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Demand-Capacity Balancing
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● DCB protects the ATC sectors in 
order to expedite safe and 
manageable traffic,

● This protection is ensured by two keys:
○ Detect future problems;
○ Resolve identified problems.



ATFCM regulations detection
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MONITORING IMBALANCE
DETECTION

ACTION PLAN
DEFINITION EXECUTION MONITORING

● Cyclic process,

● Identification of required operational constraints to ensure that the available declared 
capacity meets the traffic demand,

● It is based on pure human know-how.

● Supervised deep learning techniques to automatically detect required ATFCM 
regulations



ATFCM regulations detection
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Many metrics need to be analyzed → A Huge amount of information 
needs to be manually processed.



ATFCM regulations detection
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Machine learning could be really beneficial → It can process huge 
amounts of information really fast and efficiently.
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Web application?
● User friendly
● Visual 
● Interactive

Place your screenshot here



Methodology



C-ATC Capacity regulations
RNN-base model

● Scalar variables
● Time-distributed LSTM

CNN-base model

● Artificial Images
● Time-distributed CNN
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RNN-CNN hybrid model

● Cascade architecture



RNN-base model (C-ATC)

● RNNs are able to process scalar variables 
that evolve on time,
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● Input features:
○ Timestamp,
○ Capacity,
○ Occupancy count
○ Entry count (20 and 60 minutes)
○ Workload
○ Climbing, cruising and descending

7:14 7:15 7:16 ... 7:44

Time. Time. Time. Time. Time.

Cap. Cap. Cap. Cap. Cap.

OC. OC. OC. OC. OC.

... ... ... ... ...

Desc. Desc. Desc. Desc. Desc.
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CNN-base model (C-ATC)

● CNNs are most commonly applied to analyze 
static visual imagery
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● Input images:
○ From trajectory file (interpolation)
○ TV’s shape from Newmaxo ASCII Region file

7:14 7:15 7:16 ... 7:44



RNN-CNN hybrid model (C-ATC)
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W-Weather regulations

RNN-base model

● Scalar variables
● Time-distributed LSTM
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RNN-base model (W-Weather)

15

● Traffic input features:
○ Timestamp,
○ Capacity,
○ Occupancy count
○ Entry count (20 and 60 minutes)
○ Workload
○ Climbing, cruising and descending

● Weather input features:
○ Cloud cover
○ Vorticity
○ Humidity
○ Cloud ice / water content
○ Cloud rain / snow content
○ Temperature
○ Wind

7:14 7:15 7:16 ... 7:44

Time. Time. Time. Time. Time.

Cap. Cap. Cap. Cap. Cap.

OC. OC. OC. OC. OC.

... ... ... ... ...

Desc. Desc. Desc. Desc. Desc.

Cloud. Cloud. Cloud. Cloud. Cloud.

Wind. Wind. Wind. Wind. Wind.

Humid. Humid. Humid. Humid. Humid.

... ... ... ... ...

Water. Water. Water. Water. Water.



RNN-base model (W-Weather)
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● Traffic input features:
○ Timestamp,
○ Capacity,
○ Occupancy count
○ Entry count (20 and 60 minutes)
○ Workload
○ Climbing, cruising and descending

● Weather input features:
○ Cloud cover
○ Vorticity
○ Humidity
○ Cloud ice / water content
○ Cloud rain / snow content
○ Temperature
○ Wind



Evaluation of the models

17

Accuracy

Fraction of predictions 
the model got right

Recall

Proportion of positive 
samples correctly 

identified

Precision

Proportion of positive 
identifications correctly 

identified

F1-Score

Harmonic mean of the 
precision and the recall

How many regulations 
are detected?

How many predicted 
regulations are right?



Results



Regions
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● Two different regions have been studied to predict ATFCM regulations using 4 AIRACs:

MUAC

● 359 C-ATC Capacity regulations
● 151 W-Weather regulations.

REIMS

● 764 C-ATC Capacity regulations;
● 582 W-Weather regulations.

● In both cases, around 1200 different 30-minutes intervals have been used
● We have used a balance dataset. More or less, we have used the same number of positive and 

negative time-steps for the training/testing.



MUAC C-ATC regulations
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● Average results given 
the region

● Individual TV:
○ MASBOLN
○ MASB3EH
○ MASD6WH

● Model for the entire 
region with slightly 
worse performance



MUAC W-Weather regulations
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● Average results given 
the region

● Individual TV:
○ MASHRHR
○ MASHSOL
○ MASB3LL

● Model for the entire 
region with slightly 
worse performance



Model explainability - SHAP

22

● Understand the accuracy of the findings, providing the ability to 
explain the model to possible stakeholders,

● Moreover, understanding the reason behind the predictions is crucial 
to ensure compliance to industry standards and gain trust,

● SHapley Additive exPlanations (SHAP) [2] is a game theory approach, 
to explain the output of any model,

○ It aims to identify which input features are more relevant for the 
trained model

[2] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,” 2017



C-ATC regulations - MAUC
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Conclusions
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● Deep learning models can be used to predict ATFCM regulations across different regions of the European 
airspace:

○ MUAC and REIMS

● For specific ATC sectors, the model exhibits an accuracy higher than 82%, a recall of higher than 84%, 
and a precision around 85% when predicting specific time-steps,

○ Despite the small dataset used,

● The SHAP analysis has proved that the models have a behavior close to the current methodology,
○ Important to gain trust on the predictions and ensure compliance with industry standards,

● There is room for improvement.



Future work
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...

  

Uncertainty study

  

Integration of the 
models in R-NEST

  

Model-based simulation 
tool dedicated to 
research

Integrate the models 
for W-Weather 
regulations into the 
Web application

  

Improve advise 
capabilities of the 
framework

  

Improve how we show the 
information to the FMPs

Study other tools for 
model explainability
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THANKS!
You can find me at: 
▸ sergi.mas.pujol@upc.edu


