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1. Abstract and executive summary

1.1 Abstract

The objective of the PIU4ATP project is the development of a data-driven methodology for the
trajectory prediction from long to short term before scheduled time of flight. Specifically, the
methodology uses machine learning and data mining techniques to perform data analysis and
to learn from past experience the aircraft future behaviour in terms of flight path selection.
Therefore, it exploits historical data and uncertainties of current forecasts of some relevant
mission and aircraft parameters to compute trajectory prediction outcomes enriched with
associated probabilistic information. The project’s final aim is to build a methodology that can
support the Network Manager with air traffic flow and capacity management, allowing the
optimization of flight distribution among sectors and flight routes, the anticipation of air traffic
flow requests and the identification in advance of potential conflicts.

1.2 Executive summary

The PIU4TP project aims to develop a data - driven methodology named P4T (Prediction for
Trajectory) for the prediction of the flight trajectory in terms of selection of the most likely
sequence of waypoints in the strategic and pre-tactical phases, starting weeks before the flight
execution with the declared flight intention of the airspace users and ending few hours before
the estimated off blocks time.

The tactical management of an ordered, efficient and safe air traffic is currently highly affected
by a number of uncertainties, which will finally require many maodifications to flight plans and
can produce relevant delays on the schedule of flights.

The P4T methodology aims to investigate how flight plans can be better predicted, from long
to short term before scheduled time of flight, by considering historical data and uncertainties
on current forecasts of some relevant parameters. This methodology, providing reliable
predictions of flight plans, is expected to allow ATFCM centres to perform a sound
management of the uncertainties affecting the air traffic and to limit changes to the plans in
the tactical phase, so improving ATM efficiency, punctuality and reducing environmental
impact. Safety will be also affected by limiting ATCO workload and reducing the risk of
hotspots occurrence.

Actually, there is a large number of parameters that can affect the optimal flight plan selection.
A few of these, among the most relevant ones, have been considered in the project,
specifically the weather forecast and the estimated take-off weight. Indeed, the project is a
proof of concept. Its objective is to consider some parameters that mainly affect the selection
of the optimal flight plan and to investigate how the information about these parameters and
related uncertainties, which characterize the parameters forecast before the flight, can be
exploited in an integrated approach to perform in advance a reliable prediction of the flown
trajectory. Although the developed methodology is demonstrated considering few uncertain
inputs, it is generic and applicable also to a wider set of uncertain inputs. Indeed, all the steps
that define the methodology developed in this project, described in section 2.3.2, can be
applied to different use cases, which consider different sets of uncertain inputs (if the historical
data and current prediction of these uncertain inputs are available). Obviously, the models
obtained with the applied technigues need a new training, considering the new input variables,
and this need for re-training is a primary requirement of Machine Learning, due to its data-
driven character. This re-training step allows us to always maintain a high prediction accuracy.

The idea of P4T is to build the predictive model of flight trajectories by applying Data Mining
and Machine Learning (ML) techniques. Instead of programming explicitly a computer to solve
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a difficult problem, ML uses algorithms to learn from past experience (historical data) how to
obtain behavioural models based on complex but statistically reliable rules. This model, once
implemented, will use as input the weather forecast and take-off aircraft mass estimation, with
related uncertainties. Indeed, the exploitation of the uncertainties on the inputs allows
associating probabilistic information to the predicted trajectories and this is the main innovative
feature of the proposed methodology. Therefore, PIU4ATP represents a change of perspective.
The project aimed to demonstrate that the uncertainty inherently present in a weather
forecast and that also normally affects also the take-off weight data before the flight, could
augment the knowledge base available to the Network Manager (NM) transforming the
uncertainties in a valuable information for a more efficient flight trajectory planning and
allocation.

The trajectory prediction capability can allow the network manager anticipating air traffic flow
requests, supporting the decision-making process of flight distribution among sectors and
flight routes, and thus avoiding an excessive tactical management of the flights. On this path,
the project starts from very low TRL and moves from the concept to TRL 2, first designing a
methodology for flight plan prediction and then performing a preliminary demonstration based
on simulated data and a simplified use case. This allows evidence to be provided of the
proposed methodology applicability, and potential benefits arising from its use.

2. Overview of catalyst project

2.1 Operational/technical context

Trajectory Prediction (TP) is one of the most relevant capability and need of the current and,
above all, the future management of air traffic, in its expected implementation of the Trajectory
Based Operations (TBO) paradigm. The TP process supports the activity of several ATM
actors and Airspace Users (AU), which apply different tools and methodologies. The TP is
performed iteratively from the initial planning till to the completion of the flight, as sketched in
the Figure 1, to support operations in strategic, pre-tactical and tactical phases.

Figure 1 — Collaborative Trajectory Planning (Source: Ballerini et al. “Trajectory Prediction Network
Manager Demand Forecast Key Enablers to TBO”, Engage Workshop Nov. 2018)
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Often TP methodologies and tools provide deterministic forecast of the trajectories without any
guantification of the uncertainty affecting the prediction, as highlighted in the Thematic
Programme description. However, the TP process is uncertain by its nature, indeed it predicts
actual trajectories by using models, which are approximation of the reality affected by a given
accuracy, and uncertain input data, such as weather forecast and aircraft actual performance.
The relevance of quantification and management of uncertainties on trajectory prediction has
emerged in the recent years, and research activities are on-going on the topic [RD1], [RD2],
[RD3], [RD4], [RD5], [RD6], [RD7].

The expected outcomes of the PIU4ATP project is a methodology which allows using data
mining and machine learning techniques for 4D Trajectory Prediction, dealing with the relevant
stochastic information inherent to the input data, and providing the stochastic characterization
related to the predicted trajectories. The methodology developed in the study is applicable in
strategic and pre-tactical phases. It benefits from the progressively reduced level of
uncertainties associated with the forecast to improve the trajectory prediction as the scheduled
time of flight approaches. Indeed, in strategic forecast, starting from the filing of the flight plan,
large uncertainties affect the input data for the forecast and thus the predicted trajectories
have low level of confidence; progressing in time, while approaching the flight execution, the
uncertainties on the required input data reduce, and improved trajectory predictions could be
gotten as well as higher level of confidence associated to the predictions. Actually, the
proposed methodology could be further developed and suitably customized as a Decision
Support Tool in tactical management of the airspace. In fact, it could support ground decisions
(on tactical clearances and trajectory distribution) and airborne decision (such as airborne
delegated medium-term separation operations and manoeuvres). However, the development
of the methodology for the application in the tactical phase is out of the scope of the present
project.

In conclusion, the availability of reliable TP approach could support the improvement of the
ATM system performance and the PIU4ATP project aims contributing to fit this need. In fact,
the integration of TP tool into the Network Manager's, ANSPs’ and flight operations centres
for 4D trajectory planning tools, leads to enhanced collaboration in trajectory management,
such that capacity can be matched to demand by a better anticipation of AU behaviour.
Moreover, improved predictability allows avoiding in advance potential conflicts and then
enhancing air traffic safety.

2.2 Project scope and objectives

A lot of efforts have been done to develop TP algorithms that can meet the stringent safety
requirements typical of the aviation sector. The traditional approach uses a more or less
simplified dynamical model of the aircraft based on a number of parameters and then solve a
set of differential equations to recover the flown trajectory, taking in consideration the influence
of the surrounding weather conditions. This line of research has some drawbacks: the
dynamical model can only reproduce a simplified version of the actual aircraft behaviour, the
solution of the differential equations may be inaccurate or even unstable since many input
parameters are difficult to be measured with sufficient precision, and many of the possible
causes affecting the flight of the airplane cannot be adequately modelled, such as the intents
of the pilot or airline operator and the directives of ATC. Moreover, the uncertainties on the
parameters that influence the trajectory often are not considered at all and the value of these
parameters are used simply to perform deterministic on-off decision. Finally, the use of model-
based techniques to predict the actual flown trajectories requires high computational burden.
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An increasingly interesting alternative to model-based solutions is offered by a data-driven
approach: it uses a collection of past flown trajectories to statistically predict the behaviour of
future flights by exploiting all the information implicitly included in the historical data. With the
improving quality and growing volume of the data collected in ATC systems, data-driven
methods have become mainstream in current aircraft trajectory prediction research and may
allow overcoming the limitations of model-based approach.

The PIU4TP project aims to contribute to the research activities in the framework of the data-
driven approach. Its objective is to define and validate a methodology that provides trajectory
prediction enriched with its relevant probabilistic information, by exploiting the uncertainty
inherently connected to the data used as inputs by the TP process. The proposed approach
is consequently intended to support the planning activities in terms of demand-capacity
balance, pre-tactical identification of hotspots and potential conflicts. However, it is out of the
scope of the proposed methodology the provision of the best trajectories’ allocation.
Furthermore, the 4D-trajectories are considered, that is, the time is part of the information
included in the output provided by the methodology.

The project responds to some of the main issues highlighted in the Trajectory Prediction
Thematic Network description, that are:

¢ use of machine-learning technigques to infer airspace users’ behaviour, intentions and
preferences from historical data and enhance tactical and pre-tactical trajectory
prediction;

e aggregation of probabilistic predictions into probabilistic traffic counts at a strategic and
pre-tactical level;

e integrating predictions about factors affecting flight planning and execution, including
weather conditions.

From a data-driven perspective, the objective of this project is to build a predictive model able
to make short, medium and long-term predictions of trajectories given a set of uncertain inputs.
Machine learning develops algorithms that learn from past experience how to obtain
statistically optimal solutions. Much of the effort has been dedicated to the research of the
best way to deal with the uncertainties in weather forecasts and aircraft take-off configuration.

The defined methodology has been designed and validated using simulated data. The choice
to use simulated data is due to the lack of open access datasets which provide a huge
(thousands of flights) and coherent set of data including real aircraft trajectory and related
flight plan, actual aircraft take-off weight and its forecast at different time in advance with
related forecast uncertainties, weather data experienced during flight and their forecast at
different time in advance with related forecast uncertainties. Moreover, the simulated data
allow testing the methodology in a fully controlled environment, that is, the value of the
parameters of interest and the rules and the assumptions that lead to perform the flight along
a specific flight plan are perfectly known. The project’'s purpose is to demonstrate that the
methodology is able to catch all the useful information that are available in the data, including
the forecast uncertainties, and to exploit them to perform in advance a reliable prediction of
the flown trajectory. Once this result has been achieved on a simplified use case, the P4T
methodology could be tested on more complex use cases (however it is not the objective of
the present project), also considering actual data, if available. Indeed, PAT takes the form of
a Lifecycle Model for the analysis and modelling of flight paths in the context of trajectory
prediction. It is iterative and incremental since it allows to add new input variables (such as
aircraft type, airline, variables related to passenger connections, restricted areas due to
military or national security activity) and external parameters (such as new flight route, new
time-frames, etc.) by iterating through the phases of the lifecycle.
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2.3 Research carried out

The research activity has been structured into three phases, which performed in sequence
allowed achieving the project objective:

Phase 1. Operational Scenario Definition

The first phase concerned the definition of relevant reference scenario, including the
investigation about available data, the construction and tuning of models to generate the
simulated data, and the realization of needed databases.

Phase 2: PAT Methodology Development

The second project phase dealt with the PAT methodology development. An overview of
applied and applicable Machine Learning and Data Mining techniques to the problem of
trajectory prediction have been analyzed and the methodology implemented.

Phase 3: P4T Methodology Evaluation

In the third phase, the proposed methodology has been evaluated and the benefits deriving
from the methodology application analyzed and discussed.

2.3.1 Phase 1.: Operational Scenario Definition
The definition of the operational scenario is performed through the following steps:

e Route Selection: definition of the airspace and the routes considered for the design
and validation of the methodology.

o Relevant Parameters ldentification: selection of the parameters considered in the
scenario that affect the optimal trajectory selection.

e Forecast Time Window Definition: definition of the time frame in which the methodology
is applied.

o Data Generation: generation of the data needed as input to design and validate the
trajectory prediction methodology.

e Simulated Dataset Verification: verification of the quality of the generated dataset.

o Assessment Metrics Definition: selection of the metrics for the assessment of the
performance of the trajectory prediction methodology.

Since the PIUATP project is a proof of concept, in order to assess the performance of the
proposed methodology and without affecting the validity of the results, the scenario definition
is based on simulated data and on some simplifying assumptions. As said above, the use of
simulated data is justified because it allows testing the methodology in a fully controlled
environment and provide a complete dataset which is not available in the open access
datasets of real aircraft trajectories. Concerning the simplified assumptions, the project
analysed only two flight routes within the European airspace, as test case for trajectory
prediction, and considers few parameters affecting the selection of the optimal flight plan.
Moreover, the input data were collected in a predefined time window and in a limited number
of dates in advance with respect to the scheduled date of flight. However, it is worthy to
highlight that the proposed methodology, once validated, could be applied to any route, at any
time, and including any factor affecting the flight plan choice, if the required input data are
available.

Details about the operational scenario are provided in the next sub-sections.
Route Selection

To support the methodology development and validation, the European airspace has been
considered, and two routes have been selected:
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- London Heathrow Airport (ICAO code: EGLL) - Athens Eleftherios Venizelos
Airport (ICAO code: LGAV)

- London Gatwick (ICAO code: EGKK) - Malta International Airport (ICAO code:
LMML)

Both routes are normally executed by several airliners; they fly through different national
airspaces and go across different airspace sectors. Some possible flight plans have been
associated to each flight route.

Relevant Parameters Identification

Actually, there is a large number and types of parameters that can affect flight plan selection
and requests for a flight plan change both during pre-flight planning and flight execution. As
anticipated, the PIU4ATP project only considers two of these parameters, that are relevant in
the strategic and pre-tactical phases, namely:

- actual aircraft take-off weight
- weather conditions

Figure 2 — Input variables into PIU4TP project for trajectory prediction

In fact, the actual take-off weight affects the climbing performance of the aircraft [RD3], [RD8],
[RD9], and the selection of the optimal flight level, as described in [RD10]. The effects of
weather conditions on the performed flight plan are widely known and reported in several
works in the literature [RD6], [RD7], [RD11]; for example, pilots can decide to follow a route
because it allows to take advantage of the tail winds making the flight faster, while reducing
fuel consumption. Those above mentioned are just two of possible inputs affecting the TP.
Other causes of uncertainties such as the pilot intent, FMS performance, ATC tactical
intervention, are excluded from this project.

Forecast Time Window Definition

Since the project focuses on the strategic and pre-tactical phases, we consider a time window
of 15 days before the scheduled date of flight as encompassing the overall study analyses.
Consequently, fixed a Tf as the day/time of actual operations, it is expected that the NM starts
to manage the flight routes allocation to requiring aircraft, 15 days before Tf, denoted as time
Tf-15. Each aircraft that intends to fly across the European controlled airspace needs to file a
flight plan to the NM, starting 15 days and till few hours before the flight. In the planning phase,
recurrent flights are normally considered, too, and their flight plans are well known also before
15 days in advance. Anyway, we consider in our study to start the process at Tf-15 days; it is
worthy to remark that this assumption has no impact on the validity and the generality of the
project results.

Because the methodology intends to demonstrate how the flow capacity management process
could benefit from improvements in forecast of the meteorological conditions, two other dates
are considered in the pre-tactical phase: 5 days before Tf (denoted as Tf-5) and 1 day before
Tf (denoted as Tf-1). In strategic forecast, large uncertainties affect the input data and thus
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the predicted trajectories have low level of confidence; progressing in time, while the
uncertainties on the required input data reduce, better trajectory forecasts can be obtained as
well as a higher level of confidence associated with the flight plans prediction.

Eventually, using the information available on actual meteorological conditions (we can
identify this as Tf+), the flown flight trajectory is identified, and this can be compared with
recursive forecasts at Tf-15, Tf-5 and Tf-1 in order to assess the methodology performance.
The process timeline is sketched in Figure 3 .

Time-to-Fly

Tf-15 days Tf-5 days  Tf-1 day Tf+_
Flown Trajectory

| ) \ J \ J
I I I

Long-term Short-term

Medium-term

Figure 3 — Flight plan timeline for simulated data generation

Data Generation

The information about a huge number of flights shall be available to design and validate the
methodology. For each flight the following data are required:

the set of possible flight plans that can be flown along the selected route (EGLL-LGAV
or EGKK-LMML);

the weather forecasts (and their probabilistic characterization) along the flight route as
above identified, at each date of the trajectory prediction computation;

the take-off weight estimations (and their probabilistic characterization) at each date of
the trajectory prediction computation;

the actual flown trajectory the day of flight;

the actual weather conditions experienced in the date of the flight;

the actual take-off weight during the flight.

All these data have been generated through simulation, bearing in mind the need to be as
realistic as possible. To this end, the following open access sources of information have been
exploited to generate the needed data:

flight plans for each route have been downloaded from the website
www.flightplandatabase.com. The flight plans are defined in terms of departure and
destination airports and the list of waypoints that defines the corresponding route.

ERADS database of the European Centre of Medium-range Weather Forecast-ECMWF
[RD12] has been used to get 3D (longitude, latitude, air pressure) weather data for a
wide range of selectable dates. For each selected day/hour, the database provides the
re-elaborated weather information, that is the actual weather information as derived
from a complex assessment process of the weather info from several sources. The
ERA5 also provides the uncertainties characterization for the weather forecasts
[RD13]; many of these characterizations apply back till to 15 days before the date, and
this is a sound reason for selecting in 15 days the time range of our application. The
data used within the PIU4ATP project are wind intensity and direction and atmospheric
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temperature. Exploiting the ER5 database, for each examined flight, the forecast of
these parameters (including the uncertainty on the forecast) at Tf-15, Tf-5 and Tf-1,
and the actual value in the day of the flight are computed.

o The take-off weight forecast and actual values vary among two precise limits, the
Operating Empty Weight (OEW) and the Maximum Take-Off Weight (MTOW). These
values for most of the aircraft are available in the literature [RD14].

The database OpenSky network has been also investigated to assess its applicability to the
project. This database provides real trajectory data but does not provide all the other data
needed as input for the PIU4TP methodology design and validation, such as the take-off
weight of the aircraft performing a recorded trajectory, neither other source of experimental
information can be used to complement the data available in OpenSky. For that reason, the
OpenSky data have been not used and the actual flown trajectories were computed through
simulation.

Twelve possible flight plans (three different lateral flight plans which can be performed at four
different cruise flight levels) for each route have been selected. A generic short/medium range
aircraft has been chosen to perform the flights, with take-off weight varying in the range 50-80
tons.

The data generation process comprises the following steps, applicable to each of the flight
considered in the project:

e For each date, in which trajectory prediction shall be performed (Tf-15, Tf-5 and Tf-1),
compute:
o0 the estimated take-off weight and related uncertainties;
o the weather forecast (atmospheric temperature and wind velocity) and related
uncertainties along each flight plan;
o the potential No-Fly Zones due to weather conditions and of the probability to
cross one of them;
0 the estimated time of arrival in each waypoint and related uncertainties.
e For the date of flight (Tf) compute
o0 the actual take-off weight
o the actual weather conditions
o the flown flight plan and the related 4D trajectory, in terms of time of arrival in
each waypoint of the plan.

The take-off weight (TOW) estimation is randomly draw, assuming a Uniform stochastic
distribution within the allowable range (from OEW to MTOW). Indeed, data on estimated TOW
are not freely available in the literature, as well as information about the stochastic distribution
applicable to the TOW estimation uncertainty. When little or no a-priori statistical information
about the uncertain parameters is available, the use of the uniform distribution represents a
conservative choice, because it guarantees that the probability of performance satisfaction
under this uncertainty distribution is smaller than the probability under any other distribution
[RD15]. The uncertainty on the estimated value depends on how much in advance with respect
to the scheduled flight date the estimation is computed (it decreases while approaching the
flight date) and it is defined as a percentage of the whole range of variation (that is, the
difference between MTOW and OEW). The process for the take-off weight data generation
starts with the first random draw performed on the whole range of variation. It defines the first
weight forecast value at Tf-15 days (W15); an uncertainty of 35% of the TOW range (that is,
TOW range=MTOW-OEW) is associated to this value (Wunc15). Next, the forecast at Tf-5
(W5) is computed through a new draw in the range [W15 - Wuncl5, W15 + Wuncl5] and a
new uncertainty (Wunc5), equal to 15% of the TOW range, is associated to it. The procedure
is repeated for the forecast at Tf-1 (associated uncertainty is 5% of the TOW range) and for
Tf+. In this last case, only the value of the weight is computed, without associating an
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uncertainty to it; indeed, this value represents the actual take-off weight experienced during
the flight and not a forecast of it. Of course, a saturation of the TOW value to the range [OEW,
MTOW] is applied after each random draw, in order to guarantee that the generated value is
realistic. Finally, it is worthy to remark that the numerical values used to characterize the
uncertainty at different forecast times are just an attempt used because actual data are
unavailable. However, these values do not affect the applicability of the trajectory prediction
methodology neither the assessment of its performance because the same rules and
parameters are applied to generate both the data used for the design and the validation of the
methodology.

As said, the computation of weather data is based on the ERAS database [RD12], specifically
the reanalysis dataset is exploited. The ERAS5 database provides for each date and at different
hours (with one-hour resolution) the weather parameters defined on a three-dimensional
spatial grid. Within the PIU4TP project, we downloaded more than 2000 different datasets,
referring to days of October and November from 1979 to 2013 at 2pm hours. The considered
months (October and November) and hour (2pm) were selected as a first test case and chosen
through a random draw among the possible options. These data are used to design and
preliminarily validate the methodology according to the objective of the PIU4ATP project, that
is, to demonstrate a proof of concept at low TRL. Next step, subject for future research
projects, will be the training and assessment of the methodology on a wider set of input data
(possibly actual experimental data) with uniform distribution along time. Indeed, weather at
each time of the day could present different features that shall be properly modelled by the
ML algorithm, in order to get a methodology applicable to predict the flight trajectory,
whichever is the aircraft departure time, and to accurately assess its performance.

For each simulated flight, a file is extracted from the weather database (each dataset can be
associated to just one flight) and the values of the relevant atmospheric parameters
(atmospheric temperature and wind velocity vector) are considered. Weather forecast is
evaluated in each waypoint of all the possible flight plans for the selected route, through an
interpolation of the grid provided by ERAS5. As far as the PIUATP team is aware, ERAS does
not provide for a given date a complete dataset including the forecast for the selected date at
Tf-15 days, Tf-5 days and Tf-1 day. To overcome this limitation, the following process has
been implemented. It allows getting consistent data, which are realistic (although not actual),
because computed starting from actual weather data, and suitable for a proof of concept
demonstration. The reanalysis file for a given date is used as forecast at Tf-15 days. The
forecast is characterized with an uncertainty for each variable that depends on the time in
advance with respect to the scheduled date of the flight at which the forecast is performed,;
this uncertainty is provided in [RD13]. An example of such uncertainty on the temperature is
presented in the following figure, which is an excerpt of [RD13].

Figure 4 — Uncertainty on atmospheric temperature forecast depending on the forecast day (standard
deviation, dashed lines; RMS error solid lines)
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We assume that the forecast of the atmospheric parameters are stochastic variables with a
Uniform distribution (it is an assumption, but any other distribution can be used), which is
defined by the mean value (forecast) and the standard deviation (from figure above). Then we
can compute the forecast at Tf-5 days by performing in each waypoint a random draw from
the stochastic distribution defined at Tf-15 days. A new standard deviation can be computed
at Tf-5 by using again Figure 7 for the temperature and similar plots for the other atmospheric
parameters. The procedure is applied also to compute the forecast at Tf-1, starting from the
stochastic distribution defined at Tf-5. Finally, a new draw is performed from the distribution at
Tf-1 to obtain the atmospheric parameters to use for computing the actual flown trajectory
(Tf+).

Once the atmospheric parameters are available, the No-Fly Zones can be computed. Two
types of NFZ are considered: hazard NFZ and discomfort NFZ. The former shall be avoided
during the flight, because weather conditions do not allow a safe flight. The latter could be
avoided, depending on the operator's choice; indeed, crossing this NFZ could be not
comfortable for the passengers but without affecting the safety of the flight. Both NFZs are
defined with respect to the wind velocity. As far as the occurrence of a hazard NFZ is
concerned, we define a threshold Th1l for the horizontal wind speed and a second threshold
Tv1 for the vertical wind speed. Waypoints in which wind is expected to exceed one of these
thresholds are included in the NFZ. At Tf-15, Tf-5 and Tf-1 days, the wind speed forecast is
defined by a mean value and an uncertainty, which characterize a stochastic distribution.
Consequently, defined the stochastic distribution, it is possible to compute the probability to
exceed the NFZ thresholds and then the probability the waypoint has to be included in the
NFZ. Performing this computation in each waypoint of a flight plan allows computing the
probability that the flight plan has to cross the NFZ. The same approach is applied to define
the discomfort NFZs; we define another couple of thresholds Th2 and Tv2, with Th2<Th1 and
Tv2<Tvl, and the discomfort NFZ includes the waypoints in which the horizontal wind speed
belongs to the range [Th2, Th1] or the vertical wind speed belongs to the range [Tv2, Tv1].
Next, the probability to cross the NFZ is computed for each flight plan as above; the obtained
probability for discomfort NFZ is halved, because we assume that just 50% of the operators
take care to avoid this kind of NFZ. At Tf+, the wind speed experienced during the flight is
known without uncertainty, therefore the probability of a flight plan to cross NFZs could only
be Oor1.

The Estimated Time of Arrival to Each Waypoint is computed through kinematic equations. It
is assumed that the flight is performed at the Optimal Mach number, denoted as ECON Mach,
that depends on the TOW and the corresponding optimal flight level. The following figure,
excerpt of [RD10], shows an example of this relation for the Airbus A340. Once the take-off
weight is known, and assuming a cost index for the flight, the ECON Mach can be computed.
Then the speed of sound is derived from the atmospheric temperature, the airspeed is
calculated form Mach number and speed of sound, and the ground speed is evaluated
composing the air speed and the wind speed. Finally, the time of arrival in each waypoint is
obtained by dividing the length of the leg preceding the waypoint for the ground speed. Since
the weather data are uncertain at Tf-15, Tf-5 and Tf-1, also the estimated time of arrival to
each waypoint will be uncertain. In computing the time to reach the waypoints in the first legs
of a flight plan, the climb performance of the aircraft is also considered by adding to the
estimated time an additional delay. This climb performance depends on the TOW and are
available in the open literature for some aircraft models [RD14].
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Figure 5 — Optimal Mach number depending on flight level, TOW and cost index

Computed weather conditions and take-off weight are considered as inputs for the selection
of the flight plan among the possible options. Specifically, as detailed before, the presence
and localization of the No-Fly Zones are determined by the weather, whereas the TOW affects
the climbing performance of the aircraft and the optimal cruise altitude. An example of the
relation between TOW and optimal flight level is shown in the following figure, from which it is
possible to evaluate the flight level, given the TOW and the cost index selected by the operator.
The figure is an excerpt of [RD14] and refers to Airbus A340. It is worthy to remark that the
weather conditions could also contribute to determine the optimal flight level, because the
relation between TOW and FL, for a fixed Cl, varies with atmospheric temperature (different
relations are defined for different temperature).
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Figure 6 — Optimal flight level depending on TOW and cost index

Based on these considerations, the following rules apply to select the most suitable flight plan
(among the available ones for the considered route) when the take-off weight and the weather
conditions are known:

e The selection of the lateral flight plan is based on the avoidance of the NFZs.
o The selected flight level (vertical flight plan) is the optimal one with respect to the take-
off weight for a given cost index.

At Tf+, the weather conditions and TOW are measured without uncertainties. TOW allows
selecting the best vertical flight plan. Concerning the lateral flight plan, if only one of the
possible options (for the considered route) avoids the NFZs, then the optimal flight plan is
completely defined and added to the generated dataset. Otherwise the obtained data are
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discarded (because they do not provide a unique solution). When forecasts are computed at
Tf-15, Tf-5 and Tf-1, the wind, atmospheric temperature and take-off weight values are
uncertain and described by a stochastic distribution, as explained in the previous sections.
Consequently, also the selection of the flight plan (lateral and vertical) is characterized through
a stochastic distribution; specifically, more than one selection is possible and a probability is
associated to each of the selected options. The probabilities associated to each flight plan in
the forecast time window (from Tf-15 to Tf-1), based on forecasted inputs, are additional
information provided by the data generation process, which will not necessary be exploited in
the training and validation of the trajectory prediction methodology.

Simulated Data Verification

Two types of verification are performed on the generated data: numerical consistency check
and qualitative comparison with real data.

The numerical consistency check is performed on the TOW and weather parameters by
verifying that these parameters always belong to a predefined range. The allowable TOW
range is bounded by operating empty weight and maximum take-off weight of the considered
aircraft. The bounds for each weather parameter are computed as minimum and maximum of
the values that the parameter assumes in all the downloaded ERAS5 datasets and enlarged by
considering the maximum allowable uncertainty for the parameter, also provided by ERA5
documentation. The result of this check was always positive for all the generated data.

The qualitative comparison with real data is performed to check the realism of the selected
flight plans. To this end, each possible flight plan is qualitatively compared with actual flown
trajectories that are observed on the https://www.flightradar24.com/data/flights website. An
example of this check is shown in the following figure for the route EGLL to LGAV. Also this
check, although qualitative, provided positive results for all the considered flight plans.

Flight plan from flightplandatabase Actual flown trajectory form
Website flightradar24
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https://www.flightradar24.com/data/flights

Figure 7 — Flight plans selection procedure

Assessment Metrics Definition

Generally, in machine learning, a predictive model is defined in terms of a number of
parameters. In supervised learning, some of these parameters are derived via a learning
process (training), i.e. using a dataset of labelled samples (training dataset) trying to make the
model predict the correct label for each of the samples. The training itself is controlled by other
parameters called hyperparameters, which also must be tuned to build good predictive
models.

Optimizing the overall predictive power of a model both respect its parameters and
hyperparameters requires the definition of some sort of measure to quantify its performance.
A performance metric of a model F (for example, a classifier trained by applying an Atrtificial
Neural Network) is a measuring function that assigns to F a real number m. Mainly, machine
learning is used to solve problems that fall within two different categories, i.e. classification
and regression. In classification the model has to predict a discrete variable, i.e. the class,
among a finite number of classes, the sample belongs to. In regression the variable is
continuous. It's possible to define different metrics for the different types of problems in
machine learning.

In classification, all the considered performance metrics are based on the confusion matrix,
which is the main and most common method used to show the results obtained by a classifier.
The confusion matrix is a table with entries that represent the number of samples classified in
a certain class. The rows of the table are indexed by the actual classes and the columns by
the predicted classes. So, in a binary classification problem with a positive class and a
negative class, the confusion matrix is defined as:

Predicted Class
P N

P TP FN

N FP TN

Actual Class

Estimations

Table 1 Binary Confusion Matrix.

On the main diagonal there are the numbers of correct classifications, TP is the number of
True Positives and TN is the number of True Negatives. The off diagonal elements report the
number of the misclassifications, FN is the number of False Negatives, i.e. positive samples
incorrectly classified as negative, and FP is the number of False Positives, i.e. negative
samples incorrectly classified as positive.

The first performance metric is the accuracy which measures how good the model is in
correctly predicting both positive and negative cases:
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Number of correct predictions TP+ TN
Total number of samples =~ TP + TN + FP + FN

Accuracy =

Accuracy however is a tricky metric because it can give misleading information about the
performance of a model. This is especially the case in the situations where the dataset is
imbalanced, i.e. there are many samples of one class and not much of the other. Meaning, if
your model is performing well on the class that is dominant in the dataset, accuracy may be
high, even though the model might not perform well in other cases.

There are other metrics that can be calculated from the confusion matrix very useful for
evaluating the classifier performances, even when the dataset is imbalanced (Table 2).

# | Symbol | Performance Metric Definition as What does it measure?
1 TPR True Positive Rate — TP How good model is in correctly
or REC Sensitivity or Recall TP + FN predicting positive cases
) TNR True Negative Rate — TN How good model is in correctly
Specificity TN + FP predicting negative cases
3 FPR False Positive Rate — FP Proportion of incorrectly classified
Fall-out FP +TN negative cases
4 FNR False Negative Rate — FN Proportion of incorrectly classified
Miss Rate FN + TP positive cases
PPV Positive Predictive Value TP Prc?p.ortlon of correctly cIass@gd
5 or PRE  Precision —_— positive cases out of total positive
TP +FP predictions

Table 2 Metrics defined from the confusion matrix.

Precision and recall are two very useful metrics, they answer to two different questions about
the performance of the model: the former gives the proportion of positive identifications that
are correct, the latter gives the proportion of actual positives that have been identified
correctly. Recall is relevant in those contexts where it is important to have a low number of
false negatives, whereas precision when it is important to maintain low the number of false
positives.

These two metrics are different but related. In fact, increasing precision in general leads to a
lowering of the recall and vice versa. For this reason, often, their harmonic mean is used, the
so called F1-score:

PRE X REC

Fl = 2 o RE T REC
Since the objective of regression is to predict a continuous variable, the metrics used to
measure the performance of machine learning models are different than those defined for the
classification case.
The most popular metric is the mean squared error (MSE) due to its simplicity. Given, for each
of the N samples in the dataset, the values of the target variable {y;};-; _y and the predicted
values {J;};=1,.n, the MSE is the average squared distance between the predicted and actual
values:

N
1 -
MSE = Nzl(yi — 712
i=
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The result is a non-negative value and the goal is to get this value as close as possible to
zero.

Another very popular metric is the root mean square error (RMSE), a direct variation of the
MSE metric since it is simply:

N
1
RMSE = VMSE = sz—i’i)z
i=1

The advantage of RMSE is that it is in the same unit as the value to be predicted. Since both
MSE and RMSE are very sensible to the presence of outliers in the dataset, their use should
be more useful when large errors are particularly undesirable. Moreover, they are both
differentiable.

A metric that doesn’t require the calculation of squares or square roots, useful when outliers
are not a particular issue, is the mean absolute error (MAE):

N
1
MAE = NZlyi -3
L=

2.3.2 Phase 2: PAT Methodology Development

The development of the P4T methodology was carried out in three phases detailed in the
following Figure 8.

Figure 8 — Data Driven methodology in the PIUATP project.

In the following paragraphs we are going to describe the activities carried out in each of these
different phases.
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Overview of machine learning and data mining techniques applied to the aircraft trajectory prediction
problem.

As a preliminary step, a research has been conducted in the scientific peer-reviewed literature
to gather the most up-to-date information on the application of machine learning and data
mining to the problem of aircraft trajectory prediction. Mainly, data mining and machine
learning methods have been applied in order to cluster, classify and model large amount of
flight trajectories data. Clustering is often used to find similarities in flight paths, for example,
clustering has been used to define typical flight paths in groups of trajectories, to characterise
the deviations from the nominal flight plans and use this information to represent the flight
intent into a trajectory prediction algorithm. In recent times, classical fully-connected and deep
neural networks are the most used algorithms to model trajectories and to build machine
learning models to predict the flown trajectory from the departure to the arrival airport or during
the climbing or descent phase, or to estimate the time of arrival (ETA) of a flight at the airport
or in the terminal manoeuvring area (TMA). Many of the examined articles used as input
variables the meteorological condition during the flight, but none of them considered the take-
off weights and the uncertainties on the data. This overview has been very useful in clarifying
which are the most promising algorithms to investigate as prediction models and to implement
in the methodology, keeping in mind that the model should be able to manage the uncertainties
in the input data. The results of this overview have proven useful also in the following activities
in domain and data understanding as well as in modelling.

Domain and Data Understanding

These first steps of the methodology were performed to clarify the properties of the data
generated from the WP2 activities before any attempt of modelling.
The Domain Understanding phase included the fixing of the objectives of the Data Analysis
goals and the assessment of the situation. In particular, the mapping from domain issues to
data analysis problems. The analysis also considered the results from the Consultation
Exercise Meetings, in fact the methodology has to be developed bearing in mind that it could
be used as a tool to support the operations of air traffic management.
As a result of this phase in the P4T methodology the domain objective, which consists in the
prediction of the flight path, has been translated into a data analysis objective, which consists
of a multiclass classification, regarding the prediction of the flight plan, both horizontal and
vertical, and of a regression, regarding the estimation of the time of arrival on the waypoints
of the horizontal flight plan. Then, for the flight plan, the problem to address can be stated as:
= Predict which, among N possible flight plans, will be selected for the flight execution.
= Input variables for the predictive model are:

= Forecast temperature and wind speed and direction (east, north and down
components) for each waypoint of the flight plan with relative uncertainties.

= Forecast take-off weight with uncertainty

The first group of variables will be used for the prediction of the lateral flight plan, i.e. the
seqguence of the waypoints, the mean temperature in the zone of flight and the estimated take-
off weight will be used for the prediction of the vertical part of the flight plan, i.e. the cruise
flight level.

The prediction of the time of arrival on the waypoints (ETA) has been stated as a classical
regression problem, with input variables the sequence of the waypoints, the forecast
temperature and horizontal wind direction (east and north components) for each waypoint and
the forecast take-off weight.

To support the methodology development and validation, the data of both the routes identified
in the operational scenario definition have been considered: London Heathrow (EGLL) —
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Athens (LGAV) (in the following we will refer to this route simply as London — Athens) and
London Gatwick (EGKK) — Malta (LMML) (in the following simply London — Malta).

The Data Understanding phase includes the initial data collection description, data
exploration and the verification of data quality. In particular, the activities in this phase allow
to capture and understand the meanings and statistics of the relevant variables for the analysis
(features). In particular, there are 20 variables comprised in the simulated data related to
weather condition, take-off weight and the relative uncertainties, aircraft position and speed
and flight level. The following table shows the list of the variables simulated for the data

analysis process.

‘ Variable Description Unit
WP_ID Way Point Identifier -
Lon WP Longitude degrees
Lat WP Latitude degrees
Temp Temperature K
TempUnc Uncertainty on temperature K
VnWind North component of wind speed in WP m/s
VnWindUnc Uncertainty on North component of wind speed m/s
VeWind East component of wind speed in WP m/s
VeWindUnc Uncertainty on East component of wind speed m/s
Vdwind Down component of wind speed in WP m/s
VdWindUnc | Uncertainty on Down component of wind speed m/s
Weight Weight at take off kg
WeightUnc Uncertainty of weight kg
FlightLevel Flight level ft
PrFlightLevel  Uncertainty of flight level ft
Mach Mach number -
PrMach Uncertainty of Mach number -
Vground Speed with respect to the ground m/s
VgroundUnc  Uncertainty of speed with respect to the ground m/s
EstTime Iérgser;i%e:civtgy%%\i/ﬁtrs the distance between 2 s
EstTimeUnc  Uncertainty on time arrival S

Table 3 — List of the simulated variables.
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The simulated data are grouped into two folders of files in Microsoft Excel format, one for each
of the two selected routes (London — Athens and London — Malta). For the route from London
to Athens there are 2052 simulated flights, while for the other route from London to Malta the
simulated flights are 2023.

For each flight 4 different Excel files are produced:

= 3files contain the forecasted weather conditions along the route and the estimated
take-off weight with the respective uncertainties in distinct time frames before
estimated off-block time (EOBT):
= 15 days (Tf-15) before EOBT, for the strategic/long-term scenario;
= 5 days (Tf-5) before EOBT, for the medium-term scenatrio;
= 1 day (Tf-1) before EOBT, for the pre-tactical/short-term scenario.
Each of these files contain 3 different sheets reporting the simulated data for
each of the possible predefined lateral flight plans. Each sheet may contain up to
three replicas of the lateral flight plan referring to different possible flight level, the
number of replicas depends on the forecasted take-off weight and the amplitude
of its uncertainty, in fact, an ampler interval of uncertainty may encompass more
than one valid flight level.
» The remaining file refers to the day of flight and contains the selected flight plan,
the weather data along the route and final take-off weight.

Note that the lateral flight plans may have different lengths, i.e. each plan may be defined by
a different number of waypoints.

The examination of the simulated data has showed that there are only a limited and discrete
number of different possible values for the flight level. This is in full agreement with the normal
practice in aviation, in fact, air space is divided into tracks, with planes flying in a specific
altitude range depending on the direction they are going in and the routes they are taking. This
standardizes routine air traffic, making it safer to fly. For this reason, also the prediction of the
vertical part of the flight plan has been casted as a classification problem using the mean
temperature in the zone of flight and the take-off weight as input variables.

There is also a one-to-one correspondence between the flight level and the optimal cruising
Mach number of the aircraft, so that once established the value of the flight level the Mach is
uniquely defined. This is perfectly reasonable in a first approximation, taking apart the possible
variation due to the necessity to compensate for the effects of the wind speed along the route.
So, temperature and take-off weight contain all the information to predict the cruising airspeed,
for this reason, in the regression model for the estimation of ETA we consider these variables
as input to the model and not the estimated cruising speed or flight level, avoiding also to
introduce into the model the dependency on other estimated parameters.
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Figure 9 — The two selected routes with the different predefined lateral flight plans

A descriptive analysis has been conducted on the input variables, characterizing their
statistical properties to describe and summarize the raw data and gain first insights useful for
the subsequent predictive modelling steps.

Data Preparation

With the availability of the simulated data, an important step in the analysis has been to identify
and solve eventual problems within the data. In order to obtain the final dataset to be used in
the modelling phase, data has been pre-processed to report them in a format usable by
modelling algorithms. For example, particular attention has been given to the normalization of
the input variables, especially useful for the application of algorithms based on neural
networks. In general, data collection and data preparation are the most time-consuming
activities in a machine learning project.

WPadd
WP, , /

WPn+1
WP

WPadd :

WPadd

Figure 10 — Waypoints added along the legs of a flight plan.

Since, mainly, machine learning algorithms for classification and regression accept as input
vectors of fixed length and in order to avoid possible biases due to the different lengths of the
lateral flight plans, as a first step in data preparation, a certain number of dummy waypoints
(names WPadd) were added to the flight plans to make them of the same length [Figure 10].
The waypoints were added where needed along the legs connecting two successive
waypoints, in such a way to not change the direction of flight of the aircraft. The procedure
adopted is straightforward:

1. The sequence of waypoints in the flight plan is a list: [wp,, wp,, ..., wpy].

2. Setathreshold T on the maximum length of a leg between two consecutive waypoints.
3. Start with the first waypoint and let i = 1.

4. Compute the length d; of the leg between wp; and wp; ;.
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If di > T then add a dummy waypoint in the middle of the leg between wp; and wp;, ;.
Increment i by one.

If i < N, then go to step 4.

If i = N and the desired length of the flight plan has been reached, then stop.

Repeat the procedure from step 2 using also the added waypoints and a different
threshold T.

The weather condition on the added waypoints were also simulated with the same procedure
used for the flight plan.

For the modelling step we used different strategies for the construction of the datasets for flight
plan and flight level classifications and for the estimation of the time of arrival.

Regarding the prediction of the flight plan, we build separate datasets for each of the selected
route and for each time frame before EOBT. Since we are assuming that the definition of the
lateral flight plan and the choice of the cruise flight level may be taken as independent, we
build different datasets for the prediction of these two target variables [Figure 11].

© o NoO

Figure 11 — Structure of the datasets.

Fixed the route and the time frame, the simulated dataset provides for each flight forecasted
weather conditions along the alternative flight plans, as well as the estimated take-off weight.

The datasets for the prediction of the lateral flight plan contain vectors with the following
structure:

(TR, 0,0, 1@, v y®, 10,y ® y® y®) (1)

where L is the number of waypoints in the flight plan, including the added dummy waypoints.
The components of these vectors are only the weather variables, i.e. the temperature T and
the three components of the wind speed along the three directions north-south V,, east-west
Vg and down-up Vp.

To consider the uncertainties, the value of the weather variables used to construct the input
vectors for modelling is drawn from a gaussian distribution centred on the simulated value and
with standard deviation ¢ = A/3, where A is the associated uncertainty. The choice of ¢ is
made to have a gaussian ample enough to take all the interval of uncertainty of the weather
variable, i.e. 6 ¢ = 2 A. This sampling is repeated for a fixed number of times.

Then, for the components of the vector (1), we have:

TO~N (TP, ATD/3)

@ @ Ap®
V2~V (Vo AV Y /3)
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wherei=1,..,L,j=N,E,D, and To(i) and Vo(ji) are the simulated values of the variables.

The vectors constructed for each flight plan are, then, concatenated to form a unique vector
of length given by the product of the number of flight plans, the number of waypoints and the
number of weather variables. This procedure is repeated for every simulated flight and all the
vectors are collected into the dataset for modelling, whose size is the product of the number
of flights by the number of the samples drawn from the gaussian distributions. To define the
target variable, an integer number is given as a label to each possible flight plans. The target
variable for the training of the models is the label corresponding to the lateral flight plan used
for the execution of the flight.

The procedure used to construct the dataset for the prediction of the flight level is similar. The
flight level is a characteristic of the flight, not of the single flight plan, and we are assuming
that the choice of the flight level depends mainly on the take-off weight and on the mean
temperature in the zone of flight.

The dataset for the training of the models for the prediction of the flight level is made up of
vectors with the following simple structure:

(T, W)

where T,, is calculated by taking all the waypoints of all the possible lateral flight plans,
eliminating all the repeated waypoints and averaging the temperatures on all the remaining
waypoints, W is a value repeatedly drawn from a gaussian distribution centred on the
simulated value W, and 1/3 of the uncertainty AW as standard deviation:

W~N (W, AW /3)

Then, for the target variable, to each possible flight level is given as label an integer from 1 to
the number of possible flight levels. The target variable for the training of the model is the label
corresponding to the flight level used for the execution of the flight.

The dataset for the regression problem of estimating the time of arrival on the waypoints of
the lateral flight plan was built starting from the data of the simulated flights, i.e. those referring
to the day of flight. The variables included in this data are a subset of those listed in Table 3:

‘ Variable Description Unit
WP_ID Way Point Identifier -
Lon WP Longitude degrees
Lat WP Latitude degrees
Temp Temperature K
VnWind North component of wind speed in WP m/s
VeWwind East component of wind speed in WP m/s
Vdwind Down component of wind speed in WP m/s
Weight Weight at take off kg
FlightLevel Flight level ft
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Variable Description Unit
Mach Mach number -

Vground Speed with respect to the ground m/s

. Time needed to cover the distance between 2
EstTime . . S
consecutive waypoints

These variables refer to the flight plan used during the execution of the flight and carry no
uncertainties. This choice of data was dictated by the consideration that, unlike the prediction
of the flight plan, where the choice of the target plan does not change by letting the input
variables change value in the range defined by the respective uncertainties, we don’t have
suitable target variables for the regression for all the possible values of the input variables if
uncertainties were also considered.

So, we decided to build a data-driven model of the aircraft dynamics building one dataset for
each of the two routes considered. Each dataset contains rows with the following structure:

(dJ bl TJ VN; VE! W)

where d is the distance between two consecutive waypoints of the same flight calculated along
a loxodrome, b is the track angle between the two waypoints, T, V and V; are the temperature
and the two components of the wind speed along the north-south and east-west directions on
the starting waypoint and, finally, W is the take-off weight. We decided to not introduce into
the regression model a dependency on other estimated parameters, such as the flight level or
the mach number, since the temperature and the take-off weight should contain enough
information to let the model gain a knowledge about the cruise speed of the aircraft. We
concentrate our attention on the cruising phase of the flight, leaving out from the analysis the
climbing from the departure airport to the cruising flight level and the descending phase to the
arrival airport.

Figure 12 — The process to build the modelling datasets.

The modelling datasets obtained with these procedures are split into training and test sets
[Figure 12]. The training sets are used for the construction and optimization of the predictive
models, while the test sets are kept apart for the final validation of the performance of the
models.

Data Modeling

This kernel phase represents the application of one or more Machine Learning algorithms able
to obtain a classification, a regression, or a clustering model, trained on the prepared datasets.
This step includes the testing of the obtained models in order to select the best one from a
statistical point of view.

In the PIU4ATP project, the aircraft trajectory prediction problem has been stated as two
classification problems, one for the prediction of the lateral flight plan and one for the prediction
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of the flight level, and a regression problem for the estimation of the time of arrivals on the
waypoints of the flight plan.

In general, a machine learning model depends on a number of parameters, some of these
parameters, for example the weights in a logistic regression model, can be optimized using a
training dataset, i.e. a set of examples of pairs of an input vector and the corresponding desired
output. But there are some parameters, called hyperparameters, which define the overall
architecture of the model and which can only be tuned by repeating the training with different
model architectures.

In order to select the best model for the problem at hand, part of the available data is used as
a validation dataset. This dataset can be used to obtain an unbiased evaluation of a trained
model for tuning the model’s hyperparameters.

Figure 13 — Hold-out validation.

Two possible strategies can be used to split the data into training and validation dataset:
holdout and K-fold cross-validation. With holdout [Figure 13], the data is simply split into two
sets, one is used for training and the other for validation. With K-fold cross-validation [Figure
14] the available data is split into K subsets, one of these subsets is used as a validation set
while the remaining are used for training. The process of training and validation is repeated K
times, each time using a different subset for validation. The overall performance of the model
is evaluated as an average of the performance obtained in each run.

Iteration 2 — Performance:
Iteration 3 — Performances
Iteration 4 — Performances

Figure 14 — K-fold cross validation.

The K-fold cross-validation is particularly useful when there is a small amount of data for
training or to obtain a more accurate estimate of model prediction performance.

In the development of the methodology we have used both holdout and a k-fold cross-
validation (with k = 10), obtaining very similar results, so in the following only the results for
the cross validation are reported.

In the following paragraph we are going to summarize the results of the modelling separately
for the prediction of the flight plan and prediction of the ETAs. The three timeframes have been
dealt with much the same procedure and there were not special difficulties and limitations
encountered during the training of the models, apart for the low, but increasing as the day of
the flight closes in, accuracy in the long-term timeframe.
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Prediction of the flight plan

The performance metrics used during training have been described in a previous paragraph
about the operational scenario, the starting point is the confusion matrix [Figure 15], that is a
table where the diagonal entries represent the number of correct classifications, whereas the
off-diagonal elements report the number of misclassified input. Figure 15 is a generalization
of Table 1 to a multiclass classification problem:

Class; Class; Classy
ClaSS]_ m11 m12 mlN
C|aSSZ m21 mzz mZN
ClaSSN le mNz mNN

Figure 15 — Example of a confusion matrix for a multilabel classification problem.

the matrix element m;; is the number of input samples belonging to the i-th class classified by

the model as belonging to the j-th class. From the confusion matrix can be defined a number
of possible performance metrics, the more used are:

number of correct predictions  ),;m;

overall accuracy = =
y total number of samples XijMij

number of correct prediction for class i m;;

ll l [ = =
recall for class i number of inputs belonging to class i Xjmij

number of correct prediction for class i m;;
number of inputs classified as belonging to classi i mj;

precision for class i =

Accuracy is the most used performance metrics, but in some situation may give misleading
results, for example when there is a strong imbalance in the training set and the examples of
one class outnumber the other classes. Furthermore, since, in general, precision and recall
are somewhat inversely related, increasing one of the two tends to reduce the other, a useful
metrics combining the two is the fl1-score, given by the harmonic mean of precision and recall.
In Figure 16 is depicted the overall process used for the training of the classification models.
An information-gain based filter has been used to reduce the number of input variables to the
most significant ones. Among those tested in the development of the methodology, the models
showing the best performance in classification are the decision trees, as can be deduced from
the tables in Annex Il. In particular Annex Il reports the fine-tuning step and the selection of
the hyperparameters of the algorithms used during the modelling phase.
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In Table 4 and Table 5 are reported the results obtained for the accuracy in the prediction of
the lateral flight plan.

The complete results of modelling for the two routes and for all the timeframes before EOBT
are reported in Annex Il

Figure 16 — The modelling process used in the training of the models.

London - Athens

London - Malta

Table 4 - 10-fold cross-validation results for the lateral flight plan prediction.

Accuracy

I U]
London - Athens
London - Malta

Table 5 - 10-fold cross-validation results for the lateral flight level prediction.

For the lateral flight plan, we note that the training datasets are substantially balanced,
especially the one for the London-Malta route, while the one for the London-Athens route
presents a slight imbalance in favor of the first lateral flight plan, as highlighted in Table 6. The
ability of the models to make correct predictions is very low for the long term, 15 days before
take-off the performance is only slightly better than that of a classifier that assigns labels
randomly. In this time frame, for the London-Athens route, the model tends to prefer the first
plane of lateral flight, this could be a further sign of imbalance in the dataset. The results
improve, however, rapidly as the temporal distance from EOBT decreases, a sign that the
models have been able to effectively learn the information useful for the classification.
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London-Athens @ London-Malta

Flight plan 1 36.6 % 32.2%
Flight plan 2 30.1 % 33.0%
Flight plan 3 33.3% 34.8 %

Table 6 - Composition of the training dataset for lateral flight plan prediction.

For the flight level, the training datasets show a more marked imbalance, once again lower in
the case of the London-Malta route. The models perform better than the random classifier
starting from 15 days before EOBT and the rate of correct classification increase steadily
approaching the day of the flight.

London-Athens London-Malta

Flight level 330 23.5% 25.0 %
Flight level 350 31.7 % 29.6 %
Flight level 370 27.1% 27.7 %
Flight level 390 17.7 % 17.7%

Table 7 - Composition of the training dataset for the prediction of flight level.

In modelling we have used one-hot encoding, i.e. we have encoded the numbers i labelling
the different lateral flight plans (flight levels) with a vector of dimension equal to the number of
alternative lateral flight plans (flight levels), whose components are all zero except the i — th
component which is set to 1. Using this encoding for the target variables, the output of the
models is a vector of real numbers whose size is, again, equal to the number of alternative
lateral flight plans (flight levels). The components of the output vectors are all positive numbers
that sum to 1 and thus may be interpreted as a probability distribution over the possible lateral
flight plans (flight levels) given the vector of inputs. The output of the model is the lateral flight
plan or flight level to which corresponds the highest probability.

Since we may consider the choice of the lateral flight plans and of the flight level as
independent, the product of these probabilities gives the overall probability for the selection of
a flight plan (lateral + vertical). These overall probabilities can be represented as a heat-map
or a bar plot graph, for example:

100% 100%

T5% 4 5%
50% 4 50%

25% 1 25%

0% O l 0% -

1 2 3 330 350 370 390
Lateral flight plan Flight Level

Figure 17 On the left, heat-map of the joint probability for the prediction of the flight plan. On the right,
bar plot of the marginal probabilities for the prediction of the lateral flight plan and flight level.
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Prediction of the time of arrival

We trained many different models for the estimation of the time of arrivals on the waypoints of
the flight plan during the cruising phase of the flight. During training, to optimize model
performance, we used the MSE measure:

N
1 -
MSE = Nzl(yi — 712
i=

where {y;};—1 .y are the values of the target variable and {y;};-1 _n are the predicted values,
N is the number of samples in the dataset. The model performance is reported using the MAE:

N
1 i
MAE = NZlyi -
=

which give a measure of performance in the same units of the target variable and is more
easily interpreted.

The dataset used were built starting from the data relative to the executed flight and carry no
uncertainties. The datasets were almost balanced in terms of the flight plan used for the flights,
for both the two selected routes:

London-Athens London-Malta

Flight plan 1 36.2 % 32.0%
Flight plan 2 30.1 % 33.0%
Flight plan 3 33.7% 35.0%

Among those used during modelling, the models giving the best performance for both the
London-Athens route and the London-Malta route were two random forest regressor models
with 150 estimators (see Annex Il for details), with the following performance on the training
set:

MSE MAE

(s?) (s)
London-Athens 10.5 1.8
London-Malta 4.8 1.4

2.3.3 Phase 3: P4T Methodology Evaluation

The evaluation of the performance of a model is of paramount importance to assess the real
capability of the model to be used in a production environment. To this end part of the available
data is to be kept apart in a test dataset never used in any step of the training/validation
process.

The test dataset for the evaluation of the models trained in the P4T methodology comprise
100 randomly chosen flights for each of the routes selected, with data referring to 15 days, 5
days and 1 day before the EOBT and to the day of execution of the flight. It is worth pointing
out a major difference between the training/validation dataset and the test dataset. As

Engage catalyst fund project final technical report 28



described in the previous paragraph, the training dataset is built by sampling the input
variables from certain distributions defined by their respective uncertainty, so from each
simulated flight in the training set we get M different records corresponding to the same target
flight plan. The dataset obtained by this procedure is then split randomly into a training and a
validation dataset, these two sets are disjoint but it may be possible that records referring to
the same flight may be present in both sets. The test dataset, instead, is made up by all the
records of all the flights taken apart for the evaluation of the models.

We chose two different strategies for the evaluation of the model for the prediction of the flight
plan and for the estimation of the time of arrivals, both strategies are detailed in the following
paragraphs.

Flight plan prediction

Since we are considering the choice of the lateral flight plan and the choice of the flight level
as independent, the prediction of the flight plan is a two steps process that can be performed
in parallel [Figure 18].

Figure 18 Online phase of the PAT methodology for flight plan prediction.

The M vectors obtained through the sampling procedure are used as input to the model for
the prediction of the lateral flight plan to obtain M different predictions, the final output of the
model is the one recurring most often (majority voting). For the prediction of the flight level we
have a unique vector as input to the model and the output is the most probable flight level
(one-hot encoding).

The performance of the predictive models on the test dataset are presented in Table 8 for the
route from London to Athens and in Table 9 for the route from London to Malta.

Lateral flight plan Flight level Flight plan
(horizontal + vertical)
Tf-15 31% 48 % 12%
Tf-5 63 % 67 % 42 %
Tf-1 78 % 88 % 68 %

Table 8 Test results for the route London-Athens.

We explicitly note that a classifier that chooses the lateral flight plan and the flight level
completely at random should have an accuracy of about 8.33 %, so even in the long-term case
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Tf-15 the accuracy in predicting the flight level (horizontal and vertical) is still significantly
better than a random classifier.

Lateral flight plan Flight level Flight plan
(horizontal + vertical)
Tf-15 34 % 48 % 13 %
Tf-5 76 % 66 % 50 %
Tf-1 83 % 89 % 74 %

Table 9 Test results for the route from London to Malta.

These results confirm the overall good performance of the classifiers, in particular the
accuracy of the prediction increases remarkably as the time of the departure closes in and the
forecast values of the input variables get closer to the values experienced during the execution
of the flight and the corresponding uncertainties get smaller. The prediction of the flight level
shows quite good performance, also at 15 days before the day of the flight. It is mainly due to
the information provided by the forecast of the take-off weight, that is uncertain but within a
bounded range; if the forecast of take-off weight was perfectly known without uncertainties,
then the prediction of the flight level could significantly improve being the TOW one of the main
parameters affecting the optimal flight level selection. On the other hand, this prediction
degrades if the take-off weight forecast is not available. The performance of the lateral flight
plan prediction is determined by the uncertainties on the weather forecast, that have a less
significant impact also on the flight level prediction.

In the following figures are reported some of the results obtained by applying the models to
the test set for the route from London to Malta, but there are very similar results also for the
other route from London to Athens. In the heat-maps, a little circle indicates the correct values
for the lateral flight plan and the flight level, the colour is red for wrong prediction of either the
two output variables and is green for a correct prediction of both, the values in the graph are
the predicted probabilities. Same for the bar plots, the colour red indicates a wrong prediction,
green a correct prediction, on the x axis the value corresponding to the actual value is coloured
green.

100% 100% o
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0% j 0%
1 2 3 330 350 370 390

Lateral flight plan Flight level

Figure 19 - Both predictions are wrong, but the correct values have the second highest probability.
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Figure 20 - Both predictions are wrong and the correct values have low or zero prediction probabilities.
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Figure 21 - Only the prediction of the lateral flight plan is wrong with second highest prediction the
correct value.
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Figure 22 - The prediction of the lateral flight plan is correct, but the one for the flight level is wrong.
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Figure 23 - Both the predictions are correct, but the overall joint probability is rather low.

Engage catalyst fund project final technical report 31



100% o 100%
75% 5% 4
50% 50%
25% 4 25% o
0% j . 0% 4— ——

1 2 3 130 350 370 380
Lateral flight plan Flignt level

Figure 24 - The flight plan has been correctly predicted and the joint probability is high.

Prediction of the time of arrival

To test the performance of the regression model, we must first use the lateral flight plan
prediction model to obtain a prediction of the sequence of waypoints to be used as input to
the model for estimating the arrival times. We used as test the same flights used to test the
models for the prediction of the flight plans.

To assess the performance of the model we have to compare its predictions with the arrival
times reported during the actual flight. But, since the predicted flight plan may differ from the
actual flight plan, instead of comparing the arrival times on the individual waypoints, we
compared the overall duration of the flight during the cruise phase [Figure 25].

. Estimated
Regression ‘ duration of the
model cruise phase

Prediction of the
lateral flight plan

Forecast
data

Figure 25 Worflow for the prediction of times.

The results of the tests for the two selected routes and for the different considered time frames
are reported in the following figures.

In Figure 26 there are the histograms of the absolute values of the difference between the
actual and the predicted duration of the cruise flight for the route London-Athens for all the
considered time frames before the EOBT. For this route, the cruise flight extends for 22
waypoints. It is evident that the performance of the model gets better approaching the day of
the flight.
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Figure 26 Histograms of the absolute differences between actual and predicted cruise flight duration for
the London-Athens route, for different time frames before EOBT.

In Figure 27, Figure 28 and Figure 29 there are three scatter plots, one for each of the
timeframe before EOBT for the route London-Athens, on the x axis there is the actual cruise
flight duration and on the y axis there is the predicted duration. For a perfect regressor all the
points should lie on the bisector (red line), in the figures we see a distribution of points, those
further from the bisector are the ones with higher prediction error. The points are coloured
according to the correctness of the flight plan prediction. We see from the figure that when the
lateral flight plan is correctly predicted, the error in the prediction of the duration of the cruise
flight is lower, on the order of few minutes in absolute value over a flight of duration greater
than two hours.
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Figure 27 London-Athens, actual cruise flight duration vs. predicted duration for Tf-15.

Figure 28 London-Athens, actual cruise flight duration vs. predicted duration for Tf-5.
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Figure 29 London-Athens, actual cruise flight duration vs. predicted duration for Tf-1.

In the following figures we present the same graphs for the route from London to Malta. For
this route, the cruise flight extends for 21 waypoints, with a duration that ranges from about
1.5 to about 2.5 hours.

The histograms in Figure 30 show a similar pattern of that for the route London-Athens:
approaching the EOBT the number of flights with a prediction error in the range 0-5 minutes
increases steadily, with a corresponding reduction in the number of flights with high prediction
errors.

The scatter plots in Figure 31, Figure 32 and Figure 33 are very similar to those reported for
the London-Athens route: lower prediction errors are associated specially to those flights with
at least a correct prediction of the lateral flight plan.
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Figure 30 Histograms of the absolute differences between actual and predicted cruise flight duration for
the London-Malta route, for different time frames before EOBT.

Figure 31 London-Malta, actual cruise flight duration vs. predicted duration for Tf-15.
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Figure 32 London-Malta, actual cruise flight duration vs. predicted duration for Tf-5.

Figure 33 London-Malta, actual cruise flight duration vs. predicted duration for Tf-1.

To give an idea of the improving performance of the regression model when the lateral flight
plan is correctly predicted, in the following histograms we show the absolute value of the error
limited only to the flights with a correct prediction of the lateral flight plan. For both the routes,
the error doesn't exceed 360 seconds (6 minutes), and the number of flights with a value of
the error below 120 s increases remarkably approaching the day of the flight.
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Figure 34 Histograms of the absolute differences between actual and predicted cruise flight duration for
the London-Athens route, for the flight with a correct prediction of the lateral flight plan and for
different time frames before EOBT.
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Figure 35 Histograms of the absolute differences between actual and predicted cruise flight duration for
the London-Malta route, for the flights with a correct prediction of the lateral flight plan and for
different time frames before EOBT.

2.4 Results

The PIU4TP project has defined a methodology for trajectory prediction on long, medium and
short term, which is able to manage the uncertainties that by nature affect the input data to
the trajectory prediction process.

The methodology has been assessed considering a simplified use case and simulated data.
Specifically, only two factors that influence the selection of the optimal flight plan has been
considered in the defined scenario, that is, weather conditions and take-off weight. Indeed,
the project is a proof of concept and aims at providing evidences of the proposed methodology
applicability and potential benefits arising from its use. Concerning the use of simulated data,
this choice is due to the lack of open access datasets which provide a huge (thousands of
flights) and coherent set of data including real aircraft trajectory and related flight plan, actual
aircraft take-off weight and its forecast at different time in advance with related forecast
uncertainties, weather data experienced during flight and their forecast at different time in
advance with related forecast uncertainties. Moreover, the simulated data allow testing the
methodology in a fully controlled environment, that is, the value of the parameters of interest
and the rules and the assumptions that lead to perform the flight along a specific flight plan
are perfectly known. The simulated data were produced within the framework of the PIU4TP
project by defining suitable simulation models and exploiting the data found in the open access
databases. The evaluation of the methodology performance has been carried out using some
metrics suitably selected in the literature.
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The tests performed to evaluate the methodology performance have proven the effectiveness
in the prediction of the flight plan of an aircraft in the long, medium and short term before the
estimated off-block time. The output includes a complete spatial prediction of the flight plan
(horizontal and vertical) enriched with an estimation of the time of arrival on the waypoints of
the flight plan (limited to the cruise phase of flight). The probability of the prediction is provided,
too. The accuracy of the prediction depends on the time in advance with which it is computed
and increases sharply as the time approaches the day of the flight, reaching values around
70% one day before the EOBT. This behaviour is expected because the weather forecasts
improve and the uncertainties on the input data reduce as the EOBT approaches.

The obtained results highlighted that, in the considered simplified use case, the methodology
is able to catch the information that are available in the input data, including the related
uncertainties, and to exploit them to reliably predict in advance the flown trajectory. Next step
will be the application of the methodology to more complex use cases, possibly using actual
data, to fully assessing its performance.

3. Conclusions, next steps and lessons learned

3.1 Conclusions

The PTU4TP project investigated several data driven approaches to carry out the trajectory
prediction task. It selected the most promising one, by using suitable metrics, and
implemented it in a methodology applicable to long, medium- and short-term predictions.

Preliminary assessment of the methodology has been achieved considering a simplified use
case, with a limited set of parameters affecting the flight plan selection, and analysing
simulated data. The obtained results highlighted that the methodology is able to catch the
information that are available in the input data, including the related uncertainties, and to
exploit them to reliably predict in advance the flown trajectory.

In order to further mature the concept, future research shall focus on more complex use cases,
which consider a wider set of input parameters, and analyse actual flight data. The application
of the proposed methodology to these new use cases is straightforward, because the
methodology takes the form of a Lifecycle Model for the analysis and modelling of flight paths
in the context of trajectory prediction. It is iterative and incremental since it allows adding input
parameters (such as aircraft type, airline, variables related to passenger connections,
restricted areas due to military or national security activity) and external information (such as
new flight route, new time-frames, etc.) by iterating through the phases of the lifecycle. This
future research will finally assess the relevance of historical data to support the flight plan
prediction task and permit to reach a good confidence level about practical usability of such
data and of the proposed methodology to the real ATM world.

3.2 Next steps

Next steps listed in this section include the planned outputs related to the PIU4TP project and
the potential further development of the research activities, which could be carried out through
the participation to future SESAR Calls.

A planned project output concerns the dissemination activities and consists in the contribution
to the Engage catalyst project showcases at the SESAR Innovation Days 2021 that will take
place virtually on 7-9 December 2021 due to the COVID-19 pandemic crisis. The contribution
will summarise the key project results and outcomes.

With reference to future activities to be performed in new projects, very useful
recommendations were collected during the two Consultation Exercise meetings, thanks to
the participation of several stakeholders. Main suggestions for future development activities
of the project results to favour potential large-scale applications are:
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* increase the number of input variables to the PAT methodology to consider other
sources of uncertainty in the prediction of trajectories;

» perform sensitivity analyses to quantify the effect of the uncertainty in the input data
on the uncertainty on the predictions.

Both these recommendations will be taken into account if opportunities for future project arise.
It is important to highlight that a data-driven approach is fundamentally based on the use of
data characteristic of the study domain. It would be desirable to have some flight data
providers among the stakeholders of future projects, in order to have real data on which to
apply algorithms and data analytics techniques to build more realistic use cases.

3.3 Lessons learned

The Engage KTN catalyst initiative is very interesting especially for young researchers
because the planned duration of one year allows them to carry out study activities on specific
thematic objectives. Furthermore, the initiative requires a low managerial load which favours
of the project team to keep focus almost exclusively on study and research activities with
obvious benefits on the project. Engage's managerial approach based on the assessment of
technical documents and with the support of mentors certainly represents an added value of
the initiative.

For the future it is hoped that this initiative will be continued.

4. Dissemination

ID Title Description

1 | PAT: A Methodology to Support the | This short paper and the associated poster presented
Flight Trajectory Prediction. An | the PIU4TP project at SESAR Innovation Days 2020
introduction to the PIUATP project. | held on 7 — 10 December 2020

Short paper and presentation

2 | PIU4TP - Probabilistic information | Project presentation held at Engage workshop -

Integration in Uncertain data | Data-driven trajectory prediction, 25 January 2021,
processing for Trajectory Prediction | yirtual event

3 | Operational Scenario Definition This document is the output of the WP2 Scenario
Definition and the deliverable D1. It describes the
approach adopted to generate the simulated dataset,
which shall be sufficiently realistic in order to pave
the way to any further methodology development.
The document also defines some metrics applicable
to assess the performance of the methodology

4 | Methodology Description This document is the output of the WP3
Methodology and the deliverable D3 of the project. It
aims at sharing the approach used in the project for
the development of a data-driven methodology
applicable to the context of the trajectory prediction.

PIU4TP Web page PIUATP web page on the CIRA web site
Participation to OPTICS2 4% year | PIU4TP provided contribution to OPTICS2 4™ year
assessment assessment devoted to evaluate the extent to which

the European Research Community is contributing to
the achievement of Flightpath 2050 safety and
security goals.
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Annex |: Acronyms

Term Definition
ATC Air Traffic Control
ATFM Air Traffic Flow Management
ATFCM Air Traffic Flow and Capacity Management
ATM Air Traffic Management
AUC Area Under the Curve
Cl Cost Index
ECMWF European Centre for Medium-Range Weather Forecasts
EOBF Estimated Off-Blocks Time
FL Flight Level
FP Flight Plan
GS Ground Speed
OEW Operating Empty Weight
MAE Mean Absolute Error
ML Machine Learning
MSE Mean Squared Error
MTOW Maximum Take-Off Weight
NM Network Manager
NOC Network Operation Centre
PAT Prediction for Trajectory
PIU4TP Probabilistic information Integration in Uncertain data processing for Trajectory
Prediction
RMSE Root Mean Squared Error
ROC Receiver Operating Characteristic
SSE Sum of Squared Errors
SST Total Sum of Squares
TAS True Air Speed
TBO Trajectory Based Operations
Tf Time of flight
TOW Take-Off Weight
TP Trajectory Prediction
WP WayPoint
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Annex II: Summary of the performance of the models tested during the
development of the methodology

Flight plan (horizontal and vertical) prediction

Algorithm Algorithm
Approach 8 8 .. Hyperparameters and Ranges
name Description
Multilaver A classifier that uses e HiddenlLayers (H) € [(#features+#classes)/2, (#features+#classes)]
Neural Perce t\rlon backpropagation tolearna | e TrainingTime (T) = # epochs to train through. T € [100, 1000]
Network (MI’_)P) multi-layer perceptron to e LearningRate (R) = the learning rate for weight updates. R = 0.3
classify instances e Momentum (M) = Momentum applied to the weight updates. M = 0.2
e Estimator = Algorithm for finding the conditional probability tables of
the Bayes Network = “Simple Estimator” that estimates probabilities
Bayes Network learning directly from data with alpha (A) hyperparameter that is the initial
. . count on each value. A € [0.01, 1]
. Bayes Net using various search . .
Bayesian h . e searchAlgorithm = the method used for searching network structures =
(BayesNet) algorithms and quality . . . ) I
K2 that is a Bayes Network learning algorithm using a hill climbing
measures . : ) ;
algorithm restricted by an order on the variables with P
hyperparameter that is the maximum number of parents a node in the
Bayes net can have. P € [1, #features]
o reducedErrorPruning = Whether reduced-error pruning is used instead
of C.4.5 pruning = YES
. e numpFolds (F) = determines the amount of data used for reduced-error
Inductive . . . . .
- . Class for generating a pruning. One fold is used for pruning, the rest for growing the tree. F €
Decision Tree Decision Tree
(148) pruned or unpruned C4 [2,15]
o confidenceFactor = the confidence factor used for pruning (smaller
values incur more pruning) = 0.25
o minNumObj = the minimum number of instances per leaf = 2
e numlterations (1) = the number of trees in the random forest. | €
) [10,300]
- Random Forest Class for constructing a . L
Decision Tree e maxDepth = the maximum depth of the tree, O for unlimited = 0
(RandomForest) forest of random trees R
e numFeatures = sets the number of randomly chosen attributes =
int(log_2(#predictors) + 1)

Table 10 - Hyperparameters Descriptions and Ranges of Variability

In Table 10, the hyperparameters descriptions of the applied Machine Learning algorithms, with their
ranges of variability, are reported. For the sake of clarity, some of them are fixed, in accordance with
the default suggestions of the SW tools and libraries used.

Table 11 and Table 12 show the performances of the trained models for the lateral flight plan and for
the flight level, with the chosen hyperparameters of the selected models that had the max accuracy,
after a fine-tuning step. Going deeper into the results obtained, decision trees (J48 and Random
Forest) exhibited the highest maximum accuracies, while Bayesian Networks exhibited on average the
lowest performance and often unsatisfactory.

Furthermore, for each time frame and for each route, the algorithmic approaches mostly showed the
following and descending ordering of average and max accuracies (with very few exceptions):

1. Decision Tree (J48, Random Forest)
2. Artificial Neural Network (MLP)
3. Bayesian (BayesNet)

As already mentioned, the Bayesian approach with networks has often shown unsatisfactory
performances, although their accuracies have shown a lower variability than that of the other
algorithmic approaches.

In conclusion, the average performances of the decision trees are very high both considering the 10-
fold cross-validation (see Table 11 and Table 12), the hold-out validation method, and the set of the
100 test flights.
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10-fold cross-validation results for the lateral flight plan prediction

Time Algorithm Min Average Max Hyperparame.ters
Route Selected of model with
Frame name Accuracy Accuracy Accuracy
Max Accuracy
London — Athens TF-15 MLP 0.285 0.291 0.294 NO H=16; T=500
London — Athens TF-15 BayesNet 0.198 0.207 0.210 NO A=0.5; P=2
London — Athens TF-15 148 0.290 0.378 0.385 YES F=2
London — Athens TF-15 RandomForest 0.275 0.369 0.382 NO =130
London — Athens TF-5 MLP 0.430 0.441 0.447 NO H=19; T=750
London — Athens TF-5 BayesNet 0.441 0.452 0.457 NO A=0.01; P=2
London — Athens TF-5 148 0.481 0.525 0.534 YES F=2
London — Athens TF-5 RandomForest 0.452 0.498 0.520 NO =207
London — Athens TF-1 MLP 0.773 0.810 0.835 NO H=27; T=500
London — Athens TF-1 BayesNet 0.752 0.768 0.776 NO A=0.32; P=1
London — Athens TF-1 148 0.861 0.874 0.891 NO F=6
London — Athens TF-1 RandomForest 0.987 0.998 0.999 YES =250
London — Malta TF-15 MLP 0.271 0.285 0.303 NO H=24 ; T=342
London — Malta TF-15 BayesNet 0.269 0.270 0.272 NO A=0.41; P=3
London — Malta TF-15 148 0.311 0.315 0.358 YES F=6
London — Malta TF-15 RandomForest 0.284 0.304 0.320 NO | =245
London — Malta TF-5 MLP 0.604 0.683 0.728 NO H=18 ; T=682
London — Malta TF-5 BayesNet 0.518 0.610 0.672 NO A=0.3; P=1
London — Malta TF-5 148 0.592 0.692 0.795 NO F=4
London — Malta TF-5 RandomForest 0.712 0.790 0.812 YES 1=20
London — Malta TF-1 MLP 0.825 0.883 0.910 NO H=40; T=558
London — Malta TF-1 BayesNet 0.792 0.827 0.845 NO A=0.73; P=1
London — Malta TF-1 148 0.966 0.970 0.992 NO F=6
London — Malta TF-1 RandomForest 0.972 0.991 0.999 YES =250
Table 11 - Results for the lateral flight plan prediction
10-fold cross-validation results for the flight level prediction
Time Algorithm Min Average Max Hyperparame:ters
Route Selected of model with
Frame name Accuracy Accuracy Accuracy
Max Accuracy
London — Athens TF-15 MLP 0.221 0.310 0.399 NO H=12; T=625
London — Athens TF-15 BayesNet 0.311 0.364 0.378 NO A=0.75; P=1
London — Athens TF-15 148 0.415 0.432 0.467 YES F=2
London — Athens TF-15 RandomForest 0.402 0.425 0.430 NO =290
London — Athens TF-5 MLP 0.401 0.494 0.599 NO H=21; T=500
London — Athens TF-5 BayesNet 0.338 0.388 0.401 NO A=0.01; P=3
London — Athens TF-5 148 0.551 0.603 0.699 YES F=3
London — Athens TF-5 RandomForest 0.552 0.599 0.652 NO =225
London — Athens TF-1 MLP 0.661 0.725 0.790 NO H=16; T=350
London — Athens TF-1 BayesNet 0.620 0.715 0.782 NO A=0.55; P=3
London — Athens TF-1 148 0.775 0.840 0.887 YES F=2
London — Athens TF-1 RandomForest 0.777 0.807 0.872 NO | =250
London — Malta TF-15 MLP 0.228 0.301 0.383 NO H=15; T=550
London — Malta TF-15 BayesNet 0.350 0.352 0.359 NO A=0.01; P=2
London — Malta TF-15 148 0.415 0.432 0.442 YES F=6
London — Malta TF-15 RandomForest 0.416 0.425 0.435 NO 1=75
London — Malta TF-5 MLP 0.499 0.591 0.628 NO H=16; T=355
London — Malta TF-5 BayesNet 0.511 0.531 0.589 NO A=0.77; P=2
London — Malta TF-5 148 0.624 0.691 0.723 YES F=8
London — Malta TF-5 RandomForest 0.630 0.675 0.719 NO =150
London — Malta TF-1 MLP 0.669 0.729 0.822 NO H=18; T=850
London — Malta TF-1 BayesNet 0.617 0.728 0.751 NO A=0.65; P=2
London — Malta TF-1 148 0.792 0.840 0.903 YES F=4
London — Malta TF-1 RandomForest 0.798 0.817 0.884 NO =120

Table 12 - Results for the flight level prediction
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Flight duration estimation

Algorithm Algorithm
Approach & : .. Hyperparameters and Ranges
name Descrlptlon
A that Number of hidden layers (N) € [1, 2]
Multilayer regressor atuses Number of units per layer (H) € [8, 16, 32, 64, 128]
Neural backpropagation to learn a R .
Perceptron ; TrainingTime (T) = # epochs to train through. T € [50, 500]
Network multi-layer perceptron to ) X .
(MLP) R K LearningRate (R) = the learning rate for weight updates. R = 0.001
predict time of flight . "
Momentum (M) = Momentum applied to the weight updates. M = 0.0
numpFolds (F) = determines the amount of data used for reduced-error
Inductive Class for generating a pruning. One fold is used for pruning, the rest for growing the tree. F €

Decision Tree

Decision Tree

random tree regressor

[2,50]
minNumObj = the minimum number of instances per leaf = 1

Decision Tree

Random Forest

Class for constructing a
forest of random trees
regressors

numlterations (I) = the number of trees in the random forest. | € [25,
400]

maxDepth = the maximum depth of the tree, 0 for unlimited =0
numFeatures = sets the number of randomly chosen attributes = auto,
i.e. equals the number of input features

Table 13 - Hyperparameters Descriptions and Ranges of Variability

In Table 13, the Machine Learning algorithms used for the estimation of the duration of the cruise
flight are reported with a description of the hyperparmeters used for optimization and their ranges of
variability, some of them are fixed to the default values suggested by the library used.

Table 14 shows the performances of the trained models for the prediction of the duration of the cruise
flight, with the chosen hyperparameters of the selected models that had the minimum mean absolute
error (MAE).
Note that the variables used for these models refer to the flight plan used during the execution of the
flight, so the only time frame in Table 2 is TF-0. The reasons for this choice are descripted in the final
technical report.

Hold-out validation results for the cruise flight duration prediction
. . . Hyperparameters
Route Time Algorithm Min Average Max Selected ‘g: m'::del with
Frame name MAE MAE MAE .
min MAE
London — Athens TF-0 Decision Tree 8.5 13.6 82.7 NO F=18
London — Athens |  TF-0 MLP 6.5 31.9 178.0 NO N=2; H=(128,128);
T=300
London — Athens TF-0 Random Forest 49 5.1 5.2 YES 1 =150
London-Malta | TF-15 MLP 6.1 25.6 117.4 NO N=2; H=(128,128);
T=350
London — Malta TF-15 Decision Tree 6.6 9.9 50.8 NO F=16
London — Malta TF-15 Random Forest 3.9 4.1 4.5 YES =150

Table 14 - Results for the cruise flight duration prediction
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Annex Ill: Modelling results for flight plan prediction
Lateral flight plan prediction

Route London-Athens

Long-Term (15 days before EOBT)

Confusion matrix Performance metrics

Overall accuracy

0.385

Model: Induction Decision Tree

Table 15 - Long-term 10-fold cross validation results.

Confusion matrix Performance metrics

Overall accuracy

0.391

Model: Induction Decision Tree
Table 16 — Long-term hold-out validation results.
Mid-term (5 days before EOBT)

Confusion matrix Performance metrics

Overall accuracy

0.534

Model: Induction Decision Tree

Table 17 - Mid-term 10-fold cross validation results.
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Confusion matrix Performance metrics

Overall accuracy

Model: Induction Decision T
odel: Induction Decision Tree 0.518

Table 18 - Mid-term hold-out validation results.
Short-term (1 day before EOBT)

Confusion matrix Performance metrics

Overall accuracy

Model: Random Forest 1=250 0.999

Table 19 - Short-term 10-fold cross validation results.

Confusion matrix Performance metrics

Overall accuracy

: =2
Model: Random Forest 1=250 0.999

Table 20 - Short-term hold-out validation results.
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Route London-Malta
Long-Term (15 days before EOBT)

Confusion matrix Performance metrics

Overall accuracy

Model: Induction Decision Tree
0.358

Table 21 - Long-term 10-fold cross validation results.

Confusion matrix Performance metrics

Overall accuracy

: ion Decisi
Model: Induction Decision Tree 0.352

Table 22 - Long-term hold-out validation results.

Mid-term (5 days before EOBT)

Confusion matrix Performance metrics

Overall accuracy

Model: Random Forest 1=20 0.817

Table 23 - Mid-term 10-fold cross validation results.
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Confusion matrix Performance metrics

Overall accuracy

Model: Random Forest 1=20 0.786

Table 24 - Mid-term hold-out validation results.

Short-term (1 day before EOBT)

Confusion matrix Performance metrics

Overall accuracy

0.999

Table 25 - Short-term 10-fold cross validation results.

Model: Random Forest 1=250

Confusion matrix Performance metrics

Overall accuracy

M I: R F 1=2
odel: Random Forest [=250 0.998

Table 26 - Short-term hold-out validation results.

Flight level
Route London-Athens
Long-term (15 days before EOBT)
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Confusion matrix Performance metrics

330 350 370 390
330 276 150 29 4
350 171 288 119 40
370 38 199 164 128
390 4 64 95 183

True Class

Overall accuracy

Model: Inductive decision t
odel: Inductive decision tree 0.467

Table 27 - Long-term 10-fold cross validation results.

Confusion matrix Performance metrics

330 350 370 390
330 75 26 6 0
350 62 60 39 16
370 12 50 46 14
390 1 12 38 31

True Class

Overall accuracy

M I: | i isi
odel: Inductive decision tree 0.434

Table 28 - Long-term hold-out validation results.

Mid-term (5 days before EOBT)

Confusion matrix Performance metrics

330 350 370 390
330 358 99 2 0
350 80 444 85 S
370 4 133 322 70
390 0 13 92 241

True Class

Overall accuracy

Model: Inductive decision tree 0.699

Table 29 - Mid-term 10-fold cross validation results.
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Confusion matrix Performance metrics

330 350 370 390
330 78 28 1 0
350 22 113 41 1
370 2 21 83 16
390 0 1 28 53

True Class

Overall accuracy

Model: Inductive decision t
odel: Inductive decision tree 0.670

Table 30 - Mid-term hold-out validation results.

Short-term (1 day before EOBT)

Confusion matrix Performance metrics

330 350 370 390
330 415 44 0 0
350 22 551 44 1
370 0 50 447 32
390 0 0 27 319

True Class

Overall accuracy

M I: | i isi
odel: Inductive decision tree 0.887

Table 31 - Short-term 10-fold validation results.

Confusion matrix Performance metrics

330 350 370 390
330 94 13 0 0
350 6 153 18 0
370 0 5 109 8
390 0 0 3 79

True Class

Overall accuracy

Model: Inductive decision tree 0.891

Table 32 - Short-term hold-out validation results.
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Route London-Malta
Long-term (15 days before EOBT)

Confusion matrix Performance metrics

330 350 370 390
330 328 101 47 5
350 191 174 146 58
370 56 147 170 159
390 6 47 110 178

True Class

Overall accuracy

Model: Inductive decision t
odel: Inductive decision tree 0.442

Table 33 - Long-term 10-fold cross validation results.

Confusion matrix Performance metrics

330 350 370 390
330 79 22 11 2
350 49 45 26 18
370 21 35 39 47
390 5 14 16 52

True Class

Overall accuracy

Model: Inductive decision tree 0.447

Table 34 - Long-term hold-out validation results.
Mid-term (5 days before EOBT)

Confusion matrix Performance metrics

330 350 370 390
330 405 70 6 0
350 91 371 100 7
370 9 93 349 81
390 0 11 64 266

True Class

Overall accuracy

Model: Inductive decision tree 0.723

Table 35 — Mid-term 10-fold validation results.
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Confusion matrix Performance metrics

330 350 370 390
330 104 10 0 0
350 28 78 29 3
370 4 25 84 29
390 0 0 16 71

True Class

Overall accuracy

Model: Inductive decision tree 0.701

Table 36 - Mid-term hold-out validation results.
Short-term (1 day before EOBT)

Confusion matrix Performance metrics

330 350 370 390
330 444 37 0 0
350 26 511 31 1
370 0 28 468 36
390 0 1 26 314

True Class

Overall accuracy

M I: | i isi
odel: Inductive decision tree 0.903

Table 37 - Short-term 10-fold cross validation results.

Confusion matrix Performance metrics

330 350 370 390
330 104 10 0 0
350 12 117 9 0
370 0 9 124 9
390 0 0 8 79

True Class

Overall accuracy

Model: Inductive decision t
odel: Inductive decision tree 0.881

Table 38 - Short-term hold-out validation results.
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