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Accurate and reliable TP:
= Next generation of on-board and ground-board DSTs:

= Traffic synchronization and separation management

= Enhanced safety net:
= (Partially) automated environment, on-ground, airborne ’_

= Distributed system

Next Generation
ATM Systems

more
Robust

efficient

The aim of this PhD:
New SSP approach
to improve TP
in new generation of ATM systems

TP for the flight execution phase.

UNIVERSITAT POLITECNICA
CATALUNYA

* Trajectory Prediction (TP), Decision Support Tools (DST), * Statistical Signal Processing (SSP), * Air Traffic Management (ATM),2: &:muns,
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ATM operations are evolving towards a trajectory-centric paradigm

= Airports

= Airspace Users
= ANSPs

= NM

SESAR and NexGen proposed a new concept of operations aiming to build an ATM
system based on the notion of TBO.

TBO EE current airspace-centric paradigm:
* Dynamically managing flights on an end-to-end time basis,
» Enabling AUs to fly their preferred flight trajectories.

On-board TP: in FMS for trajectory planning and to compute the estimates
of the fuel on-board, times of arrival, the location of the top of descent, ...
Ground-based TP: CDR algorithm, estimate ATC sector loads,
air-ground synchronization tools, ...

—
* Air Traffic Management (ATM), * Trajectory Based Operations (TBO), Airspace Users (AUs), * Air Navigation Service Provider | S ﬂ E /"‘(
(ANSP), * Network Manager (NM), * Single European Sky ATM Research (SESAR), * Next Generation Air Transportation System S"“ . SL“]NP MAE ﬁ“'a
(NexGen), Service Provider (SP), * flight management systems (FMS), * Conflict Detection and Resolution (CDR), UBIYKERITAL P AGHRA

BARCELONATECH
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Introduction and Background

* Primary surveillance radar (the aircraft azimuth)

* Secondary surveillance radar
* Mode A (an aircraft identity by a 4-digit octal code)
* Mode C (the barometric altitude)
° Mode S Mode-S (DF 1 ... 24)

@ N

ADS-B (DF 17)

Comm-B (DF 20,21)

BDS 1

v.1,2
TC 28,29,31

LS (BDS 10, 17, 20,
30)

EHS (BDS 40, 50,
60)

BDS 255

 ADS-C-EPP \ J

* new automation and shared data within the TBO paradigm is raised (to
predict and share very accurate trajectory data via ADS—C EPP reports).

-
* Enhanced Mode-S Surveillance (EHS), * True AirSpeed (TAS), * Indicated AirSpeed (IAS), * Automatic Dependent Surveillance | S ﬂ E /-'(
Broadcast (ADS-B), * Vertical Speed (VS), * Trajectory Based Operations (TBO), * Automatic Dependent Surveillance - Contrac cNNDAED
Extended Projected Profile (ADS-C EPP), AT

BARCELONATECH
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* Physical modelling of the system

* Model-based (SSP) approaches for TP problem in the execution phase of the
flight:
* Dynamic aircraft model, (i.e., point-mass model)

e Available data, (i.e., ADS-B that can be used for both air-ground and air-air
applications)

* Characterization of the system uncertainty,
e Time in TBO (to model 4D TP)

TP is an Estimation problem

* The dynamic complex system

* time-varying, nonlinear, non-Gaussian, with a certain model uncertainty and model
mismatch.

* Statistical Signal Processing (SSP), * Automatic Dependent Surveillance Broadcast (ADS-B), * Trajectory Prediction (TP), *""5:" i it
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* From methodological standpoint:

* Optimal estimation in such complex dynamic system?

* How to deal with deviations from model assumptions (uncertainties, model mismatch,
attacks)?

* Being a safety-critical application, which is the trade-off between optimality and robustness?

* Do the methodologies scale properly with the number of aircraft present in the airspace of
interest?

e Optimal detection metrics to avoid heuristic rules?

* In order to allow self-separation, how to move from centralized to cooperative/distributed
processing?

* From a practical perspective, are the available and new methodologies to cogertiﬁable?

* Trajectory Prediction (TP), i HI AT
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Methodological Challenges and Perspectives

* Towards Robust TP Solutions.
» standard KFs rely on the complete knowledge of the system.
* diverge in highly nonlinear systems. (sampling-based strategies)
* poor performance in non-Gaussian problems. (Monte Carlo methods)

* Robust filtering techniques for real-life in order to cope with mismatched system
models:

* linear constraints (the possible impact of mismatched process and measurement
matrices can be mitigated)

* Robust statistics techniques (outliers in the system can be mitigated)

* Variational Bayesian-Based filtering solutions (unknown noise statistics'
parameters can be included in the filter formulation)

* Nonparametric Bayesian estimation (if the complete system densities are
unknown)

* From Single to Multiple Aircraft TP.

* MTT provides a statistical framework to cope with unknown time-varying number of
targets, false alarms, missed detections, and clutter.

* From Centralized to Cooperative Processing.
* Graph-based techniques.

* Trajectory Prediction (TP), * Kalman Filter (KF), * Multiple Target Tracking (MTT), UNIVERBITAL FOLITEANIES
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e Towards Robust TP Solutions.

« Ol: Probabilistic characterization of the TP problem at hand, and formal
analysis on the limitations of standard filtering techniques for TP (i.e., impact of a
misspecified system).

« 02 Robustification of the current filtering techniques and development of new
robust approaches for TP (i.e., relying on linearly constrained filtering, using
covariance estimation techniques or advanced Bayesian filtering solutions).

* From Single to Multiple Aircraft TP.

> ()3: Extension of the robust filtering approaches developed in O1 to multiple
aircraft TP.

* From Centralized to Cooperative Processing.

* O4:  Development of distributed or cooperative robust filtering techniques, as
an extension of the methodologies developed in O1 to enable self-separation.

* Trajectory Prediction (TP), * Objective (O), U ATALUAYA
BARCELONATECH
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e Towards Robust TP Solutions (O] and O2):

Robust Single TP

/ ADS-B data \

/ Weather forecast uncertainties (noise statistics estimation techniques) \

Bayesian sigma-point filters (instead of EKF) to cope with nonlinear dynamics

Propose the first solution based on LCKF Robust LCIMM to identify
to mitigate the misspecified model impact the unknown trajectory variables

Analyse the mismatch problem in the multi-model filtering context.

/ Simulator | Evaluate how this translates to

techniquesf,f Hmismilt::h in single-model EKF sfnlutinng,r guidance mode tracking.

I,.-"'IIKF-hased / \ Asses the impact of a possible model [

* Objects () and O4

* Trajectory Prediction (TP), * Extended Kalman Filter(EKF), * Automatic Dependent Surveillance Broadcast (ADS-B), * . sSu 'P AERO

Linear Constraints Kalman Filter (LCKF), * Linear Constraints Interacting Multiple-model (LCIMM), BARCELONATEGH
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Case studies to appraise the impact of the proposed methods in applications
which demand TP:

* Improving the MTCD-like systems or more general CDR algorithms.
* Improving self-separation algorithms.

@,
= Multi aircraft CD. "‘& Ko 4

—oni 2 - 7L
ADS-B Ir -
1030M

interrogation

1090MHz reply

1090MHz ADS-B
squitter A »

11:00

10:20

* Trajectory Prediction (TP), * Medium Term Conflict Detection (MTCD), * Conflict Detection and Resolution (CDR), e A LuNA

DE CATALUNYA
BARCELOMATEGH

3t Engage summer school — 30 of August 2021 — “Statistical Signal Processing for Next Generation Trajectory Prediction” — Homeyra Khaledian



Results ~ @ SESAR x|

Engqge JOINT UNDERTAKING

Real-time identification of high-lift devices (flaps/slats) deployment based on
surveillance input data (Radar/ADS-B):

= this estimation aims to enhance ground-based TPs.

" aiming at detecting atypical trajectories and/or preventing unstabilised approaches.
The scope of this paper:

= the execution phase of the flight.

= amodel-based methodology to identify, in real-time, the
moment that flaps/slats are deployed on descending

trajectories.
= Detection of the deployment moment of the first flaps/slats S

configuration.

= capable of being implemented in real-time applications.

* Trajectory Prediction (TP), * Air Traffic Control (ATC), * Decision Support Tools (DSTs), * Aircraft Dependent 1Sae ;—l‘(
Surveillance-Broadcast (ADS-B), e B RIS

“Real-time Identification of High-Lift Devices Deployment in Aircraft Descents” Homeyra Khaledian et al =~ ™" 52 siliina™"

BARCELONATECH
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* High-lift devices are designed to be used in the take-off and initial climb; and final
stages of the approach and landing.

 Commercial airliners are typically equipped with flaps/slats, which have different
positions or configurations that are progressively deployed during the approach
(and progressively retracted during the climb):

* C(lean configuration: no flaps/slats deployed.
* Airbus example: for most models there are 5 different configurations CONF 1, CONF 1+F,
CONF 2, CONF 3, and FULL.
* Each flaps/slats configuration:
* has a minimum and maximum speed.
 different drag coefficient parameters (usage of flaps/slats increases Drag)

* Environment variables affect the exact deployment moment:
* Weather (especially in gusting and/or strong wind conditions)

* Obstacles below the flight path @
* How busy is the crew in performing other tasks
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Engage

* Two aircraft intents are needed to close the two degrees of freedom of the
dynamics of the aircraft in the vertical domain

* Different combinations are possible.

ALT-SPEED
THR-. MACH
‘ THR-CAS

W4 THR-DEC

Intent 1 Intent 2 \M THR-CAS

 Intents considered in this work:

Fixed Throttle (THR) Deceleration (DEC)
Constant CAS (CAS) yTHRDEC
Constant altitude (ALT)

Constant vertical speed (VS) Deceleration (DEC)

Constant CAS (CAS)

Constant flight path angle (FPA) Deceleration (DEC)
Constant CAS (CAS)

Constant altitude (ALT) Constant CAS (CAS)

* Throttle (THR), * Vertical Speed (VS), * Flight Path Angle (FPA), * Altitude (ALT), * Deceleration (DEC),
* Calibrated AirSpeed (CAS),

“Real-time Identification of High-Lift Devices Deployment in Aircraft Descents” Homeyra Khaledian et al _DE CATALUNYA
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* KF in single linear dynamics SSM.
* ° ° . ',i:l Pl i]\f’ PN
* EKF in single non-linear dynamic SSMs. o181 Fp-1 Heot
v oo v Interaction
- EKF-IMM. e |
Input mix <~ Pro:it:hty
* Moving Average technique: Vi g} i
@), Py, ayN, PO,
Y — — Y
Y Y ¥ ¥ o
ML MY Filtering
EKF EKF
. @ A Probability
’ :' i Bk ® E : update
,’ \ = AI]CV"
\
i % E ;. Pi zn Py AR A
l' » I' j ] s —:
- R Y Y Y ¥
1 ’
®- -" @ Combination
& P,
* Kalman Filter (KF), * State-Space Model (SSM), * Extended KF (EKF), * EKF-Interacting Multiple Model | S ﬂ E ;"“(
(EKF-IMM), * Probability (P), ST
“Real-time Identification of High-Lift Devices Deployment in Aircraft Descents” Homeyra Khaledian et al =~ ™" 52 sitiina™"
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The trajectory simulator generates flight data (emulates the same information
obtained from ADS-B and a Mode S receiver).

Vertical profile specification of the Validation Trajectory (VT1), simulating a
typical Airbus A320 approach:

VT1
by 10000
%" \ Phase Aircraft Intent Intentl Intent2 End Condition Configuration Landing Gear
[
‘é’_ 250 L 7500 1 THR-CAS Idle 250kt h, = 4000 ft CLEAN upP
= — 2 THR-DEC Idle 0.3 CAS =193kt CLEAN upP
5 = 3 VS-CAS  —500ft/min 193kt As=2NM CONF 1 LP
© 200 | — 5000 E 4 FPA-DEC —3° 0.76 h, = 2000 ft CONF 1 uP
= ~— —\ g 5 FPA-DEC -3° 0.6835  h, = 1500 ft CONF 2 upP
S ~~ 6 FPA-DEC —3° 0.53 CAS =147kt CONF 3 DOWN
2 \\ = 7 FPA-DEC -3° 0472  CAS =128kt FULL DOWN
| == Altitude [ft] 5 _
@ TONY e iiBebad airspeed [kt] 8 FPA-CAS -3 128kt hp = 50 ft FULL DOWN
I: == True airspeed [kt] Lo
0 10 20 30
Distance [NM]
;—K
* Aircraft Dependent Surveillance-Broadcast (ADS-B), * Enhanced Mode S surveillance (EHS), sz EMM o
SUPAERO
“Real-time Identification of High-Lift Devices Deployment in Aircraft Descents” Homeyra Khaledian et al =~ ™" 52 sitiina™"
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Results for Real mode
Validation
- 1 100
Trajectory <
VT1 o
(VT1) 2 8o
=
g 60
o
i
o
2 a0
o
=
T 20
L)
©
E
ﬁ o [' 8 s oo
w 250 291.383
Time [s]
B THR-DEC & Clean [VS-DEC & CONF1
N THR-DEC & CONF1 [VS-CAS & Clean
[ IVS-DEC & Clean [ 1VS-CAS & CONF1
/m m 1Estimated deployment moment
| el
€) !
UNIVERSITAT POLITECNICA S U P A E R 0
“Real-time Identification of High-Lift Devices Deployment in Aircraft Descents” Homeyra Khaledian et al _DE CATALUNYA
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15} | | | | | | .
]
10+ E-:_:J A
5_ + _:_ _:_ %-
w Or - _ % = i T
o IR S == == T S
i === I R S S
|-|-|_10__|_ 1+ i T i
asl |
+
-20 + .
25t .

VTl VT2 VT3 VT4 VTS5 VT6 VT7 VTS

—
* Validation Trajectory (VT), @ Imswgen’ -

UNIVERSITAT POLITECNICA

“Real-time Identification of High-Lift Devices Deployment in Aircraft Descents” Homeyra Khaledian et al DE CATALUNYA

BARCELOMATEGH
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We consider a nonlinear discrete SSM,

Xk = fr—1(Xk—1) + Wr—1
=1 (Xk—1) + Mw;,_; +dwWg_1,
Yt = hg(xk) + vi = hg (X)) + my, + dvg,
with fr_1(-) and hg(-) known system model (process and measurement) functions,

and E [dwp_1] = 0, E [dvi] = 0. Standard approach to derive a nonlinear filter of
Xk: linearization at the vicinity of a nominal trajectory.

The standard EKF recursion is given by

&6 b b b
Xp|k = Xge—1 + Kg (Yk = yk|k—1) ;

Rpjk—1 = o1 (xk—llk—l) +mwy 15 Vk|e—1 = Be (xklk—l) b

where the Kalman gain is recursively computed as

b b H b b b
Prip_n &8y sPy s 1Fr o+ Cuwy 5P & (I = Kka) Prir—1s

b b H b H =3
Ki = Pre_1Hyg (HkPklk—lHk +Cvk) ;

~b =b
afk—l(xk—lﬂc—l) Ol (xk[k—l)

with Fp_ 1 ~ and H;, ~

s & T :
Ix k—1 Ox e )
174 . 0 ° ° . ° 29 . UNIVERSITAT POLITECNICA u P A E R 0
On Parametric Model Mismatch in Nonlinear EKF Approximations” Homeyra Khaledian et al _DE CATALUNYA
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Main assumptions on the EKF derivation: known f3(-) and hg(-), mw,, mv,,

Cw,, Cv, . and perfect initialisation, Pglo = Cx, and Xglo = E{xo0}.

The EKF performance strongly depends on this knowledge.
Key question: which is the impact on filtering methods where mod-
elling errors may appear?

Model mismatch?

@ Parametric model: fi,_; (-) £ fr_; (-,w) and hy (-) £ hy, (-,0), where w and 0
are supposed to be deterministic vectors.

@ The existence of uncertainty on the nonlinear SSM can be taken into
account as W = w + dw and 6 = 0 + d6.

We want to cope with: a true (T) and a mismatched (M) nonlinear SSM,

M . { x;c — fk—l(xg\_lsa}) . mwk_l = de_]_
| Y& = hg(x},0) + my, +dvyi

T.) XK= fr_1 (Xk—1.w) + My, _; +dwi_1
| Yk = hg (X¢,0) +my, +dvyg

- - - . - - " 2
Goal: characterizing estimator bias and error covariance under mismatch! sae

UNIVERSITAT POLITECNICA

“On Parametric Model Mismatch in Nonlinear EKF Approximations” Homeyra Khaledian et al DE CATALUNYA

BARCELOMATEGH
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The Kalman gain K is the solution of K? = arg min {Pk{lk (Kk)}, stk
k

P (Ky) =E [(;?,c,k (Kg) — xk) (Rpe e (Ki) — xk)H], and the estimation error

exik = fr—1 (itfc_uk_l,@) — fr—1 (Xk—1,®) + Kihy (fk—1 (Xp—1,@) + mw,_; + de_1,5>

— Kyhg (fk—l (iz_uk—p@) +mw, 4, §) + Kgdvg —dwp_1 + e (Kg) = elI:,“c + e (Kg) ,
and the additional error term (and the 1st order EKF error approximation)

er (K) =fp—1 (xp—1,0) — fro—1 (Xp—1,w) + Kihy (xi,0)
— Kphy (fk-—l (Xk—1,@) + mw, , + de_1,§)

of R oyl 8hy (x1.,0) -
k—l(kl)dA . k(k)de.

o ) ﬁk) 3o
( owT aeT
2 afy, _ 1 (x & 2 ony, (xp,.0
Fith By o e 22 I(Tk 1 ) , Hp = k('zlf )
x4 Ox ;. g
Mxp_1 e
_ gl
€) !
. UNIVERSITAT POLITECNICA s u P A E R 0
“On Parametric Model Mismatch in Nonlinear EKF Approximations” Homeyra Khaledian et al DE caTALUNTA
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Recursive bias and MSE expressions:

@ The estimator bias is

Eley|x] = Elep s + cx (Ki)] = E [ex (Ki)]

R afk,_l (ch——la‘:’) - 6hk(xka§) 7%
~ (1 = Kka) E [ - de — K E e db,
Ofy_4 (mx,c 1,6) dhy, (mx, , 6)
; - - 3 n : . 3 = ~ k>’ &
Bias;, ~ (1 Kka> F,_,Biasp_1 + (1 Kka) . A — Kj———="—db.

@ The estimator error covariance is

H b b H H
Prie = [ek|kek|k] =Prix +Pek i Pe =2E [ek|k€k (Kk)] +E [Ek (Kg) &) (Kk)] ;

E
Po o (T Kl ) FreoiPe ot FE (T KiH,,) " +2r + 4,

(refer to the article for the I'j, and A expressions).

Note: if the SSM is linear, we recover the expressions in J. Vila-Valls et al., “Modelling
Mismatch and Noise Statistics Uncertainty in Linear MMSE Estimation,” EUSIPCO 2019.

UNIVERSITAT POLITECNICA
DE CATALUNYA

“On Parametric Model Mismatch in Nonlinear EKF Approximations” Homeyra Khaledian et al DE caTALUNTA
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Mismatched-True SSM pair (Ug_1 = ugp_1 +dug_1)
x! =f (x’ ) + (a ) +w
M - k= fp—1 (Xp_1) +8k—1 (Up_1 k—1
Yie = hg (x3) + Vi
T { Xpe = fi—1 (Xk—1) + 8r—1 (Up—1) + Wi_1
Yi = hp (Xg) + Vi
then the recursive bias and MSE expressions are,
. . Ogr_1 (Op_1) .
(15d) Blf:).S;c it (I o Kka) Fk_lBlaSk_]_ + (I = Kka) 5 T duk_l,

.
(o) Fe. gire (1 = KpHg) Fk—lpe,k—lFlIc-I_l (I- K H)H
1+ 2T — K5 B3 ) Py Bt jou” I—KiHp)? + @ —KiH)susu™ (I —K;,H)H -

with
O 1 (Xpe—1, Upe— . T—— -
e St 24 l)dﬁk—l — 2Bk 1 (G 1)dﬁk—1 2. 8w,
oul I
-
@ e~
UNIVERSITAT POLITECNICA s u P A E R 0
“On Parametric Model Mismatch in Nonlinear EKF Approximations” Homeyra Khaledian et al o2 Caralunn
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* System model mismatch (i.e., parametric errors in f;_;(-). hx(:) or
inputs) induce an estimation bias and increase of the achievable MSE.

* We derived analytic expressions for the bias and MSE degradation
under model mismatch.

e If we have a prior knowledge on the maximum expected error on the
system model, we can evaluate the performance degradation.

* If the expected degradation is not acceptable, these results allow to have
an insight for the derivation of new mitigation strategies.

“On Parametric Model Mismatch in Nonlinear EKF Approximations” Homeyra Khaledian et al S S

BARCELONATECH
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Fig. 1: General scheme of the overall problem formulation.

| el
€) !
“On the Optimal Real-Time IMM-Based Guidance Modes Identification in Aircraft Climbs/Descents from nnvensiTar poLTEGHICA SUPAERO
Surveillance Data” Homeyra Khaledian et al

BARCELOMATEGH
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TABLE I: Climb/Descent Guidance Modes considered 1n this article

Command 1 Command 2  Parameters Control vector
(Elevator) (Throttle) vector
MACH p =M, 7] a(p.x) =7
CAS THR P = [Tcas, T
ACC/DEC p = [k, 7] ¥(p, ®) = arcsin (k(Tige + 7(Tmax — Tiaie) — D)(mg) 1) (1)
wac P =lon M ) = arcsin(on/v)
VS CAS P = [Uh, Tcas)
ACC/DEC P = [ﬁhu E] m(p,x) = (D + E_lm.q siny — Tigie ) (Tmax — Tidlc)_l(_‘_)
= | — - 1/2 —
HMACH p = [7g, M] ~v(p, ) = arcsin (sinﬁrg l(l - Wi — W% sin? ’_yg) / + Wy cos*?_qD
FPA CAS P = [¥g, Ucas]
ACC/DEC  p = [¥q, K] m(p.x) = (D + k 'mgsiny — Tige)(Tmax — Tiate) (1)
Vs P = [On, 7 m(p,x) = 7 v(p, x) = arcsin(vy /v)
_ _ 1/2  __
FPA THR P = [7g, 7| w(p,x) = 7 v(p,x) = arcsin (sin g [(1 — Wi — W? sin? ﬁ«g) + W cos "yg] )
ALT p=[p=0,7] w(p,x)=m y(p,x)=0
ALT SPD p=[0h =0,M] ~(p.x)=0:7(p.x)= (D — Tae) Tmax — Tiae) (1)

W, = W, /v and W, = W, /v are the normalized components of the wind (head and cross wind respectively.

(1) The energy share factor k is given as an input parameter for modes DEC or ACC (k): or computed as a function of M or ©icas for
MACH and CAS modes, respectively. See appendix A for details.

(1) Note that the aerodynamic drag and maximum/idle thrust magnitudes all depend on M, along with other state variables
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TABLE VI: Vertical descent profile specification of VT5
IC: hp = 50ft, s = ONM, vcas = 128 kt, m = 53000 kg

Phase GM Commandl Command?2 End Condition Configuration
1 FPA-CAS Yg = —3deg vcas = 128kt hyp = 1000 ft FULL-DOWN
2 FPA-DEC Yg = —3deg k =0.472 veas = 146.5 kt FULL-DOWN
3 FPA-DEC g = —3deg k=10:53 vcas = 165kt  CONF3-DOWN
4 FPA-DEC Ng = —3deg k = 0.683 hy = 2000 ft CONF2-UP
5 FPA-DEC Yg = —3deg k=0.76 hp = 3000 ft CONF1-UP
6 VS-CAS vp = —1000ft/min  vcas = 193kt As = 50 NM CONF1-UP
7 DEC-THR k=0.3 =0 veas = 250kt CLEAN-UP
8 CAS-THR vcas = 250kt m=1) hyp = FL100 CLEAN-UP
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TABLE VIII: Average RMSE and guidance mode identifica-
tion IMM-based results for the six representative VTs.

VTI VT2 VT3 VT4 VTS5 VT6
&; devit 2.81% 3.00 % 0.08 % 0.05% 7.26 % 0.35%
mean-RMSE
h 10.47 ft 11.16ft 13.00 ft 2.78f1t 6.91 ft 1.96 ft
s 0.06NM 0.07NM 0.07NM 0.02NM 0.01NM 0.001 NM
v 0.56 kt 0.58 kt 0.51 kt 0.49 kt 0.53 kt 0.08 kt
m 70.41kg 51.19kg 7.68kg 0.87kg 5.51kg 0.26 kg
T 0.24K 0.24K 0.28K 0.21K 0.39K 0.14K
P 33.42Pa 42.03Pa 49.28Pa 23.33Pa 34.25Pa 13.84Pa
| el
€) !
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Specifying the measurement noise based on the tolerance of instrumental errors.

Obtaining the guidance commands parameters from the noisy measurements.

Estimator bias and error covariance under model mismatch (closed-form eq).

The impact on the IMM filter performance induced by a possible model mismatch.
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Conclusion

I. TP problem in the execution phase of the flight.

II. Introduce our research path within the new concept of TBOs by SSP in order to increase
the optimality and robustness of the solution.

III. The results illustrated the IMM-based guidance mode identification, and the impact of
model mismatch, both with the proposed trajectory simulator.

IV. In future works, different SSP methods will be explored for robust TP.

| el
1Sd 8
* Trajectory Prediction (TP), * Trajectory Based Operation (TBO), * Statistical Signal Processing (SSP), SML“JNPMAE ﬁwom
*Interacting Multiple Model (IMM) T
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Identification and The Impact of Pilot Input Mismatch
| Phase | ____Mode | _Endcondition _
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Identification and The Impact of Pilot Input Mismatch
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