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1. Abstract and executive summary 
 

1.1 Abstract 
The objective of this project was to present algorithms for data-driven imitation of trajectories, 
following deep reinforcement learning techniques towards enhancing our trajectory prediction 
abilities. 

We aimed at building a data-driven approach in which the learning process is (a) an imitation process, 
where the algorithm tries to imitate “expert”, demonstrated trajectories, (b) exploiting raw trajectory 
data, enriched with contextual data (e.g. weather conditions etc) and (c) based on reward models (for 
producing trajectories in high-fidelity) that are learned during imitation.  

In this project we have focused on predicting trajectories at the pre-tactical phase of operations, 
considering mainly the interests of airspace users, i.e. without considering, for instance, air traffic 
controllers’ measures, availability of routes or sectors congestions. 

This document presents the methodology followed during the project, outcomes, findings and 
contributions made, as well as lessons learnt and future activities. 

The major contributions are as follows: 

(a) We devised a general framework for the prediction of trajectories in which deep imitation and 
reinforcement learning methods play a major role, together with methods selecting important 
features for decision making and future trajectory classification methods;  

(b) We developed and evaluated state of the art deep imitation learning techniques for predicting 
trajectories in the aviation domain, showing their potential for highly accurate prediction results, 
especially in long trajectories with multiple patterns / modalities, and in cases where the 
demonstrated trajectories are few. 
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1.2 Executive summary 
Building on the knowledge gained from the DART SESAR ER-2 project on enhancing our trajectory 
prediction abilities, and aiming at building a straightforward data-driven approach following deep 
reinforcement learning techniques, we approached the learning process (a) as an imitation process, 
where the algorithm tries to imitate ‘expert’, demonstrated trajectories, (b) exploiting raw trajectory 
data enriched with contextual data that provide information relevant to the evolution of trajectories, 
and (c) based on reward models that are learned during imitation. 

It is the objective of this project to learn models for the evolution of trajectories, exploiting historical, 
demonstrated trajectories, which (models) can be used for predicting future trajectories. Towards this 
goal we formulated the trajectory imitation problem as a Markov Decision Process and applied deep 
reinforcement learning (DRL) methods. 

Contributions made are as follows: 

a) We approached the flight trajectory prediction problem as an imitation problem, using DRL models 
learnt from historical data: According to our knowledge, this is the first time that these state-of-the-
art machine learning techniques are used for the prediction of the trajectories. We delivered two 
methods, which have been evaluated using short (single-FIR) and long (multiple-FIR) trajectories, with 
very promising results. 

b) We have used advanced algorithms for identifying the features relevant to airspace users for 
evolving flight trajectories, towards learning their reward model. Tactical interactions and conflicts 
between trajectories are not explicitly addressed. 

c) We have built a generic methodology and computational framework for the prediction of 
trajectories, comprising methods for identifying patterns of demonstrated trajectories (modalities of 
behaviour), identifying the features relevant to following different modes of behaviour, classifying 
future trajectories, and predicting trajectories using DRL methods. 

Contributions to the ATM Master Plan are as follows: 

a) Increased abilities for flight prediction and planning, by means of learning models of trajectories 
planned and flown by airspace users. 

b) Improved operations productivity via contributions to improved flight prediction and planning. 

We believe – based on the outcomes produced – that this project will serve as a catalyst for the use 
of deep reinforcement learning methods to predict short/long trajectories in ATM, either at the pre-
tactical or at the tactical stages of operations, following an imitation learning approach: The project 
surely matured the ideas and advanced the data-driven trajectory prediction methods produced in 
DART, as well as improved the state of the art in data-driven trajectory prediction. 
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2. Overview of catalyst project 

2.1 Operational/technical context 
 

The current Air Traffic Management (ATM) system worldwide has reached its limits in terms of 
predictability, efficiency and cost effectiveness. Nowadays, the ATM is based on an airspace 
management paradigm that leads to demand imbalances that cannot be dynamically adjusted.  

With the aim of overcoming the ATM system deficiencies, different initiatives, dominated by SESAR1  
in Europe and Next Gen2 in the US, have promoted the transformation of the current environment 
towards a new trajectory-based ATM paradigm. This paradigm-shift changes the old-fashioned 
airspace management to the advanced concept of Trajectory Based Operations (TBO). In the future 
ATM system, the trajectory becomes the cornerstone upon which all the ATM capabilities will rely on. 
The trajectory lifecycle describes the different stages from the trajectory planning, negotiation and 
agreement, to the trajectory execution, amendment and modification.  

The proposed transformation requires advanced aircraft trajectory prediction capabilities, supporting 
the trajectory lifecycle at all stages efficiently. Making high-fidelity plans of trajectories to be flown in 
an early phase of operations, should allow predicting ATM network status effectively, reduce factors 
of uncertainty and boost the effectiveness of operations’ planning. In addition, advances towards this 
direction should support effective decision making and optimization of resources’ exploitation during 
operations time.  

This project, aims at data-driven trajectory prediction, building on results and experience from state-
of-the-art data-driven trajectory prediction methods, and considering that Reinforcement Learning 
techniques inherently deal with trajectories, formed as policies in an action-state space. It particularly 
focuses on using imitation learning methods exploiting deep reinforcement learning techniques to 
predict trajectories at the pre-tactical phase of operations, considering mainly the interests of airspace 
users, i.e. without considering, for instance, air traffic controllers’ measures, availability of routes or 
sectors congestions. 

Considering the Engage Thematic Challenges, the proposed research contributes towards increasing 
trajectory predictability, as it aims to imitating flown trajectories by inferring high-fidelity trajectory 
models, incorporating various features affecting flights. Increasing predictability via highly accurate 
and highly potential-to-happen trajectories devised at the planning stage, reduces buffers and 
uncertainty in operations. 

In addition to these, this research contributes – in an indirect way- towards collaborative decision 
making, supporting better planning of operations from Airspace Users, without explicitly considering 
conflicts among trajectories. 

  

 
1 SESAR 2020, http://www.sesarju.eu 
2 NextGen, https://www.faa.gov/nextgen 
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2.2 Project scope and objectives 
 

The goal of this project is to learn high-accurate models for predicting trajectories with low Root Mean 
Square Error (RMSE) in 4D along the produced trajectory, in comparison to the actual (flown) 
trajectory. 

We aim to develop and evaluate advanced deep reinforcement learning methods that are trained to 
imitate trajectories, treating these trajectories as rollouts of expert policies performed in an action-
state space. By doing so, we followed a supervised leaning approach, and treat historical data as data 
provided by “experts” that a machine learning algorithm should exploit to learn the corresponding 
policies comprising actions for transiting between positions in the 3D space through time. Then, 
learned models can be exploited to predict trajectories.  

“Experts” in our case can be all those entities that affect the trajectory: I.e. the basic assumption 
behind this research is that the flown trajectory codifies somehow the decisions of different 
stakeholders and thus, a data-driven algorithm will learn a model that incorporates these features, 
imitating experts to producing trajectories, given sufficient data to do so. This assumption has been 
verified by data-driven methods towards trajectory prediction developed and evaluated in the DART 
project.  

In this project we have focused on the prediction of trajectories at the pre-tactical phase of operations, 
considering mainly the interests of airspace users, i.e. without considering, for instance, air traffic 
controllers’ measures, availability of routes or sectors congestions. Thus, we focused mainly on 
evaluating the proposed methods in long (multiple-FIR) trajectories, where route charges and weather 
conditions play a major role, also considering short (single-FIR) trajectories but without considering 
any of the constraints and measures that apply during the tactical phase. It must be noted, that 
indicative results show that the devised methods can also be used at the tactical stage of operations, 
although further exploration is needed towards this. 

While imitation  is advantageous when the trajectories are constructed by experts, we may be 
tempted to generalize beyond the cases considered during learning (which is completely justified and 
highly-desired)  and learn policies that are substantially better from those produced by experts: In our 
case, we need to learn high-fidelity models based solely on experts’ policies, i.e. from real trajectories 
flown. This is crucial here, given that we need to imitate experts without going further on optimizing 
during the learning process. Based on that, exploiting the high-fidelity experts’ models learned, we 
will be able to produce trajectories that are close to those produced in reality.  

Reinforcement learning techniques inherently deal with trajectories, which are produced by policies 
in an action-state space. Such methods have been used in predicting aircraft trajectories in various 
domains, but their use in the aviation domain has only started in the DART project. 

Therefore, building on experience and knowledge gained in DART, we aim at building a straightforward 
but novel approach in which the learning process is (a) an imitation process, where the algorithm tries 
to imitate demonstrated trajectories, (b) exploiting raw trajectory data enriched with contextual 
features, and it is (c) based on reward models that are learned during imitation. 

Exploiting raw trajectory data is advantageous considering that,  (a) methods learn directly policies on 
producing trajectories rather than producing commands generating trajectories as in the case of 
exploiting aircraft intent, (b) we do not need to incorporate any model-based prediction method into 
the process (at it would be for instance when exploiting aircraft intent). 

Based on the problem formulations provided during the project, our main aim was to develop 
methods learning in a continuous action-space, without discretizing actions or states’ features. In 
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doing so, staying in the deterministic case and avoiding learning a state-transition model, allows us to 
develop more stable and efficient learning methods. In addition to this, we explored advanced 
methods in discrete action spaces and compared these to methods exploiting continuous actions. 

An additional but crucial task in this project was to develop a framework and methodology  providing 
the overall infrastructure and architecture for predicting trajectories, enabling us to performing 
training and testing tasks with the machine learning algorithms used, towards increasing our trajectory 
prediction abilities.  

2.3 Research carried out 
 

The work plan comprised four work-packages, the fourth being the project management and 
dissemination workpackage, and are as follows: 

 

 

Below we summarize the work being done per workpackage (WP), the methodology applied, tools 
and methods used / developed, and outcomes produced. 

WP1 “Data Management” 

The objectives of this WP are as follows: 

1. Gather data sets required 

2. Process and associate data from different data sets 

3. Manage and curate data sets 

During the project, we have gathered data concerning (a) short trajectories executed in the Spanish 
airspace from three months in 2019: January, April and July; and (b) long trajectories crossing multiple 
FIRs in the European continent during January and July of 2019. The periods (months) have been 
selected deliberately to reflect different traffic and contextual (e.g. weather) conditions. 
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Together with surveillance data we have gathered data regarding weather conditions (actual and 
forecasted), sector configuration data, flight plan data regarding flown trajectories, and these were 
also combined with data on airports, METAR and TAF data. Of course, all these datasets are aligned in 
space and time with surveillance data [1]. 

These datasets were provided by Boeing Research and Technology Europe, who gave UPRC access to 
their data stores via their ADAPT system. 

In addition to these, we have also complemented the data sets with data on MTOWs (given the 
existing aircraft types), as well as en-route charge rates for European FIRs. 

Specifically, gathered datasets consist of: 

Weather data: These comprise NOAA data, as well as ASOS(METAR) and TAF data. NOAA data concern 
the three months (January, April and July 2019) inside the Spanish airspace i.e. the Spanish part of the 
Iberian Peninsula plus the Canary Islands. In addition, we have collected NOAA data for two months 
(January and July 2019), for the relevant areas for the trajectories from London to Rome and from 
Helsinki to Lisbon. ASOS data has been gathered for 47 Spanish aerodromes for January, April and July 
2019, as well as LHR, FCO, HEL and LIS for January and July of the same year. Finally, TAF data is 
available for 44 Spanish airports during the months selected, as well as the four previously mentioned 
airports used for the multiple FIRs trajectories. 

Surveillance (Radar) data: This is data provided by Flightradar24. It comprises aircraft positional 
messages which share some fields with MSG ADS-B. This data is available for January, April and July of 
2019, covering the entire Spanish airspace. Moreover, Flightradar24 data is available for flights from 
London to Rome and from Helsinki to Lisbon for January and July of 2019. 

Sector Configuration data: This is AIXM data covering 2019 with a small number of days missing. 

Flight Plan data: DDR ALLFT+ is the ATM type of dataset covering flight plan information from 
EUROCONTROL Demand Data Repository (DDR). January 2019 is available for the entire Spanish 
airspace.  

These datasets are described in D1.1. “Datasets Description” [1], together with a description of links 
(associations) between them. 

Regarding Task 1.2, we used tools that we have developed in other projects (DART3 and datAcron4) to 
parse datasets and developed methods for parsing new datasets, as well as for  (a) associating subsets 
of surveillance data with other datasets, producing enriched trajectories, and (b) clustering enriched 
trajectories. Specifically, we enriched surveillance data (i.e. flown trajectories) between specific origin 
destination pairs with weather (NOAA, METAR), Sector Configuration data (for the short trajectories, 
only), as well as with costs regarding en-route charges per FIR (for the long, multiple FIR trajectories) 
according also to [8], as well as with aircraft and airlines attributes.  

  

 
3 http://dart-research.eu/ 

 
4 http://datacron-project.eu/ 

 

http://dart-research.eu/
http://datacron-project.eu/
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WP2 “State of the Art Review & Problem Formulation” 

The objectives of this WP are as follows: 

1. Study thoroughly state of the art techniques on (data-driven) Reinforcement Learning for trajectory 
imitation and planning, 

2. Specify the trajectory imitation and planning problem formally, as an MDP. 

State of the art techniques reviewed and compared, so as to provide evidence on the novelty and 
significance of the developments in this project. 

Specifically, we have completed the State of the Art deliverable D2.1 which is available at [2], 
reviewing prominent data-driven trajectory prediction approaches and important state of the art 
reinforcement learning techniques closely related to imitating trajectories. 

Also, regarding task T2.2 we formulated the problem as an MDP to be solved by reinforcement 
learning methods. We actually provided two alternative formulations reported in the Deliverable 2.1 
[2], the one being suitable for trajectory predictions in continuous state-action spaces, while the other 
discretizing the actions available to the trajectory predictor. Both formulations have been tested using 
the corresponding methods developed in WP3. 

 

WP3 “Deep Reinforcement Learning for Data Driven Trajectory Planning”. 

This WP comprises the main activities of this project, aiming to develop deep Reinforcement Learning 
methods towards imitating and predicting flight trajectories. 

Specifically, the concrete objectives of this WP are as follows: 

- Setting up the infrastructure necessary for experimenting with deep Reinforcement Learning 
methods, and provide a design of the overall framework and individual method; 

- Develop and evaluate a deep Reinforcement Learning method for learning trajectories by 
imitating demonstrated trajectories, using data provided by WP1. 

Specifically, regarding task T3.1 we have provided a general methodology and computational 
framework for predicting trajectories:  

A high-level description of the pipeline of tools and methods used is provided in Figure 1. The first 
stage comprises raw, demonstrated trajectory enrichment and pre-processing, the second stage 
comprises demonstrated trajectory clustering, while the third stage includes feature selection and 
future trajectory classification, and finally, trajectory prediction via deep imitation learning 
techniques. 
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Figure 1 – The stages of the methodology proposed, realized by the infrastructure devised during the 

project. All stages from 1 to 4, as well as the pre-processing of the historical demonstrated trajectories are 

offline stages, providing classification models and policies learnt. These models and policies are exploited by 

the trajectory prediction stage for online trajectory prediction. 

The pre-processing of the surveillance data and its association with other data sources is an offline 
stage and includes two main stages. First, we interpolate points within trajectories to ensure constant 
temporal intervals between all trajectory points. Data cleaning is the second stage. Here we analyze 
the trajectories and drop out outliers which would result in unstable behavior during the learning 
process. There are two distinct categories of trajectories dropped. The first one includes incomplete 
trajectories that may start or finish away from the origin or the destination airports. The second one 
includes flights that show inconsistent behavior, for example covering a significant distance within an 
unreasonable amount of time, resulting in velocity much greater than the maximum speed of the 
corresponding aircraft model. 

What we need to do towards automating the data-driven trajectory prediction process is to detect 
distinct patterns of trajectories, identifying also the features that distinguish these patterns. Then, we 
can by imitation learn a distinct policy per class of trajectories, i.e. for those trajectories following a 
specific pattern of behavior. This can make the learning process much more efficient and effective in 
contrast to training a single model, considering all possible trajectories with all different modalities. 
However, to predict a single trajectory we need to know which policy to apply, thus, the mode of 
behavior it will most probably follow during the period it will be executed. One solution to this is to 
identify and forecast the contextual features that may impact the mode that a trajectory will follow. 
This (future trajectory) classification step is thus restricted to those features, which they do distinguish 
between different modes of behavior, and which can be forecast or can be known the pre-tactical 
stage of operations. 

Thus, the trajectory prediction approach that we propose incorporates a trajectories clustering step 
(identifying different modes of behaviour), a future trajectory classification step (selecting the most 
probable mode of behaviour), and finally a trajectory imitation step (predicting the trajectory 
evolution given a specific mode of behaviour). 
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As specified in Figure 1, (historical) trajectories clustering is an offline process that it uses the full set 
of trajectories’ enriching features. The main difficulty of this task is that the appropriate number K of 
clusters is unknown. The problem of determining 𝐾 can be transferred to a silhouette coefficient 
maximization problem. The computation of the silhouette coefficient needs only pairwise distances 
and the calculation of clusters’ centroids is avoided. We have used two alternative approaches for 
clustering data trajectories exploiting distance measurements (normalized Mean Squared Error and 
normalized Dynamic Time Warping): a modification of the k-means algorithm that constitutes a 
partitioning clustering procedure, and the agglomerative hierarchical clustering scheme that provides 
a bottom-up structure of a dataset. 

Then, feature selection aims to identify the features that are more relevant to deciding on the mode 
of behavior to be followed. Feature selection reduces the dimensionality and aims to support (future) 
trajectory classification in a reduced space, in high prediction accuracy. Important features may be 
different from those used during imitation learning and should be forecasted / decided at the pre-
tactical stage of operations.  

Specifically, the feature selection problem is as follows: 

Given, 

• a set F of features,  

• a set of 𝐾 clusters (classes representing different modes of behaviour) 𝐶𝐸,𝑙, 𝑙 = 1...𝐾, of 
trajectories enriched with these features,  

• a set of instances  (xi , yi ) where xi  Rd denotes a feature vector and yi  {1,…,K} is the 

corresponding class label,  

we aim to determine the set of most important features that should be included in the set  T𝑓 of 

contextual features of trajectories (let that be T𝑓*), and the set of important features of enriched states 

at specific “landmark" positions S𝑓  that the future trajectory will cross (let this new set of enriched 

states be S𝑓*), so as to increase the efficiency and accuracy of classifying a future trajectory to one of 

the K classes.  

As the set of important features may change between origin-destination pairs we need a method that 

automates the feature selection process, raking the features in F  fed into the processes. 

Towards this goal we selected two state of the art methods:  

(a) The Neighbourhood Component Analysis (NCA) [21] method aiming to reduce the 
dimensionality of a classification problem by learning a distance measure to be used in the 
KNN classification algorithm, and  

(b) the LIME method  [0] aiming to explain the predictions of any classifier by learning an 
interpretable model around a prediction and providing explanations in a non-redundant way, 
ranking the features used for classification based on the their importance.  

Clustering and feature selection steps  are performed prior to the imitation learning training stage in 
an offline way and can be automated. Imitation learning algorithms are trained using clustered data, 
so as to learn a single policy per cluster. The classification model and the policies learnt via data-driven 
trajectory imitation algorithms, are used to provide online trajectory predictions. 

Among the important features we have identified meteorological parameters, at specific points in the 
trajectories, as well contextual features that concern the cost, duration, distance flown etc. of the 
trajectory. However, meteorological features are shown to be important in seasons where weather 
conditions may be severe (in January), while they do play a less important role in good weather 
conditions or in seasons whether other factors prevail (e.g. traffic). However, our analysis does not 
show a decisive, consistent role that these features play for selecting the mode to be followed in multi-
FIR-trajectories. 
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Thus, in all cases, the most important common features are those concerning the cost of the 
trajectory, as a function of the en-route charges of the FIRs crossed, together with the distance flown, 
also compared to the minimum distance between origin-destination airports. 

In any case, either by forecasting the important features (which results on a cyclic  prediction process 
between predicting trajectories and costs), or by making specific choices for the range of their 
potential values, classification accuracy of the future trajectories based on these features is very high: 
Thus, our classifiers can predict the mode of behaviour to be followed, and inform the reinforcement 
learning model to select the proper policy model for predicting the trajectory evolution. 

Details on the individual methods and the necessary computational infrastructure implementing the 
framework shown in Figure 1 has been set up during the project: This is the outcome of T3.1 and is 
documented in D3.1 [3].  

Regarding task T3.2, based on the data-driven deep reinforcement learning state of the art methods 
identified, as well as on the problem formulation, we have built two methods exploiting raw trajectory 
data in association to other data, as provided by WP1, for learning how to imitate trajectories. 

The first method, based on GAIL [17], directly learns the optimal policy from expert demonstrations, 
quite efficiently, since it does not need to explicitly derive a reward function that will be used by a 
reinforcement learning method to derive a policy, nor it makes any assumptions regarding the form 
of the reward function, which is fitted using a discriminator neural network. Actually, we have used a 
variation of GAIL – especially for long trajectories- emphasizing on states visited by trajectories, rather 
than on actions performed by agents, very closely to the GAIfO [19] approach. This method uses an 
architecture similar to Generative Adversarial Networks to find the best policy that imitates the 
demonstrated trajectories. 

AppLearn, the second method devised, is based on deep Q-learning methods, using an apprenticeship 
learning approach [6]: ApplLearn allows us to directly derive new policies according to the expert 
policy, as this is demonstrated by means of the historical trajectories. The problem is formulated as 
an MDP/R, i.e. MDP without knowing the “true” reward function, and the assumption is that the 
apprentice is trying to optimize this unknown reward function which can be expressed as a linear 
combination of its features. Then, using the learnt reward a Deep Q-Network is trained with the fully 
known MDP. The underlying assumption regarding the reward function is that this function is 
approached with a linear approximation of the enriched trajectory features.  

As part of the work done in WP3, the overall trajectory prediction framework, as well as constituent 
methods, with emphasis on deep imitation learning approaches used – GAIL and AppLearn – have 
been thoroughly evaluated in the following cases: 

- Single FIR (short) trajectories: 

o BCN-MAD (2016): This includes 528 trajectories flown from BCN to MAD during April 
2016. The trajectories were clustered into 2 clusters with 250 and 278 trajectories, 
respectively. 

- Multi FIR (long) trajectories: 

o LHR-FCO (2019): 

▪ January: This includes 218 trajectories flown from LHR to FCO during January 
2019. The trajectories were clustered int 2 clusters with 23 and 195 
trajectories, respectively. 
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▪ July: This includes 242 trajectories flown from LHR to FCO during July 2019. 
The trajectories were clustered int 3 clusters with 4, 19 and 219 trajectories, 
respectively. 

o HEL-LIS (2019): 

▪ January: This includes 49 trajectories flown from HEL to LISBON during 
January 2019. The trajectories were clustered int 3 clusters with 4, 3 and 42 
trajectories, respectively. 

▪ July: This includes 55 trajectories flown from HEL to LISBON during July 2019. 
The trajectories were clustered int 3 clusters with 2, 9 and 44 trajectories, 
respectively. 

Results, show the following: 

First, the clustering methods provide a set of classes, identifying potential modes that future 
trajectories may follow. These, together with the feature selection and classification methods devised 
can predict the mode that a future trajectory will follow in high accuracy (greater than 95%), given 
features’ forecasted values in few landmark spatio-temporal positions (e.g. weather in the destination 
airport, or en-route charges for a specific modality).  

Regarding the imitation learning techniques developed and evaluated, results show the superiority of 
GAIL in all cases, given also that AppLearn is highly competitive, even for very long trajectories with 
very few demonstrated trajectories. Indeed, GAIL has achieved the best results among all methods 
(AppLearn and state of the art data-driven methods), even in cases with a small training set, also w.r.t. 
the average distance of the trajectories between each origin-destination pair considered. These 
results are detailed in D3.1 [3], in terms of RMSE and Cross/Along Track Errors, as well as Vertical 
Errors, errors in Estimated Time of Arrival and errors in total cost with respect to en-route charges of 
the FIRs crossed. 

To show what has actually achieved in this project, and in comparison with state of the art trajectory 
prediction methods, we show in Figure 2 the proportion of mean RMSE increase compared to GAIL, 
as reported by all methods, w.r.t. the proportion of the average distance between the origin-
destination airports, compared to the BCN-MAD pair : 

- The DART method (indicated as BCN-MAD (DART) in Figure 2), although a constrained method 
that considers the flight plans during predictions, increases the mean RMSE by 1.13 for the 
same origin destination pair (i.e. no increase of the average trajectory distance). 

- The HMM method proposed in [7] (indicated by the pair ATL-MIA in Figure 2) increases the 
mean RMSE by 1.02 for an increase of the average trajectory distance by 1.98: This shows a 
highly competent method, however there are no results from longer trajectories: A more 
thorough study between these methods is needed. 

- On the other hand, the deep method proposed in [18] (indicated by the pair IAH-BOS in Figure 
2), increases the mean RMSE by 7.27 for an increase of the average trajectory distance by 
5.31. To better understand how this score is compared to what it is reported by GAIL, this is 
an increase to the mean RMSE by 0.87 for an increase of the average trajectory distance by 
0.76, compared to the HEL-LIS (January) case, and an increase to the mean RMSE by 2.03 for 
an increase of the average trajectory distance by 1.78, compared to the LHR-FCO (January) 
case. However, the vertical error reported by [18] (i.e. 2800ft) is large compared to what is 
reported by GAIL. 

It must be noted that authors are fully aware that the differences in predictions between GAIL, 
AppLearn and DART and methods proposed in [7] and [18] might be due to characteristics of the 
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different airspaces/types of environment (particularly for US or European regions and intra- or inter-
continental flights), which may impose difficulties to draw conclusions if the same routes are not 
analysed with the different methods. Thus results should be considered only as providing evidence to 
the potential of the methods investigated, rather than on proving superiority of our methods relative 
to others. 

 

 

Figure 2 – Comparison between GAIL, AppLearn and state of the art methods in terms of mean RMSE (blue 

bars) and trajectories’ average distance (orange bars) w.r.t to the BCN-MAD pair. The HMM method 

proposed in [7] is indicated by the pair ATL-MIA  considered there, and the deep method proposed in [18] is 

indicated by the pair IAH-BOS. 

 

WP4 “Project Management & Dissemination Activities” 

Activities in this WP aim at monitoring and controlling of all tasks, coordination of interfaces between 
the activities, scheduled planning and status control of all activities, resource and finance control of 
the entire project, risk identification and mitigation control, dissemination of results, interaction with 
stakeholders, and liaison with Engage KTN. 

Partners had 3 meetings and continuous discussions during the project, towards 

▪ Clarifying data access and data exploitation issues; 

▪ Understanding the potential and limitations reflected in initial results regarding deep 
reinforcement methods for trajectory imitation; 

▪ Deciding on the pairs of origin-destination pairs that should be used for evaluating the devised 
framework and trajectory prediction methods and refining the scope and planning of the 
project. 
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Regarding the last issue, partners clarified the focus on long trajectories crossing multiple FIRs, also 
w.r.t. other operational features regarding en-route cost charges per European FIR. In doing so, we 
focused on increasing the trajectory prediction horizon, while at the pre-tactical stage of operations. 

This necessitated the generalization of the prediction methodology devised, towards introducing a 
more general feature selection and future trajectory classification approach, in contrast to the simple 
approach used in short, single FIR trajectories. 

Therefore, the scope and planning of the project focused on 

• Generalizing and automating the methodology for trajectory prediction at the pre-tactical 
stage, focusing on the interests of airspace users, incorporating trajectory clustering methods, 
advanced feature selection, future trajectory classification, and imitation learning methods. 

• Tuning and testing the deep imitation learning approaches to the prediction of the long 
trajectories. 

2.4 Results 
 

Contributions made are as follows: 

We approached the flight trajectory prediction problem as an imitation problem, using DRL methods 
that learn models from historical data: According to our knowledge, this is the first time that these 
state-of-the-art machine learning techniques are used for the prediction of flight trajectories, proving 
their high potential to predicting trajectories crossing multiple FIRs, in long time horizons.  

We delivered two imitation learning methods, challenging their potential and assumptions towards 
predicting short (single-FIR) and long (multiple-FIR) trajectories, thus evaluating their abilities to 
increase the prediction horizon at the pre-tactical stage of operations, w.r.t. other state of the art 
methods. In addition to these, our results show that the prediction methods can be also used during 
the tactical stage in an online way – although further research is needed towards this target. 

Results show that the GAIL-based method prevails AppLearn and state of the art data-driven trajectory 
prediction methods, in all cases considered, even in cases with long trajectories and few training 
examples (i.e. demonstrated trajectories). This is revealed by the low mean RMSE reported by that 
method in comparison to the mean RMSE reported by other methods w.r.t the average distance of 
the predicted trajectory. 

In addition to these important results, and very importantly, we have built a general methodology and 
computational framework for the prediction of trajectories, including stages for identifying patterns 
of demonstrated trajectories via clustering algorithms, identifying the features relevant to selecting 
different modes of behaviour via state of the art methods in ranking features, and classifying future 
trajectories. The important thing about this framework is that it implements a pipeline that can be 
automated, requiring minor human intervention, although it implements an offline process for 
preparing the models to be used for online trajectory prediction. 

3. Conclusions, next steps and lessons learned 

3.1 Conclusions 
 

Currently, trajectory planning abilities are based on deterministic formulations of the aircraft motion 
problem towards making accurate predictions. Although there are sophisticated solutions that reach 
high levels of accuracy, all approaches are intrinsically simplifications to the actual aircraft behaviour, 
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which delivers appropriate results for a reasonable computational cost.  Although the use of the 
concept of Aircraft Intent together with very precise aircraft performance models such as BADA (Base 
of Aircraft Data) has helped to improve the prediction accuracy, the model-based approach requires 
a set of input data that typically are not precisely known (i.e. initial aircraft weight, pilot/FMS flight 
modes, …). In addition, accuracy varies depending on the intended prediction horizon (look-ahead 
time) and it is accurate for short horizons. Any data-driven trajectory prediction approach aims to 
alleviate these limitations by means of machine learning methods exploiting historical data. The 
potential of these methods, including Reinforcement Learning, has been explored only recently in 
projects such as DART [14, 16]. 

Starting from this point, and building on our DART experience, in this project we developed and 
evaluated enhanced reinforcement learning methods that are trained to imitate trajectories, treating 
these trajectories as rollouts of policies performed in an 4D action-state space. By doing so, we follow 
a supervised leaning approach, and treat historical data as data provided by “experts” that a machine 
learning algorithm should exploit to learn the corresponding policies comprising sequences of actions 
for transiting between positions in the 3D space (i.e. trajectories) through time.  

Reinforcement learning techniques inherently deal with trajectories, formed as policies in an action-
state space. Such methods have been used in predicting aircraft trajectories [14], as well as other types 
of trajectories [9,10], e.g. human and vehicle trajectories in urban spaces [12, 13], with traffic/crowd 
[11].  

The only method dealing with aircraft trajectory prediction is the one developed in DART: This method 
exploits historical data on trajectories reconstructed and enhanced with aircraft intent information. 
Aircraft intent  [15]  is defined as the structured set of instructions that unambiguously specify how 
the aircraft is to be operated during a time interval. The AIDL is a formal language intended to express 
Aircraft Intent in a univocal, rigorous, and standardized manner. Language symbols are known as 
instructions and represent the minimal indivisible pieces of information that capture basic commands, 
guidance modes and control inputs ate the disposal of the flight deck to direct the aircraft behaviour. 

Exploiting aircraft intent, the policy learned is a sequence of commands executed by the aircraft Flight 
Management System that produces an effect on the aircraft motion. AIDL alphabet contains 35 
possible actions Exploiting aircraft intent has two major shortcomings: One is that it needs a model-
based trajectory prediction method in the loop to predict the next aircraft position given a set of 
commands (requiring at least 500ms at each call to predict), while the other is that combinations of 
instructions capturing basic commands may not be flyable, requiring learning “constraints” on the 
valid commands, or approach the problem as a joint learning problem in a large state-action space. In 
addition to these, the approach proposed in DART discretizes the continuous state-action space 
(offering more “opportunities” for prediction errors), while it considers as reward the distance to the 
destination, which is a rather simplistic assumption.  

Building on the knowledge gained from DART, we aim at building a more straightforward but novel 
approach in which the learning process is (a) an imitation process, where the algorithm tries to imitate 
“experts” planning trajectories, (b) exploiting raw trajectory data, and (c) considering unknown reward 
models (although arbitrarily complex) that are learned during imitation. 

Our approach uses deep reinforcement learning techniques for apprenticeship learning and imitating 
experts: These techniques have been used in teaching robots to perform various tasks, agents to play 
games, and vehicles to perform autonomously, as mentioned above. 

As far as we know, this is the first approach to apply deep reinforcement learning methods to imitating 
raw trajectories in the aviation domain, towards planning and predicting trajectories to be operated. 
Here, being closer to the data-driven trajectory prediction research, we applied supervised 
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reinforcement learning for imitating experts and exploiting the models learned to predict optimal (i.e. 
in high-fidelity to demonstrated examples) trajectories.  

Our evaluation results showed the potential and the limitations of the methods explored: 

1. Deep imitation learning methods can achieve remarkable results for predicting long 
trajectories, also in comparison to other data-driven trajectory prediction methods. 

2. They can be trained effectively, although they need many samples to explore the state-action 
space: However, even with a small number of demonstrated trajectories and training episodes 
(as our experiments in D3.1 show) they can produce highly accurate predictions. 

3. These methods, as devised in this project, must be trained for any origin destination pair, 
requiring a considerable amount of computational resources for offline training, following the 
pipeline proposed. 

4. Even in a singe origin destination pair with many clusters (i.e. modalities) one has to train 
multiple models (one per cluster). Alternatively, the method can be trained to learn a single 
model given all modalities: In this case the prediction accuracy is not that high as when using 
multiple models. Training the models is an offline process and happens once.  Models can be 
used for online predictions very efficiently. 

5. The reward (or cost) function fitted by these models does not readily reveal the features and 
their impact on decision making (i.e. the “true” reward/cost function used when predicting 
/executing trajectories). In one of our methods (GAIL), inferring such a “true” reward or cost 
function requires substantial effort, while in the other method (AppLearn) it should be easier, 
given the assumption made in this method that the reward is a linear function on specific 
features selected. However, under this assumption, AppLearn provides not as accurate 
predictions as those provided by GAIL. 

3.2 Next steps 
 

This project opens new issues for exploration for predicting trajectories using imitation learning 
techniques: 

▪ Reducing the training time that the devised methods require for different origin-destination 
pairs: This may happen either by generalizing the state-action parameters, or by transferring 
knowledge learned in predicting trajectories for one pair to other pairs. 

▪ Applying the prediction methodology to flight plans rather than to flown trajectories. 

▪ Training different models for predicting separate trajectory segments: For instance, usually 
there are multiple and possibly complex landing patterns. So, we may apply the proposed 
prediction framework and thus, the proposed imitation learning methods to the landing 
segments of trajectories separately, providing more examples, training time etc. for that 
segment. This most probably will reveal models for landing that will be able to predict more 
accurately this segment of the trajectory. This of course incurs additional training cost, while 
it brings other complexities for combining the different trajectory segments predicted. 

▪ Revealing the “true” reward model (e.g. measuring the cost in Euros): A way to approach this 
problem is to add an explanation regarding features exploited in the prediction process, which 
(features) are close to those features impacting the “true” reward model, as considered by 
airline users. This issue requires further research. 
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▪ Adding more constrains in the prediction process: E.g. availability of routes, traffic and sector 
congestions foreseen, etc. This will allow predictions that are much closer to the actual 
trajectory. We believe that this is straightforward for the proposed methods, although further 
exploration is necessary. Having said that, and following a data-driven approach, we need to 
emphasize that policies learnt should learn to satisfy constraints, given that this is the case in 
the examples provided. In other words, the proposed methods will learn what happens in the 
real world, w.r.t the constraints (e.g. in cases these are violated in reality, a data-driven model 
will learn to violate them, as well). 

Project outcomes in terms of publications made and planned are as follows: 

▪ Alevizos Bastas and Theocharis Kravaris and George A. Vouros, “Data Driven Aircraft 
Trajectory Prediction with Deep Imitation Learning”, arXiv , cs.LG , 2005.07960, 2020, 
https://arxiv.org/abs/2005.07960 (in synergy with Alevizos Bastas’ ENGAGE KTN PhD project) 

▪ C. Spatharis, K. Blekas and George A. Vouros, “Apprenticeship learning of flight trajectories 
prediction with inverse reinforcement learning, submitted to SETN 2020. 

▪ Planned submission and participation in SESAR Innovation Days 2020 

▪ Planned Conference and Journal publication on Data Driven Aircraft Trajectory Prediction with 
Deep Imitation Learning. 

 

3.3 Lessons learned 
 

Lessons concerning management aspects 

▪ This project, having a low overhead on managerial aspects, allowed us to concentrate on 
activities that advance innovative ideas bringing also experience from other projects. 

▪ Guidance provided via assessment of project reports from mentors and Engage KTN was very 
helpful and useful. 

Lessons concerning technical aspects 

WP1:  

▪ Data management and interlinking different data sources is always an important task 
requiring considerable effort: Initially we underestimated the effort, as we had implemented 
tools and methods for joining different sources in other projects. As new data sets are 
gathered, in new formats and with additional parameters, methods had to be tuned, changed 
or even re-implemented in some cases to address new requirements. 

▪ Long trajectories, added a considerable effort in gathering, cleaning, managing and linking 
surveillance datasets to others, so as to prepare the training and testing datasets for the 
prediction methods.   

WP2: 

▪ Having a report on state-of-the-art methods that is updated until the end of the project was 
very useful: This supported tracking updates on methods and re-positioning the research so 
as to advance the state of the art. 

https://arxiv.org/abs/2005.07960
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▪ Problem formulations changed several times during the project, as we explored different 
alternatives also in par with the methods devised in WP3.  

WP3: 

▪ The training time required by the imitation learning method (mainly by GAIL) is considerable 
(in terms of 4-5 days) requiring computational power that ordinary servers or PCs cannot 
offer: Fortunately, we had foreseen this need and we managed to buy equipment that allowed 
us to run the experiments and deliver results on time. However, as said, our methods can 
provide more accurate results given that we provide more training time and exploration. 

▪ Fine tuning of methods hyperparameters, in conjunction to the time needed by the 
experiments, is a time-consuming task that has not being performed in such a meticulous way 
during the project: More effort and time is needed towards this, although the tuning 
performed during the project shows the potential of the methods.  We believe that higher 
accuracy on predictions can be achieved, if we tune methods hyperparameters in a meticulous 
way. 
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