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1. Abstract 
Accurate and reliable trajectory prediction (TP) is required in several air traffic management (ATM) 
systems, for instance, to design air and ground-based decision support tools and safety nets. 
Estimating the aircraft trajectory in the vertical plane typically requires the knowledge of a pair of 
aircraft intents (e.g., constant Mach and minimum throttle), information which is seldom available, 
besides for the ownship (i.e., one’s own aircraft) trajectory planning system. In the flight execution 
phase, the aircraft is directed by the (auto) pilot through a series of sequential guidance modes that 
might override some of the planning phase aircraft intents. Thus, guidance mode is defined as a 
combination of constraints/commands that specify how the aircraft should behave to perform a 
desired trajectory.  

 

Reliable guidance mode information is fundamental for next generation of air- or ground-based TP, 
especially in the context of trajectory-based operations (TBO) and advanced decision support tools for 
aircraft crew and/or air traffic control e.g., to improve conflict detection (and resolution) algorithms, 
conformance monitoring, departure/arrival managers, separation assurance systems, etc. These new 
tools might result in increased safety, capacity, predictability and cost-efficiency for the future 
European ATM system.  

 

This research is concentrated on identifying aircraft guidance modes in the vertical plane. The final 
goal of this study is to indicate that acquiring the knowledge of aircraft guidance mode significantly 
affects the TP problem, and subsequently, the new ATM systems. In this PhD i) we provided a new 
probabilistic perspective of the trajectory prediction problem using signal processing mathematical 
tools, ii) we review state-of-the-art and the main challenges for the design of novel or enhanced TP 
systems that should enable future ATM paradigms, iii) we develop an optimal guidance mode 
identification using a Kalman filtering approach, iv) we analyse the impact of model mismatch on the 
interacting multiple model (IMM) filtering technique, v) we propose a robust linear-constrained IMM 
filtering under model mismatch, vi) we also propose a new methodology based on Bayesian inference 
to identify the aircraft guidance modes, and finally, vii) we evaluate the methodology to indicate the 
effect of known guidance modes on the TP accuracy.  

 

2. Objective of the study 
Towards identifying the guidance mode and improve the trajectory prediction (TP) problem, the 
following main objectives have been achieved: 

1. Review the state-of-the-art in guidance mode identification, TP problem, filtering technique, 
and main challenges in the new generation of ATM systems.  

2. Probabilistic characterisation of guidance mode identification, and formal analysis on the 
limitations of standard filtering techniques (i.e., impact of a misspecified system); 

3. Optimal guidance mode identification for centralised ground-based TP;  
4. Robustification of the current filtering techniques and development of new robust 

approaches for TP (i.e., relying on linearly constrained filtering);  
5. Bayesian sigma-point filtering technique to cope with nonlinear dynamics. 

 

In this study, the knowledge of aircraft performance models is taken into account to build a solid 
system model for the TP purpose. Although the solution proposed in this PhD is a physical model-
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based method, it is completely aligned with the objective of the second Engage thematic challenge 
(TC2) titled “data-driven trajectory prediction”. Identification of aircraft guidance mode in the flight 
execution phase is an achievement affecting TP. Outcome of this research fulfils the Engage TC2 
expectations, including improvements in TP. 

3. Motivation 
Solving an important missing point in avionics or ground-based systems (i.e., identifying aircraft 
guidance modes) motivated us to define this PhD topic. Moreover, signal processing techniques and 
stochastic approaches have been applied to address tracking problems for several decades. In the 
problem at hand, using stochastic signal processing tools builds the framework of proposed 
methodology to address an interdisciplinary problem. This work started with the aim of enhancing the 
accuracy and precision of TP to cope with challenges in the new generation of the ATM systems. 
Therefore, enhancing the ground-based TP accuracy can positively affect the new ATM systems, for 
instance, improving conflict detection and resolution (CDR) methods and creating the foundation for 
self-separation applications, for instance. 

4. Advances this work has provided with regard to the state of the art 
 
Several approaches focusing on TP are available in the literature, which can be mainly divided in two 
groups: machine learning (ML) techniques and stochastic methods. A brief review of some real-time 
TP methods is provided hereafter. 
In line with the current trend of using ML to solve any engineering problem, TP is not an exception. A 
comprehensive survey on ML-based TP is given in [26]. A possible approach to predict aircraft 
trajectories is to resort to neural networks (NNs), as proposed in [27].  
The NN can be trained using a real trajectory database, allowing the system to perform strategic 
and/or tactical TP forecast in the planning and/or execution phases. For instance, an NN-based 
solution was proposed in [28] for terminal manoeuvring area applications to address the short-term 
4D TP problem. The idea was to implement a combination of a sophisticated pre-processing stage, 
subsequently feeding a multi-cells NN to predict the trajectory. A different approach was presented 
in [24], where a Long-Short Term Memory solution was used for real-time estimation of some aircraft 
on-board parameters (i.e., fuel flow rate, landing gear and flap configuration settings). For this 
purpose, Flight Data Recorder data was used to train a model and ADS-B data was used to feed an NN 
structure.  
ML-based approaches may be interesting if large data sets are available, but they also have several 
limitations: i) lack of understanding of the system behaviour; ii) it is not possible to theoretically assess 
performance limits; iii) the knowledge of physical parametric models is disregarded; and iv) for safety-
critical applications it is unlikely that they could be certified. 
A completely different TP approach is to rely on stochastic methods, which rather than learning the 
system as a black box, exploit the physical knowledge of the TP problem at hand, and therefore have 
been widely studied in the literature. Such physical modelling can be expressed for instance in state-
space form, including: i) the dynamic aircraft model (e.g., the point-mass model); ii) the available data 
(e.g., ADS-B data, EHS data, and extended projected profile (EPP) [16,17]); and iii) the system 
uncertainty, which has been studied in detail for instance in [29,30]. In this case, TP is an estimation 
problem, and one can resort to the vast literature on estimation methods. Some relevant 
contributions are provided in the sequel. 
An adaptive algorithm was proposed in [31] to improve the TP accuracy for short look-ahead times in 
the climbing phase. Such adaptive algorithm dynamically adjusts the modelled aircraft weight based 
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on observed radar track data. In [32], a stochastic linear hybrid system was introduced to model the 
aircraft motion with changing flight modes for 4D TP and conflict detection problems. Such a 
probabilistic approach combined the aircraft dynamics with flight intent information to provide more 
reliable prediction results. Results showed that this intent-based TP approach was more accurate than 
other non-intent-based TP methods.  
Kalman filter based methods provide the optimal recursive estimation solution if a single linear state-
space model applies, and multiple model (MM) techniques such as the IMM filter must be considered 
when several dynamic system models appear [33] (e.g., guidance modes). In [34] a MM filter, based 
on 2-dimensional (2D) kinematic models, was used to improve aircraft tracking for CDR applications. 
Similarly, in [35] a MM filter was developed to identify aircraft manoeuvres during taxi operations. An 
enhanced MM filter, using a non-linear point mas model to describe 3-dimensional (3D) aircraft 
dynamics, was proposed in [36], showing significant benefits in terms of position estimation accuracy 
and filter robustness with respect to conventional kinematic-based filters. But all these works aimed 
at identifying simple manoeuvres in the horizontal plane, such as coordinated turns, constant speed 
or acceleration segments, then not being suited for the TP problem at hand. 
In [37, 38] manoeuvres in the vertical plane were considered, but the algorithm was limited to identify 
simple manoeuvres such as constant altitude rate at constant speed. These limitations were partially 
addressed in [1], where a set of modes for a typical aircraft descent phase were taken into account to 
improve TP capabilities in the flight execution phase, being the starting point of this PhD. The real-
time guidance mode identification problem was presented in a conference paper [1], where a 
sequence of guidance modes was identified using IMM filtering techniques in a vertical plane at 
altitude above 3000 [ft]. The purpose of the research was improving the accuracy of short-term 
aircraft TP in a typical aircraft descent. This PhD complements and extends the work done in [1]. 
Although the research done in [1] is remarkable, many missing challenges in the guidance mode 
identification problem need to be addressed. The outcome of this PhD provides some advances 
compared with the main reference (i.e., [1]), including: i) a statistical analysis is performed to assess 
the proposed method; ii) more validation trajectories containing real trajectories are considered; iii) 
the most complex parts of an aircraft trajectory—between FL100 and 50 ft above the runway—are 
analysed; iv) aircraft high-lift devices and landing gear deployment are modelled; v) the first moment 
of flap deployment/retraction is estimated; and vi) mathematical details and explanations are added. 
All the advances are placed in chapter 3 (i.e., optimal real-time guidance mode identification in a 
vertical plane) of dissertation. 

5. Methodology 
Filtering techniques are applied to identify a sequence of aircraft guidance modes. In this PhD, 
methods based on Kalman and particle filtering are taken into account to tackle the tracking problem. 
As stated in the literature review, Kalman-based filters are quite a powerful tool for the TP problem 
although these methods require a perfect knowledge of the system. For instance, process and 
measurement functions, the corresponding noise statistics, and input parameters are required to be 
known in a Kalman-based filter method, either for linear or non-linear systems. In practice, the perfect 
knowledge of the system may not be accessible. Therefore, towards improving the TP accuracy and 
precision in real-life applications, particle filtering is a well-performed method to tackle the unknown 
initialization and uncertainties (with non-Gaussian noise distribution). Particle filtering as a specific 
sequential Monte Carlo simulation method, is a recursive Bayesian estimator based on importance 
sampling. In the particle filtering method, the state vector is estimated recursively from the 
measurements.  
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Generally speaking, filtering distribution is defined as 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑦𝑦0:𝑡𝑡), and tracking in filtering is obtaining 
𝑝𝑝(𝑥𝑥𝑡𝑡|𝑦𝑦0:𝑡𝑡) from 𝑝𝑝(𝑥𝑥𝑡𝑡−1|𝑦𝑦0:𝑡𝑡−1). In case of independent noise samples, using the Bayes theorem and 
joint probability distribution, the recursive equation to obtain 𝑝𝑝(𝑥𝑥0:𝑡𝑡|𝑦𝑦0:𝑡𝑡) from 𝑝𝑝(𝑥𝑥0:𝑡𝑡−1|𝑦𝑦0:𝑡𝑡−1) is 
given by: 

𝑝𝑝(𝑥𝑥0:𝑡𝑡|𝑦𝑦0:𝑡𝑡)  = 𝑝𝑝(𝑦𝑦𝑡𝑡|𝑥𝑥𝑡𝑡) 𝑝𝑝(𝑥𝑥𝑡𝑡)
𝑝𝑝(𝑦𝑦𝑡𝑡)

 𝑝𝑝(𝑥𝑥0:𝑡𝑡−1|𝑦𝑦0:𝑡𝑡−1) ;  𝑝𝑝(𝑥𝑥𝑡𝑡)  =  𝑝𝑝(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1) &  𝑝𝑝(𝑦𝑦𝑡𝑡)  =  𝑝𝑝(𝑦𝑦𝑡𝑡|𝑦𝑦0:𝑡𝑡−1)   . 

In real-life applications, obtaining 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑦𝑦0:𝑡𝑡) from 𝑝𝑝(𝑥𝑥𝑡𝑡−1|𝑦𝑦0:𝑡𝑡−1) is based on approximations. In 
filtering methods, the extended Kalman filter (EKF) linearizes the system model around the estimated 
state vector and its corresponding covariance, while the particle filtering approximates the 
distribution for tracking. It is worth mentioning that the measurements are not observed continuously. 
Therefore, the approximation for the distribution is given by discrete random measures defined by 
particles and their corresponding weights. Tacking into account 𝐼𝐼 random measures, 𝑥𝑥(𝑖𝑖); 𝑖𝑖 = 1: 𝐼𝐼 as 
particles with their weights, 𝑤𝑤(𝑖𝑖); 𝑖𝑖 = 1: 𝐼𝐼 , the approximation of the distribution is computed as 
𝑝𝑝(𝑥𝑥) ≃ ∑𝑤𝑤(𝑖𝑖)𝛿𝛿(𝑥𝑥 − 𝑥𝑥(𝑖𝑖)), where 𝛿𝛿(. ) is the Dirac delta function [12]. Therefore, the main difference 
between EKF and particle filtering is the approximation of the distribution. In the following, the 
optimal Kalman-based filtering method is explained for the application at hand. 

In practice, the lateral path uncertainty is low [2], while the vertical profile is more uncertain and 
complex. Therefore, the focus of this research is on the vertical profile. At each moment, the aircraft 

is steered with one guidance mode (i.e., a pair of 
constraints/commands).  

IMM approach is used for ground-based identification of 
guidance mode among all possible guidance modes in the 
vertical profile. In addition to the mode identification, the 
aircraft trajectory estimation is obtained from the IMM 
method by observing surveillance data. Figure [1] shows the 
general system workflow under consideration. As depicted 
in Figure [1], on-board the aircraft is steered with guidance 
commands and Automatic Dependent Surveillance-
Broadcast (ADS-B) and Enhanced Mode-S Surveillance (EHS) 
data are received to the ground. In this figure, 𝑥𝑥 , 𝑦𝑦 and 𝑢𝑢 are 
the state, measurement, and control vector, respectively. 
The movement of the aircraft is modelled in its vertical plane 
to form the system model based on three main equations: i) 
𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥,𝑢𝑢) describes the process model or state evaluation. 
ii) 𝑦𝑦 = ℎ(𝑥𝑥) provides the link between the measurements 
and the state to be inferred. iii) In order to derive the motion 

equations, each guidance command pair is associated to a pair of algebraic expressions (i.e., 𝑐𝑐1 and 
𝑐𝑐2) that relate the guidance commands of each mode and the control vector (denoted 𝑢𝑢(𝑝𝑝, 𝑥𝑥) to 
emphasise this dependency). More details on aircraft trajectory planning and execution, guidance 
modes, filtering techniques, and system model are described in the sequel.  

 

5.1 Aircraft Trajectory Planning and Execution 
Modern aircraft have high levels of flight automation, mostly implemented in what is commonly 
named as the FMS. Some aircraft models use slightly different names, such as certain Airbus models 
with the flight management and guidance system (FMGS) or even the flight management, guidance 
and envelope computer (FMGEC), in order to emphasise additional functionalities of those systems. 
In this study, however, we use the rather generic name of FMS to refer to the systems on-board 

Fig. 1: General workflow. 
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providing flight trajectory planning and guidance. Among other functionalities, the FMS is in charge to 
first plan a trajectory; and then, support the (automatic) execution of the trajectory, providing 
guidance commands to the autopilot or to the flight director if the aircraft is manually flown.  

Before take-off, the FMS generates the most cost-efficient trajectory plan. The planned trajectory 
complies with all operational and flight envelope constraints, including potential ATM constraints 
depicted in the departure procedure. Similarly, the FMS generates a new trajectory plan in cruise, 
before starting the descent; or at any point if manually triggered by the pilot. 

Planned trajectories are just that: a plan. Then, they have to be materialised or executed in flight. For 
this purpose, the FMS has a variety of guidance modes and functionalities in order to follow the 
trajectory plan and to react in different ways in case that deviations from the plan occur.  

This section describes the mathematical process that underpins the computation (planning) and 
execution (guidance) of realistic aircraft trajectories.  

Mathematically speaking, the motion of an aircraft can be described by a system of ordinary 
differential equations (ODEs), derived from the combination of translational (force) and rotational 
(moment) equations of movement. Although this six degrees of freedom model results in the most 
accurate planning of an aircraft trajectory, it requires an extensive aerodynamic and propulsive model 
and the knowledge of the inertia tensor of the aircraft. For trajectory planning purposes in the FMS, 
the aircraft rotational rate is small and fast enough to consider only the translational equations of 
movement, leading to a three degrees of freedom (3DoF) model [3]. In fact, some ATM applications 
use even simpler models, such as total energy models or pure kinematic models [4]. 

The 3DoF model considers the aircraft as a point mass. In this model, the centre of mass is considered 
as the rotational centre where all forces apply. A further simplification of the 3DoF point-mass model 
in a vertical plane results in the so-called gamma-command model [5]. The vertical equilibrium is 
assumed in the gamma-command model. This is the model considered in this PhD:  

 
𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

= 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝛾𝛾)                                 (1.1) 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= �𝑣𝑣2𝑐𝑐𝑐𝑐𝑐𝑐2(𝛾𝛾) −𝑊𝑊𝑥𝑥
2 + 𝑊𝑊𝑠𝑠                     (1.2) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑇𝑇(,𝑣𝑣,ℎ)−𝐷𝐷(𝑣𝑣,ℎ,𝑚𝑚,𝜒𝜒)
𝑚𝑚

− 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝛾𝛾)                    (1.3) 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑞𝑞(𝑇𝑇, 𝑣𝑣, ℎ)                      (1.4) 

 

where the state vector, 𝑥𝑥 = [ℎ, 𝑠𝑠, 𝑣𝑣,𝑚𝑚] 𝑇𝑇, is composed of the geometric altitude, the along path 
distance, the true airspeed, and the mass of the aircraft; and the generic control vector of this model, 
𝑢𝑢 = [𝛾𝛾,𝜋𝜋]𝑇𝑇, is given by the aerodynamic flight path angle (FPA) and the engine throttle. 𝑇𝑇 is the total 
thrust delivered by the aircraft engines, 𝐷𝐷 is the aerodynamic drag, 𝑞𝑞 is the total fuel flow, 𝑊𝑊𝑥𝑥 is the 
cross-wind component, 𝑊𝑊𝑠𝑠 is the along path wind component, and 𝑔𝑔 is the gravitational acceleration. 
It is worth noting that 𝐷𝐷 also depends on the setting of the high-lift devices (i.e. flaps and/or slats) and 
landing gear. This aircraft configuration is denoted in the equations above by 𝜒𝜒.  

The total engine thrust is given by the following expression:  

 

𝑇𝑇 = 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜋𝜋(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)          (2) 

 

Where 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the residual thrust delivered by the engines in idle setting (𝜋𝜋 = 0) and 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  is the thrust 
delivered for the maximum throttle setting (𝜋𝜋 = 1).  
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An aircraft performance model is required to model 𝐷𝐷, 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚, and 𝑞𝑞, as a function of (some of) 
the state variables; while a weather model is also required to model the wind components appearing 
in Equations (1.1-1.4), but also to model certain aircraft performance variables that typically depend 
on air temperature and/or pressure.  

Note that two degrees of freedom must be closed in order to integrate Equations (1.1-1.4) along time. 
However, they are seldom given in terms of throttle (𝜋𝜋) and/or flight path angle (𝛾𝛾) functions of the 
time. Instead, the aircraft trajectory is typically divided in different phases or segments, and most of 
them are operated at constant Mach or constant calibrated airspeed, for instance. In some cases 
climbs/descents could be specified at a constant vertical speed (i.e. rate of climb/descent) and 
acceleration/deceleration segments are computed keeping a constant energy share factor (i.e., a 
parameter that specifies the ratio of the available thrust that is allocated to gain/lose kinetic energy 
as opposed to gain/lose potential energy). Thus, in a more generic formulation, two path constraints 
(𝑐𝑐1 and 𝑐𝑐2), also known as aircraft intents [6], shall be taken into account to mathematically close 
Equations (1.1-1.4), rather than just assuming a given control vector 𝑢𝑢: 

 

𝑐𝑐𝑖𝑖(𝑥𝑥,𝑢𝑢,𝑝𝑝) = 0 ;  𝑖𝑖 ∈ {1,2}           (3) 

 

where 𝑝𝑝 is a vector of known parameters. For each path constraint a parameter among a set of known 
parameters is fixed in order to form the 𝑝𝑝 vector. For instance, the calibrated airspeed value in a 
constant speed segment, the throttle setting in a constant throttle segment, etc.  

Equations (1.1-1.4) and (3) together form a system of differential-algebraic equations (DAEs) that fully 
describe a trajectory in the vertical plane. Unless 𝜋𝜋 and 𝛾𝛾 are directly given as a known input control 
sequence, it will be always needed to compute them first, in order to transform the original set of 
DAEs to a system of ODEs suitable for numerical integration.  

 

5.2 Aircraft Trajectory Guidance 
This section focuses on the guidance strategies that are relevant for this work, which are the 
estimation targets of the IMM-based methods. 

Assuming the FMS had perfect models when planning the trajectory, this would lead to the same 4D 
trajectory (and fuel consumption) as theoretically planned. Nevertheless, in a real flight, different 
sources of uncertainty would be present, such as aircraft performance models, weather forecasts, 
actuator dynamics, etc. This means that the other variables that are not followed by the guidance 
system will differ from the plan. In the previous example, where the path and throttle plan were 
commanded (and therefore followed by the actuators), the aircraft would not follow the planned 
speed schedule due to uncertainties, and the final fuel consumption would also differ from the 
computed one at the planning stage. In case, for instance, that throttle plan and speed schedule are 
commanded, the actual path would differ from the planned one in presence of uncertainty.  

The guidance function of the FMS contains, in fact, a quite complex logic of different guidance modes 
and strategies that are switched from one to another during the execution of the flight, depending on 
many input variables, such as the deviations with respect to the plan, the phase of the flight, 
operational conditions and flight envelope, capabilities of the actuators, etc.  

The guidance commands considered in this work are listed, depicting at the same time, the (known) 
input guidance target associated to each of them:  

1.  MACH: Constant Mach number (𝑀𝑀𝑀) 
2.  CAS: Constant calibrated airspeed (𝑣𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶) 



   

Engage PhD final reporting 8 

3.  DEC: Deceleration at a constant energy share factor (𝑘𝑘) 
4.  ACC: Acceleration at a constant energy share factor (𝑘𝑘) 
5.  THR: Fixed throttle setting (𝜋𝜋𝜋) 
6.  VS: Constant vertical speed (𝑣𝑣𝑣ℎ) 
7.  FPA: Constant ground flight path angle (𝛾𝛾𝛾𝑔𝑔) 

8.  ALT: Constant pressure altitude (zero vertical speed) 
9.  SPD: Constant speed (𝑀𝑀𝑀, 𝑣𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶). Only used when the other guidance mode is ALT. 

 

Table I lists all pairs of guidance commands considered in this paper. The first and second columns 
identify the guidance commands that direct, respectively, the two independent actuators of the 
aircraft (elevator and throttle). For each pair of commands, the parameters vector 𝑝𝑝 (i.e., known input 
guidance target) is given in the third column of the table.  

 

Table I: All possible guidance modes in the vertical profile considered in this PhD. 

Command1 Command2          Parameters Control vector  

MACH  𝑝𝑝 = [𝑀𝑀𝑀,𝜋𝜋𝜋] eq.(4.1) and eq.(4.3) 

CAS THR 𝑝𝑝 = [𝑣𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶,𝜋𝜋𝜋] eq.(4.1) and eq.(4.4) 

ACC/DEC  𝑝𝑝 = [𝑘𝑘,𝜋𝜋𝜋] eq.(4.1) and eq.(4.2) 

 MACH 𝑝𝑝 = [𝑣𝑣𝑣ℎ ,𝑀𝑀𝑀] eq.(4.7) and eq.(4.5) 

VS CAS 𝑝𝑝 = [𝑣𝑣𝑣ℎ ,𝑣𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶] eq.(4.8) and eq.(4.5) 

 ACC/DEC 𝑝𝑝 = [𝑣𝑣𝑣ℎ , 𝑘𝑘] eq.(4.6) and eq.(4.5) 

 MACH 𝑝𝑝 = [𝛾𝛾𝛾𝑔𝑔,𝑀𝑀𝑀] eq.(4.7) and eq.(4.9) 

FPA CAS 𝑝𝑝 = [𝛾𝛾𝛾𝑔𝑔, 𝑣𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶] eq.(4.8) and eq.(4.9) 

 ACC/DEC 𝑝𝑝 = [𝛾𝛾𝛾𝑔𝑔, 𝑘𝑘] eq.(4.6) and eq.(4.9) 

VS  𝑝𝑝 = [𝑣𝑣𝑣ℎ ,𝜋𝜋𝜋] eq.(4.1) and eq.(4.5) 

FPA THR 𝑝𝑝 = [𝛾𝛾𝛾𝑔𝑔,𝜋𝜋𝜋] eq.(4.1) and eq.(4.9) 

ALT  𝑝𝑝 = [𝑣𝑣𝑣ℎ = 0,𝜋𝜋𝜋] eq.(4.1) and eq.(4.10) 

ALT SPD 𝑝𝑝 = [𝑣𝑣𝑣ℎ = 0,𝑀𝑀𝑀] eq.(4.11) and eq.(4.10) 

 

𝜋𝜋(𝑥𝑥,𝑝𝑝) = 𝜋𝜋𝜋                                                                                                                                                       (4.1) 

𝛾𝛾(𝑥𝑥, 𝑝𝑝) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+𝜋𝜋(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)−𝐷𝐷
𝑚𝑚𝑚𝑚

𝑘𝑘)                                                                                                 (4.2) 

𝛾𝛾(𝑥𝑥, 𝑝𝑝) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+𝜋𝜋(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)−𝐷𝐷
𝑚𝑚𝑚𝑚

1

1−𝜆𝜆𝜏𝜏𝑅𝑅𝛾𝛾𝑎𝑎2𝑔𝑔 𝑀𝑀𝑀2
)                                                                                    (4.3) 
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𝛾𝛾(𝑥𝑥, 𝑝𝑝) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 �𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+𝜋𝜋(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)−𝐷𝐷
𝑚𝑚𝑚𝑚

1

1+𝐴𝐴𝛿𝛿�
𝐴𝐴
𝛿𝛿+1�

𝜇𝜇−1
−𝑅𝑅𝜆𝜆𝜏𝜏𝜇𝜇𝜇𝜇��

𝐴𝐴
𝛿𝛿+1�

𝜇𝜇
−1�
�  ;                                                   (4.4) 

𝐴𝐴 = (1 + 𝑣𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶
2 𝜇𝜇𝜌𝜌0
2𝑝𝑝0

)
1
𝜇𝜇 − 1                                                                                                               

𝛾𝛾(𝑥𝑥, 𝑝𝑝) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑣𝑣𝑣ℎ
𝑣𝑣

)                                                                                                                                     (4.5) 

𝜋𝜋(𝑥𝑥,𝑝𝑝) =
𝐷𝐷+1𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝛾𝛾)−𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
                                                                                                                           (4.6) 

𝜋𝜋(𝑥𝑥,𝑝𝑝) =
𝐷𝐷+(1−𝜆𝜆𝜏𝜏𝑅𝑅𝛾𝛾𝑎𝑎2𝑔𝑔 𝑀𝑀𝑀2)𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝛾𝛾)−𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
                                                                                                             (4.7) 

𝜋𝜋(𝑥𝑥,𝑝𝑝) =
𝐷𝐷+(1+𝐴𝐴𝛿𝛿�

𝐴𝐴
𝛿𝛿+1�

𝜇𝜇−1
−𝑅𝑅𝜆𝜆𝜏𝜏𝜇𝜇𝜇𝜇��

𝐴𝐴
𝛿𝛿+1�

𝜇𝜇
−1�)𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝛾𝛾)−𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
                                                                             (4.8) 

𝛾𝛾(𝑥𝑥, 𝑝𝑝) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑠𝑠𝑠𝑠𝑠𝑠 (𝛾𝛾𝛾𝑔𝑔)[�1 −𝑊𝑊𝑊𝑥𝑥
2 −𝑊𝑊𝑊𝑠𝑠

2𝑠𝑠𝑠𝑠𝑠𝑠2 �𝛾𝛾𝛾𝑔𝑔��
1
2

+ 𝑊𝑊𝑊𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 (𝛾𝛾𝛾𝑔𝑔)])                                             (4.9) 

𝛾𝛾(𝑥𝑥, 𝑝𝑝) = 0                                                                                                                                                      (4.10) 

𝜋𝜋(𝑥𝑥,𝑝𝑝) = 𝐷𝐷−𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

                                                                                                                                        (4.11) 

 

The command pairs of Table I are grouped by families, separated by horizontal lines in the table. The 
first set of command pairs identified, direct a fixed throttle setting (𝜋𝜋), while the elevator is used to 
command a certain speed or a certain acceleration/deceleration. These pairs of guidance commands 
are those typically found in climbs or descents. Aircraft typically climb at a fixed throttle setting (which 
could be the maximum climb engine rating, a take-off/go-around rating, a reduced thrust rating, etc.); 
while keeping a constant CAS in the lower parts of the climb, or a constant Mach in the higher parts 
of the climb phase. It is worth noting that in the lower atmosphere the maximum CAS in operations 
(named VMO) is more limiting than the maximum Mach in operations (MMO) and CAS is the 
operational speed used. At higher altitudes, however, MMO becomes more limiting than VMO and 
Mach number becomes the operational speed. Moreover, in a typical climb, different (short) 
acceleration phases are also found, and these are typically performed at a constant energy share 
factor (thus, accelerating and climbing at the same time). This energy share factor specifies the ratio 
of potential energy to the total energy (i.e., potential and kinetic energy). In other words, the aircraft 
flies at a constant ratio of rate of climb to acceleration. Symmetrically, a descent is typically performed 
at a constant throttle setting (at or close to idle thrust), with constant Mach descents at higher 
altitudes, followed by constant CAS descents at lower altitudes. Deceleration phases in descent are 
also performed at a given energy share factor, in general.  

In the second set of command pairs, the elevator is commanded to keep a fixed vertical speed (𝑣𝑣𝑣ℎ), 
while the throttle is then commanded to maintain a certain speed or a certain 
acceleration/deceleration. In a typical climb or descent, the (auto) pilot hardly ever steers the aircraft 
by keeping a constant rate of climb or descent. There are, however, some situations where these 
modes are used. For instance, in an early descent situation (when the air traffic controller clears the 
descent before reaching the top of descent planned by the FMS), the guidance system will typically 
command VS-MACH (which can be followed by a VS-CAS at lower altitudes) in order to intercept the 
planned descent from below [7]. This type of guidance might also be found in the so-called "re-
pressurisation segments'', sometimes found at the beginning of the descent phase in which the 
vertical speed is limited to permit a proper cabin re-pressurisation. Furthermore, in certain situations 
the air traffic control might request the aircraft crew to climb/descend at a given (or minimum) rate 



   

Engage PhD final reporting 10 

of climb/descent. In such situations, these guidance modes would also be triggered. The pairs VS-DEC 
and VS-ACC are seldom used in typical operations, but considered in our models for the sake of 
completeness.  

The third set of pairs command the elevator to keep a fixed ground flight path angle (𝛾𝛾𝛾𝑔𝑔), while the 
throttle is commanded to maintain a certain speed or a certain acceleration/deceleration. Like the 
previous guidance family, these pairs are activated in very specific situations, especially in the descent 
phase. When an idle descent cannot be planned because of altitude and/or speed restrictions in the 
destination terminal airspace, the FMS typically plans segments of constant ground flight path angle 
that "geometrically" join certain navigation waypoints overflying them at specific altitudes. In those 
cases, FPA-MACH or FPA-CAS will be commanded. Another typical example is when the aircraft is 
established in the instrumental landing system glide slope, in the final approach segment. There, the 
aircraft would command either FPA-DEC if decelerating or FPA-CAS if keeping a constant airspeed 
(typically in the last part of the final approach, with the aircraft fully configured and stabilised for 
landing). The pair FPA-ACC is seldom used, but also kept here for completeness.  

In the fourth set of command pairs, the elevator is dedicated to follow a specific vertical trajectory 
profile (either at constant vertical speed, constant ground flight path angle, or a constant pressure 
altitude), while a fixed throttle setting is given (𝜋𝜋). These pairs are rarely used, except for the command 
pair ALT-THR, which is found in level-offs to (quickly) accelerate or decelerate the aircraft (depending 
on the thrust setting commanded).  

Finally, the last command pair identified in Table I corresponds to the particular case where constant 
altitude and speed shall be followed. Since the pressure altitude is constant, keeping a constant Mach 
is equivalent to following a constant CAS and vice-versa. This corresponds to cruise flight, but also to 
level-offs at constant speed, typically found in terminal airspace when sequencing and merging traffic 
and/or for certain segments in the depart or approach procedures.  

As explained, throttle and flight path angle together---i.e., the control vector used in Equations (1.1)-
(1.4)---are seldom chosen as aircraft intents to plan a trajectory. Similarly, they are not typically used 
as guidance commands to steer the aircraft in the execution phase of the flight. Thus, in order to 
properly model all the different system models that arise from each possible pair of guidance 
commands identified in Table I, it is required to express this control vector as a function of the (known) 
guidance parameters for each pair. Similarly, this computation is also needed by the in-house 
trajectory simulator developed to generate validation trajectories in order to compute controls from 
a set of predefined aircraft intents. The mathematical relationship between intents (or guidance 
modes) and controls is given in the last column of Table I. 

It is worth noting that, although the case studies presented in this paper assume no winds and 
international standard atmosphere (ISA) conditions---to express how the atmospheric properties (e.g., 
pressure, temperature, and density of air) change as a function of altitude---, for the sake of generality, 
Table I provides the expressions of the control vector when horizontal wind components and 
temperature/pressure deviations from ISA values are modelled.  

 

5.3 Filtering techniques 
State estimation is a fundamental task in a plethora of applications, i.e., robotics, tracking, guidance 
and navigation systems, to name a few [8, 9, 10]. In the case of discrete state-space models (SSMs), 
i.e., where we have a dynamic stochastic representation of both state and measurements, filtering 
refers to the estimation of 𝑥𝑥𝑘𝑘  (at discrete time 𝑘𝑘) based on measurements up to discrete time 𝑘𝑘, 
typically denoted as: 𝑥𝑥�𝑘𝑘|𝑘𝑘 ≜ 𝑥𝑥�𝑘𝑘|𝑘𝑘(𝑦𝑦1, … ,𝑦𝑦𝑘𝑘) = 𝑥𝑥�𝑘𝑘|𝑘𝑘(𝑦𝑦𝑘𝑘), with 𝑦𝑦𝑘𝑘𝑇𝑇 = (𝑦𝑦1𝑇𝑇 , … ,𝑦𝑦𝑘𝑘𝑇𝑇). 
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For linear SSMs the best linear minimum mean square error (MMSE) filter is given by the well-known 
Kalman filter (KF) [10]. For nonlinear SSMs, a popular approach is to use a first order approximation 
of the nonlinear process and measurement functions, leading to EKF. More involved solutions are the 
so-called sigma-point Gaussian filters under the Gaussian assumption [11] or particle filtering for 
general nonlinear/non-Gaussian systems [12].  
 
The nonlinear discrete state-space model can be written as a jump Markov system.  
𝑥𝑥𝑘𝑘 = 𝑓𝑓𝑘𝑘−1(𝑥𝑥𝑘𝑘−1,𝑢𝑢𝑘𝑘−1(𝑝𝑝(𝜃𝜃𝑘𝑘), 𝑥𝑥𝑘𝑘−1),𝜃𝜃𝑘𝑘) + 𝑤𝑤𝑘𝑘−1                                                                                     (5.1) 
𝑦𝑦𝑘𝑘 = ℎ𝑘𝑘(𝑥𝑥𝑘𝑘) + 𝑣𝑣𝑘𝑘                                                                                                                                            (5.2) 
where 𝜃𝜃𝑘𝑘 ∈ {1,2, … ,𝑁𝑁} is the mode state, that is , each value of the discrete random variable 𝜃𝜃𝑘𝑘 leads 
to a different SSM. Here 𝑓𝑓𝑘𝑘−1(∙) and ℎ𝑘𝑘(∙) are known nonlinear system model functions; 𝑤𝑤𝑘𝑘−1 and 𝑣𝑣𝑘𝑘 
are the process and measurement noise.  
The measurements available from ADS-B and EHS considered in this article are 𝑦𝑦 =
[ℎ𝑝𝑝,𝑣𝑣𝑔𝑔, 𝑣𝑣ℎ , 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑀𝑀]𝑇𝑇; with ℎ𝑝𝑝the pressure altitude, 𝑣𝑣𝑔𝑔 the ground speed, 𝑣𝑣ℎ the aircraft (operational) 
vertical speed (i.e., the pressure altitude change rate), 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶 the calibrated airspeed (taken from the 
indicated airspeed broadcast by ADS-B), and 𝑀𝑀 the Mach number. 
With respect to (1.1)-(1.4), two additional variables are considered: i) 𝜏𝜏 is the temperature, and ii) 𝑝𝑝 is 
the air pressure. Then, the complete state to be inferred is 𝑥𝑥 = [ℎ, 𝑠𝑠, 𝑣𝑣,𝑚𝑚, 𝜏𝜏,𝑝𝑝]𝑇𝑇, with,  
 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜏̇𝜏 = 𝜏𝜏ℎ(ℎ)ℎ̇ , 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑝̇𝑝 = 𝑝𝑝ℎ(𝜏𝜏,𝑝𝑝)ℎ̇                                                                                                         (6) 
 
Where 𝜏𝜏ℎ and 𝑝𝑝ℎ are, respectively, the partial derivative of the temperature and pressure with respect 
to the altitude. The complete process function is then obtained from (1.1)-(1.4), expressing the 
dynamics of the aircraft, and (6). Notice that the control vector 𝑢𝑢 = [𝛾𝛾,𝜋𝜋]𝑇𝑇 is rewritten as 
𝑢𝑢𝑘𝑘−1(𝑝𝑝(𝜃𝜃𝑘𝑘), 𝑥𝑥𝑘𝑘−1), where at each time instant 𝑘𝑘, for the corresponding mode 𝜃𝜃𝑘𝑘, the values of 𝛾𝛾 and 
𝜋𝜋 are detailed in Table I.  
 
In this contribution, we consider that both process and measurement noise are Gaussian distributed, 
being a valid assumption under nominal conditions (i.e., no impulsive or heavy-tailed behaviours in 
the aircraft dynamics that can be assumed to be smooth, and electronic thermal noise in the 
measurement devices), 𝑤𝑤𝑘𝑘 ∼ 𝑁𝑁(0,𝑄𝑄𝑘𝑘) and 𝑣𝑣𝑘𝑘 ∼ 𝑁𝑁(0,𝑅𝑅𝑘𝑘). 
 
The nonlinear Bayesian filtering for the system in (5.1)-(5.2) does not admit a closed-form solution, 
and suboptimal techniques must be accounted for the nonlinear systems of interest, the best 
performance is typically obtained by resorting to the IMM particle filter [13], but the price to be paid 
is a high computational complexity. If noise distributions are Gaussian one can resort to sigma-point 
filter-based IMM approaches [14,11], which use a bank of sigma-point filters, each one matched to a 
given SSM. It turns out that for the problem at hand, and because we seek the optimal performance 
under nominal conditions (i.e., small noise assumption), the sigma-point filter and EKF performance is 
equivalent, therefore in this contribution, and without loss of generality, we consider an EKF-IMM 
(i.e., IMM filter with a bank of 𝑁𝑁 EKFs). Fig. 2 depicts the specific workflow of the EKF-IMM algorithm: 
i) interaction (or reinitialisation); ii) model-based filtering; and iii) combination (estimate fusion). 
 
The IMM-based filtering approach uses a bank of 𝑁𝑁 filters each one matched to a single SSM, then 
computes the posterior mode probabilities {𝜇𝜇𝑘𝑘𝑖𝑖 = 𝑃𝑃(𝜃𝜃𝑘𝑘 = 𝑖𝑖|𝑦𝑦1:𝑘𝑘)}𝑖𝑖=1𝑁𝑁 , with 𝑦𝑦1:𝑘𝑘

𝑇𝑇 = [𝑦𝑦1𝑇𝑇 , … ,𝑦𝑦𝑘𝑘𝑇𝑇], and 
constructs the final estimate/covariance as a combination of individual EKF estimates 𝑥𝑥�𝑘𝑘|𝑘𝑘

𝑖𝑖 , with 
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associated covariance 𝑃𝑃𝑘𝑘|𝑘𝑘
𝑖𝑖 . Then, the question is how to recursively compute the mode conditional 

𝑥𝑥�𝑘𝑘|𝑘𝑘
𝑖𝑖 , 𝑃𝑃𝑘𝑘|𝑘𝑘

𝑖𝑖 , and 𝜇𝜇𝑘𝑘𝑖𝑖 . 
 
Interaction step: If one considers a transition probability matrix 𝛱𝛱 where its elements 𝑟𝑟𝑗𝑗𝑗𝑗 = 𝑃𝑃(𝜃𝜃𝑘𝑘 =
𝑖𝑖|𝜃𝜃𝑘𝑘−1 = 𝑗𝑗) define the probability to jump from mode 𝑗𝑗 to mode 𝑖𝑖, the 𝑖𝑖-th mixed filter input is 
𝑥𝑥�𝑘𝑘−1|𝑘𝑘−1
0𝑖𝑖 = ∑𝑁𝑁𝑗𝑗=1 𝜇𝜇𝑘𝑘−1|𝑘𝑘−1

𝑗𝑗𝑗𝑗 𝑥𝑥�𝑘𝑘−1|𝑘𝑘−1
𝑗𝑗                                                                                                           (7.1) 

𝑃𝑃𝑘𝑘−1|𝑘𝑘−1
0𝑖𝑖 = ∑𝑁𝑁𝑗𝑗=1 𝜇𝜇𝑘𝑘−1|𝑘𝑘−1

𝑗𝑗𝑗𝑗 [𝑃𝑃𝑘𝑘−1|𝑘𝑘−1
𝑗𝑗 + (𝑥𝑥�𝑘𝑘−1|𝑘𝑘−1

𝑗𝑗 − 𝑥𝑥�𝑘𝑘−1|𝑘𝑘−1
0𝑖𝑖 )(∙)𝑇𝑇]                                                 (7.2) 

 
With mixing probabilities, 
 

𝜇𝜇𝑘𝑘−1|𝑘𝑘−1
𝑗𝑗𝑗𝑗 = 𝑟𝑟𝑗𝑗𝑗𝑗𝜇𝜇𝑘𝑘−1

𝑖𝑖

∑𝑁𝑁𝑙𝑙=1 𝜋𝜋𝑙𝑙𝑙𝑙𝜇𝜇𝑘𝑘−1
𝑙𝑙                                                                                                                                        (8) 

 
Filtering step: In this step, each EKF is matched to a GM. The 𝑖𝑖-th EKF prediction and update equations 
are, 
 
𝑥𝑥�𝑘𝑘|𝑘𝑘−1
𝑖𝑖 = 𝑓𝑓𝑘𝑘−1(𝑥𝑥�𝑘𝑘−1|𝑘𝑘−1

0𝑖𝑖 ,𝑢𝑢𝑘𝑘−1�𝑝𝑝(𝑖𝑖), 𝑥𝑥�𝑘𝑘−1|𝑘𝑘−1
0𝑖𝑖 �, 𝑖𝑖)       (9) 

𝑃𝑃𝑘𝑘|𝑘𝑘−1
𝑖𝑖 = 𝐹𝐹𝑘𝑘−1𝑖𝑖 𝑃𝑃𝑘𝑘−1|𝑘𝑘−1

0𝑖𝑖 (𝐹𝐹𝑘𝑘−1𝑖𝑖 )𝑇𝑇 + 𝑄𝑄𝑘𝑘−1                     (10) 
𝑆𝑆𝑘𝑘|𝑘𝑘−1
𝑖𝑖 = 𝐻𝐻𝑘𝑘𝑖𝑖 𝑃𝑃𝑘𝑘|𝑘𝑘−1

𝑖𝑖 (𝐻𝐻𝑘𝑘𝑖𝑖 )𝑇𝑇 + 𝑅𝑅𝑘𝑘                      (11) 
𝐾𝐾𝑘𝑘𝑖𝑖 = 𝑃𝑃𝑘𝑘|𝑘𝑘−1

𝑖𝑖 (𝐻𝐻𝑘𝑘𝑖𝑖 )𝑇𝑇(𝑆𝑆𝑘𝑘|𝑘𝑘−1
𝑖𝑖 )−1                       (12) 

𝑥𝑥�𝑘𝑘|𝑘𝑘
𝑖𝑖 = 𝑥𝑥�𝑘𝑘|𝑘𝑘−1

𝑖𝑖 + 𝐾𝐾𝑘𝑘𝑖𝑖(𝑦𝑦𝑘𝑘 − ℎ𝑘𝑘(𝑥𝑥�𝑘𝑘|𝑘𝑘−1
𝑖𝑖 ))                      (13) 

𝑃𝑃𝑘𝑘|𝑘𝑘
𝑖𝑖 = (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝑖𝑖𝐻𝐻𝑘𝑘𝑖𝑖 )𝑃𝑃𝑘𝑘|𝑘𝑘−1

𝑖𝑖                        (14) 
 
 where 𝐹𝐹𝑘𝑘−1𝑖𝑖  is the Jacobian of 𝑓𝑓𝑘𝑘−1(∙,∙, 𝑖𝑖) evaluated at 𝑥𝑥�𝑘𝑘−1|𝑘𝑘−1

0𝑖𝑖 , and 𝐻𝐻𝑘𝑘𝑖𝑖  is the Jacobian of ℎ𝑘𝑘(∙) 
evaluated at 𝑥𝑥�𝑘𝑘|𝑘𝑘−1

𝑖𝑖 . Notice that 𝑦𝑦𝑘𝑘 − ℎ𝑘𝑘(𝑥𝑥�𝑘𝑘|𝑘𝑘−1
𝑖𝑖 ) is the so-called innovation vector, with associated 

covariance 𝑆𝑆𝑘𝑘|𝑘𝑘−1
𝑖𝑖 . This innovation carries information about the fit between the observed data and 

the model used to compute the estimate (i.e., model likelihood).  
 
Mode probability update: The only missing point is how to update the mode probability 𝜇𝜇𝑘𝑘𝑖𝑖  from 𝜇𝜇𝑘𝑘−1𝑖𝑖 , 
which for a Gaussian systems is 
 

𝜇𝜇𝑘𝑘𝑖𝑖 =
𝑁𝑁(𝑦𝑦�𝑘𝑘|𝑘𝑘−1

𝑖𝑖 ,𝑆𝑆𝑘𝑘|𝑘𝑘−1
𝑖𝑖 )∑𝑁𝑁𝑗𝑗=1 𝜋𝜋𝑗𝑗𝑗𝑗𝜇𝜇𝑘𝑘−1

𝑗𝑗

∑𝑁𝑁𝑙𝑙=1 𝑁𝑁(𝑦𝑦�𝑘𝑘|𝑘𝑘−1
𝑙𝑙 ,𝑆𝑆𝑘𝑘|𝑘𝑘−1

𝑙𝑙 )∑𝑁𝑁𝑗𝑗=1 𝜋𝜋𝑗𝑗𝑗𝑗𝜇𝜇𝑘𝑘−1
𝑙𝑙                       (15) 

 
Fusion step: The final estimate/covariance as 
 
𝑥𝑥�𝑘𝑘|𝑘𝑘 = ∑𝑁𝑁𝑖𝑖=1 𝜇𝜇𝑘𝑘𝑖𝑖 𝑥𝑥�𝑘𝑘|𝑘𝑘

𝑖𝑖                     (16.1) 
𝑃𝑃𝑘𝑘|𝑘𝑘 = ∑𝑁𝑁𝑖𝑖=1 𝜇𝜇𝑘𝑘𝑖𝑖 [𝑃𝑃𝑘𝑘|𝑘𝑘

𝑖𝑖 + (𝑥𝑥�𝑘𝑘|𝑘𝑘
𝑖𝑖 − 𝑥𝑥�𝑘𝑘|𝑘𝑘)(∙)𝑇𝑇]                 (16.2) 

 
where 𝑥𝑥�𝑘𝑘|𝑘𝑘

𝑖𝑖  is the 𝑖𝑖-th EKF estimate, and 𝑃𝑃𝑘𝑘|𝑘𝑘
𝑖𝑖 the corresponding estimation error covariance. 
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                                                      Fig. 2: The EKF-IMM flow diagram. 
 
Guidance Mode Identification 
Notice that the output of the EKF-IMM provides at each time step 𝑘𝑘 the state vector estimate, 𝑥𝑥�𝑘𝑘|𝑘𝑘, 
its associated covariance, 𝑃𝑃𝑘𝑘|𝑘𝑘, but also the model probability for each guidance mode, 𝜇𝜇𝑘𝑘𝑖𝑖 . Even if it 
is not the standard use of IMM-based filters, 𝜇𝜇𝑘𝑘𝑖𝑖  can be exploited for model identification. Indeed, the 
estimated GM is taken as the one with largest mode probability (i.e., the most likely one), 
 

𝐺𝐺𝐺𝐺� 𝑘𝑘 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎{[𝜇𝜇𝑘𝑘1 , … , 𝜇𝜇𝑘𝑘𝑁𝑁]} 
 
Notice that the maximum mode probability will be larger if the different modes in the pool of 
candidates are very distinct, and lower if the modes are close to each other (i.e., competing modes). 
This implies that to obtain a good mode identification the user must avoid close or unidentifiable 
modes. Illustrative examples of this issue are shown in Section 8.2. 
 

6. Description of the data the study relies on 
In order to predict an accurate intruder trajectory (i.e., different from the ownship or corresponding 
aircraft’s trajectory), the needed information of the aircraft (i.e., measurement vector) is typically 
obtained from surveillance systems. Traditionally, the aircraft azimuth is collected using the primary 
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surveillance radar (as a passive radar). In civil aviation, however, some additional information of the 
aircraft is transmitted by the aircraft transponder to the secondary surveillance radar (SSR) 
equipment: Mode-A transponders provide an aircraft identity by a 4-digit octal code; Mode-C 
transponders send as well the barometric altitude; and Mode-S transponders can be selectively 
interrogated to provide a more comprehensive set of aircraft information.  

Moreover, the EHS technology is designed as a dependent protocol by secondary surveillance radar 
to improve all sorts of ATC systems by providing additional parameters. In fact, EHS provides the true 
airspeed, indicated airspeed, ground speed, Mach number, and true heading of the aircraft. Several 
Comm-B Data Selector (BDS) messages are identified as EHS: i) vertical intention report from BDS 40 
(select altitude, barometric pressure setting); ii) track and turn report from BDS 50 (roll angle, track 
angle, ground speed, track angle rate, true airspeed); and iii) heading and speed report from BDS 60 
(magnetic heading, indicated airspeed, Mach number, vertical velocity). 

ADS-B is a newer data source using an automatically broadcasting technology and independent 
protocol. ADS-B is a data-link-based surveillance technology that can be exploited for both air-ground 
and air-air applications. This allows aircraft to send the identification, position, speed, and other flight 
parameters, which come from the on-board air data and navigation systems. Flight parameters such 
as rate of climb/descent, which is the time derivative of the pressure altitude; or inertial vertical speed, 
which is the time derivative of the geometric altitude [15].  

Additionally, new automation and shared data within the TBO paradigm is raised to predict and share 
very accurate trajectory data via ADS - Contract Extended Projected Profile (ADS-C EPP) reports. 
Indeed, the EPP trajectory down-link standard is implemented to enable air-ground trajectory 
synchronisation [16,17] and likewise, to provide methods to extract some useful parameters such as 
rate of climb and descent, from EPP data [18]. General speaking, EPP provides some information (e.g., 
current and predicted gross weight, predicted speed profile, etc.) to enhance the performance and 
accuracy of ground-based TPs and ultimately, to improve ATC DSTs [18]. 

Moreover, in this research, a custom trajectory simulator is provided to generate desired trajectories 
and cope with the lack of real datasets. The custom trajectory simulator is used to generate 3D 
climb/descent trajectories (2D in the vertical plane plus time), which builds upon a gamma-command 
aircraft motion model [5], and the Eurocontrol's Base of Aircraft Data (BADA) v4.1 aircraft 
performance model [19]. The latter is used to define, for instance, the aircraft forces (e.g., thrust and 
drag) and fuel flow. A performance model of a representative narrow-body airliner has been chosen. 
The custom trajectory simulator emulates data based on real trajectories. Indeed, emulated profiles 
are inspired by comprehensive experimental analysis on real data and flight experiments. 

The main challenge in the real scenario is having access to a flight data recorder (FDR)---the most 
accurate aircraft data to provide a “ground truth” for validation. Based on airline policies, data are not 
likely to be shared for research purposes. In addition to FDR, ADS-B and EHS data are obtainable 
through secondary surveillance radars. Some companies (e.g., OpenSky [20], flightradar24, and 
FlightAware) provide secondary surveillance radar data, mostly ADS-B, but with some limitations. For 
instance, secondary surveillance radars do not have a worldwide coverage, or only data after 2013 is 
available. OpenSky is free of cost, nevertheless, does not cover globally. Among other websites, 
flightradar24 [21] is able to provide data with more wide coverage area. Airlines policy toward not 
sharing FDR data adds to the challenge of real data accessibility.  

7. Computational experiments 
Few ATM applications use basic kinematic TPs that directly model the path characteristics of the 
aircraft, without attempting to model the underlying physics. Flight management systems and 
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accurate ground-based TPs, however, use the well-known aircraft point-mass model: a three degree 
of freedom model that assumes aircraft stability (i.e., rotational dynamics are not modelled) and 
therefore, only the aerodynamic, propulsive, and external forces (e.g., due to the gravity) are taken 
into account. This kinetic approach is considered accurate enough for on-board trajectory planning 
and all ground-based ATM applications (or hybrid applications) [4, 22]. In this point-mass model, the 
centre of mass is considered as the rotational centre where all forces apply. A further simplification of 
the three degrees of freedom point-mass model in a vertical plane results in the so-called gamma-
command model [5]. The vertical equilibrium is assumed in the gamma-command model. This is the 
model considered in this PhD. 

8. Results 
This section indicates the results obtained for the simulated and real measurements. The focus is on 
the real-time guidance mode identification, real-time flap deployment moment estimation, the impact 
of parametric model mismatch, and robust filtering approach.  

8.1 Validation trajectories 
Validation trajectories are provided in two categories: i) 3D trajectories generated by the emulator; ii) 
4D trajectories gathered from secondary radar (e.g., ADS-B data from FlightRadar24).  

In the simulator, a trajectory is unequivocally specified by a sequence of phases, described by two 
guidance commands and an end condition. Such definition provides the three key ingredients to 
simulate a realistic trajectory: 

1. Trajectory phases: The vertical profile of the trajectory is split in a finite number of phases. 
Each phase is specified by two guidance commands and an end condition. Different phases 
can also be used to model different flaps and/or landing gear configurations or engine thrust 
ratings. 

2. Guidance commands and parameters: Guidance commands steer the aircraft through 
elevator and throttle. At each phase the parameters are used to compute the control 
vector,𝑢𝑢 = [𝛾𝛾,𝜋𝜋]𝑇𝑇 (refer to Table I).  

3. End condition: To model the transition between phases, where guidance commands and/or 
aerodynamic conditions (flaps/slats, landing gear position, etc) change. As an example, 
consider a phase where the two commands are constant Mach and idle thrust (MACH-THR), 
until the moment that calibrated airspeed achieves a given value (i.e., reaching that specific 
CAS is the phase end condition); then, the aircraft is flown at constant calibrated airspeed and 
constant vertical speed, being the new phase commands (VS-CAS). 

 

8.2 Real-time guidance mode identification 
8.2.1 Emulated trajectories 
A set of six representative validation trajectories (VTs) are considered: four descents and two climbs. 
A brief description of these VTs is given in Tables 2-7. The initial conditions (IC) of the numerical 
integration are taken above the runway, leading to a forward integration for climbs and a backwards 
integration for descents. Thus, the sequence of phases in these tables is always given from the runway 
to cruise. Notice the IC for VT5 and VT6, where ℎ𝑝𝑝 = 50ft including, thus, the final descent/initial 
climb. FL stands for flight level. In the vertical profiles, ∆𝑆𝑆 refers to the distance to go (along path 
distance) of an aircraft during a given phase. 
In the first four VTs, “CLEAN-UP” refers to the case where flaps/slats and landing gear are not 
deployed. For the last two VTs, which include lower altitudes down to the runaway, the flaps/slats 
(i.e., the most relevant positions in Airbus are modelled as “FULL”, “CONF 3, 2, 1”, or “CLEAN” to guide 
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the aircraft) and landing gear (i.e., “DOWN” or “UP”) are progressively retracted in the take-off and 
initial climb, and progressively deployed in the final approach and landing phase. 
In fact, flaps/slats deployment is needed to increase the airfoil camber and the wet surface of the 
wing. It consequently leads to an aerodynamic drag force increase. While in aircraft descents all 
flap/slat positions are used, a limited number of positions are enough to guide the aircraft during the 
take-off. For most Airbus models there are 5 different configurations “CONF 1, “CONF 1+F”, “CONF 2”, 
“CONF 3”, and “FULL”. Take-offs are typically performed at “CONF1+F” or “CONF2” and higher 
configurations are only used in very specific or exceptional situations, due to the high induced drag, 
which significantly degrades the climb performance. Landings are typically performed in “CONF 3” or 
“FULL”.  
Fig. 3 illustrates the simulated flight data, including altitude, true airspeed, calibrated airspeed, and 
Mach number versus distance to go. The vertical purple lines indicate the end of each phase. Because 
a backwards integration is used for descent profiles, the distance to go values are negative.  
To further complement the information provided in Tables 2-7 and Figure 3, more details are given in 
the sequel: 
 
VT1: This VT illustrates a typical early descent trajectory, where the aircraft starts to descend before 
reaching the planned top of descent. In this situation, the FMS typically commands a descent at 
constant vertical speed to intercept the planned path from below. In our VT, this segment is modelled 
at constant calibrated airspeed, and it is followed by a sequence of phases where the aircraft flies at 
idle thrust and decelerates to reach 3000ft at 230kt in clean configuration and landing gear up. 
 
VT2 and VT3: These trajectories illustrate two typical descents down to 3000 ft. Both trajectories 
follow a typical MACH-THR, CAS-THR descent at idle thrust down to FL100. Besides the Mach-CAS 
values chosen for this initial descent, the main difference between both VTs is on the final part of the 
trajectory, from FL100 down to 3000ft. While in VT2 the elevator command is on the FPA and the 
throttle is settled to keep the constant calibrated airspeed, VT3 divides this last part into two phases, 
where the throttle is fixed to idle and the elevator either controls the calibrated airspeed, or reduces 
the speed, respectively. Both VTs are flown in clean configuration and landing gear up.  
 
VT4: The fourth VT illustrates a typical CAS-THR, MACH-THR climb trajectory starting at 250 kt and  
2300 ft above the runway, until the cruise altitude is reached, considering a clean flaps/slats 
configuration and landing gear up. In this climb profile, the throttle is always set at the highest rate, 
assuming maximum climb thrust. The other actuator (i.e., the elevator) is dedicated to control the 
aircraft acceleration/speed. 
 
VT5 and VT6: These VTs illustrate representative descent and climb trajectories at lower altitudes 
(between FL100 and 50ft above the runway). For these trajectories, high-lift devices and landing gear 
deployment are modelled. The descent (VT5) starts with idle thrust and constant speed/deceleration 
(phases 8 and 7). The first flaps/slats position is deployed while the elevator controls the constant 
vertical speed and the speed is managed by the throttle (VS-CAS). In the subsequent phases, flaps/slats 
positions are progressively deployed, with the elevator commanding a constant ground FPA (assuming 
an instrumental landing system glide path is flown), while the throttle commands different 
deceleration rates until phase 1, where a constant calibrated airspeed is kept. Landing gear is deployed 
in phases 1-2-3. In VT6, the throttle is always set at the maximum rate and the acceleration/speed is 
controlled by the elevator. Flaps/slats positions are progressively retracted during this climb and gear 
is always up.  
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(a )VT1 (b) VT2 

  

(c) VT3 (d) VT4 

  

(e) VT5 (f) VT6 

                                               Fig. 3: Validation trajectories. 
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Table 2: Vertical descent profile specification of VT1. 

 
 

Table 3: Vertical descent profile specification of VT2. 

 
 

Table 4: Vertical descent profile specification of VT3. 

 
 

Table 5: Vertical climb profile specification of VT4. 
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Table 6: Vertical descent profile specification of VT5. 

 
 

Table 7: Vertical climb profile specification of VT6. 

 
 
8.2.2 Further Assumptions 
 
According to Table I, 𝑁𝑁 = 25 guidance pairs are considered. Among these modes, 13 are related to 
modes with retracted configurations, and 12 consider different positions of flap/slats and landing 
gear---named as “non-clean”---to emulate realistic flight phases. Among all pairs, ALT-SPD is the only 
one with always “clean” configuration. The drag coefficient (considered known) must be computed to 
obtain the aerodynamic drag force. From [19], such a drag coefficient is defined considering “clean” 
or “non-clean” configurations. The goal is to assess the EKF-IMM capabilities to distinguish between 
both configurations. It is worth mentioning that the throttle is either set to 1 for climbs (maximum 
rate) or 0 for descents (minimum rate) when THR is an active mode. 𝑝𝑝 is also assumed to be known. 
The case studies presented in this section assume no winds and ISA conditions. Then, for altitudes 
below the tropopause altitude, 𝜏𝜏ℎ = −𝜆𝜆𝜏𝜏 in eq.6 (𝜆𝜆𝜏𝜏is the temperature lapse rate). In hydrostatic 
equilibrium and regardless of the pressure altitude, 𝑝𝑝ℎ = −𝜌𝜌𝜌𝜌, where the density of the air is 𝜌𝜌 = 𝑝𝑝

𝑅𝑅𝑅𝑅
. 

Noting that ℎ̇ and 𝑣𝑣ℎ depend on temperature and its deviation 𝛥𝛥𝛥𝛥, the latter in ISA conditions is 0 K, 
then ℎ𝑝𝑝 = ℎ and 𝑣𝑣ℎ = ℎ̇. 
Within the EKF-IMM, a time-invariant transition probability matrix is considered, with 𝑟𝑟𝑗𝑗𝑗𝑗 = 0.02 for 
𝑗𝑗 ≠ 𝑖𝑖 and 𝑟𝑟𝑖𝑖𝑖𝑖 = 0.98. The initial system state 𝑥𝑥0 can be obtained from measurements except for the 
aircraft mass. The initial aircraft mass is considered to be shared by the airline (airlines can deliver it 
depending on their policy and data confidentiality). 
Results for both GM identification and state estimation are provided hereafter. To obtain statistically 
meaningful results, 500 Monte Carlo (MC) runs are performed. The average root mean square error 
(RMSE) over the trajectory is taken as the measure of state estimation performance. For GM 
identification, the measure of performance is the percentage of the trajectory time where the 
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algorithm provides an erroneous identification, denoted 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. The IMM-based GM identification 
results are summarised in Table 8. 
 

Table 8: Average RMSE and guidance mode identification IMM-based results for the six 
representative VTs. 

 
 
First, we can clearly see the good behaviour of the proposed solution (on average) for the trajectories 
which do not take into account some flap/slats (and landing gear) configurations, where 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is 
below 0.1% for the descent VT3 and climb VT4, and below 3% for descents VT1 and VT2. For VT6, 
which represents an initial climb, the IMM is also performing very well, with 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0.35%. The most 
challenging VT is VT5, which contains different positions of flap/slats and landing gear and illustrates 
a realistic final descent, for which 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 7.26%. Even if this value is significantly larger than the 
ones obtained for the other VTs, notice that most of the time the method correctly identifies the active 
GM. The latter will be further discussed when considering the estimated guidance mode versus along 
path distance.  
A graphical representation of the GM identification performance is shown in Fig. 4, with the results 
given w.r.t. along path distance. This allows to clearly distinguish the different phases of the VTs and 
how the different GM change (depicting as well clean or non-clean configuration settings). For each 
VT, the upper subplot shows the true GM; the middle subplot gives the estimated GM, that is, the one 
with maximum probability at each time step; and the lower subplot shows the different mode 
probabilities as given by the filter.  
First, notice the good results obtained for VT3 (Fig. 4(c)) and VT4 (Fig. 4(c)), a typical descent and climb, 
respectively, for which the EKF-IMM is able to correctly identify the active mode with almost no 
identification delay. The same for the low altitude climb in VT6 (Fig. 4(f)), where the EKF-IMM is again 
able to correctly identify all the GM with a very low identification delay. 
Regarding the early descent VT1 (Fig. 4(a)), the EKF-IMM perfectly identifies all the phases except the 
fourth phase, where the aircraft is flying in VS-CAS with high-lift devices retracted. Notice that in this 
phase the estimated GM mainly jumps between VS-CAS-clean and VS-CAS-non-clean, which have 
almost the same probability, that is, those two modes are not distinct enough for the IMM. Even if 
such ambiguity increases the identification error, the true GM is correctly identified if we disregard 
the high-lift devices configuration. These jumps also influence the state estimation accuracy. Notice 
that this is not a problem in practice because this phase comes just after the cruise phase, therefore 
it is extremely unlikely that the aircraft deploys flaps/slats at such altitude and speed, indeed leading 
to a correct result. 
The results for VT2 (Fig. 4(b)) are similar to those for VT1, that is, all phases are perfectly identified 
except for one, in this case the first one. Again, the guidance mode probability mainly jumps between 
FPA-CAS-clean and FPA-CAS-non-clean, which are not distinct enough for the IMM to correctly 
estimate the mode. 
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(a)VT1 (b)VT2 

  

(c)VT3 (d)VT4 

  

(e)VT5 (f)VT6 

 
Fig. 4: For each simulated VT: (upper subplot) true GM, (middle subplot) estimated GM, and (lower 

subplot) IMM-based mode probabilities. GM colour code at the bottom of the figure. 
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The most challenging trajectory is VT5, shown in (Fig. 4(e)). This VT was selected to show the 
limitations of the EKF-IMM approach proposed in this article. First, notice that the algorithm is able to 
correctly identify the last two phases (phase 8 and 7) with clean configurations (i.e., CAS-THR and DEC-
THR). But for the subsequent phases, where the aircraft is flying at VS-CAS, FPA-DEC and FPA-CAS, 
with different configuration settings, several identification ambiguities appear. In the sixth phase (VS-
CAS) the IMM assigns almost equal probability to four modes: VS-MACH-clean, VS-CAS-clean, VS-
MACH-non-clean and VS-CAS-non-clean. At the end, these modes are very similar, and being able to 
identify the first command is already valuable. The same happens for the following phases, for 
instance in the first one, where the IMM assigns almost equal probability to four modes: FPA-MACH-
clean, FPA-CAS-clean, FPA-MACH-non-clean and FPA-CAS-non-clean. Although these four modes at 
lower altitude are very similar in terms of kinetic and potential energy rates, notice that the constant 
FPA outcome is correct. In conclusion, even in such challenging scenario, the IMM-based solution 
behaves well, but for some of the modes the configuration setting is not identifiable. 
 
8.2.3 Real dataset 
A set of FDR data of a narrow-body jet aircraft from a European airline is taken to further validate the 
proposed method. For this study, some challenges had to be addressed: i) the data set did not contain 
the (true) GM, which is the object of estimation by our application; ii) the measurements (i.e., ADS-B 
and EHS data) associated with the available FDR were not obtainable either; iii) a known parameters 
vector is required for each mode to compute the control vector; and iv) the atmospheric and weather 
conditions (non-ISA model) of the flights recorded in the FDR had to be taken into account. Fig. 5 
shows the setup to address these challenges: 

1. To address the first challenge, some close data inspection/processing was needed to guess 
the true GM executed by the aircraft from the available FDR.  

2. Regarding ADS-B and EHS data: while ADS-B is automatically transmitted by the aircraft at a 
given frequency rate, EHS information is replied to the ATC system who initiated the 
interrogation [15]. Thus, the ADS-B and EHS data are broadcast by the airplane itself, and the 
same information is stored in the FDR, then being able to build the measurement vector. 

3. The FDR data available was also analysed to obtain the corresponding parameters 𝑝𝑝, to 
compute the control vector. 

4. For the Gaussian noise covariances, we assumed a small deviation of the initial state from its 
mean value, and we took into account a small initial uncertainty. 

5. To address the last challenge, historical re-analysis weather data from the European Centre 
for Medium-Range Weather Forecasts (ECMWF) was used to provide the weather and 
atmospheric conditions for the particular FDR flight under analysis. The true state vector (i.e., 
ground truth) is generated by extracting pressure altitude, along path distance and aircraft 
mass directly from the FDR dataset. Notice that it contains ground speed, while true airspeed-
--a state variable---is computed through the effect of the wind---available from ECMWF---on 
the ground speed. Moreover, atmospheric conditions---temperature and pressure variables--
-of the true state vector are acquired from ECMWF. 
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   Fig. 5: Setup for the real-time processing of real data. 
 
Two flights were considered, representative of a climb and a descent trajectory. Tables 9-10 describe 
the real validation trajectories 1 and 2 (RVT1 and RVT2). Notice that while guidance command 
parameters were known in the validation done with emulated trajectories, using real data the 
parameters are obtained from the measurements. 
The climb trajectory (RVT1) starts at ℎ𝑝𝑝 =FL200 until reaching 𝑀𝑀 = 0.76 in a constant calibrated 
airspeed 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶 = 280 kt and maximum throttle rate mode (CAS-THR). Afterwards, the aircraft flies at 
a constant Mach number and the thrust is kept at the maximum possible rate (MACH-THR) until 
reaching 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶 = 255 kt. Then, the pilot changes the mode to fly at a constant vertical speed 𝑣𝑣ℎ =
1050 ft/min with maximum thrust (VS-THR) to reduce the calibrated airspeed value until 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶 = 245 
kt. Then, a constant vertical speed and a constant calibrated airspeed are kept (VS-CAS) until FL374. 
The last section of the climb involves flying at a constant vertical speed with maximum thrust mode 
(VS-THR) to reach the cruise phase at FL380. Finally, the cruise phase (ALT-SPD) lasts for a distance of 
25NM (i.e., ∆𝑆𝑆 = 25 NM).  
 

Table 9: RVT1, climb trajectory profile. 

 
 
The descent profile (RVT2) begins with a cruise phase at ℎ𝑝𝑝 =FL320, where speed is constant ( 𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶 =
270 kt and 𝑀𝑀 = 0.747). The top of descent (TOD) is located at a distance ∆𝑆𝑆 = 10 NM. After the TOD, 
the throttle is set to the minimum rate, which leads to an idle-thrust and constant calibrated airspeed 
𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶 = 270 kt(CAS-THR) descent until FL104.8. Afterwards, the calibrated airspeed is reduced to 
𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶 = 250 kt by flying a DEC-THR mode. This constant calibrated airspeed (𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶 = 250 kt) is kept 
for the last two modes: in the first one, the throttle is fixed at the minimum rate (CAS-THR) to reach 
ℎ𝑝𝑝 = 5712 ft; in the second one, the aircraft flies with a constant FPA (FPA-CAS) to reach ℎ𝑝𝑝 = 2560 
ft. In addition, high-lift devices are retracted in these two real profiles, which leads to clean 
configurations. 
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Table 10: RVT2, Descent trajectory profile. 

 
 
Fig. 6 shows these trajectory profiles. Notice that compared to the synthetic trajectories (VT1-6), these 
real trajectories present much noisier profiles (i.e., clean dynamics are not available, and noisy 
measurements are used), which has an impact on the filter performance. 
 

  

(a) RVT1 (b) RVT2 

Fig. 6: Real trajectories from FDR data. 
 
The results are shown in Fig. 7. Regarding RVT1, we firstly notice that the initial climb mode (CAS-THR) 
is affected by the noisy Mach number (which was not the case for the synthetic VTs). Indeed, the 
probability of constant Mach number is higher than flying at a constant calibrated airspeed in some 
short portions of this guidance mode, consequently, the EKF-IMM identifies MACH-THR. Therefore, 
one of the two commands is not always correctly identified. The second mode is clearly identified with 
a short delay. This is because a moving average filter was applied to the calibrated airspeed and Mach 
number in order to reduce the effects of dealing with noisy FDR data. In the third and fifth modes (VS-
THR), the noisy Mach number induces again a miss-identification leading to an estimated MACH-THR 
mode in some short portions. This implies that only one of the two commands is not correct all the 
time. In some portions of the fourth mode (VS-CAS), the configuration setting is not correctly 
identified. Still, in such high altitudes and for the type of operations considered in this article, high-lift 
devices are always retracted. Therefore, the fact that the EKF-IMM cannot correctly identify the mode 
can be considered negligible.  
In the cruise phase, altitude, speed and FPA are constant, which leads to identify several guidance 
modes with a close probability. Considering the summation of these probabilities leads to the correct 
ALT-SPD mode identification. Notice that the overall performance is reasonably good, but extracting 
the data from the FDR to build the scenario reduces the accuracy of the estimated active guidance 
modes.  
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The results for RVT2 show the same impact of the noisy FDR data. Again, the different guidance modes 
are correctly identified almost all the time, with some short miss-identifications induced by such noisy 
FDR data. 
 

  

(a) RVT1 (b) RVT2 

Fig. 7: For both real VTs: the guessed true GM (upper subplot), estimated GM (middle subplot), and 
IMM-based mode probabilities (lower subplot). 

 
Finally, Table 11 shows the mean RMSE for each state variable, showing again a good performance of 
the EKF-IMM filter. 
 
 

Table 11: Error in the real climb and descent profiles. 

 
 

8.3 Real-time identification of flap deployment in aircraft descent 
In this part of the work, the EKF-IMM method is tested assuming a hypothetical ground-based ATC 
decision support tool for the approach phase of the flight. It focuses on the moment that high-lift 
devices are deployed on descending aircraft trajectories. In fact, the EKF-IMM filter is used to identify, 
in real-time, the high-lift devices deployment moment  
The synthetic Measurements feed the proposed filtering technique. We focus exclusively to detect 
the moment the first high-lift configuration is deployed (i.e., the transition from what is typically called 
“clean” configuration, to the first high-lift configuration setting). Then, the goal is to resort to real-
time filtering techniques in order to recursively estimate the aircraft states and high-lift devices 
deployment moment. A fundamentally different approach is proposed, where there is no need of 
training data, as it relies on model-based techniques. The outcome of this study could help to develop 
future ground-based monitoring tools, aiming at detecting atypical trajectories and/or preventing 
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unstabilised approaches. It could as well enhance ground-based trajectory prediction algorithms that 
are enablers of a wide range of ATM applications: from air traffic control decision support tools (such 
as arrival managers); to ground-based safety nets or separation monitoring tools (such as Medium-
Term Conflict Detection systems).  
 

8.3.1 High-lift Devices 
Aeroplanes are typically equipped with high-lift devices, which are designed to increase the maximum 
lift coefficient of the wing. This increase in maximum lift reduces the stall speed and therefore, allows 
the aircraft crew to fly the aircraft at lower speeds and, ultimately, reduce the take-off and landing 
distances. These devices also increase (significantly) the aerodynamic drag and consequently, are only 
and specifically used in the take-off and initial climb; and final stages of the approach and landing.  
There are many types of such devices and the ones typically equipping modern airliners are the flaps 
(mounted in the trailing edge of the wing) and the slats (in the leading edge). Essentially, these devices 
increase the camber of the airfoil; and/or increase the wet surface of the wing (typically increasing the 
chord); and/or perform some control or effect on the boundary layer behaviour [23].  
High-lift devices typically have different positions or configurations and are progressively deployed 
during the approach. Similarly, an aeroplane takes-off with a given high-lift device configuration and 
the crew progressively retracts them during the initial climb. The configuration where all high-lift 
devices are retracted is typically called clean configuration, and other configurations will receive 
different operational names depending on the aircraft type.  
For example, for most Airbus models there are 5 different configurations CONF 1, CONF 1+F, CONF 2, 
CONF 3, and FULL. Take-offs are typically performed at CONF1+F or CONF2 and higher configurations 
are only used in very specific or exceptional situations, due to the high induced drag, which 
significantly degrades the climb performance. CONF1+F deploys (partially) slats and flaps. During an 
approach, CONF 1 is initially selected (which deploys partially slats) and then CONF 2 follows. Landings 
are typically performed in CONF 3 or FULL. Boeing aircraft, in turn, use a different nomenclature: for 
the B777 or B787, for instance, Flap 1 (only slats extended), Flaps 5 (slats and flaps), Flaps 15, Flaps 
20... Yet, the operation is similar.  
Each high-lift device configuration has a minimum and maximum speed where it can be operated and 
the pilots typically deploy/retract high-lift devices when reaching a certain speed and/or altitude, 
according to the aircraft SOP. Yet, the exact moment where they are deployed/retracted may vary 
even for the same aircraft model and same crew flying that aircraft. In fact, as long as these devices 
are operated within the speed minimum/maximum range, the crew can deploy/retract high-lift 
devices sooner or later. Many environment variables affect the exact moment the crew will use these 
devices, such as weather (especially in gusting wind conditions), obstacles below the flight path, actual 
climb/descent performance, but also, how busy is the crew in performing other tasks (i.e., 
communicating with air traffic control, executing more or less complex depart/approach procedures, 
interacting with the Flight Management Systems (FMS), etc).  
As commented before, aerodynamic drag is increased when high-lift devices are used. Indeed, the 
drag coefficient is increased because of higher induced drag caused by the distorted span-wise lift 
distribution on the wing with flaps extended [23]. To a lesser extent, the parasite drag coefficient 
might also increase. Thus, aircraft performance models typically specify different drag coefficient 
parameters for each high-lift device configuration of the aircraft.  
 
 
 



   

Engage PhD final reporting 27 

8.3.2 Simulated Setup 
The trajectory simulator generates flight data which contains the same information that could be 
obtained from ADS-B and a selective mode transponder (Mode S) receiver. The trajectories are divided 
into several flight phases, each one expressed in terms of a parametrised guidance mode being 
targeted and an end condition to be met. The initial condition of the trajectories profile can be 
described as the initial mass of the aircraft, the pressure altitude, the speed and the geometric 
position. The profile starts at the initial condition and the trajectory is numerically integrated 
according to the guidance mode until reaching the end condition. In turn, this end condition is used 
as the initial condition for the next trajectory phase [1]. Thus, the starting time of each phase is the 
ending time of the previous one. The simulator is based on BADA aircraft performance models [19].  
 

Table 12: Vertical profile specification of the Validation Trajectory (VT1) 

 
 

Table 13: Vertical profile specifications of the Validation Trajectories (VT2,VT3,VT4,VT5) 

 
 

Table 14: Vertical profile specification of the Validation Trajectories (VT6,VT7,VT8) 
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Table 15: End condition parametrisations 

 
 
Table 12 gives details on the typical descending profile for the first validation trajectory (VT1), 
including the corresponding guidance modes and their associated values, the end condition, the flap 
position, and the landing gear position. In this VT, the pilot decides to start using flaps at phase 3, and 
simultaneously switches from flying with idle thrust and deceleration to constant VS and constant CAS.  
Table 13 gives the typical profiles associated to VT 2 to 5, where the flaps are deployed without 
changing the guidance mode. In this case the flaps are deployed while flying in idle thrust and 
deceleration mode. The difference among VT 2 to 5 is the end condition of the second phase (i.e., CAS 
= = 𝑣𝑣2, with the corresponding values summarised in Table 15.  
Table 14 concerns the last three typical VT profiles (VT 6 to 8), for which the flaps are deployed while 
flying at constant VS and constant CAS, at three different moments (refer to the end condition ∆𝑠𝑠 =
𝑠𝑠3 and ∆𝑠𝑠 = 𝑠𝑠4 in Table 14, and the corresponding values summarised in 15.  
 

  

(a) VT4 (b) VT7 

Fig 8: Descending profiles for VT4 and VT7. Start of the different phases indicated with the pink 
vertical lines, and flap deployment illustrated by the vertical black line. 

 
Figure 8 illustrates the geometric altitude, true airspeed, and CAS for the descending profiles 
associated to VT4 and VT7, as an example of the 8 VT. The vertical pink lines show the start time of 
each phase of the profile, and the vertical black line indicates the flap deployment moment. 
 

8.3.3 Results 
In the simulations we consider the general nonlinear discrete SSMs, taking into account that the 
measurement noise is a zero-mean Gaussian with known covariance. Recall that one of the outputs of 
the EKF-IMM is the model probability, which is exploited in this contribution for flap deployment 
identification. For each VT we perform 1000 Monte Carlo runs in order to obtain statistically 
meaningful results. The average model probability around the flap deployment moment (two phases 
at the vicinity of the flap deployment moment), for the different VT, is shown in Figure 9. Indeed, 
results Figure 2 focus on the flap deployment moment, but the whole trajectory is estimated. For each 
VT, the upper subplot shows the real guidance mode, and the lower subplot the average estimated 
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mode probability. It is easy to see that in most of the cases the EKF-IMM is able to estimate the correct 
guidance mode (i.e., taking the model with maximum probability among the pool of possible modes). 
Figure 9 also shows the average estimated flap deployment moment (vertical black dashed line). 
Notice that in order to avoid false alarms, or equivalently, to increase the method's robustness, this 
value is computed using a moving average of the EKF-IMM outcome mode probabilities, with a 
window size equal to 𝑁𝑁 = 5 samples. Obviously, there exists a performance versus robustness trade-
off which requires a dedicated study (i.e., w.r.t. the window size, the flap deployment moment, the 
system parameters, etc.) and is left for future work.  
The moving average method implicitly induces a method response delay, that is why in subplots (a) to 
(e) in Figure 9 there is a slight shift to the right w.r.t. the true flap deployment time instant. Indeed, 
this is not only because of the moving average but also because the EKF-IMM also needs a short time 
lapse to adapt to the new mode when switching between two different configuration settings. It is 
interesting to notice that in the last three VT, that is, VT6 to VT8, the IMM is not able to correctly 
decouple the identification of VS-CAS clean mode from the VS-CAS CONF1 mode. This has a direct 
impact on the results, and the high-lift device deployment moment estimate appears before the real 
mode change.  
To further complete the previous results a box-and-whiskers plot is shown in Figure 10 to be able to 
better understand the flap deployment moment estimation error (in seconds in the plot) for all VTs. 
For each VT, the bottom and top of the box represent the first and third quartiles, respectively. The 
lines extending vertically from the boxes (whiskers) indicate the variability outside these quartiles, 
while the ends of the whiskers represent the 1.5 interquartile range of the first and third quartile. 
Finally, the red line inside the box is provides the median, and outliers are represented in red points.  
It is interesting to acknowledge again a significantly different IMM behaviour depending on the 
descent configuration. Indeed, because of the moving average procedure using 𝑁𝑁 = 5 samples, one 
would expect the average estimation error to be between 0 and -5 seconds, which is the case for VT2, 
VT4 and VT5, but the error slightly increases for VT1 and VT3, meaning that the IMM takes some extra 
time to respond to the mode change. As already stated, because the IMM is not able to correctly 
decouple the VS-CAS clean mode from the VS-CAS CONF1 mode, then the error is positive for VT6 to 
VT8. In any case, the average method performance is good enough to validate the proposed 
methodology. 
In this paper, the metric to measure the filter performance is the difference between the real and 
estimated deployment time, in seconds. If we take the true airspeed of the aircraft at the moment 
CONF 1 is deployed, the error in distance is always below 1 NM. These are promising results, taking 
into account the performance of similar studies found in the literature, such as [24]. We have to keep 
in mind, however, that in this paper the validation has been done with a few number of simulated 
trajectories. 
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(a) VT1 (b) VT2 

  

(c) VT3 (d) VT4 

  

(e) VT5 (f) VT6 
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(g) VT7 (h) VT8 

Fig. 9: Considering the trajectory region around the flap deployment moment, each subplot 
provides, for each validation trajectory (VT): 1) the real guidance mode, 2) average estimated model 

probability, and 3) the estimated flap deployment moment. 
 

 
Fig. 10: Estimation error of flap deployment moment. 

 

8.4 The impact of parametric model mismatch and constrained IMM filtering 
The impact of parametric model mismatch and the robust filter are the focus of several studies [25] in 
this PhD. In any case, either for linear or nonlinear systems, standard filtering techniques typically 
assume a perfect knowledge of the system, i.e., known process and measurement functions, and the 
corresponding noise statistics, which may not be a realistic assumption in practice. That is the reason 
why there is a continued effort to develop robust filtering techniques. Closed-form expressions for the 
bias and covariance induced by a possible model mismatch are not available, being an important 
missing point for the correct filter design in real-life applications. We explore the impact in extended 
Kalman filter approximations of a parametric model mismatch on both system functions, and provide 
expressions for the estimator bias and covariance error induced by the mismatch (refer to [25] for 
mathematical details). It is known that a model mismatch may induce a significant filter performance 
degradation, therefore, one may expect that the command parameters misspecification (unknown or 
noisy inputs) clearly affects the IMM performance. A sensitivity analysis of such performance 
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degradation (i.e., considering possibly mismatched guidance commands) is fundamental for the 
design and derivation of new robust TP techniques. We further explore the impact of such model 
misspecification in multiple model solutions, and leverage the recently introduced linearly constrained 
Kalman filter to propose a robust linearly constrained IMM, which is able to mitigate the model 
mismatch impact on the final filter performance. 

9. Analysis of the results 
The mean RMSE results in Table 8 also support the good performance statement. Overall, such results 
show the validity of the IMM-based method for both aircraft state estimation and GM identification. 
But to further support the discussion, we get into each VT specificity. 

We can still say that the IMM-based GM identification approach is a promising solution, given that 
even with real (and noisy) FDR data the filter is able to identify the correct modes almost all the time.  

Moreover, the IMM filtering approach has been proposed for real-time identification of the high-lift 
device deployment moment in aircraft descents. The underlying idea was to exploit the fact that 
aircraft fly following different guidance modes (each one related to a specific dynamic model), reason 
why a multiple model filtering strategy must be accounted for, and study if such multiple model filters 
were able to identify the difference between clean and deployed high-lift configurations. The results 
show the good performance of the IMM-based high-lift deployment identification, being a promising 
solution for such application. This work could help to develop future ground-based monitoring tools, 
aiming at detecting atypical trajectories and/or preventing unstabilised approaches, but could enable 
as well advanced trajectory prediction capabilities benefiting many ATM applications.  

10. Conclusions and look ahead 
An executed trajectory can be defined as a sequence of consecutive guidance modes. In the vertical 
plane, and for each mode, two commands shall be given to specify the two path constraints to 
transform the DAE system into an ODE system to be numerically integrated. Guidance mode 
identification—the focus of this PhD—is required to boost the overall TP accuracy. An IMM-based 
filter was proposed to identify the active guidance mode among all possible command pairs. Several 
validation trajectories were considered to perform a statistically meaningful optimal EKF-IMM analysis 
in representative scenarios. 

Kalman filter-based methods are optimal when the process and measurement noises are independent 
and Gaussian. Although the extended Kalman filter has been used in nonlinear systems, the particle 
filtering approach has become a better alternative in nonlinear and/or non-Gaussian scenarios. 
Particle filtering is a sequential Monte Carlo methodology based on Bayesian theory and importance 
sampling. Particles in particle filtering are samples of the unknown state and Bayes theorem is used 
to compute the particle weights. In fact, particle filtering uses the particles to represent an 
approximation of the posterior distribution. In other filtering methods, a linearization is applied at the 
vicinity of the estimated states while particle filtering is based on the approximation of the desired 
distribution given noisy measurements. Using particle filtering for the guidance mode identification is 
the final piece of the puzzle to accomplish this PhD.  
Extending the high-lift deployment identification to other configuration settings containing different 
flap positions, and landing gear up/down is considered for future work (using the particle filtering 
method). Moreover, the impact of real-time guidance mode identification on the TP problem for 
multi-aircraft scenarios must be indicated in the future work. 
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Annex I: Acronyms 
Term Definition 

ADS-B Automatic Dependent Surveillance-Broadcast  

ADS-C EPP ADS - Contract Extended Projected Profile  

ATM air traffic management  

BADA Base of Aircraft Data  

BDS Comm-B Data Selector  

CDR conflict detection and resolution 

DAEs differential-algebraic equations  

DSTs decision support tools  

ECMWF European Centre for Medium-Range Weather Forecasts  

EHS Enhanced Mode-S Surveillance  

EKF extended KF  

FDR flight data recorder  

FMGS flight management and guidance system  

FMS Flight management system 

FPA flight path angle  

GM Guidance mode 

IC initial conditions  

IMM Interacting multiple model 

ISA international standard atmosphere  

KF Kalman filter  

MC Monte Carlo  

M-EKF Mismatched EKF  

MMO maximum Mach in operations  

MMSE minimum mean square error  

ODEs ordinary differential equations 

RMSE root mean square error  

SSMs state-space models  

SSR secondary surveillance radar  

TBO trajectory-based operation  

TP trajectory prediction 

VT validation trajectory 
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