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1. Abstract 
 

Air Traffic Management’s (ATM) aim is to ensure separation management of aircraft in an efficient 
way, minimizing possible delays and costs. The expected increase in air traffic demand across manned 
and unmanned traffic requires a higher level of automation to support the decision making. Adaptive 
self-Governed aerial Ecosystem by Negotiated Traffic (AGENT) was an exploratory research project 
supported by the H2020 Research and Innovation Programme, which proposed a system where the 
avoidance of potential loss of separations is done in a distributed and collaborative way while the 
controllers monitor the process. This PhD project is built on AGENT’s future work proposals and seeks 
possible improvement of several critical aspects of the system through the application of Machine 
Learning (ML) techniques. There were two clear goals in this project: define airspace complexity in a 
way that challenges current definitions and overcomes their limitations and investigate how ML can 
be applied to safety in aviation. We investigate these problems in en-route traffic at the tactical level, 
as well as UAV systems. 

The first major contribution of this thesis has been modelling air traffic as a graph in the context of 
airspace complexity and conflict resolution. We define a graph with aircraft as nodes and 
interdependencies between them as edges of the graph. This definition allows for problem specific 
definitions of interdependencies. We further extend the definition of air traffic as a graph by including 
the time domain, which creates dynamic graphs. We define airspace complexity as graph connectivity 
and propose four indicators that combine different topological information and the severity of 
interdependencies to give a complete and nuanced picture of complexity. These indicators are able to 
provide a dynamic evolution of complexity by leveraging the modelling choice of air traffic as a 
dynamic graph. Simulation results indicated that the indicators we propose give detailed information 
and overcome drawbacks of existing metrics. We evaluated our approach using real and synthetic 
traffic and demonstrated that the indicators express different facets of complexity, confirming that all 
indicators are needed. The way we define complexity also provides a new framework in the design of 
conflict resolution algorithms which considers the reduction of airspace complexity in addition to 
safety preservations. Conflict Resolution (CR) algorithms could be discouraged from providing 
solutions that increase the overall complexity of the airspace. 

Furthermore, we model CR as Multiagent Reinforcement Learning Problem (MARL). We initially 
investigate CR only in a pairwise setting using Multiagent Deep Deterministic Policy Gradient 
(MADDPG) as a learning algorithm. We propose a novel state representation that combines positional 
information with speed and heading of the aircraft. Additionally, we propose a reward function that 
not only guides agents towards solving the conflict but also to consider factors such as fuel 
consumption, airspace complexity and delays. Our results indicate that the agents are capable of 
solving the conflicts and further learning desired behaviours such as solving them as soon as possible 
with minimal manoeuvres. However, this method suffers from issues of scalability and 
nonstationarity. In order to overcome these issues, we utilize Graph Neural Networks (GNNs). GNNs 
inherently allow communication between agents which facilitates cooperation between them. We 
apply Graph Convolutional Reinforcement Learning (DGN) in CR for Unmanned Aerial Vehicles (UAV) 
to solve conflicts with 3 and 4 present aircraft which we assume to be cooperative. We achieve 
impressive performance with the agents being able to always solve the conflicts. Furthermore, they 
learn a strategy that increases the distance between them, without previous knowledge of the 
environment. Currently, we are using this application domain to investigate some fundamental 
questions in MARL such as agent coordination, heterogeneity and transparency in environments 
where agents have individual and common goals. 
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2. Objective of the study 
 

The main objective of this PhD project was to investigate how the ability of agents to learn can affect 
the performance of CR algorithms. More specifically, if air traffic is to be modelled as a multiagent 
system, are they able to learn how to resolve conflicts in a purely data driven fashion? We model CR 
as a MARL problem with agents having no previous knowledge of the environments and with no expert 
knowledge being imposed on them. 

In order to make CR algorithms that not only solve conflicts but also consider a wider view of the 
airspace, we sought to define airspace complexity in a way that challenges current definitions and 
overcomes their limitations. We investigate these problems in en-route traffic at the tactical level, as 
well as UAV systems. 

 

 

3. Motivation 
 

The mission of air traffic management (ATM) is to make air traffic possible by means of efficient, 
environmentally friendly and socially valuable systems. In the current situation, challenges such as 
sustainability, the environmental impact and fuel consumption have to be tackled. As a result, these 
factors must be also accounted in conflict resolution, to not only solve them but to assure efficiency 
and quality in the resolutions. Conflict resolution algorithms have been a prominent research within 
the ATM community, with many models being proposed. However, existing methods mainly deal with 
pairwise conflicts. This however, is not an assumption that might hold for long, with the expected 
increase in (manned or unmanned) air traffic density, where encounters with more than two aircraft 
are likely to happen. 

 

 

4. Advances this work has provided with regard to the state of the art 
 
In this section we will explicitly list out the contributions of this PhD project: 

• Air traffic as a graph – To the best of our knowledge, our work in this thesis is one of the few 
that extensively makes use of graph theory in the study of air traffic and the first to do so in 
the context of airspace complexity and CR. We model air traffic as a dynamic graph (i.e., 
changes over time) and this allows us to employ the wealth of research conducted on 
graphs. Furthermore, our definition is flexible in such a way that other researchers can make 
problem specific modifications to adapt this definition to their needs. In [23], the authors 
also model air traffic as a graph to tackle demand-capacity imbalances. However, their work 
has a different focus and an unrelated method for defining interdependencies between 
aircraft. 

• Airspace complexity – We define four complexity indicators based on graph theory that 
attempt to overcome challenges of current complexity definitions. First of all, we provide a 
dynamic evolution of complexity and do not limit it to a single score. In such a way, the 



   

Engage PhD final reporting 4 

complexity indicators can also be used to guide strategical, pre-tactical and tactical actions 
for a smooth flow of aircraft. The indicators combine spatiotemporal topological information 
to give a complete and nuanced picture of complexity. 

• Conflict Resolution as a Multiagent Reinforcement Learning problem – In this thesis, we 
provide a full description of how to model CR as a MARL problem starting from the 
formalisation of the MDP to scaling up to multiple agents. Furthermore, we give examples of 
how a reward function that takes into consideration multiple factors in addition to solving 
conflicts could look like. In addition, we have shown that GNNs can be successfully applied 
to air traffic in such a way that facilitates communication and cooperation between agents. 

 

 

 

5. Methodology 
 

The work of this thesis relies largely on concepts from graph theory and reinforcement learning. 
Throughout the thesis there has been overlap between these two methodologies, however for the 
sake of clarity they will be elaborated separately. 

 

Graph Theory 
Many real-world situations can be described by a diagram consisting of a set of points together with 
lines joining certain pairs of these points. For instance, these pairs could represent people in a social 
network, with lines joining friends; or the points could be aircraft with lines representing 
interdependencies between them. Graphs are the mathematical objects that model these kinds of 
pairwise relations. 

 

An undirected graph G = (V, E) is a mathematical structure that consists of a set V of elements called 
vertices and a set E of pairs of vertices called edges. Let e = (a,b) be an edge of V. Then e joins two 
vertices a, b in V and is called incident of a and b. In turn, those vertices are called the endpoints of e 
and they are adjacent to each other. 

The degree of a vertex of a graph is the number of edges that are incident to the vertex. The order of 
a graph G = (V, E) is |V|, while the size of the graph is |E|. 

A triplet is a group of three vertices that are fully connected, i.e., any pair of the three vertices are 
connected by an edge. We denote with T the set of all triplets in the graph.  

H = (U, F) is a subgraph of G if the vertices and edges of H are subsets of the vertices and edges of G, 
i.e. U ⊆ V and F ⊆ E. 

 

Similar to undirected graphs, directed graphs (digraphs) can also be defined. The difference in 
definition is that in the case of directed graphs, E is now a set of ordered edges. All attributes can be 
adapted. Graphs can be weighted or unweighted. In the case of weighted graphs, each edge is 
assigned a number (the weight) for example between 0 and 1. If not edge connects two vertices, the 
weight is 0. An important attribute of weighted graphs is the strength of a vertex. Its definition is 
analogous to the degree, but it takes into consideration the weights: 
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𝑠𝑠(𝑖𝑖) = �𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗=1

 

In addition to the visual representation of a graph, there are several ways a graph can be described. 
The most common way is the adjacency matrix A, which for unweighted graphs is: 

 

𝐴𝐴 = (
𝑎𝑎1,1 𝑎𝑎1,2 … 𝑎𝑎1,𝑛𝑛
⋮ ⋮ ⋮ ⋮

𝑎𝑎𝑛𝑛,1 𝑎𝑎𝑛𝑛,2 … 𝑎𝑎𝑛𝑛,𝑛𝑛

)𝑎𝑎𝑖𝑖,𝑗𝑗 = {1, if �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� ∈ 𝐸𝐸
0, otherwise

 

The idea behind this representation is this: build a matrix with all possible edges between all vertex 
pairs of a graph. If an edge is actually present in the graph, then the entry in the matrix is 1, otherwise 
it is 0. Similarly, a weighted graph can also be represented with an adjacency matrix: 

𝐴𝐴𝑤𝑤 = (
𝑎𝑎1,1 𝑎𝑎1,2 … 𝑎𝑎1,𝑛𝑛
⋮ ⋮ ⋮ ⋮

𝑎𝑎𝑛𝑛,1 𝑎𝑎𝑛𝑛,2 … 𝑎𝑎𝑛𝑛,𝑛𝑛

)𝑎𝑎𝑖𝑖,𝑗𝑗 = {𝑤𝑤𝑖𝑖,𝑗𝑗, if �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗� ∈ 𝐸𝐸
0, otherwise

 

In the weighted case, the entries for the edges present in the graph correspond to weight of the edge. 
In the case if an undirected graph, the adjacency matrix is symmetric, while for directed graphs this 
does not hold. 

 

 

Reinforcement Learning 

Reinforcement Learning (RL) is a paradigm of machine learning which deals with sequential decision 
making [1]. A given RL problem is formalized by a Markov Decision Process (MDP), which is a discrete 
time stochastic control process [2] that consists of a 4-tuple (S, A, T, R), where: 

• S is the state space, 
• A is the action space, 
• T: S x A x S -> [0,1] is the transition function which is a set of conditional probabilities 

between states, 
• R: S x A -> R is the reward function 

In RL, an agent makes decisions in an environment to maximize a certain notion of cumulative reward 
G, defined as follows: 

𝐺𝐺𝑡𝑡 = 𝑅𝑅𝑡𝑡+1 + 𝛾𝛾𝑅𝑅𝑡𝑡+2 + 𝛾𝛾2𝑅𝑅𝑡𝑡+3 + ⋯ = �
∞

𝑘𝑘=0

𝛾𝛾𝑘𝑘𝑅𝑅𝑡𝑡+𝑘𝑘+1 

Where 𝛾𝛾 is a discount factor between 0 and 1. Its task is to inform the agent how relevant immediate 
rewards are in relation to rewards further in the future. The higher 𝛾𝛾 is the more the agent will care 
about future consequences. 

The agent improves incrementally by modifying its behaviour according to previous experience. The 
agent does not strictly require complete information or knowledge of the environment; it only needs 
to interact with it and gather information [3]. 

The RL agent starts at an initial state 𝑠𝑠0 ∈ 𝑆𝑆 and at each time step t must take an action 𝑎𝑎𝑡𝑡 ∈ 𝑇𝑇. Then, 
the agent gets a reward 𝑟𝑟𝑡𝑡 ∈ 𝑅𝑅 from the environment. The state then transitions to the next state 
which is dictated by the taken action and the dynamics of the environment. Finally, the agent stops 
interacting with the environment when it reaches a defined goal state. 
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The agent’s behaviour is encoded into a policy π, which can be deterministic π: S -> A, or stochastic π: 
S x A -> [0,1]. The policy uses the reward function implicitly, meaning that in the best case, the policy 
will guide the agent to the states with the most reward. 

There are two ways that are used to predict the total future discounted reward: the value function V 
and the action-value function Q, defined as follows: 

𝑉𝑉𝜋𝜋(𝑠𝑠) = 𝔼𝔼𝜋𝜋(𝑅𝑅𝑡𝑡|𝑠𝑠𝑡𝑡 = 𝑠𝑠) 

𝑄𝑄𝜋𝜋(𝑠𝑠,𝑎𝑎) = 𝔼𝔼𝜋𝜋(𝑅𝑅𝑡𝑡|𝑠𝑠𝑡𝑡 = 𝑠𝑠,𝑎𝑎𝑡𝑡) = 𝑎𝑎 

 

The value function represents the future expected reward in the current state if the policy is followed, 
while action-value function represents expected rewards for state-action pairs following policy π. 
Ultimately, the goal of all RL algorithms is to solve either of these functions. 

 

Q-learning is one most prominent algorithms for solving RL problems. There, an agent must learn to 
estimate the optimal action-value function in the form of a table with as many state-action pair entries 
as possible [4]. However, in cases where the state space or action space (or both) are continuous, 
there are infinitely many state-action pairs, which makes it unfeasible to store the values in table. In 
those cases, a function is used to approximate the Q function. Such a function with parameters µ is 
optimized through an objective function based on the Bellman equation [2]. 

 

In the case of Deep Q-Networks (DQN) [5], the Q function approximators are neural networks. 
However, several issues arise when applying deep learning directly on a RL problem. First, in RL 
rewards can be sparse or delayed, which hinders neural networks, as they rely on directly gained 
feedback. Additionally, the data that are obtained from an RL problem are highly correlated and lastly, 
the data distribution changes as the policy does, making it nonstationary, which further impairs the 
learning capabilities of neural networks. To overcome these issues, several modifications must be 
made. Experience replay is used to mitigate the issue of sample autocorrelation [5]. In this technique, 
the agent’s experience is stored at each time step in a replay buffer. The memory is sampled randomly 
and is used to update the networks. When the replay buffer becomes full, the simplest solution is to 
discard the oldest samples. The nonstationarity of the data makes the training unstable, which can 
lead to undesired phenomena such as catastrophic forgetting? Where the agent suddenly ``forgets’’ 
how to solve the task after apparently having learned a suitable policy. Such an issue can be mitigated 
using target networks, which is an identical network to the one used to learn the Q function, that is 
held constant to serve as a stable target for learning for a fixed number of time steps. 

 
Multiagent Reinforcement Learning 
Multiagent Reinforcement Learning (MARL) is an extension of classical RL where there are more than 
one agents in the environment. This is formalized through partially observable Markov games, which 
are decision processes for N agents. 

Similarly, to MDPs, Markov games have a set of actions. However, in this case, the environment is not 
fully observable by the agents. Therefore, the Markov game has a set of observations O1, O2…ON for 
each agent. Similarly, to single agent RL, in the MARL setting, agents take actions according to their 
policy and obtain rewards. The goal of the agents is to maximize personal and total expected reward. 
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6. Description of the data the study relies on 
 

For all of the work presented in this report, we utilized BlueSky [6] as the simulator, and overall training 
and testing environment for all our experiments. This simulator was chosen primarily because it is an 
open source tool, allowing for more transparency in developing and evaluating the developed models. 
The modular nature of BlueSky allows for different resolution algorithms to be evaluated under the 
same conditions and scenarios. Finally, BlueSky has an Airborne Separation Assurance System (ASAS) 
that supports and allows for new CD&R methods. 

In the first steps of the thesis, the goal was to use EUROCONTROL’s DDR II data. We managed to 
conduct experiments using DDR data for the complexity indicators. For that paper, we utilized flown 
trajectories from 12.02.2019. As we were only interested in en-route traffic, a filter was used to 
discard traffic below FL250. Furthermore, we make use of sector data for the same day to make our 
evaluations as realistic as possible. 

Some of this data was used to generate the dataset for the paper “Towards Conflict Resolution with 
Deep Multi-Agent Reinforcement Learning”. However, in addition we augmented these trajectories 
with an algorithm we developed. This was done to synthetically increase the variance of conflicts the 
model is trained on. The algorithm, shown in Algorithm 1, takes as input a conflict pair and for each 
aircraft in the pair generates new conflict geometries with varying headings, Closest Point of Approach 
(CPA), time until loss etc. For each scenario, we remove one of the conflict aircraft and create another 
one in conflict that has a different intrusion angle (i.e., conflict angle), closest point of approach (CPA) 
and time of separation loss than the removed conflict aircraft, while keeping surrounding non-conflict 
traffic. The values for the intrusion angle are in [0, 30, 45, 60, 90], while those for CPA and time of 
separation loss are in [1, 2, 4] NM and [60, 120, 300, 600, 1200] seconds, respectively. These values 
are based on the geometries we encountered from the original 188 scenarios with some values to test 
more extreme situations, such as a head-on conflict with a CPA of 1 NM. This augmentation method 
is applied to each scenario and each conflict aircraft. We note that the scenarios are not augmented 
with all possible permutations of these values, resulting in around 1000 total scenarios. This is done 
in order to maintain a reasonable training time for the model. The resulting scenarios are then divided 
into training and test sets with a ratio of 80%/20%. Training and test scenarios are kept apart in order 
to test the model in scenarios that it has never seen before. 

 
Algorithm 1 Data Augmentation algorithm for "Towards Conflict Resolution with Deep Multi-Agent Reinforcement Learning" 
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For the remaining of the work in this thesis, we moved to fully synthetic traffic, as our application 
domain switched towards UAVs. We follow a similar logic as to the algorithm mentioned above to 
generate diverse conflict geometries in different airspaces. To create the multi-UAV conflict, first, a 
reference aircraft is initialized, with a heading sampled from a uniform distribution from 0◦ to 360◦. 
Then, this aircraft is added to the set of created aircraft. To generate the rest of the conflicting UAVs, 
we sample from the set of the created ones. Then, a conflict angle is chosen from the list [0◦, 45◦, 90◦, 
90◦, 135◦, 180◦, −135◦, −45◦]. Next, to add some variance to the intrusion headings, a variance in the 
range [−10◦, 10◦] is added to each case. After that, the severity of the conflict is decided by sampling 
from a uniform distribution between 0.1 and 1. Finally, we set the time the new aircraft enters in 
conflict with the randomly chosen aircraft to 15 s. The CRECONF function is taken from the BlueSky 
simulator, and it provides the location and speed of a new conflicting aircraft. However, as compound 
conflicts have temporal boundaries, no accidental conflicts are added in one look-ahead time, which 
is set to 8 s. This is checked by the CONFLICT function, also taken from BlueSky. 

 
Algorithm 2 Data Generation algorithm for "Multi-UAV Conflict Resolution with Graph Convolutional Reinforcement 
Learning" 
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7. Computational experiments 
In this section we will describe in detail the models used for the three most important papers produced 
as part of the PhD: Spatiotemporal Graph Indicators for Air Traffic Complexity Analysis [7], Towards 
Conflict Resolution with Deep Multiagent Reinforcement Learning [8] and Multi-UAV Conflict 
Resolution with Graph Convolutional Reinforcement Learning [9]. While these works are not the only 
ones produced, they represent the biggest of the thesis. 
 
Spatiotemporal Graph Indicators for Air Traffic Complexity Analysis 
 
A correct definition of a graph requires having a set of vertices and a set of edges. In our case, vertices 
are the set of aircraft present in a sector at a certain time step. Therefore, we extend graph attribute 
to the time domain, by defining each of them per time step. The set of edges will be the 
interdependencies between each pair of aircraft for the time step. We define these interdependencies 
based on the distance between two aircraft. More concisely, if two aircraft are closer than a certain 
threshold, then there will be an edge between these two aircraft. The closer these aircraft are, the 
bigger the effect they have on each other will be, i.e. the stronger the weight of the edge connecting 
the pair of aircraft. If the two aircraft are in conflict, which means they are closer than the standard 
safety distance (5 NM horizontally and 1000 feet vertically) the effect they have on each other is 
maximal. 
 
In this work, the weights are set following this rationale. We calculate horizontal and vertical distance 
(weight) between all pairs of aircraft. An interdependency will be added only when two aircraft are 
close enough horizontally and vertically. Weights are normalized to be between 0 and 1 and the final 
weight is the average of the horizontal and vertical interdependency. Formally, this is: 

 
where 𝑤𝑤ℎ𝑖𝑖,𝑗𝑗(𝑡𝑡) and 𝑤𝑤𝑣𝑣𝑖𝑖,𝑗𝑗(𝑡𝑡) are the horizontal and vertical weights at time t, 𝑑𝑑ℎ𝑖𝑖,𝑗𝑗(𝑡𝑡) and 𝑑𝑑𝑣𝑣𝑖𝑖,𝑗𝑗(𝑡𝑡) 
are the horizontal and vertical distance of two aircraft at time t, H and V are the horizontal and vertical 
safety distances and 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎℎ and 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑣𝑣 are the horizontal and vertical thresholds. Such a definition 
of the interdependencies implies that they are undirected, which means that also the graph they 
define is undirected. Furthermore, the interdependencies are defined for a time step, therefore 
through their evolution in time, we are able to capture directional information such as heading. For 
instance, if the two aircraft that have an interdependency between them are moving towards each 
other, the weight of the interdependency would increase. 
In this work, graph complexity and in turn sector complexity, is defined as the connectivity of the 
graph. Furthermore, by modelling traffic as a weighted graph, we inherently take into consideration 
the severity of interdependencies. There are several ways the connectivity of a graph can be 
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measured. Research that applies graph theory to practical problems shows that connectivity indicators 
that combine topological information with the weight distribution of the graph are able to provide 
broad and detailed information. In this work, four indicators are formally defined and illustrated: edge 
density, strength, clustering coefficient and nearest neighbour degree. 
 

• Edge density (ED) – measures how many edges the graph has, compared to the number of 
edges in a fully connected graph of the same size. As we are dealing with weighted graphs, 
the weights are considered. Formally, ED is given as follows: 

𝐸𝐸𝐸𝐸(𝐺𝐺, 𝑡𝑡) =
∑ 𝑤𝑤𝑖𝑖,𝑗𝑗(𝑡𝑡)(𝑖𝑖,𝑗𝑗)∈𝐸𝐸

𝐴𝐴(𝑉𝑉𝑡𝑡)
,𝐴𝐴(𝑉𝑉𝑡𝑡) =

|𝑉𝑉𝑡𝑡|(|𝑉𝑉𝑡𝑡| − 1)
2

 

|𝑉𝑉𝑡𝑡| denotes the number of vertices in the graph (i.e. the number of aircraft present in the 
sector) at time step t and 𝐴𝐴(𝑉𝑉𝑡𝑡) is the number of all possible edges. From the definition, it 
follows that this indicator can take values from 0 to 1. ED refers to the whole graph, and not 
specific vertices, making it a global connectivity measure. It relies on the concept that traffic 
geometries tend to be complex when there are more interdependencies between aircraft. 

• Strength – In graph theory, the definition of strength is obtained by extending the definition 
of vertex degree to account for the weights of the edges. This indicator gives each aircraft its 
own score, and a global score is measured by taking the average of all aircraft in the graph. 
Formally, it is given as follows: 

𝑠𝑠(𝑖𝑖, 𝑡𝑡) = �𝑤𝑤𝑖𝑖,𝑗𝑗(𝑡𝑡)
𝑁𝑁

𝑗𝑗=1

 

Strength is a natural measure of the importance or centrality of a vertex in the graph. This 
indicator measures the strength of the vertices in terms of the total weight of their 
connections. In the proposed model, it quantifies how tight interdependencies of each 
aircraft are. The “stronger” an aircraft is, the more interdependent it is with other aircraft, 
the more complex it can be considered. 

• Clustering Coefficient (CC) – The clustering coefficient (CC) measures the local cohesiveness. 
This indicator provides information regarding the neighborhood of each vertex. It considers 
the weight of the clustered structure found in triplets. For each vertex I, CC counts the 
number and the weight of triplets (see: Section III) formed in the neighbourhood of i. 
Formally, the clustering coefficient of a vertex I, is calculated as follows: 

𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑡𝑡) =
� �𝑤𝑤𝑖𝑖,𝑗𝑗(𝑡𝑡) + 𝑤𝑤𝑗𝑗,𝑘𝑘(𝑡𝑡)�

𝑗𝑗,𝑘𝑘

2 ⋅ (𝑠𝑠(𝑖𝑖, 𝑡𝑡)(deg (𝑖𝑖, 𝑡𝑡) − 1)
,∀(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) ∈ 𝒯𝒯(𝑡𝑡) 

where 𝑠𝑠(𝑖𝑖, 𝑡𝑡) is the strength of the current vertex, 𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖, 𝑡𝑡) is the degree of the vertex at 
time step t and 𝒯𝒯(𝑡𝑡) is the set of triplets present at time t. CC scores range from 0 to 1. If 
aircraft that are very tight with each other form clusters, then the situation will be more 
complex than if the clusters were formed by aircraft that form edges with smaller weights. 

• Nearest Neighbor Degree (NND) – Nearest Neighbor Degree (NND) calculates a local 
weighted average of the nearest neighbor degree of each aircraft according to the edge 
weights. Formally, it is defined as: 

𝑁𝑁𝑁𝑁𝑁𝑁(𝑖𝑖, 𝑡𝑡) =
∑ 𝑤𝑤𝑖𝑖,𝑗𝑗(𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑(𝑗𝑗, 𝑡𝑡)𝑁𝑁
𝑗𝑗=1

𝑠𝑠(𝑖𝑖, 𝑡𝑡)
 

Such a definition implies that when edges with larger degrees are pointing to neighbors with 
higher degrees, the situation is more complex. Similar to Strength and CC, NND is also a local 
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measure, and the global measure is calculated by averaging over all vertices. The NND scores 
range from 0 to |𝑉𝑉𝑡𝑡| − 1. In the case of sector complexity, the more tightly connected a 
neighbour of an aircraft is to other aircraft, the more likely it is for a situation to arise that 
requires closer monitoring or potential ATCOs interventions. 
 

Towards Conflict Resolution with Deep Multiagent Reinforcement Learning 
 

As mentioned, Q-learning and DQN attempt to maximize the expected value of the total reward for a 
given and all successive steps. However, it has been noted that this method often suffers in high 
dimensional action and state spaces and can fail to converge [10] [11]. 

Policy Gradient methods are a group of methods that model and optimize the policy directly. The 
policy is modelled with a parametrized function with respect to parameters 𝜃𝜃, 𝜋𝜋𝜃𝜃(𝑎𝑎|𝑠𝑠). The goal of 
the methods is then to optimize the parameters θ for the best reward. Formally this is given as: 

𝜃𝜃𝑖𝑖+1 = 𝜃𝜃 + 𝛼𝛼∇𝐽𝐽(𝜃𝜃𝑖𝑖) 
Such methods are commonly known as actor-critic methods. The actor uses the policy to determine 
which action to take, while the critic evaluates how rewarding it is to be in a certain state. According 
to the Policy Gradient Theorem [1] there is a direct relation between the gradient of the loss function 
and the gradient of the policy. This allows for improvement of the policy accordingly. These methods 
have several advantages over DQN. First of all, Policy Gradient methods have been found to 
outperform DQN methods (i.e. better convergence) in environments with stable dynamics [10]. 
Furthermore, these methods are inherently more effective in handling high dimensional or continuous 
action spaces. The predictions of DQN assign a maximum expected future reward for each possible 
action at each time step given a state. In cases of continuous action spaces it would not be feasible to 
calculate a value for each action. However, in Policy Gradient methods the parameters of the policy 
are adjusted directly. 

Deterministic Policy Gradient (DPG) methods work in a similar way, with the distinction that actions 
are selected using a deterministic policy, not a stochastic one. As a drawback, if there is no noise in 
the action selection, exploration will be poor, which usually hinders the overall performance of a RL 
method. Therefore, the most effective way to use DPG is with off-policy actor-critic algorithms that 
learn a deterministic target policy from trajectories that have been generated by a stochastic policy. 

Deep Deterministic Policy Gradient (DDPG) is an actor-critic algorithm. It uses off-policy data to learn 
the Q-function and uses the Q-function to learn the policy. As in DQN, DDPG uses neural networks as 
function approximators. Consequentially, it suffers from several of the same issues of DQN (discussed 
in the previous section). DDPG employs many of the same techniques to overcome the issues. 
Furthermore, as it is a deterministic method, exploration is added to the agent by constructing an 
exploration policy π′. This policy adds some noise to the actor policy: 

𝜋𝜋 ’ = 𝜋𝜋(𝑠𝑠|𝜃𝜃𝜋𝜋) + 𝒩𝒩 
Multi-Agent Deep Deterministic Policy Gradient (MADDPG) [11], which is an extension of single agent 
DDPG [12], where multiple agents must complete their tasks with only local information. For each 
agent, the environment is non-stationary as the policies of other agents are unknown. This leads to 
learned policies that only use individual observations of agents and no model of the dynamics of the 
environment. MADDPG uses an actor-critic architecture, with agents and the critic being modelled as 
a neural network. The critic learns the value function (i.e. Q-learning), meaning that it is used to 
criticize the actions that are being taken. The network is updated from a Temporal Differences (TD) 
error. In MADDPG, the critic learns a centralized action-value function. Each Q function is learned 
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separately for all agents. This means that the critic is augmented with information about the policies 
of other agents. The actor network learns the policy, meaning that it outputs an action in regard to its 
output. The actor only has access to local information and does not know the policies of other agents. 
Actors are encouraged to explore beyond their learned policies at each time step through Gaussian 
noise, which means that at each time step each actor has a probability of not following its policy but 
taking a random action. This step has been shown to improve the learned policies as actors can overfit 
their learned policies leading to worse overall performance. 

In this work, we train two agents that represent each aircraft of the conflict pair. Figure 1

 
Figure 1 MADDPG for conflict resolution 

 is a visual representation of the model. Each scenario consists of a conflict which needs to be resolved. 
When the conflict is detected, agents are randomly assigned to the conflict aircraft. The agents then 
must attempt to resolve the conflict by maximizing their individual and global rewards (accumulative 
reward of single agents). At each time step while the conflict is not solved, each agent takes an action 
that is a combination of a heading and speed change. At the next time step, the agents receive a 
reward on how well the actions they took is perceived from the environment. The agents gain 
experience after each scenario they encounter, and we ensure that agents have roughly the same 
experience by having only one initial conflict in the scenario. 

 

The actor networks of each agent dictate what actions they must take at every step. As only horizontal 
resolutions are considered in this work, the actor network outputs three values in the range[−1,1](i.e. 
we apply the tanh activation function to the output layer), where two outputs are the sin and cos of 
the heading change angle α The angle is then 𝑡𝑡𝑡𝑡𝑛𝑛−1(𝛼𝛼) = 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼)/𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼). We put a maximum 
heading change of ±45∘ per time step. The other output value is used to determine the new speed of 
the aircraft. In this work, we consider en-route traffic, therefore we assume that aircraft are initially 
flying at optimal speeds. As a result, we limit speed change in an interval [𝑣𝑣 − 6%, 𝑣𝑣 + 3%] [13]. 

 

As mentioned previously, the critic network is learned jointly for both agents. Furthermore, given that 
agents have the same reward structure, we can assume agents to be cooperative. However, no 
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communication between agents is considered, which means that the only way agents are aware of 
the other agents’ policy is through the critic network. 

The reward function in this work not only is concerned with solving the conflicts, but it considers 
making the resolutions as efficient as possible. Thus, these factors are taken into consideration: 

• Time until loss of separation and CPA – The model is encouraged to solve conflicts as soon as 
possible, in order to avoid dangerous situations. 

• Difference from track and optimal speed – To solve conflicts through minimal manoeuvres, 
the agents are penalized for making big heading and speed changes. 

• Fuel consumption – In order to discourage the model from taking actions that lead to big 
fuel consumption, we use the aircraft performance model OpenAP [14]. 

• New conflicts – n undesirable behaviour of CD&R algorithms is the inducing of new conflicts 
as a side effect of the resolution. Therefore, if the resolution proposed by the model induces 
a new conflict, for the given lookahead time, it is severely punished. 

• Airspace complexity – In this work we consider the complexity formulation of Koca et al. 
[15]. 

 
Multi-UAV Conflict Resolution with Graph Convolutional Reinforcement Learning 

 

While deep learning proved effective in capturing patterns of Euclidean data, there are a number of 
applications where data are represented as graphs [16]. The complexity of graph data has imposed 
significant challenges on existing deep learning algorithms. A graph can be irregular and dynamic, as 
it can have a variable number of nodes and the connections between nodes can change over time. 
Furthermore, existing deep learning algorithms largely assume the data to be independent, which 
does not hold for graph data. 

Recently, there was an increasing number of works that extend deep learning approaches to graph 
data, called Graph Neural Networks (GNNs). Variants include: Graph Attention Networks (GATs) 
[17],Graph Convolutional Networks (GCNs) [18] and Message Passing Neural Networks (MPNNs) [19]. 
We refer the reader to [16], for a comprehensive review of GNNs. 

In the case of MARL, communication is often cited as a key ability for cooperative agents [20] [4]. In 
such a setting, agents exchange information before taking an action. 

In this work, we will use Graph Convolutional Reinforcement Learning [20] (dubbed DGN by its 
authors), which is a GNN algorithm for cooperative agents. 

In DGN, the multiagent environment is modelled as a graph G = (V, E), where V is the set of nodes and 
E is the set of edges. Each agent is a node and the local observation of the agent are the features of 
the node. Each node I has a set of Bi where (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸,∀𝑗𝑗 ∈ 𝐵𝐵. The set of neighbours is defined 
according to some criteria, depending on the environment and changes over time. In DGN, neighbor 
nodes can communicate with each other. Such a choice leads to the agents only considering local 
information when making their decisions. Another option would be to consider all agents in the 
environment; however, this comes with higher computational complexity. 

 

DGN has three modules: an observation encoder, convolutional layer and Q network. The observation 
of an agent I at time step t, 𝑜𝑜𝑖𝑖𝑡𝑡  is encoded into a feature vector ℎ𝑖𝑖𝑡𝑡 by a Multi Layer Perceptron (MLP). 
The convolutional layer combines the feature vectors in the local region and generates a latent feature 
vector ℎ𝑖𝑖𝑡𝑡

′ . The receptive field of the agents increase by stacking more convolutional layers on top of 
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each other. An important property of the convolutional layer is that it should be invariant from the 
order of the input feature vectors. Furthermore, such a layer must be effective in learning how to 
abstract the relation between agents as to combine the input features. 

 

DGN uses multihead dot-product attention [21], which is an implementation of attention which runs 
the attention mechanism several times in parallel, to compute interactions between agents (we refer 
the reader to [21]for a detailed overview of the attention mechanism). Let us denote with 𝐵𝐵+𝑖𝑖 the set 
of neighbours 𝐵𝐵𝑖𝑖 and agent i. The input features of the agent I are projected into query Q, key K and 
value V representation by every attention head. For an attention head m the relation for 𝑖𝑖, 𝑗𝑗 ∈ 𝐵𝐵+𝑖𝑖 is 
as follows: 

𝛼𝛼𝑖𝑖𝑖𝑖𝑚𝑚 =
exp (𝜏𝜏 ⋅ 𝑊𝑊𝑄𝑄

𝑚𝑚ℎ𝑖𝑖 ⋅ (𝑊𝑊𝐾𝐾
𝑚𝑚ℎ𝑗𝑗)𝑇𝑇)

∑𝑎𝑎∈𝔹𝔹+𝑖𝑖 exp (𝜏𝜏 ⋅ 𝑊𝑊𝑄𝑄
𝑚𝑚ℎ𝑖𝑖 ⋅ (𝑊𝑊𝐾𝐾

𝑚𝑚ℎ𝑎𝑎)𝑇𝑇)))
 

 

where 𝜏𝜏 is a scaling factor and 𝑊𝑊𝑄𝑄
𝑚𝑚 and 𝑊𝑊𝐾𝐾

𝑚𝑚 are the weight matrices of the query and key for attention 
head m. The representations of the input features are weighted by the relation and summed together, 
which is done for each head m The outputs of all attention heads for an agent i are concatenated and 
then fed into a MLP 𝜎𝜎 as follows: 

ℎ𝑖𝑖′ = 𝜎𝜎�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 � � 𝛼𝛼𝑖𝑖𝑖𝑖𝑚𝑚𝑊𝑊𝑉𝑉
𝑚𝑚ℎ𝑎𝑎

𝑎𝑎∈𝐵𝐵+𝑖𝑖

,∀𝑚𝑚 ∈ 𝑀𝑀�� 

The graph representing the agents and the interactions between them is formalized through and 
adjacency matrix C, where the ith row contains a 1 for each agent in 𝐵𝐵𝑖𝑖 and 0 for any agents not in the 
neighbourhood of i. The feature vectors are merged into a feature matrix F with size N x L where N is 
the number of agents and L is the length of the feature vector. The feature vectors in the local region 
of agent I are obtained by Ci x F. 

 

The Q network in DGN is a common network as previously described. However, in DGN, the outputs 
of the graph convolution layer are concatenated and fed into the network. At each time step, the tuple 
(𝑂𝑂,𝐴𝐴,𝑂𝑂′,𝑅𝑅,𝐶𝐶) is stored in the replay buffer, where 𝑂𝑂 and 𝑂𝑂′ are the current and next observations, 
A is the set of actions, R is the set of rewards and C is the adjacency matrix. During training, a random 
minibatch of size S is sampled from the buffer and the loss is minimized as follows: 

ℒ(𝜃𝜃) =
1
𝑆𝑆
�

1
𝑁𝑁

𝑆𝑆

��𝑦𝑦𝑖𝑖 − 𝑄𝑄�𝑂𝑂𝑖𝑖,𝐶𝐶,𝑎𝑎𝑖𝑖 ;𝜃𝜃��
2

𝑁𝑁

𝑖𝑖=1

 

Where yi indicates the return. Another factor that can impact the training of the Q network is the 
dynamic nature of the graph, which can change from one time step to the other. To mitigate this, the 
adjacency matrix 𝐶𝐶 is kept unchanged in two successive time steps when computing the Q values in 
training. Finally, the target network with parameters 𝜃𝜃′ is updated from the Q network with 
parameters 𝜃𝜃 as follows: 

𝜃𝜃′ = 𝛽𝛽𝛽𝛽 + (1 − 𝛽𝛽)𝜃𝜃′ 
where 𝛽𝛽 indicates the importance of the new parameters in the target network. 

 

In this work, we consider multi-UAV conflicts. However, multiple pairwise conflicts can have varying 
spatial and temporal boundaries, i.e., their overlap in space and time. Koca et al. [22], introduce the 
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concept of a compound ecosystem, with an ecosystem being the set of aircraft affected by the 
occurrence of a conflict. They propose that multiple ecosystems can be considered together if they 
have at least one common member and the conflicts overlap in time more than 10% of their duration. 

For this work, we relax the requirements by not considering surrounding traffic, therefore proposing 
the concept of a compound conflict. As such, multiple pairwise conflicts can be considered collectively 
if and only if they share a common aircraft. We keep the temporal requirement the same as in [22]. 

In DGN, the nodes are the agents present in the environment. We keep the same approach by 
considering the UAVs as nodes in a given traffic scenario. An edge is created between two UAVs if and 
only if a conflict between them was detected. This choice is motivated by the fact that in DGN, agents 
communicate with their neighbours first and foremost. Therefore, we make this choice to facilitate 
cooperation between UAVs that are in conflict. 

 

The representation of the states of the environment is one of the most critical factors that can impact 
the learning capability and performance of the agents. Typically, the state is formalized through a 
vector of a certain dimensionality, which should provide enough information to facilitate learning. 
Nevertheless, representations with higher dimensionality will suffer from a higher computational 
effort to train an effective model. 

 

Therefore, in this work we take the state representation proposed by Isufaj et al. [8],where the state 
is formalized through the agents’ position and speed information. More specifically the state 𝑠𝑠𝑖𝑖 of an 
agent is the vector si = [lat,lon,hdg,spd] i.e., latitude, longitude, heading, and speed. These values are 
normalized into the range [0,1] to make it easier for the model to be trained. 

For this work, we only consider solutions through heading changes. As such, agents can choose to take 
one of three actions at each decision time step: turn left, turn right, do nothing, where each track 
change corresponds to a heading change of 15o in either direction. 

In our case, the reward consists of three terms. First, the number of conflicts term punishes agents 
according to the number of conflicts. The more conflicts the agent is in, the more it will have the 
incentive to solve the conflicts. Furthermore, the deviation term penalizes the agents for solutions 
that drift the agent from its original track. In this work, if an agent has deviated more than 90o from 
the original route, it is penalized heavily. In cases where it has not, it is penalized as a fraction of the 
current deviation to the maximal deviation. This fraction is proportional to the maximal deviation. 
Such a term indirectly also incentivizes the agents to solve the conflicts as soon as possible, as the 
quicker the conflicts are solved, the less of a negative reward the agent will get. Lastly, through the 
severity term, the agents are encouraged to solve the most severe conflicts first. This term considers 
more severe conflicts, i.e., smaller distance at CPA, as more important to solve first. Formally, the 
reward function is as follows: 

𝑟𝑟𝑖𝑖,𝑡𝑡 = 𝑤𝑤1�
ℰ(𝑖𝑖)

− 1 + 𝑤𝑤2{−
|𝜇𝜇 − 𝜇𝜇′|

90
if |𝜇𝜇 − 𝜇𝜇′| < 90

−10 otherwise
+ (−𝑤𝑤3(1 − exp (1 −

1

(
𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐
𝑑𝑑𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ

)1/2
))) 

Where w1, w2, w3 are positive weights that indicate the importance of each term. The total reward for 
a given time step is the sum over all agents. 
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8. Results and Analysis 
This section will be organized in a similar format as Section 7. The most important results of the three 
previous papers will be presented as they constitute the most prominent contributions of this thesis. 

 

Spatiotemporal Graph Indicators for Air Traffic Complexity Analysis 
 

We visualize the complexity indicators for an hour of operation. The sector we chose had on average, 
the most aircraft present at the same time. In Figure 2, we also visualize the occupancy in the sector 
at each time step. This can be thought of as an extension of this complexity metric (i.e., occupancy) in 
the time domain. Occupancy is one of the simplest yet most used classical complexity metrics. Here 
we will compare this metric with the complexity indicators outlined in Section 7. 

 
Figure 2 Number of aircraft present in the sector 

In Figure 3, ED of the hour of operations is shown. The ED score is relatively low, which the highest 
being around 0.6, which occurs when the number of aircraft is around 8. This means that the majority 
of the aircraft do not get close enough to each other to be considered interdependent. This indicates 
that the number of aircraft does not present a full picture of complexity. 
The CC score is shown in Figure 4. The overall distribution is similar to that of ED, which suggest that 
there is an area in the sector where aircraft tend to the cluster. Nevertheless, one can see that the 
clusters do not last long (around 5 minutes in this case). The NND score, shown in Figure 5 provides 
similar information. There is a peak around the 20 and 50 minute marks, which corresponds to a peak 
in the other indicators, as well as the number of aircraft. However, in the beginning, when the CC and 
ED scores are quite high, NND is at its lowest. This is due to a small graph size, which is further 
supported by the small number of aircraft. Such a behaviour is evidence of the shape of the graph 
during that time, meaning that even though clusters are not formed, interdependencies are not just 
pairwise, but span multiple aircraft. This shows that relatively complex situations can arise even when 
the graph is small (as evidenced by ED), with a group of aircraft needing special attention. 
The strength indicator is visualized in Figure 6. Similar to the rest of the indicators, there are peaks 
around the 20 and 50 minute marks. However, the shape of the distribution is akin to that of NND, 
which supports our claim about the nature of interdependencies. On top of that, the similarity 
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between strength and NND further suggest that in this particular case, not only do interdependencies 
span multiple aircraft, they are also quite strong, which adds to the complexity of the situation. 

Figure 3 Edge density 

 
Figure 4 The clustering coefficient 
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Figure 5 Nearest neighbor degree 

 
Figure 6 Strength 

 
Towards Conflict Resolution with Deep Multiagent Reinforcement Learning 
The model was trained on the Google Cloud Platform using an NVIDIA Tesla K80 GPU and then tested 
on 195 conflict scenarios with intrusion angles ranging from 0o to around 140o. Furthermore, the 
scenarios had different CPAs, and time until the conflict started. 

The model shows great promise with around 93% if conflicts solved using real traffic and considering 
an objective function a non-linear combination of reward factors. This means that the vast majority of 
conflicts are both solved with both agents being involved in the solution and having no knowledge of 
the dynamics of the environment. Nevertheless, with this success rate, it is more informative to 
analyse different aspects of the resolutions. 
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Figure 7 Number of steps required to solve the conflict. A time step is 15 seconds long. 

Figure 7 shows the number of steps required to solve the conflicts. Scenarios where there were 
between 2 and 5, 6 and 10 steps were grouped together, while scenarios that needed 1 step and more 
than 10 steps were shown separately. As can be seen, 63% of solved conflicts needed only 1 time step. 
This is a promising result, which shows the model can learn by itself that the preferred behavior is to 
solve conflicts in one attempt. Furthermore, we observe that conflicts that needed between 2 and 5 
time steps to be solved represent around 27% of all solved conflicts. The other two groups represent 
less than 10% each. While these behaviours are not preferred, its is encouraging to see that the 
majority of conflicts are solved in less than 5 time steps. This means that the majority of conflicts are 
solved around 1 minute from when the conflict was detected. 

 
Figure 8 Distance of each agent from track in nautical miles when the conflict is resolved 

Figure 8 shows the distance from track at the end of the conflict for each agent. As one can seem both 
agents can solve around 65% of conflicts within 0.5NM of their original track and around 70% within 
1NM. This result is promising, as resolutions that minimally displace the aircraft from their track are 
preferred. Both agents show similar performance, which indicates the resolution would be likely 
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acceptable by both aircraft. However, in this work we assume cooperative agents, which cannot 
always be accepted in practice. We calculated the Pearson correlation coefficient between number of 
time steps required to solve the conflict and finals distance from track. The result was 0.78, which 
indicates high correlation. This shows that agents will increasingly deviate from track the longer they 
are not able to solve the conflict. While they eventually manage to solve it, this resolution cannot be 
accepted in practice, as it would require a huge deviation, which will result in major delays. 

 
Figure 9 Average heading change needed to solve the conflicts 

 
Figure 10 Average speed change needed to solve the conflicts 

As mentioned previously, at each time step the agents could make a heading change of at most ±45o 
and a speed change in the range [𝑣𝑣 − 6%, 𝑣𝑣 + 3%]. Figure 9 shows as a box plot the heading change 
made by each agent to solve each conflict. For conflicts that required more than one time step to e 
solved, the average of all time steps is shown. Figure 10 shows the same information with respect to 
the speed changes, with changes being the difference in percentage to flight speed of the time step 
(which is assumed to be optimal). It is interesting to note that speed changes are almost 0, with each 
agent have an average decrease of -0.01%. This is a relevant result, as speed changes in this time frame 
are known to be not as efficient and are not able to solve all conflicts. Furthermore, the penalization 
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for bigger heading or speeding changes for the agents were of the same magnitude, meaning that no 
preference of actions was induced to the agents. As such, this result shows the agents’ ability to learn 
desirable behavior with no previous knowledge of the environment. We also note that the majority of 
the changes decrease speed, which can be an indication from the performance model that the optimal 
speed can be improved, however this would need further investigation. 
For heading changes, the results show that Agent 1 makes an average change of around 20o, while 
Agent 2 makes an average change of around 31o. An interesting result is the fact that big heading 
changes are made rarely by agents, with the maximum change being take only once by each agent. 
This further shows the effect of the reward function in the behavior of the agents, as each of them 
prefers small changes that solve the conflict quickly. However, we note that Agent 2 makes on average 
a bigger heading change. The fact that the majority of existing conflicts are solved only in one time 
step shows that the learned behaviour of the agents can give resolutions that optimize several factors 
at once. Additionally, the agents were penalized heavily if the resolution they proposed would 
increase the complexity of the airspace, or even create a new conflict with one of the surrounding 
aircraft. We do not observe new conflicts that were created as a result of a resolution. This is further 
evidence of agents being able to learn desirable behaviors as ATCOs do not issue manoeuvres that 
create new conflicts. 
 
Multi-UAV Conflict Resolution with Graph Convolutional Reinforcement Learning 

In this work we train the model with compound conflicts with 3 and 4 agents. First the model was 
trained for 10,000 episodes with scenarios of compound conflicts with 3 UAVs. Then it was trained for 
a further 10,000 episodes with scenarios of compound conflicts with 4 UAVs. In this way, we utilize 
the learned policies of the previous agents to fine-tune them in the four-agent case and train the new 
agent from scratch. The models were trained for around 10 hours each. 

 
Figure 11 Evolution of cumulative reward per episode 

Figure 11 shows the evolution of cumulative reward for both cases. As the agents are cooperative, we 
are interested in the overall reward gained per episode and do not concern ourselves with the 
individual rewards. In this work, we utilize negative rewards, so the maximum that the agents can get 
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is 0. In the case if 4 agents, the reward seems a bit lower, however this comes as a result of there 
being more agents present, which takes actions to solve the conflicts thus inflicting itself some 
negative rewards for going away from track. According to the figure, the model converges on both 
occasions. This means that the agents are successfully able to improve their policies with gained 
experience. However, in the case 3 present agents, convergence happens around 2000 episodes, while 
4000 episodes are required for the 4 agent case. In this latter scenario, there are more possible 
scenarios that can be generated, therefore increasing the variance of situations that the agents are 
presented with. Furthermore, in the beginning of training, the already present agents employ their 
learned policies, while the new agent is exploring the possible actions, which reduces the overall 
reward the agents get. 

 
Figure 12 Number of losses of separation in comparison with the average unmitigated case 

In Figure 12, the number of LOSS is shown. The number of LOSS of the average unmitigated case (for 
both 3 and 4 agents) is shown with the dashed line. The reward performance translates directly to 
successfully avoiding LOOs. In the case with 3 agents, after convergence the average LOSS per episode 
Is less than 1. This indicates that the agents are able to successfully solve conflicts before violating the 
self-separation distance. In the case of 4 agents, the average is 1 LOSS per episode. However, through 
our results we note that the models manage to always avoid near misses in both cases, as the NMAC 
distance is never breached. 
 
The results shown so far indicate that the agents manage to successfully learn how to solve the task. 
The model converges fast and maintains its knowledge of the system, thus avoiding the common 
forgetting issues. However, it is important to understand what strategies they learned. This 
information is shown in Figures 13 and 14. For the sake of simplicity, we only show the frequency of 
actions for the last 200 episodes. We note that in both settings, the agents take the go left action in 
the majority of cases. While the direction of the action might not be as important, the learned strategy 
suggests that agents take the same action. This results in agents increasing the distance between 
them, as taking the same action head-on or crossing scenarios results in them going in different 
directions. However, in overtaking scenarios such a strategy does not immediately solve the conflict. 
Nevertheless, through the reward agents must learn that the conflict with the smallest CPA distance 
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is the most urgent. As such, it can happen that agents prefer to delay the solution in an overtaking 
scenario, by taking several small changes in the same direction. While this is not immediately 
desirable, attempting to make a heading change to the opposite direction could create a more severe 
conflict with the head-on or crossing agents. 

 
Figure 13 Frequency of actions for last 200 episodes of compound conflict with 3 agents 

 
Figure 14 Frequency of actions for last 200 episodes of compound conflict with 4 agents. 

In this work, we do not put any restrictions to the agents and do not inject expert knowledge in them, 
thus they start learning from a blank state. The results show that the agents are able to learn a strategy 
that successfully solves the compound conflicts in scenarios with 3 and 4 agents. 
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9. Conclusions and look ahead 
 

The goal of this PhD project was divided into two clear directions: investigate how machine learning 
can be applied to safety in aviation and define complexity in a way that challenges current methods 
and overcomes their shortcomings. 

Our first major contribution has been in modelling air traffic (be that manned or unmanned) as a 
graph. We formalized four indicators based on graph theory to measure the complexity of an airspace. 
These indicators combine topological information gathered from interdependency geometries with 
the severity of interdependencies to present a full and nuanced picture of complexity. Furthermore, 
we consider the evolution of complexity in time and do not simply give one single sector complexity 
score. Simulation results indicated that the indicators we propose give detailed information and 
overcome drawbacks of existing metrics. We evaluated our approach using real and synthetic traffic 
and demonstrated that the indicators express different facets of complexity, confirming that all 
indicators are needed. The way we define complexity also provides a new framework in the design of 
conflict resolution algorithms which considers the reduction of airspace complexity in addition to 
safety preservations. CR algorithms could be discouraged from providing solutions that increase the 
overall complexity of the airspace. 

By modelling traffic as a graph, we have opened the door to further applications of graph theory in 
aviation. Our work should be the baseline for designing more complexity indicators based on graph 
theory. As such, future work should consider different methods for the definitions of 
interdependencies and the value of thresholds. Finally, a very important continuation should be the 
mapping between the indicators and controller workload, which is an ongoing topic in the ATM 
community. Such work should investigate if the proposed indicators are a good predictor of the 
measured workload. Last but not least, it is very important to consider how the information provided 
by the indicators should be presented to the controllers. In our work, we make a simple attempt by 
showing the interdependencies and the indicator scores at various points in time, however more 
research is needed which takes into account controller preferences and other factors. 

In this thesis, we model conflict resolution as a MARL problem. In such a setting, aircraft are agents 
that are capable of making decisions and learning from their experiences. To the best of our 
knowledge, our work is one of the first attempts to uses a MARL approach to conflict resolution. We 
started our work by tackling pairwise conflicts at the tactical level for en-route traffic. 

We propose a novel state representation consisting of position information, heading and current 
speed. Furthermore, we propose a reward function that not only optimizes for number of conflicts 
solved but encourages efficient solutions. Factors that are included in the reward function are fuel 
consumption, CPA, time to LOSS, the creation of new conflicts and airspace complexity. The reward 
function evaluated in this work, can serve as a template for other research that goes in the same 
direction. The model is trained and tested on conflict scenarios from real traffic, with a data 
augmentation technique applied to increase the variance of encountered conflict geometries. Each 
scenario lasts 20 minutes, in which each aircraft within the conflict pair is assigned an agent taking 
actions every 15 seconds. In this work, agents are able to handle continuous actions space, which 
means that we do not prescribe fixed manoeuvres to solve the conflict. This overcomes a common 
limitation of existing research, where fixed manoeuvres are usually issued. 

Results indicate an impressive resolution success rate of 93%. Furthermore, the agents are able to 
learn several desired behaviors, while having no model of the dynamics of the environment. First of 
all, the majority of conflicts are solved only in one time step, which emulates how conflicts are solved 
in practice. Furthermore, the majority of conflicts are solved with heading changes smaller than the 
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allowed maximum. This indicates that the proposed reward function directs the agents not only to 
solve the conflicts as soon as possible but as efficiently as possible. Further evidence to this is the fact 
that the speed changes the agents make are negligible, with the average being −0.01%. This is an 
interesting result, as speed changes are generally considered to be less efficient and are not able to 
solve all conflicts. 

Nevertheless, there are several challenges to be considered to our initial approach. First of all, the 
agents are not able to solve all conflicts. Results are promising, but a safety-critical machine learning 
approach should come with resolution guarantees. Furthermore, there are cases where agents behave 
in peculiar ways. For instance, in the majority of cases where they have little time before LOSS, the 
agents are not able to solve the conflicts. This is somewhat counterintuitive, as one would expect the 
agents to make a bigger heading change to solve the conflict. A possible explanation to this can be the 
calibration of the reward function. Further investigation to the failed cases indicates that in the 
aforementioned scenarios, the agents get penalized too much. As a result, the other factors in the 
reward function are unable to guide the agents out of the conflict. In this work we assume cooperative 
agents. While this is a valid approach, it might not reflect the whole reality of the situation. In practice, 
aircraft might not be willing to make certain manoeuvres. Another interesting approach would be to 
model different behaviors of the agents, such as competitive behavior. In such an approach, agents 
would not have the same reward structure and would have certain preferences towards certain 
resolution methods. This would make for a valuable comparison in terms of local and global reward 
optimization. Furthermore, one way to improve resolutions would be to take feedback from 
controllers. In such approaches, the agents get a reward not only from the environment but also from 
a teacher, which can help alleviate issues from the non-stationarity of the environment and eventually 
make convergence easier. In addition, the models are trained and tested on a specific dataset. This 
dataset is not representative of all possible conflict scenarios and geometries and when the agents 
are presented with unseen conflict situations, they may fail to solve them. A solution to this is to 
introduce lifelong learning, which is an approach to machine learning that retrains itself when faced 
with unseen data. 

Ultimately, a conflict resolution tool that is based on machine learning will still need to be monitored 
by ATCOs. Such methods need to have a high degree of explainability. More specifically, agents need 
to be able to show some reasoning on how they picked actions. Ways how these explanations can be 
informative in a meaningful way presents a very interesting research question. 

To overcome the major limitations of the previous approach, namely scalability and the 
nonstationarity of the environment, we utilize GNNs. They are a recent advance in deep learning which 
have proved very effective in non-euclidean data. To utilize GNNs in a MARL setting, we use Graph 
Convolutional Reinforcement Learning. We tackle multi-UAV conflict resolution with cooperative 
agents in situations with 3 and 4 present agents. Air traffic is represented as a graph with aircraft as 
nodes. An edge is created between every two aircraft in a pairwise conflict. We use graph 
convolutional reinforcement learning, which provides a communication mechanism between 
connected agents. This means that conflicting aircraft are allowed to communicate with each other 
and develop cooperative strategies. To formally define a multi-UAV conflict, we propose the concept 
of compound conflicts, which are conflicts that have tight spatial and temporal boundaries. Results 
show that the agents are able to improve their policies and thus solve the task. For both settings, we 
observe an improvement both in number of LOSS present and duration of LOSS with the majority of 
scenarios after convergence having no LOSS (i.e., the compound conflict is solved). Furthermore, the 
agents are able to discover a strategy that increases the overall distance between them. As such, they 
effectively learn to solve the most severe conflicts first and then solve the remaining conflicts while 
making sure that no new conflicts are created. 
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However, there are several aspects that must be further researched. For instance, in this work we use 
a maximum of 4 agents in the scenario. In reality, the number of agents in a compound conflict can 
not be always decided beforehand, thus a solution that adapts to N agents must be sought. 
Furthermore, the reward function could be further elaborated to include terms that deal with the 
quality of solutions, such as optimizing for battery usage or number of actions taken. Finally, the action 
space can be extended to include solutions by speed or altitude changes. 

Furthermore, we are in the process of investigating some questions that have arisen from our research 
in this PhD project. First of all, we are investigating practical ways the airspace complexity indicators 
can be used. As a first step, we are in the process of identifying high complexity spatio-temporal areas 
in a sector. To do so, we make use of the choice to model air traffic as a graph. We are evaluating 
different community detection algorithms in order to show if are able to identify communities in air 
traffic. The assumption that we make is that these communities correspond to high complexity areas. 
After this assumption is verified, similar methods as in [9] will be used to improve the complexity of 
these areas using MARL with GNNs. In another project, the scalability of the CR method presented in 
[9] is being tested. Moreover, the correlation between conflicts and the complexity indicators 
proposed in [7] is being studied. To do so, large scale and high density scenarios are being generated. 
The candidate was the driving force behind improving the efficiency of these simulations through the 
use of parallel computing. Finally, we are investigating more fundamental questions in MARL, such as 
agent coordination, heterogeneous agents and transparency. If we assume a large enough airspace, 
agents can have individual goals, in addition to some common goal. For instance, imagine a fleet of 
drones that must deliver goods to their destination (i.e. individual goal), but also have to maintain 
certain safety distances from other agents or static obstacles (i.e. common goal). In such situations, 
agents do not have to cooperate at all times. There could be only a few situations where they would 
have to coordinate. Therefore, it is important to investigate how agents can learn to coordinate and 
what mechanisms they can use to facilitate coordination. So far, agents have been assumed to be 
homogeneous, which means that they all have the same physical attributes, can take the same actions 
and all are benevolent. However, this assumption might not hold in cases with a large number of 
agents (similar to the first research question). Therefore, we will investigate how the presence of 
heterogeneous agents (e.g. malicious intent) can affect learning and overall performance. 

Lastly, as the application field is safety critical, it is important to head towards achieving the 
acceptability of the models from the human controllers (i.e. air traffic controllers). Therefore, ways of 
introducing transparency and interpretability into the developed models will be investigated. These 
questions are being investigated in the context of dynamic re-routing for UAS. This setting provides a 
natural extension to current work of the candidate, as longer time-frames and a larger number of 
agents can be considered in a realistic application. 

Industrialisation 

We believe the work performed in this PhD project has the potential to be used in industry in two 
different contexts: airspace complexity and MARL applications. For the former, our previous results 
and current work has shown that graph applications in airspace complexity can give a high degree of 
granular information (up to the level of single aircraft) while being fast. Furthermore, they can give 
real-time results even in a modest machine. On the other hand, through our results, we can observe 
that MARL can tackle problems in aviation from different perspectives. While in this PhD project, we 
have envisioned our work to be in the ground, there is no inherent limitation to where it could be 
actually deployed, however adaptions would have to be made. In the case of MARL, there is a 
considerably higher computational burden to be considered. Training a model can take several days, 
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but once trained, deploying it and getting a response from the model can be done in real time. Training 
is usually conducted in dedicated servers, which are also offered by companies such as Google or 
Amazon. Indeed, crucial issues such as transparency, safety guarantees and quality of the model are 
issues that need further investigating. 

For both directions, significant effort has to be made to validate and verify the approaches extensively 
in order to make them compatible with existing requirements and infrastructure. Furthermore, there 
are important questions to be answered in terms of user friendliness and what would be the best way 
to present the information to the users. 
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Annex I: Acronyms 
Term Definition 

ATM Air Traffic Management 

CC Clustering Coefficient 

CD Conflict Detection 

CD & R Conflict Detection and Resolution 

CPA Closest Point of Approach 

CR Conflict Resolution 

DGN Graph Convolutional Reinforcement Learning 

DPG Deterministic Policy Gradient 

DQN Deep Q Networks 

ED Edge Density 
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Term Definition 

GAT Graph Attention Network 

GCN Graph Convolution Network 

GNN Graph Neural Network 

LOSS Loss of separation 

MADDPG Multiagent Deep Deterministic Policy Gradient 

MARL Multiagent Reinforcement Learning 

MDP Markov Decision Process 

ML Machine Learning 

MPNN Message Passing Neural Network 

NMAC Near Mid-Air Collision 

NND Nearest Neighbour Degree 

RL Reinforcement Learning 

UAS Unmanned Aircraft System 

UAV Unmanned Aerial Vehicle 
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