

Automated DCB Hotspot detection

Author: Sergi Mas-Pujol Advisor: Esther Salamí Co-advisor: Enric Pastor

August 30th, 2021

Content

- Introduction
 - Demand-Capacity balancing
 - ATFCM regulations detection
- Methodology
 - C-ATC Capacity ATFCM regulations
 - ▷ RNN, CNN, RNN-CNN hybrid model
 - W-Weather ATFCM regulations
 - ▶ RNN-base model
- Results
 - Performance
 - Model explainability
- Conclusions
- Future work

Demand-Capacity Balancing

- DCB protects the ATC sectors in order to expedite safe and manageable traffic,
- This protection is ensured by two keys:
 - Detect future problems;
 - Resolve identified problems.

ATFCM regulations detection

- Cyclic process,
- Identification of required operational constraints to ensure that the available declared capacity meets the traffic demand,
- It is based on pure **human know-how**.
- **Supervised deep learning techniques** to automatically detect required ATFCM regulations

ATFCM regulations detection

Many metrics need to be analyzed \rightarrow A Huge amount of information needs to be manually processed.

ATFCM regulations detection

Machine learning could be really beneficial \rightarrow It can process huge amounts of information really fast and efficiently.

Web application?

- User friendly
- Visual
- Interactive

Methodology

C-ATC Capacity regulations

RNN-base model

- Scalar variables
- Time-distributed LSTM

<u>CNN-base model</u>

- Artificial Images
- Time-distributed CNN

<u>RNN-CNN hybrid model</u>

• Cascade architecture

RNN-base model (C-ATC)

• RNNs are able to process **scalar variables** that evolve on time,

7:14 7:15 7:16 7:	44
-------------------	----

- Input features:
 - Timestamp,
 - Capacity,
 - Occupancy count
 - Entry count (20 and 60 minutes)
 - o Workload
 - Climbing, cruising and descending

Time.	Time.	Time.	Time.	Time.
Cap.	Сар.	Cap.	Cap.	Cap.
OC.	OC.	OC.	OC.	OC.
•••	•••	•••	•••	•••
Desc.	Desc.	Desc.	Desc.	Desc.

RNN-base model (C-ATC)

- RNNs are able to process **scalar variables** that evolve on time,
- Input features:
 - Timestamp,
 - Capacity,
 - Occupancy count
 - Entry count (20 and 60 minutes)
 - Workload
 - Climbing, cruising and descending

7:14	7:15	7:16	•••	7:44
------	------	------	-----	------

CNN-base model (C-ATC)

- CNNs are most commonly applied to analyze static visual imagery
- Input images:
 - From trajectory file (interpolation)
 - TV's shape from Newmaxo ASCII Region file

RNN-CNN hybrid model (C-ATC)

W-Weather regulations

RNN-base model

- Scalar variables
- Time-distributed LSTM

RNN-base model (W-Weather)

- Traffic input features:
 - Timestamp,
 - Capacity,
 - Occupancy count
 - Entry count (20 and 60 minutes)
 - Workload
 - Climbing, cruising and descending
- Weather input features:
 - Cloud cover
 - Vorticity
 - Humidity
 - Cloud ice / water content
 - Cloud rain / snow content
 - Temperature
 - Wind

7:14	7:15	7:16		7:44
------	------	------	--	------

Time.	Time.	Time.	Time.	Time.
Cap.	Cap.	Cap.	Cap.	Cap.
OC.	OC.	0C.	0C.	0C.
Desc.	Desc.	Desc.	Desc.	Desc.
Cloud.	Cloud.	Cloud.	Cloud.	Cloud.
Wind.	Wind.	Wind.	Wind.	Wind.
Humid.	Humid.	Humid.	Humid.	Humid.
Water.	Water.	Water.	Water.	Water.

RNN-base model (W-Weather)

- Traffic input features:
 - Timestamp,
 - Capacity,
 - Occupancy count
 - Entry count (20 and 60 minutes)
 - o Workload
 - Climbing, cruising and descending
- Weather input features:
 - Cloud cover
 - Vorticity
 - Humidity
 - Cloud ice / water content
 - Cloud rain / snow content
 - Temperature
 - Wind

Evaluation of the models

Regions

• **Two different regions** have been studied to **predict ATFCM regulations** using **4 AIRACs**:

MUAC

- 359 C-ATC Capacity regulations
- 151 W-Weather regulations.

REIMS

- 764 C-ATC Capacity regulations;
- 582 W-Weather regulations.

- In both cases, around 1200 different 30-minutes intervals have been used
- We have used a **balance dataset**. More or less, we have used the same number of positive and negative time-steps for the training/testing.

MUAC C-ATC regulations

- Average results given the region
- Individual TV:
 - MASBOLN
 - MASB3EH
 - MASD6WH
- Model for the entire region with slightly worse performance

MUAC

MUAC W-Weather regulations

- Average results given the region
- Individual TV:
 - MASHRHR
 - MASHSOL
 - MASB3LL
- Model for the entire region with slightly worse performance

Model explainability - SHAP

- Understand the accuracy of the findings, providing the ability to explain the model to possible stakeholders,
- Moreover, **understanding the reason behind the predictions** is crucial to ensure compliance to industry standards and gain trust,
- **SHapley Additive exPlanations (SHAP)**[2] is a game theory approach, to explain the output of any model,
 - It aims to identify which input features are more relevant for the trained model

C-ATC regulations - MAUC

Conclusions

- **Deep learning models** can be used to **predict ATFCM regulations** across **different regions** of the European airspace:
 - MUAC and REIMS
- For **specific ATC sectors**, the model exhibits an **accuracy higher than 82%**, a **recall of higher than 84%**, and a **precision around 85%** when predicting specific time-steps,
 - Despite the small dataset used,
- The SHAP analysis has proved that the models have a **behavior close to the current methodology**,
 - Important to gain trust on the predictions and ensure compliance with industry standards,
- There is room for improvement.

Future work

THANKS!

You can find me at:

sergi.mas.pujol@upc.edu

