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At present, when a flight is caught by an air traffic flow management
(ATFM) regulation, the airline has very limited information about
the evolution of the ATFM delay
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Introduction

- The objective of this project was to develop a machine learning model
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that, trained on historical data (the past), can predict the evolution
(the future) of the current ATFM delay for a regulated flight
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Model — Basic Regression

| Input features |

:

Complex hierarchical +
recurrent neural network
model

!

| FFNN |

!

Ybasic (Actual/Last ATFM delay, in minutes)

Works well, but does not provide a measure of uncertainty ...
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Model — Poisson Regression

The last ATFM delay distribution fits a Zero-Inflated Poisson (ZIP)
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Model — Poisson Regression

| Input features ]
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Expected last ATFM delay = (1- p) A

Example: p=0.9 A=10
Expected last ATFM delay = 1

A Machine Learning Approach to Predict the Evolution of Air Traffic Flow Management Delay 8
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Model — Ordinal Regression

In the current implementation, the trend of the ATFM delay is classified as:

* Increase: The last ATFM delay is higher than the current + 5 min
 Decrease: The last ATFM delay is lower than the current - 5 min
» Stay stable: Otherwise
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The cutpoints are additional parameters to be learned from the data
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Features
Additional parameters W,
Categorical features: to be learned during training
° I *
Departure airport f ~
» Destination airport ‘ Numerical B
 ATFM flight state  ......e==*™ Embedding
« Traffic volume \_ )
« Geographical entity é )
* Type of geographical entity —>| Missing indicators I——> Model
- Reason of the regulation
* Airline ... l Power transformation]_ \ /
Numerical features: ---- ‘00’ “"o‘ﬁ Standarlsatlon l
- Time to start of the regulation 4,[ Cyclic transformation ]_ ATFM.deIay
. Current ATFM delay . evolution
indicator
* Hour of the day 4{ Normalisation ]—

* Number of regulations ...

A Machine Learning Approach to Predict the Evolution of Air Traffic Flow Management Delay 10
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- Enhanced tactical flow management system (ETFMS)
flight data (EFD) messages of all flights that were
regulated during 2019

» Departure and destination airports
* Airline

- Estimated off-block time (EOBT)

- ATFM delay

» Taxi time ...

 Evolution of the corresponding ATFM regulations
+ Time of activation
- Regulation rate
- Reason of the regulation
- Start and end time ...

A Machine Learning Approach to Predict the Evolution of Air Traffic Flow Management Delay 11



Example
Time to EOBT  State  Delay | Ypasic A p Pd Ps Pi
03:43:34 FS 79 12 23 025 098 002 0O
03:31:37 FS 64 10 23 021 097 0.03 0
03:30:54 ES 79 11 26 019 098 002 0
02:58:47 FS 76 11 26 017 098 002 O
02:39:55 FS 46 09 21 020 093 007 0
02:28:42 FS 76 11 25 017 098 0.02 0
02:07:22 FS 76 12 26 016 098 002 0
02:02:54 S 76 12 26 016 098 0.02 0
02:00:47 SI 76 12 25 017 098 0.02 0
00:42:48 SI 76 21 30 011 097 003 0
00:39:45 SI 76 21 31 012 096 004 O
00:39:38 SI 76 23 31 012 09 004 O
00:35:07 SI 76 31 39 008 09 004 O
00:23:46 S1 34 22 23 005 080 0.20 0
00:15:46 SI 19 15 14 0.08 0.61 0.37 0
00:09:27 SI 64 34 40 003 093 007 O
00:07:31 SI 34 23 24 003 074 026 O
00:01:52 S 19 15 15 0.06 054 043 0
00:01:51 SI 19 16 16 0.03 041 0.55 0

A Machine Learning Approach to Predict the Evolution of Air Traffic Flow Management Delay
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ReSUItS - BaSiC regreSSiOn EUROCONTROL

ETFMS - Mean Absolute Prediction Error [min] ML - Mean Absolute Prediction Error [min]
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Similar results for the Poisson regression

A Machine Learning Approach to Predict the Evolution of Air Traffic Flow Management Delay 13
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Results — Ordinal regression

Time to COBT [h]
(0, 1] (1, 21 (2, 4] (4, inf]
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A
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Predicted Predicted Predicted Predicted
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Introduction

Is it possible to predict the likelihood (probability) that the last
flight in the sequence ( f; ) will infringe the night curfew at @ ?
(knowing the current state of the se.g-uence)

@ Last arrival airport

Early Detection of Night Curfew Infringements by Delay Propagation with Neural Networks 16



Model

Departure Destination ...

f
f2

fr

Latest flight data
for the sequence
of flights that a
given aircraft is
going to operate
during the day

[ )

Features
Generation

-4
-

EUROCONTROL

(

Starting time of the
night curfew (given) at
the destination airport
of the last flight in the
sequence (i.e., fr)

\. J

.

Model based on Recurrent
neural networks (RNN) and
trained with historical data

\

J

or, Ut 1

i

ASPEN
_ U11c

SIBT: Scheduled in-block time (SIBT)

Early Detection of Night Curfew Infringements by Delay Propagation with Neural Networks

SIBT + u  Risk of curfew infringement
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Dynamic features (x;) — Per flight

Categorical features:

Additional parameters W,
to be learned during training

Departure airport
Destination airport
Flight state (e.g., terminated)

ﬁ

Airline ...

Numerical features:

Turn around-time
Departure delay

Taxi time —

4
4 N
Numerical
Embedding
\_ )

(xt)%;l

&—@—\

Power transformation
Standarisation

Time since last flight data update
Time to SIBT

.
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Air traffic flow management (ATFM) delay ...

Relative flight in the sequence

Early Detection of Night Curfew Infringements by Delay Propagation with Neural Networks
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Static features (c¢) — Per aircraft

Categorical features:
- Aircraft type

Numerical features:
* Hour of the day

- Day of the week

* Month of the year

- Length of the sequence

Additional parameters W,
to be learned during training

4

f

.

Numerical
Embedding

N

J

(

.

Cyclic transformation
cos(x) and sin(x)

~\
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Early Detection of Night Curfew Infringements by Delay Propagation with Neural Networks
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Data EUROCONTROL

» History of enhanced tactical flow management system
(ETFMS) flight data (EFD) messages of all flights that were
operated during 2019

» Departure and destination airports
* Airline
- Estimated off-block time (EOBT)
- ATFM delay
- Taxi time ...

» Corresponding airline schedules
* Scheduled in-block time (SIBT)
» Scheduled off-block time (SOBT)

Early Detection of Night Curfew Infringements by Delay Propagation with Neural Networks 20
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Results — January-May 2019

ML - Mean Absolute Prediction Error [min] Relative improvement of ML w.r.t ETFMS [%]
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Discussion oy

+ So far, lack of explainability. Methods based on gradients
(e.qg., integrated gradients) can help ...

- Model may learn human reactions. Is this behaviour
actually desired? How to identify human actions? ...

A lot of other external factors are not (explicitly)
considered by the model. However, they may have an
Important impact on the delay evolution and propagation.
All in all obtaining a perfect prediction in such noisy and
uncertain environment is not feasible ...

A flight (or an aircraft) is not alone in the network.
Interactions between entities are not considered by the
models. Could graph neural networks capture such
interactions? Community detection algorithms could also
help to reduce the size of the problem ...

Early Detection of Night Curfew Infringements by Delay Propagation with Neural Networks 22
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