrival in each waypoint and related uncertainties. 

• For the date of flight (Tf) compute  
o the actual take-off weight 
o the actual weather conditions 
o the flown flight plan and the related 4D trajectory, in terms of time of arrival in 

each waypoint of the plan. 
The take-off weight (TOW) estimation is randomly draw, assuming a Uniform stochastic 
distribution within the allowable range (from OEW to MTOW). Indeed, data on estimated TOW 
are not freely available in the literature, as well as information about the stochastic distribution 
applicable to the TOW estimation uncertainty. When little or no a-priori statistical information 
about the uncertain parameters is available, the use of the uniform distribution represents a 
conservative choice, because it guarantees that the probability of performance satisfaction 
under this uncertainty distribution is smaller than the probability under any other distribution 
[RD15]. The uncertainty on the estimated value depends on how much in advance with respect 
to the scheduled flight date the estimation is computed (it decreases while approaching the 
flight date) and it is defined as a percentage of the whole range of variation (that is, the 
difference between MTOW and OEW). The process for the take-off weight data generation 
starts with the first random draw performed on the whole range of variation. It defines the first 
weight forecast value at Tf-15 days (W15); an uncertainty of 35% of the TOW range (that is, 
TOW range=MTOW-OEW) is associated to this value (Wunc15). Next, the forecast at Tf-5 
(W5) is computed through a new draw in the range [W15 - Wunc15, W15 + Wunc15] and a 
new uncertainty (Wunc5), equal to 15% of the TOW range, is associated to it. The procedure 
is repeated for the forecast at Tf-1 (associated uncertainty is 5% of the TOW range) and for 
Tf+. In this last case, only the value of the weight is computed, without associating an 
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uncertainty to it; indeed, this value represents the actual take-off weight experienced during 
the flight and not a forecast of it. Of course, a saturation of the TOW value to the range [OEW, 
MTOW] is applied after each random draw, in order to guarantee that the generated value is 
realistic. Finally, it is worthy to remark that the numerical values used to characterize the 
uncertainty at different forecast times are just an attempt used because actual data are 
unavailable. However, these values do not affect the applicability of the trajectory prediction 
methodology neither the assessment of its performance because the same rules and 
parameters are applied to generate both the data used for the design and the validation of the 
methodology. 
As said, the computation of weather data is based on the ERA5 database [RD12], specifically 
the reanalysis dataset is exploited. The ERA5 database provides for each date and at different 
hours (with one-hour resolution) the weather parameters defined on a three-dimensional 
spatial grid. Within the PIU4TP project, we downloaded more than 2000 different datasets, 
referring to days of October and November from 1979 to 2013 at 2pm hours. The considered 
months (October and November) and hour (2pm) were selected as a first test case and chosen 
through a random draw among the possible options. These data are used to design and 
preliminarily validate the methodology according to the objective of the PIU4TP project, that 
is, to demonstrate a proof of concept at low TRL. Next step, subject for future research 
projects, will be the training and assessment of the methodology on a wider set of input data 
(possibly actual experimental data) with uniform distribution along time. Indeed, weather at 
each time of the day could present different features that shall be properly modelled by the 
ML algorithm, in order to get a methodology applicable to predict the flight trajectory, 
whichever is the aircraft departure time, and to accurately assess its performance.  
For each simulated flight, a file is extracted from the weather database (each dataset can be 
associated to just one flight) and the values of the relevant atmospheric parameters 
(atmospheric temperature and wind velocity vector) are considered. Weather forecast is 
evaluated in each waypoint of all the possible flight plans for the selected route, through an 
interpolation of the grid provided by ERA5. As far as the PIU4TP team is aware, ERA5 does 
not provide for a given date a complete dataset including the forecast for the selected date at 
Tf-15 days, Tf-5 days and Tf-1 day. To overcome this limitation, the following process has 
been implemented. It allows getting consistent data, which are realistic (although not actual), 
because computed starting from actual weather data, and suitable for a proof of concept 
demonstration. The reanalysis file for a given date is used as forecast at Tf-15 days. The 
forecast is characterized with an uncertainty for each variable that depends on the time in 
advance with respect to the scheduled date of the flight at which the forecast is performed; 
this uncertainty is provided in [RD13]. An example of such uncertainty on the temperature is 
presented in the following figure, which is an excerpt of [RD13]. 

Figure 4 – Uncertainty on atmospheric temperature forecast depending on the forecast day (standard 
deviation, dashed lines; RMS error solid lines) 
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We assume that the forecast of the atmospheric parameters are stochastic variables with a 
Uniform distribution (it is an assumption, but any other distribution can be used), which is 
defined by the mean value (forecast) and the standard deviation (from figure above). Then we 
can compute the forecast at Tf-5 days by performing in each waypoint a random draw from 
the stochastic distribution defined at Tf-15 days. A new standard deviation can be computed 
at Tf-5 by using again Figure 7 for the temperature and similar plots for the other atmospheric 
parameters. The procedure is applied also to compute the forecast at Tf-1, starting from the 
stochastic distribution defined at Tf-5. Finally, a new draw is performed from the distribution at 
Tf-1 to obtain the atmospheric parameters to use for computing the actual flown trajectory 
(Tf+). 
Once the atmospheric parameters are available, the No-Fly Zones can be computed. Two 
types of NFZ are considered: hazard NFZ and discomfort NFZ. The former shall be avoided 
during the flight, because weather conditions do not allow a safe flight. The latter could be 
avoided, depending on the operator’s choice; indeed, crossing this NFZ could be not 
comfortable for the passengers but without affecting the safety of the flight. Both NFZs are 
defined with respect to the wind velocity. As far as the occurrence of a hazard NFZ is 
concerned, we define a threshold Th1 for the horizontal wind speed and a second threshold 
Tv1 for the vertical wind speed. Waypoints in which wind is expected to exceed one of these 
thresholds are included in the NFZ. At Tf-15, Tf-5 and Tf-1 days, the wind speed forecast is 
defined by a mean value and an uncertainty, which characterize a stochastic distribution. 
Consequently, defined the stochastic distribution, it is possible to compute the probability to 
exceed the NFZ thresholds and then the probability the waypoint has to be included in the 
NFZ. Performing this computation in each waypoint of a flight plan allows computing the 
probability that the flight plan has to cross the NFZ. The same approach is applied to define 
the discomfort NFZs; we define another couple of thresholds Th2 and Tv2, with Th2<Th1 and 
Tv2<Tv1, and the discomfort NFZ includes the waypoints in which the horizontal wind speed 
belongs to the range [Th2, Th1] or the vertical wind speed belongs to the range [Tv2, Tv1]. 
Next, the probability to cross the NFZ is computed for each flight plan as above; the obtained 
probability for discomfort NFZ is halved, because we assume that just 50% of the operators 
take care to avoid this kind of NFZ. At Tf+, the wind speed experienced during the flight is 
known without uncertainty, therefore the probability of a flight plan to cross NFZs could only 
be 0 or 1. 
The Estimated Time of Arrival to Each Waypoint is computed through kinematic equations. It 
is assumed that the flight is performed at the Optimal Mach number, denoted as ECON Mach, 
that depends on the TOW and the corresponding optimal flight level. The following figure, 
excerpt of [RD10], shows an example of this relation for the Airbus A340. Once the take-off 
weight is known, and assuming a cost index for the flight, the ECON Mach can be computed. 
Then the speed of sound is derived from the atmospheric temperature, the airspeed is 
calculated form Mach number and speed of sound, and the ground speed is evaluated 
composing the air speed and the wind speed. Finally, the time of arrival in each waypoint is 
obtained by dividing the length of the leg preceding the waypoint for the ground speed. Since 
the weather data are uncertain at Tf-15, Tf-5 and Tf-1, also the estimated time of arrival to 
each waypoint will be uncertain. In computing the time to reach the waypoints in the first legs 
of a flight plan, the climb performance of the aircraft is also considered by adding to the 
estimated time an additional delay. This climb performance depends on the TOW and are 
available in the open literature for some aircraft models [RD14]. 
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 Figure 5 – Optimal Mach number depending on flight level, TOW and cost index 
 
Computed weather conditions and take-off weight are considered as inputs for the selection 
of the flight plan among the possible options. Specifically, as detailed before, the presence 
and localization of the No-Fly Zones are determined by the weather, whereas the TOW affects 
the climbing performance of the aircraft and the optimal cruise altitude. An example of the 
relation between TOW and optimal flight level is shown in the following figure, from which it is 
possible to evaluate the flight level, given the TOW and the cost index selected by the operator. 
The figure is an excerpt of [RD14] and refers to Airbus A340. It is worthy to remark that the 
weather conditions could also contribute to determine the optimal flight level, because the 
relation between TOW and FL, for a fixed CI, varies with atmospheric temperature (different 
relations are defined for different temperature). 
 

Figure 6 – Optimal flight level depending on TOW and cost index 
 
Based on these considerations, the following rules apply to select the most suitable flight plan 
(among the available ones for the considered route) when the take-off weight and the weather 
conditions are known: 

• The selection of the lateral flight plan is based on the avoidance of the NFZs. 
• The selected flight level (vertical flight plan) is the optimal one with respect to the take-

off weight for a given cost index. 
At Tf+, the weather conditions and TOW are measured without uncertainties. TOW allows 
selecting the best vertical flight plan. Concerning the lateral flight plan, if only one of the 
possible options (for the considered route) avoids the NFZs, then the optimal flight plan is 
completely defined and added to the generated dataset. Otherwise the obtained data are 
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discarded (because they do not provide a unique solution). When forecasts are computed at 
Tf-15, Tf-5 and Tf-1, the wind, atmospheric temperature and take-off weight values are 
uncertain and described by a stochastic distribution, as explained in the previous sections. 
Consequently, also the selection of the flight plan (lateral and vertical) is characterized through 
a stochastic distribution; specifically, more than one selection is possible and a probability is 
associated to each of the selected options. The probabilities associated to each flight plan in 
the forecast time window (from Tf-15 to Tf-1), based on forecasted inputs, are additional 
information provided by the data generation process, which will not necessary be exploited in 
the training and validation of the trajectory prediction methodology. 
 
Simulated Data Verification 

Two types of verification are performed on the generated data: numerical consistency check 
and qualitative comparison with real data. 
The numerical consistency check is performed on the TOW and weather parameters by 
verifying that these parameters always belong to a predefined range. The allowable TOW 
range is bounded by operating empty weight and maximum take-off weight of the considered 
aircraft. The bounds for each weather parameter are computed as minimum and maximum of 
the values that the parameter assumes in all the downloaded ERA5 datasets and enlarged by 
considering the maximum allowable uncertainty for the parameter, also provided by ERA5 
documentation. The result of this check was always positive for all the generated data. 
The qualitative comparison with real data is performed to check the realism of the selected 
flight plans. To this end, each possible flight plan is qualitatively compared with actual flown 
trajectories that are observed on the https://www.flightradar24.com/data/flights website. An 
example of this check is shown in the following figure for the route EGLL to LGAV. Also this 
check, although qualitative, provided positive results for all the considered flight plans. 
 

Flight plan from flightplandatabase  
Website 

Actual flown trajectory form 
flightradar24 

  

 
 

https://www.flightradar24.com/data/flights
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Figure 7 – Flight plans selection procedure 
 
Assessment Metrics Definition 
Generally, in machine learning, a predictive model is defined in terms of a number of 
parameters. In supervised learning, some of these parameters are derived via a learning 
process (training), i.e. using a dataset of labelled samples (training dataset) trying to make the 
model predict the correct label for each of the samples. The training itself is controlled by other 
parameters called hyperparameters, which also must be tuned to build good predictive 
models. 
Optimizing the overall predictive power of a model both respect its parameters and 
hyperparameters requires the definition of some sort of measure to quantify its performance. 
A performance metric of a model Ϝ (for example, a classifier trained by applying an Artificial 
Neural Network) is a measuring function that assigns to Ϝ a real number 𝑚𝑚. Mainly, machine 
learning is used to solve problems that fall within two different categories, i.e. classification 
and regression. In classification the model has to predict a discrete variable, i.e. the class, 
among a finite number of classes, the sample belongs to. In regression the variable is 
continuous. It’s possible to define different metrics for the different types of problems in 
machine learning. 
In classification, all the considered performance metrics are based on the confusion matrix, 
which is the main and most common method used to show the results obtained by a classifier. 
The confusion matrix is a table with entries that represent the number of samples classified in 
a certain class. The rows of the table are indexed by the actual classes and the columns by 
the predicted classes. So, in a binary classification problem with a positive class and a 
negative class, the confusion matrix is defined as: 
 

 Predicted Class 
𝑃𝑃 𝑁𝑁 

Actual Class 𝑃𝑃 𝑇𝑇𝑇𝑇 𝐹𝐹𝐹𝐹 
𝑁𝑁 𝐹𝐹𝐹𝐹 𝑇𝑇𝑇𝑇 

Estimations    

Table 1 Binary Confusion Matrix. 

On the main diagonal there are the numbers of correct classifications, 𝑇𝑇𝑇𝑇 is the number of 
True Positives and 𝑇𝑇𝑇𝑇 is the number of True Negatives. The off diagonal elements report the 
number of the misclassifications, 𝐹𝐹𝐹𝐹 is the number of False Negatives, i.e. positive samples 
incorrectly classified as negative, and 𝐹𝐹𝐹𝐹 is the number of False Positives, i.e. negative 
samples incorrectly classified as positive. 
The first performance metric is the accuracy which measures how good the model is in 
correctly predicting both positive and negative cases: 
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
=

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹

 

 
Accuracy however is a tricky metric because it can give misleading information about the 
performance of a model. This is especially the case in the situations where the dataset is 
imbalanced, i.e. there are many samples of one class and not much of the other. Meaning, if 
your model is performing well on the class that is dominant in the dataset, accuracy may be 
high, even though the model might not perform well in other cases. 
There are other metrics that can be calculated from the confusion matrix very useful for 
evaluating the classifier performances, even when the dataset is imbalanced (Table 2). 
 

# Symbol Performance Metric Definition as What does it measure? 

1 𝑇𝑇𝑇𝑇𝑇𝑇  
𝑜𝑜𝑜𝑜 𝑅𝑅𝑅𝑅𝑅𝑅 

True Positive Rate – 
Sensitivity or Recall 

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

 
How good model is in correctly 

predicting positive cases 

2 𝑇𝑇𝑇𝑇𝑇𝑇 
True Negative Rate – 

Specificity 
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

How good model is in correctly 
predicting negative cases 

3 𝐹𝐹𝐹𝐹𝐹𝐹 False Positive Rate – 
Fall-out 

𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇

 
Proportion of incorrectly classified 

negative cases 

4 𝐹𝐹𝐹𝐹𝐹𝐹 
False Negative Rate – 

Miss Rate 
𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇
 

Proportion of incorrectly classified 
positive cases 

5 𝑃𝑃𝑃𝑃𝑃𝑃 
or PRE 

Positive Predictive Value 
– Precision 

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

 
Proportion of correctly classified 

positive cases out of total positive 
predictions 

Table 2 Metrics defined from the confusion matrix. 

Precision and recall are two very useful metrics, they answer to two different questions about 
the performance of the model: the former gives the proportion of positive identifications that 
are correct, the latter gives the proportion of actual positives that have been identified 
correctly. Recall is relevant in those contexts where it is important to have a low number of 
false negatives, whereas precision when it is important to maintain low the number of false 
positives. 
These two metrics are different but related. In fact, increasing precision in general leads to a 
lowering of the recall and vice versa. For this reason, often, their harmonic mean is used, the 
so called F1-score: 
 

𝐹𝐹1 = 2
𝑃𝑃𝑅𝑅𝑅𝑅 × 𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅

 

 
Since the objective of regression is to predict a continuous variable, the metrics used to 
measure the performance of machine learning models are different than those defined for the 
classification case. 
The most popular metric is the mean squared error (MSE) due to its simplicity. Given, for each 
of the 𝑁𝑁 samples in the dataset, the values of the target variable {𝑦𝑦𝑖𝑖}𝑖𝑖=1,…,𝑁𝑁 and the predicted 
values {𝑦𝑦�𝑖𝑖}𝑖𝑖=1,…,𝑁𝑁, the MSE is the average squared distance between the predicted and actual 
values: 
 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1
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The result is a non-negative value and the goal is to get this value as close as possible to 
zero. 
Another very popular metric is the root mean square error (RMSE), a direct variation of the 
MSE metric since it is simply: 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √𝑀𝑀𝑀𝑀𝑀𝑀 = �
1
𝑁𝑁
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

 

 
The advantage of RMSE is that it is in the same unit as the value to be predicted. Since both 
MSE and RMSE are very sensible to the presence of outliers in the dataset, their use should 
be more useful when large errors are particularly undesirable. Moreover, they are both 
differentiable. 
A metric that doesn’t require the calculation of squares or square roots, useful when outliers 
are not a particular issue, is the mean absolute error (MAE): 
 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
�|𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|
𝑁𝑁

𝑖𝑖=1

 

 
2.3.2 Phase 2: P4T Methodology Development 
The development of the P4T methodology was carried out in three phases detailed in the 
following Figure 8. 
 

 
Figure 8 – Data Driven methodology in the PIU4TP project. 

 
In the following paragraphs we are going to describe the activities carried out in each of these 
different phases. 
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Overview of machine learning and data mining techniques applied to the aircraft trajectory prediction 
problem. 

As a preliminary step, a research has been conducted in the scientific peer-reviewed literature 
to gather the most up-to-date information on the application of machine learning and data 
mining to the problem of aircraft trajectory prediction. Mainly, data mining and machine 
learning methods have been applied in order to cluster, classify and model large amount of 
flight trajectories data. Clustering is often used to find similarities in flight paths, for example, 
clustering has been used to define typical flight paths in groups of trajectories, to characterise 
the deviations from the nominal flight plans and use this information to represent the flight 
intent into a trajectory prediction algorithm. In recent times, classical fully-connected and deep 
neural networks are the most used algorithms to model trajectories and to build machine 
learning models to predict the flown trajectory from the departure to the arrival airport or during 
the climbing or descent phase, or to estimate the time of arrival (ETA) of a flight at the airport 
or in the terminal manoeuvring area (TMA). Many of the examined articles used as input 
variables the meteorological condition during the flight, but none of them considered the take-
off weights and the uncertainties on the data. This overview has been very useful in clarifying 
which are the most promising algorithms to investigate as prediction models and to implement 
in the methodology, keeping in mind that the model should be able to manage the uncertainties 
in the input data. The results of this overview have proven useful also in the following activities 
in domain and data understanding as well as in modelling. 
Domain and Data Understanding 

These first steps of the methodology were performed to clarify the properties of the data 
generated from the WP2 activities before any attempt of modelling. 
The Domain Understanding phase included the fixing of the objectives of the Data Analysis 
goals and the assessment of the situation. In particular, the mapping from domain issues to 
data analysis problems. The analysis also considered the results from the Consultation 
Exercise Meetings, in fact the methodology has to be developed bearing in mind that it could 
be used as a tool to support the operations of air traffic management.  
As a result of this phase in the P4T methodology the domain objective, which consists in the 
prediction of the flight path, has been translated into a data analysis objective, which consists 
of a multiclass classification, regarding the prediction of the flight plan, both horizontal and 
vertical, and of a regression, regarding the estimation of the time of arrival on the waypoints 
of the horizontal flight plan. Then, for the flight plan, the problem to address can be stated as: 
 Predict which, among N possible flight plans, will be selected for the flight execution. 
 Input variables for the predictive model are: 
 Forecast temperature and wind speed and direction (east, north and down 

components) for each waypoint of the flight plan with relative uncertainties. 
 Forecast take-off weight with uncertainty 

The first group of variables will be used for the prediction of the lateral flight plan, i.e. the 
sequence of the waypoints, the mean temperature in the zone of flight and the estimated take-
off weight will be used for the prediction of the vertical part of the flight plan, i.e. the cruise 
flight level. 
The prediction of the time of arrival on the waypoints (ETA) has been stated as a classical 
regression problem, with input variables the sequence of the waypoints, the forecast 
temperature and horizontal wind direction (east and north components) for each waypoint and 
the forecast take-off weight. 
To support the methodology development and validation, the data of both the routes identified 
in the operational scenario definition have been considered: London Heathrow (EGLL) – 
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Athens (LGAV) (in the following we will refer to this route simply as London – Athens) and 
London Gatwick (EGKK) – Malta (LMML) (in the following simply London – Malta). 
The Data Understanding phase includes the initial data collection description, data 
exploration and the verification of data quality. In particular, the activities in this phase allow 
to capture and understand the meanings and statistics of the relevant variables for the analysis 
(features). In particular, there are 20 variables comprised in the simulated data related to 
weather condition, take-off weight and the relative uncertainties, aircraft position and speed 
and flight level. The following table shows the list of the variables simulated for the data 
analysis process. 
 

Variable Description Unit 

WP_ID Way Point Identifier – 

Lon WP Longitude degrees 

Lat WP Latitude degrees 

Temp Temperature K 

TempUnc Uncertainty on temperature K 

VnWind North component of wind speed in WP m/s 

VnWindUnc Uncertainty on North component of wind speed m/s 

VeWind East component of wind speed in WP m/s 

VeWindUnc Uncertainty on East component of wind speed m/s 

VdWind Down component of wind speed in WP m/s 

VdWindUnc Uncertainty on Down component of wind speed m/s 

Weight Weight at take off kg 

WeightUnc Uncertainty of weight kg 

FlightLevel Flight level ft 

PrFlightLevel Uncertainty of flight level ft 

Mach Mach number – 

PrMach Uncertainty of Mach number – 

Vground Speed with respect to the ground m/s 

VgroundUnc Uncertainty of speed with respect to the ground m/s 

EstTime Time needed to cover the distance between 2 
consecutive waypoints s 

EstTimeUnc Uncertainty on time arrival s 

Table 3 – List of the simulated variables. 
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The simulated data are grouped into two folders of files in Microsoft Excel format, one for each 
of the two selected routes (London – Athens and London – Malta). For the route from London 
to Athens there are 2052 simulated flights, while for the other route from London to Malta the 
simulated flights are 2023. 
For each flight 4 different Excel files are produced: 

 3 files contain the forecasted weather conditions along the route and the estimated 
take-off weight with the respective uncertainties in distinct time frames before 
estimated off-block time (EOBT): 
 15 days (Tf-15) before EOBT, for the strategic/long-term scenario; 
 5 days (Tf-5) before EOBT, for the medium-term scenario; 
 1 day (Tf-1) before EOBT, for the pre-tactical/short-term scenario. 

Each of these files contain 3 different sheets reporting the simulated data for 
each of the possible predefined lateral flight plans. Each sheet may contain up to 
three replicas of the lateral flight plan referring to different possible flight level, the 
number of replicas depends on the forecasted take-off weight and the amplitude 
of its uncertainty, in fact, an ampler interval of uncertainty may encompass more 
than one valid flight level. 

 The remaining file refers to the day of flight and contains the selected flight plan, 
the weather data along the route and final take-off weight. 

 
Note that the lateral flight plans may have different lengths, i.e. each plan may be defined by 
a different number of waypoints. 
The examination of the simulated data has showed that there are only a limited and discrete 
number of different possible values for the flight level. This is in full agreement with the normal 
practice in aviation, in fact, air space is divided into tracks, with planes flying in a specific 
altitude range depending on the direction they are going in and the routes they are taking. This 
standardizes routine air traffic, making it safer to fly. For this reason, also the prediction of the 
vertical part of the flight plan has been casted as a classification problem using the mean 
temperature in the zone of flight and the take-off weight as input variables. 
There is also a one-to-one correspondence between the flight level and the optimal cruising 
Mach number of the aircraft, so that once established the value of the flight level the Mach is 
uniquely defined. This is perfectly reasonable in a first approximation, taking apart the possible 
variation due to the necessity to compensate for the effects of the wind speed along the route. 
So, temperature and take-off weight contain all the information to predict the cruising airspeed, 
for this reason, in the regression model for the estimation of ETA we consider these variables 
as input to the model and not the estimated cruising speed or flight level, avoiding also to 
introduce into the model the dependency on other estimated parameters. 
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Figure 9 – The two selected routes with the different predefined lateral flight plans 

 
A descriptive analysis has been conducted on the input variables, characterizing their 
statistical properties to describe and summarize the raw data and gain first insights useful for 
the subsequent predictive modelling steps. 
 
Data Preparation 

With the availability of the simulated data, an important step in the analysis has been to identify 
and solve eventual problems within the data. In order to obtain the final dataset to be used in 
the modelling phase, data has been pre-processed to report them in a format usable by 
modelling algorithms. For example, particular attention has been given to the normalization of 
the input variables, especially useful for the application of algorithms based on neural 
networks. In general, data collection and data preparation are the most time-consuming 
activities in a machine learning project. 

 
Figure 10 – Waypoints added along the legs of a flight plan. 

 
Since, mainly, machine learning algorithms for classification and regression accept as input 
vectors of fixed length and in order to avoid possible biases due to the different lengths of the 
lateral flight plans, as a first step in data preparation, a certain number of dummy waypoints 
(names WPadd) were added to the flight plans to make them of the same length [Figure 10]. 
The waypoints were added where needed along the legs connecting two successive 
waypoints, in such a way to not change the direction of flight of the aircraft. The procedure 
adopted is straightforward: 

1. The sequence of waypoints in the flight plan is a list: [𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2, … ,𝑤𝑤𝑤𝑤𝑁𝑁]. 
2. Set a threshold T on the maximum length of a leg between two consecutive waypoints. 
3. Start with the first waypoint and let 𝑖𝑖 = 1. 
4. Compute the length di of the leg between 𝑤𝑤𝑤𝑤𝑖𝑖 and 𝑤𝑤𝑤𝑤𝑖𝑖+1. 
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5. If di > T then add a dummy waypoint in the middle of the leg between 𝑤𝑤𝑤𝑤𝑖𝑖 and 𝑤𝑤𝑤𝑤𝑖𝑖+1. 
6. Increment 𝑖𝑖 by one. 
7. If 𝑖𝑖 < 𝑁𝑁, then go to step 4. 
8. If 𝑖𝑖 = 𝑁𝑁 and the desired length of the flight plan has been reached, then stop.  
9. Repeat the procedure from step 2 using also the added waypoints and a different 

threshold T. 
The weather condition on the added waypoints were also simulated with the same procedure 
used for the flight plan. 
For the modelling step we used different strategies for the construction of the datasets for flight 
plan and flight level classifications and for the estimation of the time of arrival. 
Regarding the prediction of the flight plan, we build separate datasets for each of the selected 
route and for each time frame before EOBT. Since we are assuming that the definition of the 
lateral flight plan and the choice of the cruise flight level may be taken as independent, we 
build different datasets for the prediction of these two target variables [Figure 11]. 
 

 
Figure 11 – Structure of the datasets. 

 
Fixed the route and the time frame, the simulated dataset provides for each flight forecasted 
weather conditions along the alternative flight plans, as well as the estimated take-off weight. 
The datasets for the prediction of the lateral flight plan contain vectors with the following 
structure: 
 

�𝑇𝑇(1),𝑉𝑉𝑁𝑁
(1),𝑉𝑉𝐸𝐸

(1),𝑉𝑉𝐷𝐷
(1),𝑇𝑇(2),𝑉𝑉𝑁𝑁

(2),𝑉𝑉𝐸𝐸
(2),𝑉𝑉𝐷𝐷

(2), … ,𝑇𝑇(𝐿𝐿),𝑉𝑉𝑁𝑁
(𝐿𝐿),𝑉𝑉𝐸𝐸

(𝐿𝐿),𝑉𝑉𝐷𝐷
(𝐿𝐿)� (1) 

 
where 𝐿𝐿 is the number of waypoints in the flight plan, including the added dummy waypoints. 
The components of these vectors are only the weather variables, i.e. the temperature 𝑇𝑇 and 
the three components of the wind speed along the three directions north-south 𝑉𝑉𝑁𝑁, east-west 
𝑉𝑉𝐸𝐸 and down-up 𝑉𝑉𝐷𝐷. 
To consider the uncertainties, the value of the weather variables used to construct the input 
vectors for modelling is drawn from a gaussian distribution centred on the simulated value and 
with standard deviation 𝜎𝜎 = ∆/3, where ∆ is the associated uncertainty. The choice of 𝜎𝜎 is 
made to have a gaussian ample enough to take all the interval of uncertainty of the weather 
variable, i.e. 6 𝜎𝜎 = 2 ∆. This sampling is repeated for a fixed number of times. 
Then, for the components of the vector (1), we have: 
 

𝑇𝑇(𝑖𝑖)~𝒩𝒩(𝑇𝑇0
(𝑖𝑖),∆𝑇𝑇(𝑖𝑖)/3) 

𝑉𝑉𝑗𝑗
(𝑖𝑖)~𝒩𝒩(𝑉𝑉0𝑗𝑗

(𝑖𝑖),∆𝑉𝑉𝑗𝑗
(𝑖𝑖)/3) 
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where 𝑖𝑖 = 1, … ,  𝐿𝐿, 𝑗𝑗 = 𝑁𝑁,𝐸𝐸,𝐷𝐷, and 𝑇𝑇0
(𝑖𝑖) and 𝑉𝑉0𝑗𝑗

(𝑖𝑖) are the simulated values of the variables. 

The vectors constructed for each flight plan are, then, concatenated to form a unique vector 
of length given by the product of the number of flight plans, the number of waypoints and the 
number of weather variables. This procedure is repeated for every simulated flight and all the 
vectors are collected into the dataset for modelling, whose size is the product of the number 
of flights by the number of the samples drawn from the gaussian distributions. To define the 
target variable, an integer number is given as a label to each possible flight plans. The target 
variable for the training of the models is the label corresponding to the lateral flight plan used 
for the execution of the flight. 
The procedure used to construct the dataset for the prediction of the flight level is similar. The 
flight level is a characteristic of the flight, not of the single flight plan, and we are assuming 
that the choice of the flight level depends mainly on the take-off weight and on the mean 
temperature in the zone of flight. 
The dataset for the training of the models for the prediction of the flight level is made up of 
vectors with the following simple structure: 
 

(𝑇𝑇𝑚𝑚,  𝑊𝑊) 
 
where 𝑇𝑇𝑚𝑚 is calculated by taking all the waypoints of all the possible lateral flight plans, 
eliminating all the repeated waypoints and averaging the temperatures on all the remaining 
waypoints, 𝑊𝑊 is a value repeatedly drawn from a gaussian distribution centred on the 
simulated value 𝑊𝑊0 and 1/3 of the uncertainty ∆𝑊𝑊 as standard deviation: 
 

𝑊𝑊~𝒩𝒩(𝑊𝑊0,  ∆𝑊𝑊/3) 
 
Then, for the target variable, to each possible flight level is given as label an integer from 1 to 
the number of possible flight levels. The target variable for the training of the model is the label 
corresponding to the flight level used for the execution of the flight. 
The dataset for the regression problem of estimating the time of arrival on the waypoints of 
the lateral flight plan was built starting from the data of the simulated flights, i.e. those referring 
to the day of flight. The variables included in this data are a subset of those listed in Table 3: 
 

Variable Description Unit 

WP_ID Way Point Identifier – 

Lon WP Longitude degrees 

Lat WP Latitude degrees 

Temp Temperature K 

VnWind North component of wind speed in WP m/s 

VeWind East component of wind speed in WP m/s 

VdWind Down component of wind speed in WP m/s 

Weight Weight at take off kg 

FlightLevel Flight level ft 
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Variable Description Unit 

Mach Mach number – 

Vground Speed with respect to the ground m/s 

EstTime Time needed to cover the distance between 2 
consecutive waypoints s 

 
These variables refer to the flight plan used during the execution of the flight and carry no 
uncertainties. This choice of data was dictated by the consideration that, unlike the prediction 
of the flight plan, where the choice of the target plan does not change by letting the input 
variables change value in the range defined by the respective uncertainties, we don’t have 
suitable target variables for the regression for all the possible values of the input variables if 
uncertainties were also considered. 
So, we decided to build a data-driven model of the aircraft dynamics building one dataset for 
each of the two routes considered. Each dataset contains rows with the following structure: 
 

(𝑑𝑑, 𝑏𝑏,𝑇𝑇,𝑉𝑉𝑁𝑁 ,𝑉𝑉𝐸𝐸 ,𝑊𝑊) 
 
where 𝑑𝑑 is the distance between two consecutive waypoints of the same flight calculated along 
a loxodrome, 𝑏𝑏 is the track angle between the two waypoints, 𝑇𝑇, 𝑉𝑉𝑁𝑁 and 𝑉𝑉𝐸𝐸 are the temperature 
and the two components of the wind speed along the north-south and east-west directions on 
the starting waypoint and, finally, 𝑊𝑊 is the take-off weight. We decided to not introduce into 
the regression model a dependency on other estimated parameters, such as the flight level or 
the mach number, since the temperature and the take-off weight should contain enough 
information to let the model gain a knowledge about the cruise speed of the aircraft. We 
concentrate our attention on the cruising phase of the flight, leaving out from the analysis the 
climbing from the departure airport to the cruising flight level and the descending phase to the 
arrival airport. 
 

 
Figure 12 – The process to build the modelling datasets. 

 
The modelling datasets obtained with these procedures are split into training and test sets 
[Figure 12]. The training sets are used for the construction and optimization of the predictive 
models, while the test sets are kept apart for the final validation of the performance of the 
models. 
 
Data Modeling 

This kernel phase represents the application of one or more Machine Learning algorithms able 
to obtain a classification, a regression, or a clustering model, trained on the prepared datasets. 
This step includes the testing of the obtained models in order to select the best one from a 
statistical point of view. 
In the PIU4TP project, the aircraft trajectory prediction problem has been stated as two 
classification problems, one for the prediction of the lateral flight plan and one for the prediction 
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of the flight level, and a regression problem for the estimation of the time of arrivals on the 
waypoints of the flight plan. 
In general, a machine learning model depends on a number of parameters, some of these 
parameters, for example the weights in a logistic regression model, can be optimized using a 
training dataset, i.e. a set of examples of pairs of an input vector and the corresponding desired 
output. But there are some parameters, called hyperparameters, which define the overall 
architecture of the model and which can only be tuned by repeating the training with different 
model architectures. 
In order to select the best model for the problem at hand, part of the available data is used as 
a validation dataset. This dataset can be used to obtain an unbiased evaluation of a trained 
model for tuning the model’s hyperparameters. 

Figure 13 – Hold-out validation. 
 
Two possible strategies can be used to split the data into training and validation dataset: 
holdout and K-fold cross-validation. With holdout [Figure 13], the data is simply split into two 
sets, one is used for training and the other for validation. With K-fold cross-validation [Figure 
14] the available data is split into K subsets, one of these subsets is used as a validation set 
while the remaining are used for training. The process of training and validation is repeated K 
times, each time using a different subset for validation. The overall performance of the model 
is evaluated as an average of the performance obtained in each run. 

Figure 14 – K-fold cross validation. 
 
The K-fold cross-validation is particularly useful when there is a small amount of data for 
training or to obtain a more accurate estimate of model prediction performance. 
In the development of the methodology we have used both holdout and a k-fold cross-
validation (with k = 10), obtaining very similar results, so in the following only the results for 
the cross validation are reported. 
In the following paragraph we are going to summarize the results of the modelling separately 
for the prediction of the flight plan and prediction of the ETAs. The three timeframes have been 
dealt with much the same procedure and there were not special difficulties and limitations 
encountered during the training of the models, apart for the low, but increasing as the day of 
the flight closes in, accuracy in the long-term timeframe. 
 

Data Training Validation 

 

Iteration 1 Validation Training → Performance1 

Iteration 2 Training Validation Training → Performance2 

Iteration 3 Training Validation Training → Performance3 

Iteration 4 Training Validation Training → Performance4 

Iteration 5 Training Validation → Performance5 
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Prediction of the flight plan 

The performance metrics used during training have been described in a previous paragraph 
about the operational scenario, the starting point is the confusion matrix [Figure 15], that is a 
table where the diagonal entries represent the number of correct classifications, whereas the 
off-diagonal elements report the number of misclassified input. Figure 15 is a generalization 
of Table 1 to a multiclass classification problem: 

 

 Predicted 

Class1 Class2 … ClassN 

Tr
ue

/A
ct

ua
l 

Class1 𝑚𝑚11 𝑚𝑚12 … 𝑚𝑚1𝑁𝑁 

Class2 𝑚𝑚21 𝑚𝑚22 … 𝑚𝑚2𝑁𝑁 

… … … … … 

ClassN 𝑚𝑚𝑁𝑁1 𝑚𝑚𝑁𝑁2 … 𝑚𝑚𝑁𝑁𝑁𝑁 

Figure 15 – Example of a confusion matrix for a multilabel classification problem. 
 
the matrix element 𝑚𝑚𝑖𝑖𝑖𝑖 is the number of input samples belonging to the i-th class classified by 
the model as belonging to the j-th class. From the confusion matrix can be defined a number 
of possible performance metrics, the more used are: 
 

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
=

∑ 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
∑ 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗

 

 
 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖

=
𝑚𝑚𝑖𝑖𝑖𝑖

∑ 𝑚𝑚𝑖𝑖𝑖𝑖𝑗𝑗
 

 
 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖
=

𝑚𝑚𝑖𝑖𝑖𝑖
∑ 𝑚𝑚𝑗𝑗𝑗𝑗𝑗𝑗

 

 

Accuracy is the most used performance metrics, but in some situation may give misleading 
results, for example when there is a strong imbalance in the training set and the examples of 
one class outnumber the other classes. Furthermore, since, in general, precision and recall 
are somewhat inversely related, increasing one of the two tends to reduce the other, a useful 
metrics combining the two is the f1-score, given by the harmonic mean of precision and recall. 
In Figure 16 is depicted the overall process used for the training of the classification models. 
An information-gain based filter has been used to reduce the number of input variables to the 
most significant ones. Among those tested in the development of the methodology, the models 
showing the best performance in classification are the decision trees, as can be deduced from 
the tables in Annex II. In particular Annex II reports the fine-tuning step and the selection of 
the hyperparameters of the algorithms used during the modelling phase. 
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In Table 4 and Table 5 are reported the results obtained for the accuracy in the prediction of 
the lateral flight plan. 

The complete results of modelling for the two routes and for all the timeframes before EOBT 
are reported in Annex III. 
 

 
Figure 16 – The modelling process used in the training of the models. 

 

 

 Accuracy 

 TF-15 TF-5 TF-1 

London - Athens 38.5% 53.4% 99.9% 

London - Malta 35.8% 81.2% 99.9% 
Table 4 - 10-fold cross-validation results for the lateral flight plan prediction. 

 

 Accuracy 

 TF-15 TF-5 TF-1 

London - Athens 46.7% 69.9% 88.7% 

London - Malta 44.2% 72.3% 90.3% 
Table 5 - 10-fold cross-validation results for the lateral flight level prediction. 

 
For the lateral flight plan, we note that the training datasets are substantially balanced, 
especially the one for the London-Malta route, while the one for the London-Athens route 
presents a slight imbalance in favor of the first lateral flight plan, as highlighted in Table 6. The 
ability of the models to make correct predictions is very low for the long term, 15 days before 
take-off the performance is only slightly better than that of a classifier that assigns labels 
randomly. In this time frame, for the London-Athens route, the model tends to prefer the first 
plane of lateral flight, this could be a further sign of imbalance in the dataset. The results 
improve, however, rapidly as the temporal distance from EOBT decreases, a sign that the 
models have been able to effectively learn the information useful for the classification. 
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 London-Athens London-Malta 

Flight plan 1 36.6 % 32.2 % 

Flight plan 2 30.1 % 33.0 % 

Flight plan 3 33.3 % 34.8 % 
Table 6 - Composition of the training dataset for lateral flight plan prediction. 

 
For the flight level, the training datasets show a more marked imbalance, once again lower in 
the case of the London-Malta route. The models perform better than the random classifier 
starting from 15 days before EOBT and the rate of correct classification increase steadily 
approaching the day of the flight. 
 

 London-Athens London-Malta 

Flight level 330 23.5 % 25.0 % 

Flight level 350 31.7 % 29.6 % 

Flight level 370 27.1 % 27.7 % 

Flight level 390 17.7 % 17.7% 
Table 7 - Composition of the training dataset for the prediction of flight level. 

 
In modelling we have used one-hot encoding, i.e. we have encoded the numbers 𝑖𝑖 labelling 
the different lateral flight plans (flight levels) with a vector of dimension equal to the number of 
alternative lateral flight plans (flight levels), whose components are all zero except the 𝑖𝑖 − 𝑡𝑡ℎ 
component which is set to 1. Using this encoding for the target variables, the output of the 
models is a vector of real numbers whose size is, again, equal to the number of alternative 
lateral flight plans (flight levels). The components of the output vectors are all positive numbers 
that sum to 1 and thus may be interpreted as a probability distribution over the possible lateral 
flight plans (flight levels) given the vector of inputs. The output of the model is the lateral flight 
plan or flight level to which corresponds the highest probability. 
Since we may consider the choice of the lateral flight plans and of the flight level as 
independent, the product of these probabilities gives the overall probability for the selection of 
a flight plan (lateral + vertical). These overall probabilities can be represented as a heat-map 
or a bar plot graph, for example: 

 

 

 
Figure 17 On the left, heat-map of the joint probability for the prediction of the flight plan. On the right, 

bar plot of the marginal probabilities for the prediction of the lateral flight plan and flight level. 
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Prediction of the time of arrival 

We trained many different models for the estimation of the time of arrivals on the waypoints of 
the flight plan during the cruising phase of the flight. During training, to optimize model 
performance, we used the MSE measure: 
 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

 

 
where {𝑦𝑦𝑖𝑖}𝑖𝑖=1,…,𝑁𝑁 are the values of the target variable and {𝑦𝑦�𝑖𝑖}𝑖𝑖=1,…,𝑁𝑁 are the predicted values, 
𝑁𝑁 is the number of samples in the dataset. The model performance is reported using the MAE: 
 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
�|𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|
𝑁𝑁

𝑖𝑖=1

 

which give a measure of performance in the same units of the target variable and is more 
easily interpreted. 
The dataset used were built starting from the data relative to the executed flight and carry no 
uncertainties. The datasets were almost balanced in terms of the flight plan used for the flights, 
for both the two selected routes: 
 

 London-Athens London-Malta 

Flight plan 1 36.2 % 32.0 % 

Flight plan 2 30.1 % 33.0 % 

Flight plan 3 33.7 % 35.0 % 
 

Among those used during modelling, the models giving the best performance for both the 
London-Athens route and the London-Malta route were two random forest regressor models 
with 150 estimators (see Annex II for details), with the following performance on the training 
set: 
 

 MSE 
(s2) 

MAE 
(s) 

London-Athens 10.5 1.8 

London-Malta 4.8 1.4 
 
 
2.3.3 Phase 3: P4T Methodology Evaluation 
The evaluation of the performance of a model is of paramount importance to assess the real 
capability of the model to be used in a production environment. To this end part of the available 
data is to be kept apart in a test dataset never used in any step of the training/validation 
process. 
The test dataset for the evaluation of the models trained in the P4T methodology comprise 
100 randomly chosen flights for each of the routes selected, with data referring to 15 days, 5 
days and 1 day before the EOBT and to the day of execution of the flight. It is worth pointing 
out a major difference between the training/validation dataset and the test dataset. As 
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described in the previous paragraph, the training dataset is built by sampling the input 
variables from certain distributions defined by their respective uncertainty, so from each 
simulated flight in the training set we get 𝑀𝑀 different records corresponding to the same target 
flight plan. The dataset obtained by this procedure is then split randomly into a training and a 
validation dataset, these two sets are disjoint but it may be possible that records referring to 
the same flight may be present in both sets. The test dataset, instead, is made up by all the 
records of all the flights taken apart for the evaluation of the models. 
We chose two different strategies for the evaluation of the model for the prediction of the flight 
plan and for the estimation of the time of arrivals, both strategies are detailed in the following 
paragraphs. 
 
Flight plan prediction 

Since we are considering the choice of the lateral flight plan and the choice of the flight level 
as independent, the prediction of the flight plan is a two steps process that can be performed 
in parallel [Figure 18]. 
 

 
Figure 18 Online phase of the P4T methodology for flight plan prediction. 

 
The M vectors obtained through the sampling procedure are used as input to the model for 
the prediction of the lateral flight plan to obtain M different predictions, the final output of the 
model is the one recurring most often (majority voting). For the prediction of the flight level we 
have a unique vector as input to the model and the output is the most probable flight level 
(one-hot encoding). 
The performance of the predictive models on the test dataset are presented in Table 8 for the 
route from London to Athens and in Table 9 for the route from London to Malta.  
 

 Lateral flight plan Flight level Flight plan  
(horizontal + vertical) 

Tf-15 31 % 48 % 12 % 
Tf-5 63 % 67 % 42 % 
Tf-1 78 % 88 % 68 % 

Table 8 Test results for the route London-Athens. 
 
We explicitly note that a classifier that chooses the lateral flight plan and the flight level 
completely at random should have an accuracy of about 8.33 %, so even in the long-term case 
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Tf-15 the accuracy in predicting the flight level (horizontal and vertical) is still significantly 
better than a random classifier. 
 

 Lateral flight plan Flight level Flight plan  
(horizontal + vertical) 

Tf-15 34 % 48 % 13 % 
Tf-5 76 % 66 % 50 % 
Tf-1 83 % 89 % 74 % 

Table 9 Test results for the route from London to Malta. 
 
These results confirm the overall good performance of the classifiers, in particular the 
accuracy of the prediction increases remarkably as the time of the departure closes in and the 
forecast values of the input variables get closer to the values experienced during the execution 
of the flight and the corresponding uncertainties get smaller. The prediction of the flight level 
shows quite good performance, also at 15 days before the day of the flight. It is mainly due to 
the information provided by the forecast of the take-off weight, that is uncertain but within a 
bounded range; if the forecast of take-off weight was perfectly known without uncertainties, 
then the prediction of the flight level could significantly improve being the TOW one of the main 
parameters affecting the optimal flight level selection. On the other hand, this prediction 
degrades if the take-off weight forecast is not available. The performance of the lateral flight 
plan prediction is determined by the uncertainties on the weather forecast, that have a less 
significant impact also on the flight level prediction. 
In the following figures are reported some of the results obtained by applying the models to 
the test set for the route from London to Malta, but there are very similar results also for the 
other route from London to Athens. In the heat-maps, a little circle indicates the correct values 
for the lateral flight plan and the flight level, the colour is red for wrong prediction of either the 
two output variables and is green for a correct prediction of both, the values in the graph are 
the predicted probabilities. Same for the bar plots, the colour red indicates a wrong prediction, 
green a correct prediction, on the x axis the value corresponding to the actual value is coloured 
green. 
 

  
Figure 19 - Both predictions are wrong, but the correct values have the second highest probability. 
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Figure 20 - Both predictions are wrong and the correct values have low or zero prediction probabilities. 

 

  
Figure 21 - Only the prediction of the lateral flight plan is wrong with second highest prediction the 

correct value. 
 

  
Figure 22 - The prediction of the lateral flight plan is correct, but the one for the flight level is wrong. 

 

  
Figure 23 - Both the predictions are correct, but the overall joint probability is rather low. 
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Figure 24 - The flight plan has been correctly predicted and the joint probability is high. 

 
Prediction of the time of arrival 

To test the performance of the regression model, we must first use the lateral flight plan 
prediction model to obtain a prediction of the sequence of waypoints to be used as input to 
the model for estimating the arrival times. We used as test the same flights used to test the 
models for the prediction of the flight plans. 
To assess the performance of the model we have to compare its predictions with the arrival 
times reported during the actual flight. But, since the predicted flight plan may differ from the 
actual flight plan, instead of comparing the arrival times on the individual waypoints, we 
compared the overall duration of the flight during the cruise phase [Figure 25]. 
 

 
The results of the tests for the two selected routes and for the different considered time frames 
are reported in the following figures. 
In Figure 26 there are the histograms of the absolute values of the difference between the 
actual and the predicted duration of the cruise flight for the route London-Athens for all the 
considered time frames before the EOBT. For this route, the cruise flight extends for 22 
waypoints. It is evident that the performance of the model gets better approaching the day of 
the flight. 

Regression 
model 

Forecast 
data 

Prediction of the 
lateral flight plan 

Estimated 
duration of the 

cruise phase 

Figure 25 Worflow for the prediction of times. 
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Figure 26 Histograms of the absolute differences between actual and predicted cruise flight duration for 

the London-Athens route, for different time frames before EOBT. 
 
In Figure 27, Figure 28 and Figure 29 there are three scatter plots, one for each of the 
timeframe before EOBT for the route London-Athens, on the x axis there is the actual cruise 
flight duration and on the y axis there is the predicted duration. For a perfect regressor all the 
points should lie on the bisector (red line), in the figures we see a distribution of points, those 
further from the bisector are the ones with higher prediction error. The points are coloured 
according to the correctness of the flight plan prediction. We see from the figure that when the 
lateral flight plan is correctly predicted, the error in the prediction of the duration of the cruise 
flight is lower, on the order of few minutes in absolute value over a flight of duration greater 
than two hours. 
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Figure 27 London-Athens, actual cruise flight duration vs. predicted duration for Tf-15. 

 
Figure 28 London-Athens, actual cruise flight duration vs. predicted duration for Tf-5. 
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Figure 29 London-Athens, actual cruise flight duration vs. predicted duration for Tf-1. 

 
In the following figures we present the same graphs for the route from London to Malta. For 
this route, the cruise flight extends for 21 waypoints, with a duration that ranges from about 
1.5 to about 2.5 hours. 
The histograms in Figure 30 show a similar pattern of that for the route London-Athens: 
approaching the EOBT the number of flights with a prediction error in the range 0-5 minutes 
increases steadily, with a corresponding reduction in the number of flights with high prediction 
errors. 
The scatter plots in Figure 31, Figure 32 and Figure 33 are very similar to those reported for 
the London-Athens route: lower prediction errors are associated specially to those flights with 
at least a correct prediction of the lateral flight plan. 
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Figure 30 Histograms of the absolute differences between actual and predicted cruise flight duration for 

the London-Malta route, for different time frames before EOBT. 
 

 
Figure 31 London-Malta, actual cruise flight duration vs. predicted duration for Tf-15. 



   

Engage catalyst fund project final technical report 37 

 
Figure 32 London-Malta, actual cruise flight duration vs. predicted duration for Tf-5. 

 
Figure 33 London-Malta, actual cruise flight duration vs. predicted duration for Tf-1. 

 
To give an idea of the improving performance of the regression model when the lateral flight 
plan is correctly predicted, in the following histograms we show the absolute value of the error 
limited only to the flights with a correct prediction of the lateral flight plan. For both the routes, 
the error doesn’t exceed 360 seconds (6 minutes), and the number of flights with a value of 
the error below 120 s increases remarkably approaching the day of the flight. 
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Figure 34 Histograms of the absolute differences between actual and predicted cruise flight duration for 

the London-Athens route, for the flight with a correct prediction of the lateral flight plan and for 
different time frames before EOBT. 
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Figure 35 Histograms of the absolute differences between actual and predicted cruise flight duration for 

the London-Malta route, for the flights with a correct prediction of the lateral flight plan and for 
different time frames before EOBT. 

 
 
2.4 Results 
The PIU4TP project has defined a methodology for trajectory prediction on long, medium and 
short term, which is able to manage the uncertainties that by nature affect the input data to 
the trajectory prediction process. 
The methodology has been assessed considering a simplified use case and simulated data. 
Specifically, only two factors that influence the selection of the optimal flight plan has been 
considered in the defined scenario, that is, weather conditions and take-off weight. Indeed, 
the project is a proof of concept and aims at providing evidences of the proposed methodology 
applicability and potential benefits arising from its use. Concerning the use of simulated data, 
this choice is due to the lack of open access datasets which provide a huge (thousands of 
flights) and coherent set of data including real aircraft trajectory and related flight plan, actual 
aircraft take-off weight and its forecast at different time in advance with related forecast 
uncertainties, weather data experienced during flight and their forecast at different time in 
advance with related forecast uncertainties. Moreover, the simulated data allow testing the 
methodology in a fully controlled environment, that is, the value of the parameters of interest 
and the rules and the assumptions that lead to perform the flight along a specific flight plan 
are perfectly known. The simulated data were produced within the framework of the PIU4TP 
project by defining suitable simulation models and exploiting the data found in the open access 
databases. The evaluation of the methodology performance has been carried out using some 
metrics suitably selected in the literature. 
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The tests performed to evaluate the methodology performance have proven the effectiveness 
in the prediction of the flight plan of an aircraft in the long, medium and short term before the 
estimated off-block time. The output includes a complete spatial prediction of the flight plan 
(horizontal and vertical) enriched with an estimation of the time of arrival on the waypoints of 
the flight plan (limited to the cruise phase of flight). The probability of the prediction is provided, 
too. The accuracy of the prediction depends on the time in advance with which it is computed 
and increases sharply as the time approaches the day of the flight, reaching values around 
70% one day before the EOBT. This behaviour is expected because the weather forecasts 
improve and the uncertainties on the input data reduce as the EOBT approaches. 
The obtained results highlighted that, in the considered simplified use case, the methodology 
is able to catch the information that are available in the input data, including the related 
uncertainties, and to exploit them to reliably predict in advance the flown trajectory. Next step 
will be the application of the methodology to more complex use cases, possibly using actual 
data, to fully assessing its performance. 
 
 

3. Conclusions, next steps and lessons learned 
3.1 Conclusions 
The PTU4TP project investigated several data driven approaches to carry out the trajectory 
prediction task. It selected the most promising one, by using suitable metrics, and 
implemented it in a methodology applicable to long, medium- and short-term predictions. 
Preliminary assessment of the methodology has been achieved considering a simplified use 
case, with a limited set of parameters affecting the flight plan selection, and analysing 
simulated data. The obtained results highlighted that the methodology is able to catch the 
information that are available in the input data, including the related uncertainties, and to 
exploit them to reliably predict in advance the flown trajectory. 
In order to further mature the concept, future research shall focus on more complex use cases, 
which consider a wider set of input parameters, and analyse actual flight data. The application 
of the proposed methodology to these new use cases is straightforward, because the 
methodology takes the form of a Lifecycle Model for the analysis and modelling of flight paths 
in the context of trajectory prediction. It is iterative and incremental since it allows adding input 
parameters (such as aircraft type, airline, variables related to passenger connections, 
restricted areas due to military or national security activity) and external information (such as 
new flight route, new time-frames, etc.) by iterating through the phases of the lifecycle. This 
future research will finally assess the relevance of historical data to support the flight plan 
prediction task and permit to reach a good confidence level about practical usability of such 
data and of the proposed methodology to the real ATM world. 
 
3.2 Next steps 
Next steps listed in this section include the planned outputs related to the PIU4TP project and 
the potential further development of the research activities, which could be carried out through 
the participation to future SESAR Calls. 
A planned project output concerns the dissemination activities and consists in the contribution 
to the Engage catalyst project showcases at the SESAR Innovation Days 2021 that will take 
place virtually on 7-9 December 2021 due to the COVID-19 pandemic crisis. The contribution 
will summarise the key project results and outcomes. 
With reference to future activities to be performed in new projects, very useful 
recommendations were collected during the two Consultation Exercise meetings, thanks to 
the participation of several stakeholders. Main suggestions for future development activities 
of the project results to favour potential large-scale applications are: 
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 increase the number of input variables to the P4T methodology to consider other 
sources of uncertainty in the prediction of trajectories; 

 perform sensitivity analyses to quantify the effect of the uncertainty in the input data 
on the uncertainty on the predictions. 

Both these recommendations will be taken into account if opportunities for future project arise. 
It is important to highlight that a data-driven approach is fundamentally based on the use of 
data characteristic of the study domain. It would be desirable to have some flight data 
providers among the stakeholders of future projects, in order to have real data on which to 
apply algorithms and data analytics techniques to build more realistic use cases. 
 
3.3 Lessons learned 
The Engage KTN catalyst initiative is very interesting especially for young researchers 
because the planned duration of one year allows them to carry out study activities on specific 
thematic objectives. Furthermore, the initiative requires a low managerial load which favours 
of the project team to keep focus almost exclusively on study and research activities with 
obvious benefits on the project. Engage's managerial approach based on the assessment of 
technical documents and with the support of mentors certainly represents an added value of 
the initiative. 
For the future it is hoped that this initiative will be continued. 
 

4. Dissemination 
ID Title Description 
1 P4T: A Methodology to Support the 

Flight Trajectory Prediction. An 
introduction to the PIU4TP project. 
Short paper and presentation 

This short paper and the associated poster presented 
the PIU4TP project at SESAR Innovation Days 2020 
held on 7 – 10 December 2020 

2 PIU4TP - Probabilistic information 
Integration in Uncertain data 
processing for Trajectory Prediction 

Project presentation held at Engage workshop – 
Data-driven trajectory prediction, 25 January 2021, 
virtual event 

3 Operational Scenario Definition This document is the output of the WP2 Scenario 
Definition and the deliverable D1. It describes the 
approach adopted to generate the simulated dataset, 
which shall be sufficiently realistic in order to pave 
the way to any further methodology development. 
The document also defines some metrics applicable 
to assess the performance of the methodology 

4 Methodology Description This document is the output of the WP3 
Methodology and the deliverable D3 of the project. It 
aims at sharing the approach used in the project for 
the development of a data-driven methodology 
applicable to the context of the trajectory prediction. 

5 PIU4TP Web page PIU4TP web page on the CIRA web site 
6 Participation to OPTICS2 4th year 

assessment 
PIU4TP provided contribution to OPTICS2 4th year 
assessment devoted to evaluate the extent to which 
the European Research Community is contributing to 
the achievement of Flightpath 2050 safety and 
security goals. 
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Annex I: Acronyms 
 

Term Definition 
ATC Air Traffic Control 
ATFM Air Traffic Flow Management 
ATFCM Air Traffic Flow and Capacity Management 
ATM Air Traffic Management 
AUC Area Under the Curve 
CI Cost Index 
ECMWF European Centre for Medium-Range Weather Forecasts 
EOBF Estimated Off-Blocks Time 
FL Flight Level 
FP Flight Plan 
GS Ground Speed 
OEW Operating Empty Weight 
MAE Mean Absolute Error 
ML Machine Learning 
MSE Mean Squared Error 
MTOW Maximum Take-Off Weight 
NM Network Manager 
NOC Network Operation Centre 
P4T Prediction for Trajectory 
PIU4TP Probabilistic information Integration in Uncertain data processing for Trajectory 

Prediction 
RMSE Root Mean Squared Error 
ROC Receiver Operating Characteristic 
SSE Sum of Squared Errors 
SST Total Sum of Squares 
TAS True Air Speed 
TBO Trajectory Based Operations 
Tf Time of flight 
TOW Take-Off Weight 
TP Trajectory Prediction 
WP WayPoint 
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Annex II: Summary of the performance of the models tested during the 
development of the methodology 
 

Flight plan (horizontal and vertical) prediction 
 

Approach Algorithm 
name 

Algorithm 
Description Hyperparameters and Ranges 

Neural 
Network 

Multilayer 
Perceptron  

(MLP) 

A classifier that uses 
backpropagation to learn a 
multi-layer perceptron to 

classify instances 

• HiddenLayers (H) Є [(#features+#classes)/2, (#features+#classes)] 
• TrainingTime (T) = # epochs to train through. T Є [100, 1000] 
• LearningRate (R) = the learning rate for weight updates. R = 0.3 
• Momentum (M) = Momentum applied to the weight updates. M = 0.2 

Bayesian Bayes Net  
(BayesNet) 

Bayes Network learning 
using various search 

algorithms and quality 
measures 

• Estimator = Algorithm for finding the conditional probability tables of 
the Bayes Network = “Simple Estimator” that estimates probabilities 
directly from data with alpha (A) hyperparameter that is the initial 
count on each value. A Є [0.01, 1] 

• searchAlgorithm = the method used for searching network structures = 
K2 that is a Bayes Network learning algorithm using a hill climbing 
algorithm restricted by an order on the variables with P 
hyperparameter that is the maximum number of parents a node in the 
Bayes net can have. P Є [1, #features] 

Decision Tree 
Inductive 

Decision Tree  
(J48) 

Class for generating a 
pruned or unpruned C4 

• reducedErrorPruning = Whether reduced-error pruning is used instead 
of C.4.5 pruning = YES 

• numFolds (F) = determines the amount of data used for reduced-error 
pruning. One fold is used for pruning, the rest for growing the tree. F Є 
[2,15] 

• confidenceFactor = the confidence factor used for pruning (smaller 
values incur more pruning) = 0.25 

• minNumObj = the minimum number of instances per leaf = 2 

Decision Tree Random Forest  
(RandomForest) 

Class for constructing a 
forest of random trees 

• numIterations (I) = the number of trees in the random forest. I Є 
[10,300] 

• maxDepth = the maximum depth of the tree, 0 for unlimited = 0 
• numFeatures = sets the number of randomly chosen attributes = 

int(log_2(#predictors) + 1) 
Table 10 - Hyperparameters Descriptions and Ranges of Variability  

 
In Table 10, the hyperparameters descriptions of the applied Machine Learning algorithms, with their 
ranges of variability, are reported. For the sake of clarity, some of them are fixed, in accordance with 
the default suggestions of the SW tools and libraries used. 
Table 11 and Table 12 show the performances of the trained models for the lateral flight plan and for 
the flight level, with the chosen hyperparameters of the selected models that had the max accuracy, 
after a fine-tuning step. Going deeper into the results obtained, decision trees (J48 and Random 
Forest) exhibited the highest maximum accuracies, while Bayesian Networks exhibited on average the 
lowest performance and often unsatisfactory. 
Furthermore, for each time frame and for each route, the algorithmic approaches mostly showed the 
following and descending ordering of average and max accuracies (with very few exceptions): 

1. Decision Tree (J48, Random Forest) 
2. Artificial Neural Network (MLP) 
3. Bayesian (BayesNet) 

As already mentioned, the Bayesian approach with networks has often shown unsatisfactory 
performances, although their accuracies have shown a lower variability than that of the other 
algorithmic approaches. 
In conclusion, the average performances of the decision trees are very high both considering the 10-
fold cross-validation (see Table 11 and Table 12), the hold-out validation method, and the set of the 
100 test flights. 
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10-fold cross-validation results for the lateral flight plan prediction 

Route Time 
Frame 

Algorithm 
name 

Min 
Accuracy 

Average 
Accuracy 

Max 
Accuracy Selected 

Hyperparameters 
of model with 
Max Accuracy  

London – Athens TF-15  MLP 0.285 0.291 0.294 NO H=16 ; T=500 
London – Athens TF-15  BayesNet 0.198 0.207 0.210 NO A=0.5; P=2 
London – Athens TF-15  J48 0.290 0.378 0.385 YES F=2 
London – Athens TF-15 RandomForest 0.275 0.369 0.382 NO I = 130 
London – Athens TF-5  MLP 0.430 0.441 0.447 NO H=19 ; T=750 
London – Athens TF-5  BayesNet 0.441 0.452 0.457 NO A=0.01; P=2 
London – Athens TF-5  J48 0.481 0.525 0.534 YES F=2 
London – Athens TF-5 RandomForest 0.452 0.498 0.520 NO I = 207 
London – Athens TF-1  MLP 0.773 0.810 0.835 NO H=27 ; T=500 
London – Athens TF-1  BayesNet 0.752 0.768 0.776 NO A=0.32; P=1 
London – Athens TF-1  J48 0.861 0.874 0.891 NO F=6 
London – Athens TF-1 RandomForest 0.987 0.998 0.999 YES I = 250 

 
London – Malta TF-15  MLP 0.271 0.285 0.303 NO H=24 ; T=342 
London – Malta TF-15  BayesNet 0.269 0.270 0.272 NO A=0.41; P=3 
London – Malta TF-15  J48 0.311 0.315 0.358 YES F=6 
London – Malta TF-15 RandomForest 0.284 0.304 0.320 NO I = 245 
London – Malta TF-5  MLP 0.604 0.683 0.728 NO H=18 ; T=682 
London – Malta TF-5  BayesNet 0.518 0.610 0.672 NO A=0.3; P=1 
London – Malta TF-5  J48 0.592 0.692 0.795 NO F=4 
London – Malta TF-5 RandomForest 0.712 0.790 0.812 YES I = 20 
London – Malta TF-1  MLP 0.825 0.883 0.910 NO H=40 ; T=558 
London – Malta TF-1  BayesNet 0.792 0.827 0.845 NO A=0.73; P=1 
London – Malta TF-1  J48 0.966 0.970 0.992 NO F=6 
London – Malta TF-1 RandomForest 0.972 0.991 0.999 YES I = 250 

Table 11 - Results for the lateral flight plan prediction 
 
 

10-fold cross-validation results for the flight level prediction 

Route Time 
Frame 

Algorithm 
name 

Min 
Accuracy 

Average 
Accuracy 

Max 
Accuracy Selected 

Hyperparameters 
of model with 
Max Accuracy  

London – Athens TF-15  MLP 0.221 0.310 0.399 NO H=12; T=625 
London – Athens TF-15  BayesNet 0.311 0.364 0.378 NO A=0.75; P=1 
London – Athens TF-15  J48 0.415 0.432 0.467 YES F=2 
London – Athens TF-15 RandomForest 0.402 0.425 0.430 NO I = 290 
London – Athens TF-5  MLP 0.401 0.494 0.599 NO H=21; T=500 
London – Athens TF-5  BayesNet 0.338 0.388 0.401 NO A=0.01; P=3 
London – Athens TF-5  J48 0.551 0.603 0.699 YES F=3 
London – Athens TF-5 RandomForest 0.552 0.599 0.652 NO I = 225 
London – Athens TF-1  MLP 0.661 0.725 0.790 NO H=16; T=350 
London – Athens TF-1  BayesNet 0.620 0.715 0.782 NO A=0.55; P=3 
London – Athens TF-1  J48 0.775 0.840 0.887 YES F=2 
London – Athens TF-1 RandomForest 0.777 0.807 0.872 NO I = 250 

 
London – Malta TF-15  MLP 0.228 0.301 0.383 NO H=15; T=550 
London – Malta TF-15  BayesNet 0.350 0.352 0.359 NO A=0.01; P=2 
London – Malta TF-15  J48 0.415 0.432 0.442 YES F=6 
London – Malta TF-15 RandomForest 0.416 0.425 0.435 NO I = 75 
London – Malta TF-5  MLP 0.499 0.591 0.628 NO H=16; T=355 
London – Malta TF-5  BayesNet 0.511 0.531 0.589 NO A=0.77; P=2 
London – Malta TF-5  J48 0.624 0.691 0.723 YES F=8 
London – Malta TF-5 RandomForest 0.630 0.675 0.719 NO I = 150 
London – Malta TF-1  MLP 0.669 0.729 0.822 NO H=18; T=850 
London – Malta TF-1  BayesNet 0.617 0.728 0.751 NO A=0.65; P=2 
London – Malta TF-1  J48 0.792 0.840 0.903 YES F=4 
London – Malta TF-1 RandomForest 0.798 0.817 0.884 NO I = 120 

Table 12 - Results for the flight level prediction 
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Flight duration estimation 
 

Approach Algorithm 
name 

Algorithm 
Description Hyperparameters and Ranges 

Neural 
Network 

Multilayer 
Perceptron  

(MLP) 

A regressor that uses 
backpropagation to learn a 
multi-layer perceptron to 

predict time of flight 

• Number of hidden layers (N) Є [1, 2] 
• Number of units per layer (H) Є [8, 16, 32, 64, 128] 
• TrainingTime (T) = # epochs to train through. T Є [50, 500] 
• LearningRate (R) = the learning rate for weight updates. R = 0.001 
• Momentum (M) = Momentum applied to the weight updates. M = 0.0 

Decision Tree Inductive 
Decision Tree  

Class for generating a 
random tree regressor 

• numFolds (F) = determines the amount of data used for reduced-error 
pruning. One fold is used for pruning, the rest for growing the tree. F Є 
[2, 50] 

• minNumObj = the minimum number of instances per leaf = 1 

Decision Tree Random Forest  
Class for constructing a 
forest of random trees 

regressors 

• numIterations (I) = the number of trees in the random forest. I Є [25, 
400] 

• maxDepth = the maximum depth of the tree, 0 for unlimited = 0 
• numFeatures = sets the number of randomly chosen attributes = auto, 

i.e. equals the number of input features 
Table 13 - Hyperparameters Descriptions and Ranges of Variability 

 
In Table 13, the Machine Learning algorithms used for the estimation of the duration of the cruise 
flight are reported with a description of the hyperparmeters used for optimization and their ranges of 
variability, some of them are fixed to the default values suggested by the library used. 
Table 14 shows the performances of the trained models for the prediction of the duration of the cruise 
flight, with the chosen hyperparameters of the selected models that had the minimum mean absolute 
error (MAE). 
Note that the variables used for these models refer to the flight plan used during the execution of the 
flight, so the only time frame in Table 2 is TF-0. The reasons for this choice are descripted in the final 
technical report. 
 

Hold-out validation results for the cruise flight duration prediction 

Route Time 
Frame 

Algorithm 
name 

Min 
MAE 

Average 
MAE 

Max 
MAE Selected 

Hyperparameters 
of model with 

min MAE  
London – Athens TF-0 Decision Tree 8.5 13.6 82.7 NO F=18 

London – Athens TF-0  MLP 6.5 31.9 178.0 NO N=2 ; H=(128, 128) ; 
T=300 

London – Athens TF-0 Random Forest 4.9 5.1 5.2 YES I = 150 
 

London – Malta TF-15  MLP 6.1 25.6 117.4 NO N=2 ; H=(128, 128) ; 
T=350 

London – Malta TF-15 Decision Tree 6.6 9.9 50.8 NO F=16 
London – Malta TF-15 Random Forest 3.9 4.1 4.5 YES I = 150 

Table 14 - Results for the cruise flight duration prediction 
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Annex III: Modelling results for flight plan prediction 
Lateral flight plan prediction 
Route London-Athens 
Long-Term (15 days before EOBT) 
 

Confusion matrix Performance metrics 

  

Model: Induction Decision Tree 
 

Table 15 – Long-term 10-fold cross validation results. 
 

Confusion matrix Performance metrics 

  

Model: Induction Decision Tree 
 

Table 16 – Long-term hold-out validation results. 
 
Mid-term (5 days before EOBT) 
 

Confusion matrix Performance metrics 

  

Model: Induction Decision Tree 
 

Table 17 - Mid-term 10-fold cross validation results. 
 
 
 



   

Engage catalyst fund project final technical report 49 

Confusion matrix Performance metrics 

  

Model: Induction Decision Tree 
 

Table 18 - Mid-term hold-out validation results. 
 
Short-term (1 day before EOBT) 
 

Confusion matrix Performance metrics 

  

Model: Random Forest I=250 
 

Table 19 - Short-term 10-fold cross validation results. 
 

Confusion matrix Performance metrics 

  

Model: Random Forest I=250 
 

Table 20 - Short-term hold-out validation results. 
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Route London-Malta 
Long-Term (15 days before EOBT) 
 
 

Confusion matrix Performance metrics 

  

Model: Induction Decision Tree 
 

Table 21 - Long-term 10-fold cross validation results. 
 
 

Confusion matrix Performance metrics 

  

Model: Induction Decision Tree 
 

Table 22 - Long-term hold-out validation results. 
 
 
 
Mid-term (5 days before EOBT) 
 

Confusion matrix Performance metrics 

  

Model: Random Forest I=20 
 

Table 23 - Mid-term 10-fold cross validation results. 
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Confusion matrix Performance metrics 

  

Model: Random Forest I=20 
 

Table 24 - Mid-term hold-out validation results. 
 
 
Short-term (1 day before EOBT) 
 

Confusion matrix Performance metrics 

  

Model: Random Forest I=250 
 

Table 25 - Short-term 10-fold cross validation results. 
 
 

Confusion matrix Performance metrics 

  

Model: Random Forest I=250 
 

Table 26 - Short-term hold-out validation results. 
 
 
 

Flight level 
Route London-Athens 
Long-term (15 days before EOBT) 
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Confusion matrix Performance metrics 

  

Model: Inductive decision tree 
 

Table 27 - Long-term 10-fold cross validation results. 
 
 

Confusion matrix Performance metrics 

  

Model: Inductive decision tree 
 

Table 28 - Long-term hold-out validation results. 
 
 
Mid-term (5 days before EOBT) 
 

Confusion matrix Performance metrics 

  

Model: Inductive decision tree 
 

Table 29 - Mid-term 10-fold cross validation results. 
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Confusion matrix Performance metrics 

  

Model: Inductive decision tree 
 

Table 30 - Mid-term hold-out validation results. 
 
 
Short-term (1 day before EOBT) 
 

Confusion matrix Performance metrics 

  

Model: Inductive decision tree 
 

Table 31 - Short-term 10-fold validation results. 
 
 

Confusion matrix Performance metrics 

  

Model: Inductive decision tree 
 

Table 32 - Short-term hold-out validation results. 
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Route London-Malta 
Long-term (15 days before EOBT) 
 

Confusion matrix Performance metrics 

  

Model: Inductive decision tree 
 

Table 33 - Long-term 10-fold cross validation results. 
 

Confusion matrix Performance metrics 

  

Model: Inductive decision tree 
 

Table 34 - Long-term hold-out validation results. 
 
Mid-term (5 days before EOBT) 
 

Confusion matrix Performance metrics 

  

Model: Inductive decision tree 
 

Table 35 – Mid-term 10-fold validation results. 



   

Engage catalyst fund project final technical report 55 

 
Confusion matrix Performance metrics 

  

Model: Inductive decision tree 
 

Table 36 - Mid-term hold-out validation results. 
 
Short-term (1 day before EOBT) 
 

Confusion matrix Performance metrics 

  

Model: Inductive decision tree 
 

Table 37 - Short-term 10-fold cross validation results. 
 

Confusion matrix Performance metrics 

  

Model: Inductive decision tree 
 

Table 38 - Short-term hold-out validation results. 
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