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p Demand-Capacity Balancing

e [CB protects the ATC sectorsin
order to expedite safe and
manageable traffic,

e Thisprotectionisensured by two keys:
o Detect future problems;
o Resolve identified problems.
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p ATFCM requlations detection

MONITORING IHBAEANCE

DETECTION

e Cyclic process,

® Identification of required operational constraints to ensure that the available declared
capacity meets the traffic demand,

e |[tisbased on pure human know-how.

e Supervised deep learning techniques to automatically detect required ATFCM
regulations
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p ATFCM requlations detection
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Many metrics need to be analyzed — A Huge amount of information
needs to be manually processed.
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p ATFCM requlations detection
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Machine learning could be really beneficial — It can process huge
amounts of information really fast and efficiently.
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Web application?
e User friendly .
e \isual .

e |Interactive .
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} Methodology



p C-ATC Capacity requlations

RNN-base model

e Scalarvariables

e T[ime-distributed LSTM °
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CNN-base model

e Artificial Images
Time-distributed CNN

RNN-CNN hybrid model

e (ascade architecture

Labels/Predictions per time-step
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P RNN-base model c-arc)

e RNNsare able to process scalar variables
that evolve on time,

7:14 7:15 7:16 e 7:44

e Input features: Time. | Time. | Time. | Time. | Time.

o Timestamp, Cap. | Cap. |Cap. |Cap. | Cap.
Capacity,

Occupancy count

Entry count (20 and 60 minutes)
Workload

Climbing, cruising and descending

(@)

0C. 0C. 0C. 0C. 0C.

O O O o

Desc. | Desc. | Desc. | Desc. | Desc.
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P RNN-base model c-arc)

° RNNsareabIetpprocessscalarvarlables 714 715 716 o
that evolve on time,
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¢ | n p Ut feat ures: LSTM cell}’L:TM cell] (LSTM cell LSTM cell
O Ti me St am pl Lml\igggifanh l\::ittf);ifanh}..‘é(hl\igggifanh eee : ﬁ‘\i:::'ii::zanh
o Capachy, [m$?MJ[m$§m][m$§m]
o Occupancy count Esm cenH:'rM cell H::SUTI:SII cell o (LSTMcell
o E nt ry cou nt ( 2 O an d 6 O m | nu t es ) tivation=tanh tivation=tanh tivation=tanh Activation=tanh,
o Workload [ Drzﬁ?ut ] [ Drt(::)%t):ut ] [ Drzpsc):ut ]
o Climbing, cruising and descending Dens“’ ,,enseq [D""s“}' o

(sigmoid) (sigmoid) (sigmoid) (sigmoid)
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p CNN-base model c-arc)

\ Image 1 l Image 2

e CNNsare most commonly applied to analyze
static visual imagery
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> RNN-CNN hybrid model (c-arc)

..........................................................................................................................................................................

{|[RNN module {(Hybrid module

Traffic RNN-based Average activation £ 0.35,0.90 ]
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p W-Weather regulations

RNN-base model

e Scalar variables
e T[ime-distributed LSTM




7:14 7:15 7:16 7:44
e T[rafficinput features:
© TlmeSFamp’ Time. Time. Time. Time. Time.
o  Capacity,
o Occupancy count Cap. Cap. Cap. Cap. Cap.
o Entry count(20 and 60 minutes) ac. ac. ac. ac. oc.
o  Workload
o Climbing, cruising and descending
Desc. Desc. Desc. Desc. Desc.
e \Weatherinput features:
o} Cloud cover Cloud. Cloud. Cloud. Cloud. Cloud.
B .
\/OI”EI.CIjEy Wind. Wind. Wind. Wind. Wind.
o Humidity
o  Cloudice/ water content Humid. | Humid. | Humid. | Humid. | Humid.
o  Cloudrain/ snow content
o  Temperature
© Wl nd Water. Water. Water. Water. Water.




p RNN-base model (w-weather)

e Trafficinput features: [T ][ . [ n | To
. : . S )

o Timestamp,
o Capacity, L ...
Activation=tanh Activation=tanh Activation=tanh

LSTM cell
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Activation=tanh
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e \Weatherinput features:
o  Cloud cover
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p Evaluation of the models

Accuracy Recall Precision F1-Score

Fraction of predictions Proportion of positive Proportion of positive Harmonic mean of the
the model got right samples correctly identifications correctly precision and the recall
identified identified

How many regulations How many predicted
are detected? regulations are right?
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p Regions

e Two different regions have been studied to predict ATFCM regulations using 4 AIRACs:

MUAC REIMS
e 359 C-ATC Capacity requlations e /64 C-ATC Capacity reqgulations;
e 151 W-Weather regulations. e 582 W-Weather regulations.

e Inboth cases, around 1200 different 30-minutes intervals have been used
e We have used a balance dataset. More or less, we have used the same number of positive and
negative time-steps for the training/testing.
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p MUAC C-ATC reqgulations

e Average results given
the region B RNN B CNN B RNN-CNN

e Individual TV:

o MASBOLN
o MASB3EH
o MASD6WH

e Model forthe entire
region with slightly
worse performance

Accuracy Recall Precision F1-Score
MUAC

10t SESAR
4” Innovation
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p MUAC W-Weather regulations

e Average results given

the region RNN-base model - MUAC region

100

e Individual TV:

o MASHRHR "
o MASHSOL ”
o MASB3LL

25

e Model for the entire
region Wlth S||ght|y Accuracy Recall Presicion F1-Score
worse performance
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p Model explainability - SHAP

e Understand the accuracy of the findings, providing the ability to
explain the model to possible stakeholders,

e Moreover, understanding the reason behind the predictionsis crucial "
to ensure compliance to industry standards and gain trust, |I'
e SHapley Additive exPlanations (SHAP)[2 ] is a game theory approach, SHAP

to explain the output of any model,
o Itaims toidentify which input features are more relevant for the
trained model

[2]S. M. Lundberg and S.-I. Lee, "A unified approach to interpreting model predictions,” 2017



-ATC requlations - MAUC

Timestamp

EC next 60 minutes
Capacity

EC next 20 minutes

ocC

Workload next 20 mins.
Num. cruising flights
Num. descending flights
Workload next minute
Num. climbing flights

Num. conflicts
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SHAP value (impact on model output)
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» Conclusions
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Deep learning models can be used to predict ATFCM regulations across different regions of the European
airspace:
o MUAC and REIMS

For specific ATC sectors, the model exhibits an accuracy higher than 82%, a recall of higher than 84%,
and a precision around 85% when predicting specific time-steps,

o  Despite the small dataset used,

The SHAP analysis has proved that the models have a behavior close to the current methodology,
o Important to gain trust on the predictions and ensure compliance with industry standards,

There is room for improvement.
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p Future work

django

Integrate the models Uncertainty study Study other tools for Integration of the Improve advise
for W-Weather model explainability models in R-NEST capabilities of the
regulations into the Model-based simulation framework
W licati i
eb application ‘;c;c;legizgk:cated 0 Improve how we show the

information to the FMPs
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