

AeroMACS Verification Plan & Report - Phase 2

Document information	
Project Title	Airport Surface Datalink
Project Number	15.02.07
Project Manager	INDRA
Deliverable Name	AeroMACS Verification Plan & Report - Phase 2
Deliverable ID	D10
Edition	00.03.00
Template Version	03.00.00
Task contributors	
THALES; DSNA ; SELEX E	S; INDRA; EUROCONTROL; AIRBUS;

Abstract

The general purpose of the 15.02.07 is to verify the AeroMACS Data Link. This document describes the verification plan applied within the 15.02.07 Project for phase 2 testing and the corresponding tests report.

AeroMACS phase 2 integration and testing activities includes:

Laboratory tests,

Toulouse airport tests.

Authoring & Approval

Prepared By - Authors of the document.				
Name & Company	Position & Title	Date		
THALES		25/09/2014		
SELEX ES		25/09/2014		
DSNA		25/09/2014		
THALES		25/09/2014		
THALES		25/09/2014		
SELEX ES		25/09/2014		
SELEX ES		25/09/2014		

Reviewed By - Reviewers internal to the project.			
Name & Company	Position & Title	Date	
INDRA		25/09/2014	
EUROCONTROL		25/09/2014	
AIRBUS		25/09/2014	
AENA		25/09/2014	

Reviewed By - Other SESAR projects, Airspace Users, staff association, military, Industrial Support, other organisations.			
Name & Company	Position & Title	Date	
SELEX ES		25/09/2014	

Approved for submission to the SJU By – Representatives of the company involved in the project.				
Name & Company	Position & Title	Date		
THALES		24/10/2014		
SELEX ES		24/10/2014		
INDRA		24/10/2014		
EUROCONTROL		24/10/2014		
AENA		24/10/2014		
AIRBUS		24/10/2014		
DSNA		24/10/2014		

founding members

Document History

Edition	Date	Status	Author	Justification
00.00.01	17/01/2014	DRAFT	THALES	New document based on VP & VR template
00.00.02	27/06/2014	DRAFT	THALES	Document with Thales lab and Airport tests results for partner review
00.00.03	15/07/2014	DRAFT	SELEX	Added Selex test cases and test results for partner review
00.00.04	20/08/2014	DRAFT	THALES	Changes following document review by partners
00.00.05	04/09/2014	DRAFT	SELEX	Changes following document review by partners. Added information on IOT tests. Errors fixing, editorial changes.
00.00.06	25/09/2014	DRAFT	THALES	Final integration of changes following last comments.
00.00.07	10/10/2014	DRAFT	THALES	Additional comments from joint SESAR P15.2.7/P9.16 meeting addressed
00.01.00	27/10/2014	FINAL	THALES	Final version for handover to SJU
00.02.00	14/04/2015	FINAL	INDRA	Comments from SJU addressed. Final version for handover to SJU
00.03.00	05/05/2015	FINAL	INDRA	Comments from SJU addressed. Final version for handover to SJU

Intellectual Property Rights (foreground)

This deliverable consists of SJU foreground.

founding members

Table of Contents

ТΑ	TABLE OF CONTENTS		
LIS	T OF TABLES	. 11	
LIS	T OF FIGURES	. 11	
ΕX	ECUTIVE SUMMARY	. 13	
1	INTRODUCTION	. 14	
1 1 1	.1 PURPOSE OF THE DOCUMENT	14 14 15	
2	CONTEXT OF THE VERIFICATION	. 18	
3	VERIFICATION APPROACH	. 19	
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	 VERIFICATION OVERVIEW VERIFICATION PLAN. VERIFICATION ASSUMPTIONS VERIFICATION REQUIREMENTS INTEGRATION AND PRELIMINARY VERIFICATION ACTIVITIES. 3.5.1 Introduction 3.5.2 Lab testing. 3.5.2.1 Lab Test beds 	19 19 20 20 20 20	
	3.5.2.2 Phase 2 verification activities	.22	
	3.5.2.3 Interoperability testing	.23	
	3.5.3 Airport testing	. 23	
	3.5.3.1 General scope	.23	
	3.5.3.2 GS integration and preliminary verification	. 27	
	3.5.3.3 Fix MS integration	.32	
	3.5.3.4 Mobile MS integration	.33	
	3.5.3.5 Scenarios and associated verification activities	.34	
3	.6 ACCEPTANCE CRITERIA	. 39	
4	VERIFICATION ACTIVITIES	. 40	
	.1 VERIFICATION EXERCISES LIST 4.1.1 Thales lab and airport test cases identification 4.1.2 Selex lab test cases identification .2 VERIFICATION ACTIVITIES MASTER SCHEDULE	. 40 . 42	
5	VERIFICATION EXERCISES RESULTS	. 44	
	.1 SUMMARY OF VERIFICATION EXERCISES RESULTS		
6	CONCLUSIONS AND RECOMMENDATIONS	. 46	
7	VERIFICATION EXERCISES REPORTS	.47	
7	.1 Selex LAB VERIFICATION EXERCISES		

founding members

Project Number 15.02.07 D10 - AeroMACS Verification Plan & Report - Phase 2 (v00.03.00 revised final)	Edition 00.03.00
7.1.1.1 Verification Exercise Scope	47
7.1.1.2 Conduct of Verification Exercise	47
7.1.1.2.1 Verification Exercise Preparation	47
7.1.1.2.2 Verification Exercise execution	47
7.1.1.2.3 Deviation from the planned activities	
7.1.1.3 Verification exercise Results	
7.1.1.3.1 Summary of Verification exercise Results	
7.1.1.3.2 Analysis of Verification Exercise Results	50
7.1.1.3.3 Unexpected behaviors/results	52
7.1.1.4 Conclusions and recommendations	52
7.1.2 Verification Exercise # P2_LAB1_2 Power Control 7.1.2.1 Verification Exercise Scope	
7.1.2.2 Conduct of Verification Exercise	53
7.1.2.2.1 Verification Exercise Preparation	53
7.1.2.2.2 Verification Exercise execution	53
7.1.2.2.3 Deviation from the planned activities	55
7.1.2.3 Verification exercise Results	55
7.1.2.3.1 Summary of Verification exercise Results	55
7.1.2.3.2 Analysis of Verification Exercise Results	57
7.1.2.3.3 Unexpected behaviors/results	60
7.1.2.4 Conclusions and recommendations	60
7.1.3 Verification Exercise # P2_LAB1_3 Quality of Service 7.1.3.1 Verification Exercise Scope	
7.1.3.2 Conduct of Verification Exercise	60
7.1.3.2.1 Verification Exercise Preparation	60
7.1.3.2.2 Verification Exercise execution	61
7.1.3.2.3 Deviation from the planned activities	63
7.1.3.3 Verification exercise Results	63
7.1.3.3.1 Summary of Verification exercise Results	63
7.1.3.3.2 Analysis of Verification Exercise Results	65
7.1.3.3.3 Unexpected behaviors/results	69
7.1.3.4 Conclusions and recommendations	69
7.1.4 Verification Exercise # P2_LAB1_4 Security	

Project Number D10 - AeroMAC	r 15. S V	.02.07 erification Plan & Report - Phase 2 (v00.03.00 revised final)	Edition 00.03.00
7.1.4.1	Ve	rification Exercise Scope	70
7.1.4.2	Сс	nduct of Verification Exercise	70
7.1.4.2	2.1	Verification Exercise Preparation	70
7.1.4.2	2.2	Verification Exercise execution	70
7.1.4.2	2.3	Deviation from the planned activities	71
7.1.4.3	Ve	rification exercise Results	72
7.1.4.3	3.1	Summary of Verification exercise Results	72
7.1.4.3	3.2	Analysis of Verification Exercise Results	73
7.1.4.4	Со	nclusions and recommendations	76
		tion Exercise # P2_LAB1_5 Radio Characteristic Requirements rification Exercise Scope	
7.1.5.2	Сс	nduct of Verification Exercise	76
7.1.5.2	2.1	Verification Exercise Preparation	76
7.1.5.2	2.2	Verification Exercise execution	76
7.1.5.2	2.3	Deviation from the planned activities	78
7.1.5.3	Ve	rification exercise Results	79
7.1.5.3	3.1	Summary of Verification exercise Results	79
7.1.5.3	3.2	Analysis of Verification Exercise Results	80
7.1.5.3	3.3	Unexpected behaviors/results	80
7.1.5.4	Со	nclusions and recommendations	80
		tion Exercise # P2_LAB1_6 Limited IOT Requirements	
7.1.6.2	Сс	nduct of Verification Exercise	81
7.1.6.2	2.1	Verification Exercise Preparation	81
7.1.6.2	2.2	Verification Exercise execution	81
7.1.6.2	2.3	Deviation from the planned activities	82
7.1.6.3	Ve	rification exercise Results	83
7.1.6.3	3.1	Summary of Verification exercise Results	83
7.1.6.3	3.2	Analysis of Verification Exercise Results	85
7.1.6.3	3.3	Unexpected behaviors/results	88
7.1.6.4	Сс	onclusions and recommendations	88
7.2.1 Veri	ifica	B VERIFICATION EXERCISES tion Exercise # TLAB2_010 rification Exercise Scope	

Project Number 15.02.07 D10 - AeroMACS Verification Plan & Report - Phase 2 (v00.03.00 revised final)	Edition 00.03.00
7.2.1.2 Conduct of Verification Exercise	90
7.2.1.2.1 Verification Exercise Preparation	90
7.2.1.2.2 Verification Exercise execution	90
7.2.1.2.3 Deviation from the planned activities	90
7.2.1.3 Verification exercise Results	90
7.2.1.3.1 Summary of Verification exercise Results	90
7.2.1.3.2 Analysis of Verification Exercise Results	91
7.2.1.3.3 Unexpected behaviors/Results	92
7.2.1.4 Conclusions and recommendations	92
7.2.2 Verification Exercise # TLAB2_020 7.2.2.1 Verification Exercise Scope	
7.2.2.2 Conduct of Verification Exercise	93
7.2.2.2.1 Verification Exercise Preparation	93
7.2.2.2.2 Verification Exercise execution	93
7.2.2.2.3 Deviation from the planned activities	95
7.2.2.3 Verification exercise Results	95
7.2.2.3.1 Summary of Verification exercise Results	95
7.2.2.3.2 Analysis of Verification Exercise Results	96
7.2.2.3.3 Unexpected behaviors/Results	
7.2.2.4 Conclusions and recommendations	
7.2.3 Verification Exercise # TLAB2_030 7.2.3.1 Verification Exercise Scope	
7.2.3.2 Conduct of Verification Exercise	
7.2.3.2.1 Verification Exercise Preparation	
7.2.3.2.2 Verification Exercise execution	
7.2.3.2.3 Deviation from the planned activities	
7.2.3.3 Verification exercise Results	
7.2.3.3.1 Summary of Verification exercise Results	
7.2.3.3.2 Analysis of Verification Exercise Results	
7.2.3.3.3 Unexpected behaviors/Results	
7.2.3.4 Conclusions and recommendations	
7.2.4 Verification Exercise # TLAB2_040 7.2.4.1 Verification Exercise Scope	

Project Number 15.02.07 D10 - AeroMACS Verification Plan & Report - Phase 2 (v00.03.00 revised final)	Edition 00.03.00
7.2.4.2 Conduct of Verification Exercise	
7.2.4.2.1 Verification Exercise Preparation	
7.2.4.2.2 Verification Exercise execution	
7.2.4.2.3 Deviation from the planned activities	
7.2.4.3 Verification exercise Results	105
7.2.4.3.1 Summary of Verification exercise Results	105
7.2.4.3.2 Analysis of Verification Exercise Results	105
7.2.4.3.3 Unexpected behaviors/Results	105
7.2.4.4 Conclusions and recommendations	105
7.3 THALES TOULOUSE AIRPORT VERIFICATION EXERCISES	
7.3.1 Introduction 7.3.2 Verification Exercise # TAIR_010	
7.3.2.1 Verification Exercise Scope	
7.3.2.2 Conduct of Verification Exercise	
7.3.2.2.1 Verification Exercise Preparation	
7.3.2.2.2 Verification Exercise execution	
7.3.2.2.3 Deviation from the planned activities	112
7.3.2.3 Verification exercise Results	112
7.3.2.3.1 Unexpected behaviors/Results	124
7.3.2.4 Conclusions and recommendations	
7.3.3 Verification Exercise # TAIR_020 7.3.3.1 Verification Exercise Scope	
7.3.3.2 Conduct of Verification Exercise	
7.3.3.2.1 Verification Exercise Preparation	126
7.3.3.2.2 Verification Exercise execution	
7.3.3.2.3 Deviation from the planned activities	130
7.3.3.3 Verification exercise Results	
7.3.3.3.1 Unexpected behaviors/Results	136
7.3.3.4 Conclusions and recommendations	136
7.3.4 Verification Exercise # TAIR_030 7.3.4.1 Verification Exercise Scope	
7.3.4.2 Conduct of Verification Exercise	137
7.3.4.2.1 Verification Exercise Preparation	137
7.3.4.2.2 Verification Exercise execution	141

2

Project Num D10 - AeroM		.02.07 erification Plan & Report - Phase 2 (v00.03.00 revised final)	Edition 00.03.00
7.3	.4.2.3	Deviation from the planned activities	141
7.3.4	.3 Ve	rification exercise Results	142
7.3	.4.3.1	Unexpected behaviors/Results	160
7.3.4	.4 Cc	onclusions and recommendations	160
7.3.5 \ 7.3.5		tion Exercise # TAIR_040	
7.3.5	2 Cc	onduct of Verification Exercise	162
7.3	.5.2.1	Verification Exercise Preparation	162
7.3	.5.2.2	Verification Exercise execution	162
7.3	.5.2.3	Deviation from the planned activities	164
7.3.5	.3 Ve	rification exercise Results	165
7.3	.5.3.1	Unexpected behaviors/Results	168
7.3.5	4 Cc	onclusions and recommendations	168
7.3.6 \ 7.3.6		tion Exercise # TAIR_050	
7.3.6	2 Cc	onduct of Verification Exercise	169
7.3	.6.2.1	Verification Exercise Preparation	169
7.3	.6.2.2	Verification Exercise execution	170
7.3	.6.2.3	Deviation from the planned activities	171
7.3.6	.3 Ve	rification exercise Results	173
7.3	.6.3.1	Unexpected behaviors/Results	
7.3.6	4 Cc	onclusions and recommendations	175
APPENDIX A	10	Т	
A.2 P.1 A.3 IOT <i>A.3.1 ‡</i>	5.02.07 INCIDE P2_LA	DF THE IOT APPENDIX	
A.3.1	.2 Mi	tigation actions	
A.3.1	.3 Cc	omments and recommendations	
		2_040 alysis of results	
A.3.2	.2 Mi	tigation actions	
A.3.2	.3 Co	omments and recommendations	
8 REFERE	NCES		
8.1 Ref	ERENC	E DOCUMENTS	

8

Avenue de Cortenbergh 100 | B -1000 Bruxelles

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

List of tables

Table 1: Testing organization	
Table 2: Phase 2 lab verification objectives summary	
Table 3: Airport dedicated frequencies for testing	24
Table 4: VO summary	
Table 5: identification of Phase 2 Thales lab test cases	40
Table 6: Identification of Thales/DSNA Toulouse airport test cases	41
Table 7: identification of Phase 2 Selex lab test cases	
Table 8: Summary of Thales lab tests results for phase 2	44
Table 9: Summary of Selex Lab. tests results for phase 2	44
Table 10: Summary of Thales/DSNA Airport tests results	45
Table 11: Service Flows characteristics	65
Table 12: Summary of P.15.02.07 Laboratory and Airport tests phase 2 results	176
Table 13: AeroMACS Limited Interoperability Verification Objectives	
Table 14: Identification of Phase 2 IOT test cases	179

List of figures

Figure 3-1 : Lab_test_bed_01 (THALES)	.21
Figure 3-2 : Lab_test_bed_02 (SELEX)	.21
Figure 3-3 : Thales-DSNA airport ground test configuration	
Figure 3-4 : Airport installation	
Figure 3-5: General view of the former control tower	
Figure 3-6: GS location	
Figure 3-7: Roof situation on the left – Working position on the right	
Figure 3-8: Ground station mechanical interface	
Figure 3-9: Calculated coverage of the two GS (best server zone)	
Figure 3-10: Overlapping zone between GS1 and GS2	
Figure 3-11: fix MS location	
Figure 3-12: MS fix location	
Figure 3-13: MS setup	
Figure 3-14: Setup of MS in the vehicles	
Figure 3-15: Items integrated in the vehicles	
Figure 3-16: Test location in Toulouse Airport	
Figure 4-1 : 15.02.07 Verification Activities	
Figure 4-2 : Integration and Testing Phase 2 schedule	
Figure 7-1: MS Log - Initial Net Entry: MS Registration	
Figure 7-2: Forced Link Loss and Network Exit	
Figure 7-3: Network Re-entry	.52
Figure 7-4: BS Log - CQICH Allocation	.57
Figure 7-5: CQICH measurements	
Figure 7-6: CL PC - initial situation	
Figure 7-7: CL PC - Final situation	
Figure 7-8: IPERF Log - 2 SFs with the same priority but different MSTR	
Figure 7-9: UL - throughput on SF1 Figure 7-10: UL - throughput on SF2	
Figure 7-11: SF2 with higher priority Figure 7-12: Cipher Suites supported by MS	
Figure 7-12. Cipiter Suites supported by MS	.73
Figure 7-13. Server Helio from ASN-GW	
Figure 7-14. Phyacy Rey Management Protocol Figure 7-15: First cyphered messages after Authentication: DHCP	
Figure 7-16: Frequency filter at 5113.5 MHz	
Figure 7-16. Frequency filter at 5113.5 MHz	
Figure 7-17. Net Entry - Fre-attachment	
	.00

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles

Project Number 15.02.07

D10 - AeroMACS Verification Plan & Report - Phase 2 (v00.03.00 revised final)

Dio - Aeromaco Vernication Fian & Report - Fiase 2 (Vol.05.00 revised inal)	
Figure 7-19: Authentication – Certificates exchange	87
Figure 7-20: Authentication – Net Exit	88
Figure 7-21: TLAB2_010 iperf screenshot	91
Figure 7-22: test bed configuration with a signal generator	93
Figure 7-23: Selex MS in Thales lab (Baseband 1U rack below and RF 1U rack above)	104
Figure 7-24: Detailed Airport schedule	106
Figure 7-25: Training for Airport Clearance and test plan preparation (TAIR_10 up to TAIR_50)	107
Figure 7-26: Setup of the BS on a tower and MS on a truck for outdoor tests	
Figure 7-27: Outdoor tests in gennevilliers premises in NLOS	
Figure 7-28: Outdoor tests in Gennevilliers @ 80 km/h	108
Figure 7-29: The former control tower with the 2 Thales BS	113
Figure 7-30: BS orientation and operator position	113
Figure 7-31: MS1 at "PB" fix location (+ two equipped vehicles with MS2 and MS3)	114
Figure 7-32: 2 DGAC Vehicle installation with 2 Thales MS	115
Figure 7-33: BS1 Airport measured coverage (BS 2 off)	
Figure 7-34: Thales BS1 coverage calculation	
Figure 7-35: Thales BS2 Airport measured coverage (BS1 off)	118
Figure 7-36: Thales BS2 coverage calculation	119
Figure 7-37: MLS (south) test location	120
Figure 7-38: MLS (south & north) interference zone with 70dB rejection (source D04)	121
Figure 7-39: MLS tests location	121
Figure 7-40: Close analyse in the vicinity of MLS	
Figure 7-41: Spectrum measurement near MLS signal (south)	122
Figure 7-42: Spectrum measurements near MLS signal (north)	123
Figure 7-43: Mask due to aircraft which hide the antenna on PB	124
Figure 7-44: THALES BS1 coverage measurements versus simulation	
Figure 7-45: BS2 coverage measurements versus coverage simulation	136
Figure 7-46: Recordings on the Fly of the RSSI in NLOS conditions	142
Figure 7-47: NLOS point #1 measurement details	144
Figure 7-48: NLOS point #3 measurement details	
Figure 7-49: NLOS point #7 measurement details	148
Figure 7-50: NLOS point #9 measurement details	149
Figure 7-51: NLOS point #11 measurement details	150
Figure 7-52: NLOS point #13 measurement details	153
Figure 7-53: NLOS point #15 measurement details	155
Figure 7-54: NLOS point #18 measurement details	
Figure 7-55: NLOS point #19 measurement details	
Figure 7-56: Measurements on the outside of the Airport	
Figure 7-57: Simulated field strength near the terminal	
Figure 7-58: Mobility test location (ATE -> Taxiway W 100 to W 60 - round trip)	
Figure 7-59: Priority to the Aircrafts traffic on the taxiway	
Figure 7-60: recorded RSSI of mobility test at 50 km/h	
Figure 7-61: recorded RSSI of mobility test at 90 km/h	
Figure 7-62: recorded RSSI of mobility test at 120 km/h	
Figure 7-63: THALES BS1 / BS2 best server map	
Figure 7-64: The two MS at point 7	
Figure 7-65: 3 MS at PB	
Figure 7-66: Alternate channels - BS1 measurements	
Figure 7-67: Adjacent channels - BS1 measurements	
Figure 7-68: Alternate channels - BS2 measurements	174
Figure 7-69: Adjacent channels - BS2 measurements	
Figure 7-70: IOT Thales testbed	
Figure 7-71: IOT Selex ES testbed	
Figure 7-72: Illustration of 15.2.7. interoperability tests status	180

founding members

Executive summary

The goal of project 15.02.07, in strong collaboration with Project 9.16, is to define, validate and demonstrate the technical standard based upon existing IEEE 802.16e of the future airport surface data link as foreseen by the aviation community and ICAO. Therefore, it includes the modification of the IEEE 802.16e standard and the developing of a new AeroMACS profile dedicated for airport surface datalink for ATC / AOC services, in order to be compliant with SESAR / ICAO FCI recommendations.

The mentioned evaluation assessed the performance and capacity of the technology by means of analytical work and simulations in order to develop design specifications. Moreover, prototypes were defined and developed to demonstrate results through measurements and trials, in a strong coordination with the appropriate standardisation bodies.

Therefore, 9.16 and 15.02.07 projects are contributing to the development of an aviation technical standard to be recognised by ICAO in direct and strong cooperation with Eurocae WG82 and RTCA SC 223.

The purpose of the present document is to establish project 15.02.07 "Verification plan and report" corresponding to the "Verification Objectives" described in document D05.2. (cf. [1]) and identified for phase 2 test campaigns.

founding members

1 Introduction

1.1 Purpose of the document

The purpose of the Verification Plan & Report is to describe the phase 2 verification test cases and to gather corresponding test results achieved within the 15.02.07 project in order to assess the AeroMACS Data Link thanks to the use of Mobile Stations (MS) mock-ups and Ground Stations (GS) prototypes.

Verification test cases are derived from the Verification Objectives (VO) defined in the D05.2 document (see [1]). They cover following aspects:

- MS/BS Interoperability, including AeroMACS Profile,
- RF specification and performances,
- RF performances in real environments.

Within the 15.02.07 project, verification tests consist in:

- Laboratory tests, held in SELEX and THALES premises, with both partners pieces of equipment,
- Field tests, held in Toulouse Airport, by THALES & DSNA.

The 15.02.07 Verification Activity has been divided in two separate Working Activities described in the D05.2 document (see [1]):

- Phase 1 is related to Laboratory Tests that verify the main part of the MS/BS Interoperability and RF performances objectives. This was completed through task T06 in 2013 and concluded by deliverable D06.
- Phase 2 is related both to Laboratory Tests and Toulouse Airport Tests. They are reported in present D10 document. Indeed, this document is the deliverable related to P15.02.07. "integration & testing phase 2", supported by tasks T010 and T011.

1.2 Intended readership

This document is intended to be used primarily by the partners of the 15.02.07 Project. However, for coordination reasons, also Projects SESAR 9.16, SANDRA SP6 and SANDRA SP7 could take this deliverable into account.

The document is also useful for standardization groups, and in particular for AeroMACS SARPS validation.

Other operational/system projects could make use of the deliverables of 15.02.07/9.16 projects.

1.3 Structure of the document

The structure of the document is based on 8 chapters:

- Chapter 1 is an introduction describing the purpose of the document and the intended readership.
- Chapter 2 describes the context of the Verification.
- Chapter 3 defines the verification approach, describing how the verification scenarios will be implemented in the various test locations (Manufacturers Laboratories, Toulouse Airports).
- Chapter 4 details verification activities and means
- Chapter 5 provides a summary of the verification test results
- Chapter 6 consists of the conclusion and recommendations

founding members

- Chapter 7 provides the detailed tests cases related to the verification objectives of the SESAR 15.02.07 project for phase 2
- Chapter 8 lists the reference documents

-

Since the scope of this document includes both the Verification Plan and Verification Report of the P.15.02.07 Integration and testing activities Phase 2, the document structure maps both SJU VP and VR templates as follows:

- Introduction sections: Chapters 1 and 2
- Verification Plan: Chapters 3 and 4
- Verification Report: Chapters 5, 6 and 7

1.4 Glossary of terms

For terminology clarification, the following terms are defined below:

- "Mock-up" : Part of MS test equipment
- "Prototype" : Base/Mobile station prototype equipment
- "System test platform": Bring together several prototypes, mock-up and tools

1.5 Acronyms and Terminology

Term	Definition
ADD	Architecture Definition Document
A/C	AirCraft
ATS	Air Traffic Service
АТМ	Air Traffic Management
BE	Best Effort
CINR	Carrier to Interference-plus-Noise Ratio
СQІСН	Channel Quality Information Channel
DOD	Detailed Operational Description
E-ATMS	European Air Traffic Management System
E-OCVM	European Operational Concept Validation Methodology
FCH	Frame Control Header
GS (BS)	Ground Station (Base Station in WiMAX terminology) Same meaning as BS

founding members

ं श्व

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

Term	Definition	
ют	Inter-Operability Tests	
IRS	Interface Requirements Specification	
INTEROP	Interoperability Requirements	
LOS	Line Of Sight	
MS	Mobile Station (Subscriber Station or CPE in WiMAX terminology)	
NLOS	Non Line Of Sight	
nLOS	Near Line Of Sight	
nRTPS	Non-Real-Time Polling Service	
OFA	Operational Focus Areas	
OSED	Operational Service and Environment Definition	
PCO	Point of COntrol	
QOS	Quality Of Service	
RSSI	Received Signal Strength Indicator	
RTPS	Real-Time Polling Service	
SESAR	Single European Sky ATM Research Programme	
SESAR Programme	The programme which defines the Research and Development activities and Projects for the SJU.	
SF	Service Flow	
SJU	SESAR Joint Undertaking (Agency of the European Commission)	
SJU Work Programme	The programme which addresses all activities of the SESAR Joint Undertaking Agency.	
SPR	Safety and Performance Requirements	
SUT	System Under Test	
TAD	Technical Architecture Description	
тѕ	Technical Specification	
UGS	Unsolicited Grant Service	
VALP	Validation Plan	

founding members

🌔 🤶 🏠

Term	Definition
VALR	Validation Report
VALS	Validation Strategy
VP	Verification Plan
VR	Verification Report
vs	Verification Strategy

founding members

2 Context of the Verification

Project 15.02.07 is a technological project dealing with the adaptation of the WiMAX 802.16-2009 standard (in the aeronautical C band) and with the definition of a profile suited to airport surface communications supporting both ATS and AOC data exchanges.

In this context, the verification approach consists in assessing and collecting evidences on the suitability and performances of the proposed technology (AeroMACS) against the on-going standardization of the new generation of airport data link system, performed in close conjunction with RTCA SC223 and EUROCAE WG82.

The objective of the verification phase is thus to perform real evaluation using lab testing and field trials together with analysis and modelling to deliver the appropriate material for decision making and for preparation of pre-operational and implementation decisions.

founding members

3 Verification Approach

3.1 Verification Overview

As already stated, AeroMACS Data Link global overall verification is addressed by Project 15.02.07, but also by Projects 9.16, SANDRA SP6 and SANDRA SP7.

This document focuses on the verification test cases to be achieved within the 15.02.07 Project, namely:

- Lab tests: performances measurement related to the new AeroMACS profile and interoperability between different vendors pieces of equipment,
- Field tests: tests in real airport environment focussed on the ground segment datalink.

The table below gives an overview of main partners involved in lab and field tests within project 15.02.07 and close contributing to project 9.16:

	P 15.02.07	P 9.16	
THALES, THALES Lab.		SELEX ES, Selex Lab.	
Lab. test SELEX ES, Selex Lab.			
THALES + DSNA		SELEX ES + Airbus	
Field test Toulouse airport Toulouse airport		Toulouse airport	
Focus on ground component of AeroMACS		Focus on airborne component of AeroMACS	

Table 1: Testing organization

3.2 Verification plan

Within the 15.02.07 / 9.16 projects, the planned verification consists in:

Performances measurement regarding the AeroMACS profile, by testing the GS with the MS originating from the same suppliers in laboratories (enclosed environment),

Interoperability evaluation of the prototypes, by cross-testing of GS with MS from different suppliers in laboratories,

Technology assessment, by carrying out tests in a real airport environment (Toulouse Airport).

To be able to achieve such objectives, SELEX and THALES built prototypes of a Ground Station (GS), and mock-ups of Mobile Stations (MS) able to communicate in the aeronautical C-Band (5091 - 5150 MHz) to be used both in laboratory and on the field. They are described in document D05.1 (Ref. [2]).

Additionally, test cases described in Section 7 are used to perform the tests on two different platforms:

Firstly lab tests, by connecting the pieces of equipment with the measurement devices on the table,

Secondly airport tests, by installing the MS in cars and the BS on a fix place in the Airport.

3.3 Verification Assumptions

Main assumptions to be able to perform the tests are:

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

Availability of MS/BS prototypes in C-Band of the involved partners for interoperability testing

Granted airport access:

Equipment vendors engineers trained to access Airport

Qualified drivers available to drive the cars in Airport area

Airport facilities shall be available for testing purpose without interfering with normal airport activities

Cars shall be available and equipped

Frequency compatibility with authorization provided by authorities in order to operate Airport tests.

3.4 Verification requirements

Verification requirements are defined in reference [1] "P 15.02.07 D05.2 - AeroMACS Verification Strategy".

D05 describes the Verification Objectives (VO) to be reached within the 15.02.07 Project and identifies each VO by an ID and a title.

The VO concerning phase 2 testing are summarized hereafter in § 3.5 (while the VO corresponding to phase 1 testing were summarized in reference [3] ("P 15.02.07 D06 - AeroMACS integration & testing – phase 1").

In § 4, test cases are identified in front of each VO to perform the corresponding verification activities.

3.5 Integration and preliminary Verification activities

3.5.1 Introduction

The preliminary verification activities are:

Verification strategy definition (see D05.2 [1]),

MS and BS prototypes development (see D05.1 [2]),

Test bed development/definition for laboratory testing (see § 3.5.2) and for airport test scenarios (see § 3.5.2.3).

3.5.2 Lab testing

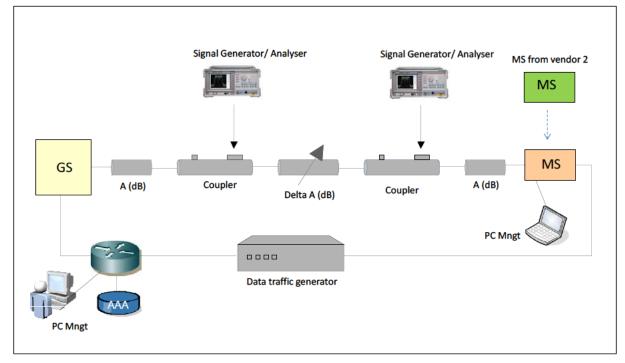
3.5.2.1 Lab Test beds

Prior to lab testing, a test bed will be built with following elements:

GS, MS, antennas, GPS, network and IT elements (switch, PC), cables, attenuators

Laboratory test cases and related lab test means (spectrum analyser, protocol analyser, etc.) for Signal & Protocol measurement,

IP traffic generators.


The test bed will be configured to comply with the different lab tests scenario as depicted in the following pictures:


Lab_test_bed_01: to perform RF measurements and interoperability evaluation in THALES labs

Lab_test_bed_02: to perform RF measurements and interoperability evaluation in SELEX labs

founding members

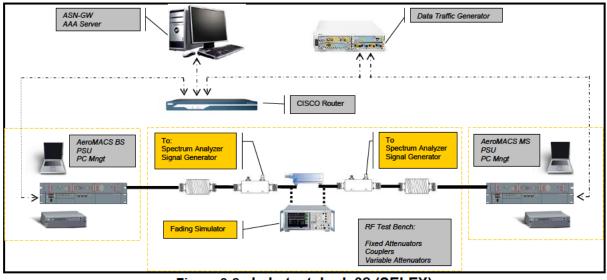


Figure 3-2 : Lab_test_bed_02 (SELEX)

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

3.5.2.2 Phase 2 verification activities

The verification activities to be conducted during phase 2 lab testing (task T011) are summarized below. The details can be found in [1] and these objectives are further derived in test cases in Section 7 by both involved manufacturers.

General VO Id	Title	Purpose
AeroMACS_VO_Interop_03 (Selex)	Network Entry	Verify that AeroMACS MS and BS perform all relevant actions at Network Entry that affects the air interface
AeroMACS_VO_Interop_05 (Thales)	SF establishment, change and deletion	Verify the completion of the control messages transmission to successfully complete the creation, change and deletion of a service flow to the MS.
AeroMACS_VO_Interop_06 (Selex, Thales)	MS channel quality report	Verify the Fast Feedback Channel Allocation of the BS in order to get information on the currently SNR the MS has.
AeroMACS_VO_Interop_07 (Selex)	Dynamic BW allocation	Verification of correct allocation of MAC resources
AeroMACS_VO_Interop_10 (Selex)	Uplink Power Control	Check that a data transfer continues properly when there is a fading in the UL channel. Verify that MS-BS interface supports the closed loop power control.
AeroMACS_VO_Interop_11 (Selex)	Security functions	Verify that the security functions on the air interface are interoperable between AeroMACS MS and BS. Verify the fragmentation and correct reassembling of the packets and the data integrity (FCS)
AeroMACS_VO_RF_04 (Selex, Thales)	Channel selectivity	Verify the receiver Adjacent and non- adjacent channel selectivity
AeroMACS_VO_RF_05 (Thales)	FCC transmission mask	Verify the BS/MS transmission mask
AeroMACS_VO_RF_08 (Thales)	Transmit power requirements	Verify AeroMACS Transmit power requirements
AeroMACS_VO_RF_11 (Thales)	MS transmit synchronization	Verify the transmitted center frequency of the MS
AeroMACS_VO_RFReal_01 (Selex)	Spectrum operations	Verify that AeroMACS BS/MS operates in the extended MLS band between 5091 and 5150 MHz with a 5MHz spacing between channels.

Table 2: Phase 2 lab verification objectives summary

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

3.5.2.3 Interoperability testing

IOT tests consist of a limited interoperability testing of air interface with following verification objectives. They are performed with same testbed as described in § 3.5.2.2. where the mobile stations are exchanged between manufacturers.

General VO Id	Title	Purpose
AeroMACS_VO_Limited Interop_A	Scanning and synchronization	When switched on, MS starts off with the scanning of the spectrum. Verify that the correct expected broadcast messages are exchanged, the preamble is correctly decoded by the MS.
AeroMACS_VO_Limited Interop_B	Initial Ranging	Verify that, after successful DL Synchronization, MS and BS exchanges the proper RNG-REQ/RNG-RSP messages, completing the Initial Ranging
AeroMACS_VO_Limited Interop_C	Basic Capabilities Negotiation	Verify the correct exchange of Service Basic Capability informations.
AeroMACS_VO_Limited Interop_D	Admission control	Security associations and key exchange that concern only to the "air interface" as part of the MS Authentication and Authorization procedures.
AeroMACS_VO_Limited Interop_E	Registration	Verify that BS and MS successfully conclude the registration procedure

3.5.3 Airport testing

3.5.3.1 General scope

Airport tests are split between two different projects:

P 9.16 : test scenario operated by SELEX & AIRBUS, focused on the airborne segment (see. 9.16 dedicated documentation),

P 15.02.07: airport test scenario operated by THALES & DSNA, focused on ground segment.

The P15.02.07 airport test scenario will be based on 2 THALES's GS and 3 THALES's MS deployed at the Toulouse airport by DSNA.

As depicted in following picture, the 2 GS are installed on an appropriate building in the Airport. Appropriate means appropriate in terms of propagation (sufficient height to improve the coverage, reduce the masks) and installation capacities (antennas and equipment on the roof, power supply, limited impact on airport normal activities etc...).

founding members

Two MS are installed on vehicles which are moving in different airport areas at different speeds and collect measurements regarding different propagation conditions. One MS is located on a fix place.

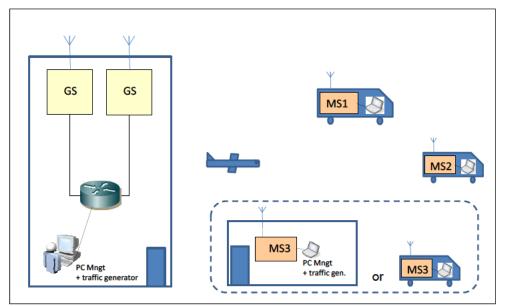


Figure 3-3 : Thales-DSNA airport ground test configuration

Following frequencies where requested for the P15.02.07. airport tests:

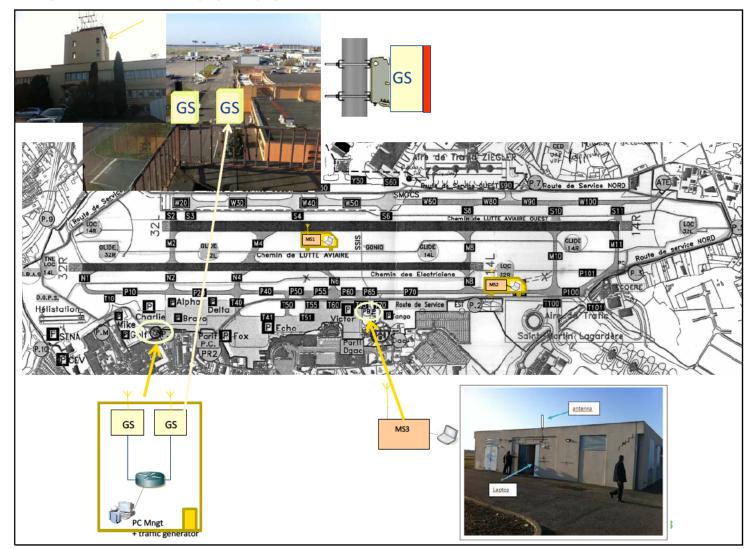

Channel ID	Centre Freq. (Mhz)	Thales BS 1	Thales BS 2
1	5093.5	х	
2* (temporally used)	5098.5		Х
3	5103.5		Х

Table 3: Airport dedicated frequencies for testing

founding members

Edition 00.03.00

In the picture below, the first deployment project is mentioned.

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

25 of 184

Edition 00.03.00

Figure 3-4 : Airport installation

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

3.5.3.2 GS integration and preliminary verification

The Ground Stations are installed on the former control tower represented on picture below (PA position, lat. 43.623078, long. 1.380049).

Figure 3-5: General view of the former control tower

The two BS are installed on the roof. The working position with the IT devices (PCs, PoE injectors, switch) are installed on the top room of the control power. The connection to the GS is achieved via Ethernet cables.

Figure 3-6: GS location

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

Each GS is oriented to make the best coverage of the airport with an optimized overlapping zone. From the GS on the roof, an Ethernet cable will come from the GS to the control tower upper room where IT devices will be installed as represented on following picture. All necessary means to accommodate the IT devices and the people are to be provisioned by DSNA (e.g. table, chairs and 230 V AC power supply).

Figure 3-7: Roof situation on the left – Working position on the right

As described in the picture below, the Thales ground station is equipped with a pole mounting kit. DSNA will provide a proper pole to install the base station on the selected location (former control tower roof).

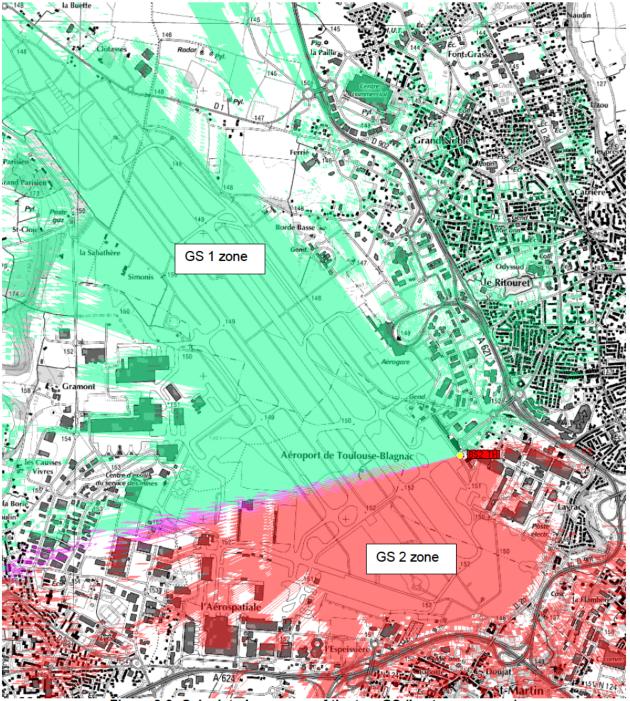


Figure 3-8: Ground station mechanical interface

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles

The orientation of the GS should result in following best server zone:

Figure 3-9: Calculated coverage of the two GS (best server zone)

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

145 4 Ritouret Estimated overlapping area Gramont Aéroport de Toulouse-Blagnac Aérospatiale Б. 1º " 8 7 0"

The orientation of the GS should result in following overlapping zone:

Figure 3-10: Overlapping zone between GS1 and GS2

founding members

3.5.3.3 Fix MS integration

The fixed MS is located on a DSNA building near position PB on above map.

Figure 3-11: fix MS location

The MS and the antenna are setup on the roof and an Ethernet cable is coming down to the working position as depicted in following picture.

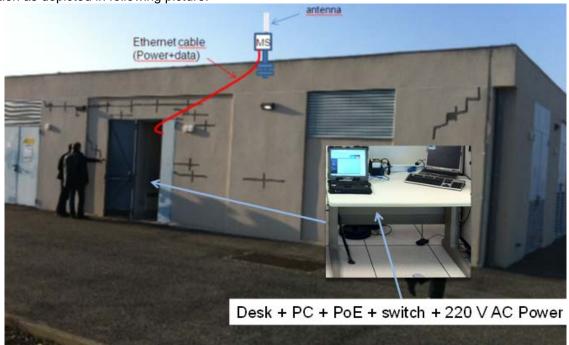


Figure 3-12: MS fix location

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

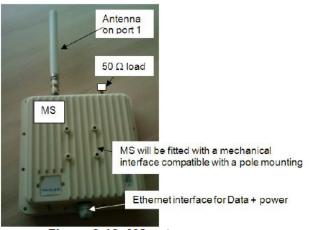
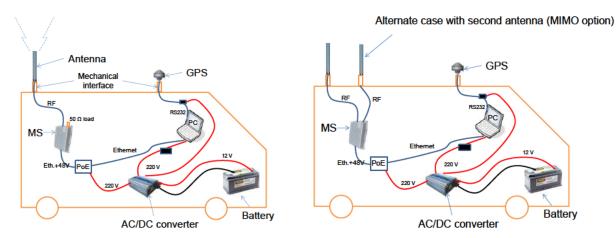
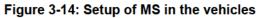




Figure 3-13: MS setup

3.5.3.4 Mobile MS integration

Two MS will also be installed in DSNA vehicles. In the picture below the setup is represented. The MS antenna is installed on the vehicle roof as well as a GPS antenna to record the vehicle position with the PC.

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

34 of 184

Figure 3-15: Items integrated in the vehicles

3.5.3.5 Scenarios and associated verification activities

The verification objectives (VO) devoted to the Toulouse Airport P15.02.07 test campaign are summarized in following tables. They can be found in D05.2 document [1].

General VO Id	Title	Purpose
AeroMACS_VO_Interop_02	Link adaptation	Assess the different modulation schemes and the throughput hence supported.
AeroMACS_VO_Interop_04	Quality of Service	Verify that the MS-BS interface supports nrtPS, rtPS and BE QoS classes.
AeroMACS_VO_Interop_06	MS channel quality report	Verify the Fast Feedback Channel Allocation of the BS in order to get information on the currently SNR the MS has.
AeroMACS_VO_RF_01	Cell Coverage	Verify the cell coverage
AeroMACS_VO_RF_04	Channel selectivity	Verify the receiver Adjacent and non- adjacent channel selectivity (in max speed)
AeroMACS_VO_RF_08	Transmit power requirements	Verify AeroMACS Transmit power requirements
AeroMACS_VO_RF_09	MS scanning performance	Verify that MS can perform the frequency and channel scanning within the required durations.
AeroMACS_VO_RF_10	MS ranging performance	Verify the successful completion of the ranging process
AeroMACS_VO_RFReal_02	Real deployment	Characterize the coverage (signal strength) in real testing environment.
AeroMACS_VO_RFReal_03	Modulations performances	Characterize the performances of the AeroMACS modulations in real

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles

👷 www.sesarju.eu

35 of 184

		environment (uplink and downlink data latency, round-trip time, real throughput available, jitter).
AeroMACS_VO_RFReal_04	NLOS performances	Evaluate the impacts of obstructions (such as buildings) on the coverage.
AeroMACS_VO_RFReal_07	Multi-channel utilization	Validate the possibility to communicate simultaneously on several channels without interference or impact on performances from one channel to the other (Alternate and adjacent Channel)
AeroMACS_VO_RFReal_08	Mobility performances	Evaluate the impact of mobility on the communications.

Table 4: VO summary

The scenarios are built regarding the different categories of objective:

- Cell coverage / MS channel quality report:
 - Objective: verify the maximum distance in the airport where the datalink is synchronized and get information on the SNR of the MS and on the received level with spectrum analyzer.
 - Means: one mobile MS and one BS are used at a time, two people from Thales and one from DSNA (qualified driver), one spectrum analyzer in the car
 - Method: The vehicle is driven to different points on the Airport where it is stopped to perform the measurements.
 - The "route de service' in green in following picture is used in order to cover the whole airport (e.g.: near points T50, P3, P5, ATE, P7, S50, S30, P9) while maintaining LOS conditions
 - Measured at each point: Vehicle position through GPS, radio statistics (RSSI, CINR, modulation...) through interrogation of the MS and GS, and data transmission performances (max throughput, jitter and delay) via iPerf and Ping.
- Modulation performances / Link adaptation:
 - Objective: assess the different modulation schemes and the throughput hence supported, characterize the performances of the modulations in real environment
 - Means: one mobile MS and one BS are used at a time, two people from Thales and one from DSNA (qualified driver)
 - Method: The vehicle is driven to a point on the Airport where it is stopped to perform the measurement.
 - The "route de service' is used, the stop point is selected with a good coverage so as to be able to test all the modulation and coding schemes.
 - Measured at each point: Vehicle position through GPS, radio statistics (RSSI, CINR, modulation...) through interrogation of the MS and GS, and data transmission performances (max throughput, jitter and delay) via iPerf and Ping.

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

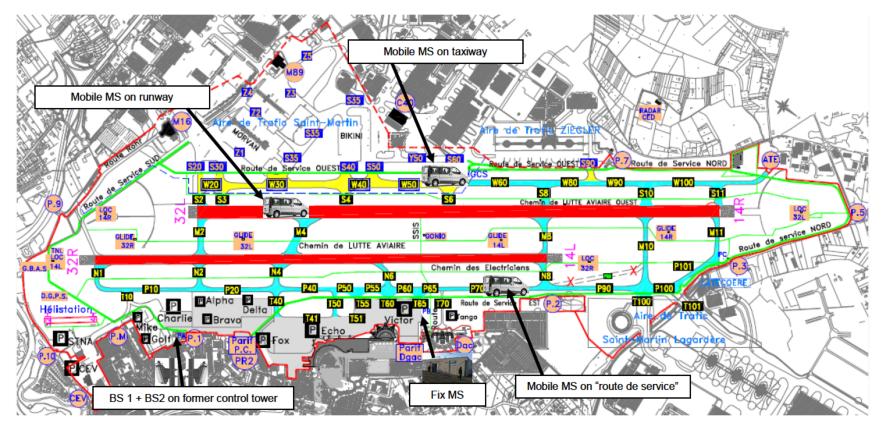
36 of 184

- Real deployment / NLOS performances
 - o Objective: Evaluate the impact of buildings, hangars on the strength of the signal
 - Means: one mobile MS and one BS are used at a time, two people from Thales and one from DSNA (qualified driver)
 - Method: Method is similar to the one described for cell coverage, but in this case stop points are spots where communications are established in near-LOS or Non-LOS conditions. As far as possible (depending on authorization), the different kind of zones of the Airport are visited: ramp Area, parking Area, Tower Area, Access roads to air navigation installations for maintenance operations (note: Taxiway used during the mobility tests).
- Mobility performances / Channel selectivity:
 - Objective: Evaluate the impact of mobility on the data communications and channel selectivity.
 - Means: one mobile MS and one BS are used at a time, two people from Thales and one from DSNA (qualified driver). Then one MS and two BS at max speed to check selectivity.
 - o Method:
 - 0 km/h: first general performance before mobility is recorded.
 - At 50 km/h: uses of taxiway or runway (depending upon authorization), parameters are recorded while driving at a constant speed of 50 km/h, MS being preliminary registered to the servicing BS.
 - At 90 km/h: use of runway or taxiway (depending upon authorization and vehicle capacity)
- Multi-channel utilization:
 - Objective: Evaluate the impact of two BS with overlapping coverage and using alternate or adjacent channels.
 - Means: one to three MS and two BS are used at a time, two to three people from Thales and two from DSNA (qualified drivers)
 - Method: The vehicle is driven on different points in the overlapped area ("route of service" is used).
 - The 2 GS channels are either separated from 5 MHz (adjacent channels) or 10 MHz (alternate channels), MS is registered to the GS offering the best signal strength at the point.
 - Measured at each point: Vehicle position through GPS, radio statistics (RSSI, CINR, modulation...) through interrogation of the MS and GS, and data transmission performances (max throughput, jitter, delay) via iPerf and Ping
- Quality of service:

www.sesarju.eu

• Objective: Verify that the MS-BS interface supports nrtPS, rtPS and BE QoS classes.

founding members


Avenue de Cortenbergh 100 | B -1000 Bruxelles

37 of 184

- Means: one MS (fix location) and one GS, two people from Thales
- Method: The different SF are programmed on the GS and allocated to the MS. Through iPerf, communications are generated between GS and MS with controlled data rates. Then it is verified that data traffic exceeding the Maximum Sustained Traffic Rate QoS value related to a SF is dropped or delayed.
- Transmit power requirements:
 - Objective: Verify AeroMACS Transmit power requirements
 - Means: one MS (fix location) and one GS, two people from Thales, one spectrum analyser with additional antenna.
 - Method: through iPerf, communications are generated between GS and MS. The mean EIRP is measured during the transmission via the spectrum analyser.
- MS scanning and ranging performance:
 - Objective: Verify that MS can perform the frequency and channel scanning within the required durations and successful completion of the ranging process
 - Means: one MS (fix location) and one GS, two people from Thales.
 - Method: through iPerf, communications are generated between GS and MS. A list of frequencies is programmed on the MS between 5091 and 5150 MHz and the connection time is measured and connection processed including ranging is observed:
 - One frequency is programmed 5093,5 MHz
 - Two frequencies are programmed: 5093,5 MHz & 5103.5 MHz
 - A scan band with frequency step of 250 kHz: 5093,5 5147,5 MHz / step 250 kHz.

founding members

Figure 3-16: Test location in Toulouse Airport

— Route de service (P5 is the farthest point), used for cell coverage

- Runways (32L 14R and 32R 14L), used for mobility at 90 km/h
- Whisky Taxiway (W20 W100), used for mobility up to 50 km/h

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles

www.sesarju.eu

38 of 184

Edition 00.03.00

3.6 Acceptance criteria

The 15.02.07 project is a technological project where the verification approach consists in assessing and collecting evidences on the performances of the proposed AeroMACS technology against the on-going standardization.

In terms of acceptance, for each test case, a paragraph (cf. § 7.x.y.3) called "verification exercise results" analyses if the tests results are in compliance with the AeroMACS standardization (cf. § 7.x.y.3.2). Any unexpected behaviour is mentioned and its impact is further assessed (cf. § 7.x.y.3.3). Finally, based on the test results, recommendations are drawn (cf. § 7.x.y.4).

Chapter 5 summarizes and draws the whole picture about the tests results (whether each Verification test achieves the corresponding verification objective expectations or not) while chapter 6 summarizes the recommendations.

Based on these test results, an availability note will be issued by each vendor to state if tested devices are ready for system/platform integration.

founding members

ं 🖉

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

4 Verification Activities

4.1 Verification Exercises List

The phase 2 verification exercises (test cases) are derived in Section 7 from the Verification Objectives' list defined in D05.2 [1].

Each company (SELEX or THALES) describes the test cases related to the verification objectives it owns. Tests cases are described depending on the tests means involved and can covers several verification objectives. They describe into details the various tests to be executed in each company test environments. Each test case will contain one test objective, a brief description, a reference to the test bench used (as identified in 3.5.2 for lab tests and in 3.5.3 for Airport tests), and the detailed test procedure.

4.1.1 Thales lab and airport test cases identification

This Chapter contains the summary of laboratory test cases to be done by THALES in phase 2. All defined lab test cases have been reported in the following table and are detailed in Section 7. For each test case all the VO's addressed by that particular test are shown in the table. The complete list of VOs is reported in D05.2 document (ref. [1]).

The test case number is identified TLAB2 XXX or TAIR XXX, where:

- TLAB2: means Thales LABoratory test phase 2
- TAIR: means Thales AIRport test
- XXX: is the test identification number

Test Case nr.	Test Case Name	Lab. Environment	VO's addressed
TLAB2_010	Service flows control	Lab_test_bed_01	AeroMACS_VO_Interop_05 B/C
TLAB2_020	channel selectivity and transmit power measurements	Lab_test_bed_01	AeroMACS_VO_RF_04 B/C AeroMACS_VO_RF_05 A/B AeroMACS_VO_RF_08 E
TLAB2_030	MS channel quality report and MS transmit synchronisation	Lab_test_bed_01	AeroMACS_VO_Interop_06 A/B AeroMACS_VO_RF_11 A
TLAB2_040	IOT test between Thales GS and Selex MS	Lab_test_bed_01 with Selex MS	AeroMACS_VO_Limited Interop A/B/C/D/E

Table 5: identification of Phase 2 Thales lab test cas	ies
--	-----

founding members

www.sesarju.eu

Avenue de Cortenbergh 100 | B -1000 Bruxelles

Test Case	Test Case Name	Environment	VO's addressed		
nr.					
TAIR_010	Installation fix and vehicle, and main performances verification on the field (modulations, data rate, QOS, MS channel quality report, transmit power, MS scanning & ranging performances)	Toulouse 2 BS + 1 MS fix 2 BS + 1 MS car 2 Thales ING DSNA for installation 1 DSNA driver 1 spectrum analyzer	AeroMACS_VO_Interop_02 C AeroMACS_VO_Interop_04 B AeroMACS_VO_Interop_06 C/D AeroMACS_VO_RF_08 B AeroMACS_VO_RF_09 A/B/C AeroMACS_VO_RF_10 A		
TAIR_020	Cell coverage in LOS, Modulation performances, link adaptation and MS channel quality reporting	Toulouse 1 BS + 1 MS car 2 nd BS + 1 MS car 1 spectrum analyzer 2 Thales ING 1 DSNA driver	AeroMACS_VO_RF_01 A/D AeroMACS_VO_Interop_06 C/D AeroMACS_VO_Interop_02 C/D/E AeroMACS_VO_RFReal_02 A/B/C/D AeroMACS_VO_RFReal_03 A/B/C/D/E/F/G/H/I		
TAIR_030	Real deployment and NLOS performances	Toulouse 1 BS + 1 MS car 2 Thales ING 1 DSNA driver 1 spectrum analyzer	AeroMACS_VO_RFReal_04 B AeroMACS_VO_RFReal_02 A/B/C/D		
TAIR_040	Mobility tests	Toulouse 1 BS + 1 MS car 2 Thales ING 1 DSNA driver 1 spectrum analyzer	AeroMACS_VO_RFReal_08 B AeroMACS_VO_RF_04 D		
TAIR_050	Multi-channel tests	Toulouse 1 BS+ 2 MS car + 1fixed MS 2 Thales ING 2 DSNA drivers 1 spectrum analyzer	AeroMACS_VO_RFReal_07 A/B/C/D		

Table 6: Identification of Thales/DSNA Toulouse airport test cases

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles

4.1.2 Selex lab test cases identification

This Chapter contains the summary of laboratory test cases to be done by SELEX in phase 2. All defined lab test cases have been reported in the following table and are detailed in Section 7. For each Test Case all the VO's addressed by that particular test are shown in the table. The complete list of VOs is reported in D05.2 document (ref. [1]).

Lab Test	Test Case Name	Lab.	VO's addressed
Case nr.		Environment	
P2_LAB1_1	Connection Re-establishment	Lab_test_bed_02	AeroMACS_VO_Interop_03_B
P2_LAB1_2	Power Control	Lab_test_bed_02	AeroMACS_VO_Interop_06_A/B
			AeroMACS_VO_Interop_10_C/D
P2_LAB1_3	Quality of Service	Lab_test_bed_02	AeroMACS_VO_Interop_07_B/C
P2_LAB1_4	Security	Lab_test_bed_02	AeroMACS_VO_Interop_11_C/D/F
P2_LAB1_5	Radio Performance	Lab_test_bed_02	AeroMACS_VO_RF_04_A
			AeroMACS_VO_RFReal_01_B
P2_LAB_6	IOT between Selex Ground	Lab_test_bed_02	AeroMACS_VO_Limited Interop A/B/C/D/E
	System and Thales MS		

Table 7: identification of Phase 2 Selex lab test cases

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles

4.2 Verification activities master schedule

Integration and Testing	(15.2.7. WA6)		
Pre-verification activ	vities		
	Lab testing		
- Test means preparation	- MS/BS Interoperability	Airport testing	
	- RF performances	RF Performances environment	in real

The steps of the verification plan are summarized on the diagram below.

Figure 4-1 : 15.02.07 Verification Activities

The latest Integration and Testing phase 2 schedule is given in following picture:

Name	Code	2013 may jun	tri 3, 2013 jul ago sep	tri 4, 2013 oct nov dic	tri 1, 2014 ene feb mar	tri 2, 2014 abr may jun	tri 3, 2014 jul ago sep	tri 4, 2014 oct nov
Work Area 6		_						
Work Area 6 - Phase 1								
Integration and lab testing - Phase 1	T006							
Verification Plan & Report - Draft1	M056		→ M05	6				
Verification Plan & Report - Phase 1	D06			ا 🗛 ا	D06			
Work Area 6 - Phase 2								₩ ₽
Integration, and testing - Phase 2	T010					1		b
Additional Phase 2 testings - lab and Toulouse airport	T011			(×.	:	:	<u>م</u>
Verification Plan & Report - Phase 2	D10						ſ	🍯 D10
Final prototype Availability - Selex and Thales	T012						լ կ	
Availability Notes - Selex and Thales prototypes	D11							💣 D11
Real environment testing campaigns			-					
 Selex - Airbus (Toulouse) 								
Selex BS delivery (BaseBand system)	M057							
Selex BS delivery (Radio system)	M058		M058					
Prototype integrated (Selex BS)	M059		→◆ M059					
New Selex Release (SW)+additional BS release	M060				→◆ M060			
Selex new RF Unit delivery (HW v2.0)	M061						₩061	
Thales - DSNA (Toulouse)								
Prototype integrated (Thales BS)	M062					♦ M062		
Thales BS/MS car testings (EXE-15.02.07-VP-445) completed	M063				ų	→ M063		

Figure 4-2 : Integration and Testing Phase 2 schedule

founding members

www.sesarju.eu

Avenue de Cortenbergh 100 | B -1000 Bruxelles

5 Verification Exercises Results

5.1 Summary of Verification Exercises Results

The results of the different Verification test cases analysed in Section 7 are summarized in following tables:

- OK: Verification test achieves the verification objective expectations
- NOK (Non OK): Verification test does not achieve the verification objective expectations
- POK (Partially OK): Verification test achieves partially the verification objective expectations
- NT (Not Tested): Verification test not performed.

Test Case nr.	Test Case Name	VO's addressed	Result
TLAB2_010	Service flows control	AeroMACS_VO_Interop_05 B/C	OK
TLAB2_020	channel selectivity and transmit power measurements	AeroMACS_VO_RF_04 B/C AeroMACS_VO_RF_05 A/B AeroMACS_VO_RF_08 E	ОК
TLAB2_030	MS channel quality report and MS transmit synchronisation	AeroMACS_VO_Interop_06 A/B AeroMACS_VO_RF_11 A	OK
TLAB2_040	IOT between Thales GS and Selex MS	AeroMACS_VO_Limited_ Interop A/B/C/D/E	рОК

Table 8: Summary of Thales lab tests results for phase 2

Lab Test Case nr.	Test Case Name	VO's addressed	Result
P2_LAB1_1	Connection Re-establishment	AeroMACS_VO_Interop_03_ B	OK
P2_LAB1_2	Power Control	AeroMACS_VO_Interop_06_A/B AeroMACS_VO_Interop_10_ C/D	OK
P2_LAB1_3	Quality of Service	AeroMACS_VO_Interop_07_ B/C	OK
P2_LAB1_4	Security	AeroMACS_VO_Interop_11_C/D/F	OK
P2_LAB1_5	Radio Performance	AeroMACS_VO_RF_04_A AeroMACS_VO_RFReal_01_B	OK
P2_LAB_6	IOT between Selex Ground System and Thales MS	AeroMACS_VO_Limited Interop A/B/C/D/E	рОК

Table 9: Summary of Selex Lab. tests results for phase 2

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

Test Case nr.	Test Case Name	VO's addressed	Result	
TAIR_010Installation and main performances verification (modulations, data rate, QOS, MS channel quality report, transmit power, MS scanning 		AeroMACS_VO_Interop_02 C AeroMACS_VO_Interop_04 B AeroMACS_VO_Interop_06 C/D AeroMACS_VO_RF_08 B AeroMACS_VO_RF_09 A/B/C AeroMACS_VO_RF_10 A		
TAIR_020	Cell coverage in LOS, Modulation performances, link adaptation, and MS channel quality reporting	AeroMACS_VO_RF_01 A/D AeroMACS_VO_Interop_06 C/D AeroMACS_VO_Interop_02 C/D/E AeroMACS_VO_RFReal_03 A/B/C/D/E/F/G/H/I AeroMACS_VO_RFReal_02 A/B/C/D	ОК	
TAIR_030	Real deployment and NLOS performances	AeroMACS_VO_RFReal_04 B AeroMACS_VO_RFReal_02 A/B/C/D	ОК	
TAIR_050	Mobility tests	AeroMACS_VO_RFReal_08 B AeroMACS_VO_RF_04 D	OK	
TAIR_060	Multi-channel tests	AeroMACS_VO_RFReal_07 A/B/C/D	OK	

 Table 10: Summary of Thales/DSNA Airport tests results

5.2 Analysis of Verification Exercises Results

The detailed analysis of the verification Exercises can be found in each verification exercise report in Section 7.

Indeed, each verification exercise has a dedicated paragraph: "7.x.y.3.2 Analysis of Verification Exercise Results".

Each test case was performed successfully regarding the related verification objectives except IOT between vendors' devices¹:

- TLAB2_040: IOT between Thales BS and Selex MS performed on THALES Lab_test_bed_01 was only
 partially successful. Only Scanning was completed successfully, with proper identification of the BS
 Preamble by MS side. Synchronization was not successfully completed, as the Selex MS indicated a FCH
 decoding failed. The reasons of this interoperability issue should be investigated in a further IOT activity
 beyond P15.02.07.
- P2_LAB_6: IOT between Selex BS and Thales MS performed on SELEX ES Lab_test_bed_02 was partially successful: authentication was not successful finalizing with an Authentication Failure. Further investigation beyond P15.02.07 is recommended in the security field.

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

¹ Section 7.1.6 and 7.2.4 include the verification report of the above IOT tests. Appendix A includes a summary of the IOT tests, that was provided to the SJU as a separate document, and is included in this appendix.

6 Conclusions and recommendations

The main objective of the integration & testing work area of P15.02.07 is to assess the performances of AeroMACS prototypes.

The phase 1 lab measurements (see ref. [3]) gave a good characterization of the prototypes with positive test results. This gave a good confidence before the field testing.

The phase 2 testing, the results of which are reported in the present document, allowed gathering additional measurements in lab and real environment of the Airport surface datalink and thus complement significantly the assessment of the AeroMACS technology in ground segment context with some important information as cell coverage, LOS / nLOS / NLOS propagation behaviour, mobility effect....

Interoperability between Thales and Selex ES prototypes was tested in both senses (Selex Mobile Station versus Thales Ground System and vice versa), but, despite numerous efforts from P15.02.07 teams, it has not been completely achieved. The details of the Interoperability tests performed are provided in 7.1.6 and 7.2.4. The test campaigns executed suggest further investigations being required in the field of Interoperability, and also confirm the need to identify unambiguously the WiMAX network protocols and messages formatting involved in the Authentication/Encryption process.

Planning ad-hoc activities with the purpose to complete IOT and to cover the network and security (e.g certificates) layers in the near future (SESAR2020/VLD could be suitable opportunities) in coordination with the relevant standardization authorities is thus recommended.

As a conclusion, both lab and Airport testing allowed collecting positive evidences on the suitability of the prototypes to assess the AeroMACS technology regarding the on-going standardization, to prefigure future realizations, and representative airport deployments, which are highly recommended to complete P15.02.07 achievements at the upper layer, namely network layer.

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles

7 Verification Exercises Reports

7.1 Selex lab verification exercises

7.1.1 Verification Exercise # P2 LAB1 1 Connection Re-Establishment

7.1.1.1 Verification Exercise Scope

The purpose of this Test Case is verifying that the MS after a signal loss (in Network Re-entry) is able to reestablish the DL Synchronization.

7.1.1.2 Conduct of Verification Exercise

7.1.1.2.1 Verification Exercise Preparation

The test bed described in Figure 3-2 was arranged.

Equipment:

ASN-GW is an Aricent Wing ASN-GW.

MS, BS and ASN-GW were linked together according to test bed configuration with proper attenuation and switched on.

Fading Simulator and Data Traffic Generators shown in Figure 3-2 were not used in this test.

7.1.1.2.2 Verification Exercise execution

Step nr.	Action	Action description (if needed)	PCO (Point of Control and Observation)	Result
1.	Switch on MS			ОК
2.	Verify that MS begins scanning for BS		Mngt PC connected to MS	ОК
3.	Switch on BS			ОК
4.	Configure BS to one channel (e.g. 5091 MHz)			ОК
5	Reboot BS			ОК
6.	Verify that MS connects successfully		Mngt PCs connected to MS and BS	ОК

founding members

www.sesarju.eu

Avenue de Cortenbergh 100 | B -1000 Bruxelles

Project Number 15.02.07 D10 - AeroMACS Verification Plan & Report - Phase 2 (v00.03.00 revised final)

7.	Increase attenuation until the MS loses the connection with BS	Variable attenuator and Mngt PCs connected to MS and BS	ОК
8.	Verify that the MS is able to re-establish the DL Synchronization.	Mngt PCs connected to MS and BS	ОК

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

©SESAR JOINT UNDERTAKING, 2014. Created by AENA, AIRBUS, DSNA, EUROCONTROL, INDRA, NATMIG, SELEX ES and THALES for the SESAR Joint Undertaking within the frame of the SESAR Programme co-financed by the EU and EUROCONTROL. Reprint with approval of publisher and the source properly acknowledged.

48 of 184

Edition 00.03.00

7.1.1.2.3 Deviation from the planned activities

None.

7.1.1.3 Verification exercise Results

7.1.1.3.1 Summary of Verification exercise Results

ID	Result	Description	When observed?	Expected result	Obtained result	VO
1	Resynchronization	Verify that the MS after a signal loss (in Network Re- entry) is able to re-establish the DL Synchronization	Step 8	Resynchronization	ОК	AeroMACS_VO_Interop_03_B

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles

www.sesarju.eu

49 of 184

7.1.1.3.2 Analysis of Verification Exercise Results

As a test preamble, the various phases of the normal Initial Network Entry was executed by BS and MS (test step no. 6). Figure 7-1 shows the last step (MS DHCP Registration),

🖺 msmaclog[0]_7_8 - WordPad	
Eile Edit View Insert Format Help	
11:25:04:149 RT : MPI COMP-DLMAP RSSI:-73 CINR:13 FN:2200	
11:25:04:859 RT : DHCP DISCOVER - Len:576	
11:25:05:149 RT : MPI COMP-DLMAP RSSI:-73_CINR:15_FN:2400	
11:25:05:932 RT DHCP REQUESTLen:576	
11:25:05:978 RT : LMAC-SRC : BW - CDMA index : 14 SubChnl Off : 0 Sym off : 6 frameNum:0	
powerLvl:0 repCode:0 ranging_slot:1 rang_type:2	
11:25:05:983 RT : LMAC-SRC : BW - CDMA index : 13 SubChnl Off : O Sym off : 6 frameNum:O	
powerLvl:0 repCode:0 ranging_slot:1 rang_type:2	
11:25:06:008 RT : LMAC-SRC : BW - CDMA index : 8 SubChnl Off : 0 Sym off : 6 frameNum:0	
powerLv1:0 repCode:0 ranging_slot:1 rang_type:2	
11:25:06:013 RT : LMAC-SRC : BW - CDMA index : 10 SubChnl Off : 0 Sym off : 6 frameNum:0	
powerLvl:0 repCode:0 ranging_slot:1 rang_type:2	
11:25:06:028 RT : LMAC-SRC : BW - CDMA index : 13 SubChnl Off : O Sym off : 6 frameNum:O	
powerLvl:0 repCode:0 ranging_slot:1 rang_type:2	
11:25:06:038 RT : LMAC-SRC : BW - CDMA index : 15 SubChnl Off : 0 Sym off : 0 frameNum:0	
powerLv1:0 rep <u>Code:0 ranging_slot:1 rang</u> type:2	
11:25:06:129 RT : DHCP Success	
11:25:06:148 RT : MPI COMP-DLMAP RSSI:-72 CINR:13 FN:2600	
11:25:07:147 RT : MPI COMP-DLMAP RSSI:-73 CINR:14 FN:2800	
11:25:08:147 RT : MPI COMP-DLMAP RSSI:-73 CINR:16 FN:3000	
11:25:09:146 RT : MPI COMP-DLMAP RSSI:-73 CINR:11 FN:3200	
11:25:10:146 RT : MPI COMP-DLMAP RSSI:-73 CINR:14 FN:3400	_
11:25:11:145 RT : MPI COMP-DLMAP RSSI:-73 CINR:14 FN:3600	
11:25:12:144 RT : MPI COMP-DLMAP RSSI:-73 CINR:14 FN:3800	
11:25:13:139 RT : TCA_POOL:PoolId:O StackTop:31 PoolBlockSize:8 Remaining No.OfBlocks:9969	
11:25:13:139 RT : TCA_POOL:PoolId:1 StackTop:7091 PoolBlockSize:16 Remaining No.OfBlocks:12	909 💽
For Help, press F1	NUM //

Figure 7-1: MS Log - Initial Net Entry: MS Registration

After the address assignment to the MS, the attenuation between MS and BS was gradually increased; this caused a Link Loss, with a subsequent Network Exit by the MS side (see Figure 7-2).

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles

📕 msmaclog[0] 7 8 - WordPad - 🗆 × File Edit View Insert Format Help ※ 陶 🏙 い - B 纳 -ReadyCnt:177 COMPD1map Delay:4995 ReadyDelay:739080 11:26:05:883 RT : Timer MSG-ID Expired:4 11:26:05:883 CRITICAL : FN:14407 SRC Timers expired - Stopping SRC timers T2=3000 DLMAP=600 ULMAP= 600 11:26:05:883 RT : Stopping SRC timers 11:26:05:883 RT : SRC: Initialization : CLPC: TX PWR Max:230 Min:118 Inital:120 11:26:05:883 RT Link Loss Detected .. Surrent State = 8 m_syn_flg:1 11:26:05:883 ERROR : MPT : FCH decoding failed CINR:0 RSSI:-97 FNERR:225 11:26:05:883 RT : Link-Loss - Deleting UL MGMT connections-CQID: 23 CID:1 11:26:05:883 RT : Link-Loss - Deleting UL MGMT connections-CQID: 24 CID:1000 11:26:05:883 CRITICAL : GMIL: Send response to OAMP failed 11:26:05:883 CRITICAL : GMIL: Send response to OAMP failed 11:26:05:883 ERROR : PHY_DIAG_MSG :: FCH decoding failed FN = 14407 11:26:05:883 RT : Deleting Connection CID:65535 11:26:05:883 RT : Link-Loss - Deleting DL MGMT connections-CQID: 1 CID:65533 11:26:05:884 RT : Deleting Connection CID:65533 11:26:05:884 RT : Link-Loss - Deleting DL MGMT connections-CQID: 2 CID:0 11:26:05:884 RT : Deleting Connection CID:0 11:26:05:884 RT : Link-Loss - Deleting DL MGMT connections-CQID: 3 CID:1 11:26:05:884 RT : Deleting Connection CID:1 11:26:05:884 RT : Link-Loss - Deleting DL MGMT connections-CQID: 4 CID:1000 11:26:05:884 RT : Deleting Connection CID:1000 11:26:05:884 RT : SBS Connection Cnt(LinkLoss) : 9 11:26:05:884 RT : Deleting Connection CID:2009 11:26:05:884 RT : Link-Loss - DL service flow delete - CID:2009 CQID:14 SFID:2 11:26:05:884 RT : Link-Loss - Deleting UL connections-CQID: 22 11:26:05:884 RT : QOS : Deleting SDU list 11:26:05:886 ERROR : PHY DIAG MSG: ULSF Not Received - Last READY time =1401342965s 883011ms Previous-Ready = 1401342965s 878015ms FN:14407 11:26:05:886 RT : SBS Connection Cnt(LinkLoss-) : 0 11:26:05:886 RT : SRC LinkLoss Indication 11:26:05:886 RT : Dhcp-client child process id = 979 11:26:05:887 RT C Dhcp release signal issued successfully for n/w exit SIGUSR2) FN:14407 11:26:05:887 RT : LMAC : STATE : IDLE State SINCHRONIZING 11:26:05:887 RT : Radio configuration successfull 11:26:05:887 RT : MPI: Scan Start Request : Frequency:444 11:26:05:887 RT : MAC->PHY: PHY_SCAN_START_REQ Frequency:444 initial-tx-pwr:120 11:26:06:934 RT : PHY->MAC: PHY_SCAN_END_RESULT no_of preambles = 0 PreambleID:99 RSSI:-6 BS-Freq:444 1 . . . For Help, press F1 NUM

Figure 7-2: Forced Link Loss and Network Exit

Subsequently, the attenuation between MS and BS was gradually decreased, until the MS correctly repeated the Network Entry (Figure 7-3).

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles

🖺 msmaclog[0]_7_8 - WordPad	-OX
Eile Edit View Insert Format Help	
11:26:27:482 RT : DSA/DSC REQ/RSP : Service Flow ID : 1	
11:26:27:482 RT : DSA/DSC REQ/RSP : CID : 2012	
11:26:27:482 RT : DSA/DSC REQ/RSP : Req/Trans Policy : 16	
11:26:27:482 RT : DSA/DSC REQ/RSP : Max Sust Traf Rate : 10000000	
11:26:27:482 RT : DSA/DSC REQ/RSP : DDS Type : BE	
11:26:27:482 RT : DSA/DSC REQ/RSP : PAGING PREFERENCE PARAMETER : 1	
11:26:27:482 RT : ==================================	
11:26:27:482 RT : DSA RSP : UL Direction Transaction-ID:32771 CC:0	
11:26:27:482 RT : DSA RSP Max FN for sending: 18932 FN:18877 AckTimeout:300	
11:26:27:483 RT : CSF : T8 DSA/DSC ACK Timer Creation Successful 300	
11:26:27:505 RT : Primary Connection Data MSGID:752 Exp-FN:18932 FN:18882	
11:26:27:525 RT : Primary Connection Data MSGID:752 Exp-FN:18932 FN:18886	
11:26:27:551 RT : CSF : DSA-ACK Received	
11:26:27:551 RT : DSA ACK :Confirmation Code : 0 (0=Accept, other = Reject) CID :2011 SFID	: 2
11:26:27:551 RT : Flow Activation list	
11:26:27:551 RT : (0)> CID:0 SFID:0 CQID:0 State:0	
11:26:27:551 RT : TeMs_SndMsgToMSM(), Sending to MGM Queue Success	
11:26:27:551 RT : CSF : DSA-ACK Received	
11:26:27:551 RT : DSA ACK :Confirmation Code : 0 (0=Accept, other = Reject) CID :2012 SFID	: 1
11:26:27:551 CRITICAL : GMIL: Send response to OAMP failed	
11:26:27:551 RT : Flow Activation list	
11:26:27:551 RT : (0)> CID:0 SFID:0 CQID:0 State:0	
11:26:27:552 RT : Activating UL Flow SFID:1	
11:26:27:552 RT : UL CQID index 22 and Allocated	
11:26:27:552 RT : qosInitRateControl: MaxCapacity:91800 MsrBoundryStFrame:18891 MsrFrameCount:5	<u>v</u>
11:26:27:552 RT : UL-Flow Config REO: CID:2012 CQID:22	
11:26:27:552 RT : NETWORK ENTRY DONE & SERVICE FLOWS CREATED	
11:26:27:552 RT : qosCreateULConn:454: Flow greation for CID:2012 ochType:2	
11:26:27:552 RT : Activated Flow, SFID: 1	
11:26:27:552 RT : TeMs_SndMsgToMSM(),Sending to MGM Queue Success 11:26:27:552 CRITICAL : GMIL: Send response to OAMP failed	
11:26:27:580 RT : CSF : T10 Transaction End Timer Deleted	
11:26:27:580 RT : CSF : T10 Transaction End Timer Deleted	
11:26:28:100 RT : MPI COMP-DLMAP RSSI:-72 CINR:12 FN:19000	
11:26:29:099 RT : MPI COMP-DLMAP RSSI:-72 CINR:17 FN:19000	
11:26:29:883 RT : DHCP DISCOVER - Len:576	
11:26:30:099 RT : MPI COMP-DLMAP RSSI:-72 CINR:14 FN:19400	
11:26:30:944 RT : DHCP REQUESTLen:576	
11:26:30:994 RT : LMAC-SRC : BW - CDMA index : 14 SubChnl Off : 0 Sym off : 6 frameNum:0 powerL	v1:0 📕
For Help, press F1	NUM //

Figure 7-3: Network Re-entry

7.1.1.3.3 Unexpected behaviors/results

None.

7.1.1.4 Conclusions and recommendations

The testing allowed checking successfully the correct Network Re-entry of the MS after a signal loss.

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

7.1.2 Verification Exercise # P2_LAB1_2 Power Control

7.1.2.1 Verification Exercise Scope

The purpose of this Test Case is verifying the correct use of CQI channels during the Closed Loop Power Control Execution, also verifying the CL PC performance.

7.1.2.2 Conduct of Verification Exercise

7.1.2.2.1 Verification Exercise Preparation

The test bed described in Figure 3-2 was arranged.

7.1.2.2.2 Verification Exercise execution

Step nr.	Action	Action description (if needed)	PCO (Point of Control and Observation)	Result
1.	Switch on MS			ОК
2.	Switch on BS	BS switched on with CQICH enabled		ОК
3.	Enable CL PC			ОК
4.	Verify that MS connects successfully		Mngt PC connected to MS	ОК
5	Verify that the Channel Quality Information channels are properly allocated in the CQICH region and used by the MS to transmit channel quality measures to the BS		Mngt PC connected to MS and BS	ОК
6.	Verify that the channel quality measurements are sent to the BS with the chosen periodicity and verify any other option that might be		Mngt PC connected to MS and BS	ОК

founding members

www.sesarju.eu

Avenue de Cortenbergh 100 | B -1000 Bruxelles

	applied		
7.	Verify that closed loop parameters remain within specified tolerances	Mngt PC OK connected to MS and BS	
8.	Verify that closed loop PC satisfactorily counteracts channel gain variations up to 30 dB/s	Mngt PC OK connected to MS and BS	

founding members

ं 🗶 🏻

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

7.1.2.2.3 Deviation from the planned activities

None.

7.1.2.3 Verification exercise Results

7.1.2.3.1 Summary of Verification exercise Results

ID	Result	Description	When observed?	Expected result	Obtained result	VO
1	CQI channels allocation & application	Verify that the Channel Quality Information channels are properly allocated in the CQICH region and used by the MS to transmit channel quality measures to the BS	Step 5	CQI channels allocation & application	ОК	AeroMACS_VO_Interop_06_A
2.	CQI periodicity	Verify that the channel quality measurements are sent to the BS with the chosen periodicity and verify any other option that might be applied	Step 6	CQI periodicity	ОК	AeroMACS_VO_Interop_06_B
3.	CL power control parameters	Verify that all closed loop parameters (power levels, power steps, power range) are all	Step 7	CL power control parameters	ОК	AeroMACS_VO_Interop_10_C

founding members

www.sesarju.eu

55 of 184

		applied within the specified tolerances				
4.	CL power control performance	Verify that the closed loop power control satisfactorily sustains a data transfer without causing any oscillation or instability in the system, facing channel gain variations of up to 30 dB/s	Step 8	CL power control performance	ОК	AeroMACS_VO_Interop_10_D

Project Number 15.02.07 Edition 00.03.00 D10 - AeroMACS Verification Plan & Report - Phase 2 (v00.03.00 revised final)

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles Avenue de Corre www.sesarju.eu

56 of 184

7.1.2.3.2 Analysis of Verification Exercise Results

MS and BS were switched on, and the Network Entry was completed. The CQICH procedure and Closed Loop Power Control had been previously enabled on the BS, which allocated a CQICH sub-channel to the MS using a CQICH IE (CQICH Allocation IE), in order to allow the MS to send periodic CINR reports. The CQICH Allocation, together with the periodicity expressed in frames (8 in this case) is evidenced in the BS Log file shown in Figure 7-4.

🗒 bsmaclog[0]_Sec0 - WordPad	
Eile Edit View Insert Format Help	
12:05:56:845 RT : FN:101062 PHY-ULRSSI:-71 CINR:21.000000 12:05:56:895 RT : FN:101072 PHY-ULRSSI:-71 CINR:21.000000 12:05:56:945 RT : FN:101082 PHY-ULRSSI:-71 CINR:20.000000 12:05:56:955 RT : FN:101092 PHY-ULRSSI:-71 CINR:20.000000 12:05:57:014 RT : CQICH channel terminated for basic Cid: 1, Cqi Id: 0, Duration: 0, Fram number: 99816, Period: 8, Number of Cqi channels: 1 12:05:57:015 RT : FN:101096 PHY-ULRSSI:-71 CINR:18.000000 12:05:57:016 RT : CQICH-AllocIE FN:101099 UIUC:15 CQICH-ID:0 Alloc-Indx:0 Period:8 FrmNo: Dur:0 IndFlag:0 12:05:57:044 PT : CPSL APM = Cgich channel creation success (channels : 1) Frame NUmber	
12:05:57:041 RT : CPSL ARM - Cqich channel creation success (channels : 1) Frame NUmber 101104 12:05:57:041 RT : 2646: CqichIECount: 3 CQICH channel created for basic Cid: 1, Cqi Id: 0 Duration: 7, Frame number: 101104, Period: 8, Number of Cqi channels: 1, Alloc Index: 0, Report inc: 1, Report type: 0, Feedback Type 1, Zone perm: 0, Zone type: 0, Group ind: 0 Group bitmap: 0, Zone msmt type: 0, MIMO feedback: 1 12:05:57:041 RT : CQICH-AllocIE FN:101104 UIUC:15 COICH-ID:0 Alloc-Indx: 0 Period:8 FrmNo: Dur:7 IndFlag:1	,
12:05:57:041 RT : FeedBkType:1 ReportType:0 PreamRptType:1 AvgValue:0 MimoPermFdbkCycl:1 12:05:57:045 RT : FN:101102 PHY-ULRSSI:-72 CINR:20.000000 12:05:57:075 RT : FN:101108 PHY-ULRSSI:-71 CINR:18.000000 12:05:57:095 RT : FN:101112 PHY-ULRSSI:-71 CINR:20.000000 12:05:57:135 RT : FN:101120 PHY-ULRSSI:-72 CINR:20.000000 12:05:57:145 RT : FN:101122 PHY-ULRSSI:-71 CINR:21.000000 12:05:57:195 RT : FN:101132 PHY-ULRSSI:-71 CINR:21.000000 12:05:57:245 RT : FN:101142 PHY-ULRSSI:-71 CINR:18.000000 12:05:57:255 RT : FN:101144 PHY-ULRSSI:-71 CINR:21.000000	T
For Help, press F1	NUM //

Figure 7-4: BS Log - CQICH Allocation

After that, it was observed that the MS started to send periodically its measurements in the allocated CQICH channels. In Figure 7-5 it is possible to appreciate that the measurements periodicity is 8 frames as expected.

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles

🗄 bsmaclog[0]_Sec0 - WordPad
<u>File Edit V</u> iew Insert F <u>o</u> rmat <u>H</u> elp
12:05:43:853 RT : FN:98462 PHY-ULRSSI:-71 CINR:18.000000
12:05:43:883 RT : FN:98468 PHY-ULRSSI:-72 CINR:21.000000
12:05:43:903 RT : FN:98472 PHY-ULRSSI:-71 CINR:20.000000
12:05:43:943 RT : FN:98480 PHY-ULRSSI:-71 CINR:20.000000
12:05:43:953 RT : FN:98482 PHY-ULRSSI:-71 CINR:21.000000
12:05:43:982 RT : cac_addSlotsInDivZone: Posted CID state change message to CPSL
12:05:43:982 RT : cac_addSlotsInDivZone: Posted CID state change message to CPSL
12:05:43:982 RT : CPSL-LA : New values of repetition, IUC and FEC in DL are 1, 3, 17.
Direction:0
12:05:43:582 RT : LAPC: DL BP Changed for MS 0:0:77:b6:75:a Old FEC 18 New FEC 17 FN:98490
12:05:43:982 RT : CLI Msg Queue posting Succes
12:05:43:982 RT : GTF-RES: Sending Response to GTF
12:05:43:982 RT : UNBLOCKED CID:1000 Direction:2 MSID:0 0 77 b6 75 a
12:05:43:982 RT : GTF: Sending Response to GTF
12:05:43:982 RT : UNBLOCKED CID:1 Direction:2 MSID:0 0 77 b6 75 a
12:05:44:003 RT : FN:98492 PHY-ULRSSI:-71 CINR:20.000000
12:05:44:022 RT : cac_addSlotsInDivZone: Posted CID state change message to CPSL
12:05:44:022 RT : cac_addSlotsInDivZone: Posted CID state change message to CPSL
12:05:44:022 RT : CPSL-LA : New values of repetition, IUC and FEC in DL are 1, 4, 18.
Direction:0
12:05:44:022 RT : LAPC: DL BP Changed for MS 0:0:77:b6:75:a Old FEC 17 New FEC 18 FN:98498
12:05:44:022 RT : CLI Msg Queue posting Succes
12:05:44:022 RT : GTF-RES: Sending Response to GTF
12:05:44:022 RT : UNBLOCKED CID:1000 Direction:2 MSID:0 0 77 b6 75 a
12:05:44:022 RT : GTF: Sending Response to GTF
12:05:44:022 RT : UNBLOCKED CID:1 Direction:2 MSID:0 0 77 b6 75 a
12:05:44:053 RT : FN:98502 PHY-ULRSSI:-71 CINR:22.000000
For Help, press F1 NUM //

Figure 7-5: CQICH measurements

Finally the Closed Loop Power Control was also successfully verified. In particular, it was verified that the Algorithm was able to face a sudden attenuation of 30 dB/s during a data transfer, without any connection loss.

The variable attenuation was manually increased by 30 dBs in about 1 second, and it was verified that the MS did not lose the connection with MS. From the MS log in Figure 7-6 it is possible to appreciate the initial situation, in which RSSI= -43 dBm, and as a consequence the MS is applying a certain TX power offset, evidenced in the picture.

After the sudden attenuation by 30 dBs, the BS started commanding power adjustments to the MS, until the TX power offset became 32 dBs higher than the initial one (see "PHY PowOff" in Figure 7-7).

Subsequently, the initial attenuation was restored, and the proper working of the MS-BS connection was observed.

Avenue de Cortenbergh 100 | B -1000 Bruxelles

www.sesarju.eu

🗒 msmaclog[0] - WordPad	
12:26:16:400 RT : FN:30800 PHY-MEAS CINR:13 RSSI:-43 STC-enable:0 12:26:16:400 RT : MPI COMP-DLMAP RSSI:-36 CINR:15 FN:30800 12:26:17:299 WARNING : FN:30980 S-DS metrics are not updated 12:26:17:399 RT : FN:31000 PHY-MEAS CINR:13 RSSI:-43 STC-enable:0 12:26:17:399 RT : MPI COMP-DLMAP RSSI: 37 CINR:13 FN:31000 12:26:18:399 RT : FN:31200 PHY-MEAS CINR:13 RSSI:-43 STC-enable:0 12:26:18:399 RT : MPI COMP-DLMAP RSSI:-37 CINR:13 FN:31200 12:26:18:498 WARNING : FN:31220 S-BS metrics are not updated 12:26:18:598 WARNING : FN:31240 S-BS metrics are not updated	•
12:26:18:624 RT : LMAC-SRC: PER - CDMA index : 7 SubChnl Off : 0 Sym off : 6 frameNum:0 powerLv1:0 repCode:0 ranging_slot:0 rang_type:2 12:26:18:644 RT : Ranging status received : 3 _12:26:18:644 RT : LMAC-SRC : Config PHY PowOff:51 FreqOff: 0 TimeOff: 1 12:26:18:644 RT : MAC -> PHY : PHY PARAM CHNG REQ	
12:26:18:644 RT : RNG RSP : Rng status : 3 (1 = Cont; 2 = Abort ; 3 = Success) 12:26:18:644 RT : RNG:: UMAC SRC : T3 RNG RSP Timer is Stopped 12:26:18:698 WARNING : FN:31260 S-BS metrics are not updated 12:26:18:798 WARNING : FN:31280 S-BS metrics are not updated 12:26:18:898 WARNING : FN:31300 S-BS metrics are not updated 12:26:18:998 WARNING : FN:31320 S-BS metrics are not updated 12:26:18:998 WARNING : FN:31340 S-BS metrics are not updated	
12:26:19:168 WARNING : MPI: Invalid Entries UL-SF & UL-Data not prepared yet for READY FN:31353 ReadyCnt:834 COMPDImap Delay:4995 ReadyDelay:9509 Previous-Ready = 1404284179s 163335ms FN:31353 12:26:19:173 WARNING : MPI: Invalid Entries UL-SF & UL-Data not prepared yet for READY FN:31353 ReadyCnt:835 COMPDImap Delay:4995 ReadyDelay:14504 Previous-Ready = 1404284179s 168328ms FN:31353 12:26:19:178 WARNING : MPI: Invalid Entries UL-SF & UL-Data not prepared yet for READY FN:31353 ReadyCnt:836 COMPDImap Delay:4995 ReadyDelay:19506	
For Help, press F1	

Figure 7-6: CL PC - initial situation

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles

www.sesarju.eu ©SESAR JOINT UNDERTAKING, 2014. Created by AENA, AIRBUS, DSNA, EUROCONTROL, INDRA, NATMIG, SELEX ES and THALES for the SESAR Joint Undertaking within the frame of the SESAR Programme co-financed by the EU and EUROCONTROL. Reprint with approval of publisher and the source properly acknowledged.

59 of 184

60 of 184

🗒 msmaclog[0] - WordPad	- O ×
<u>File E</u> dit <u>V</u> iew Insert Format <u>H</u> elp	
12:26:20:788 RT : CLPC : Recvd Power adj:8	
12:26:21:037 RT : LMAC-SRC : Config PHY PowOff:27 FreqOff: 0 TimeOff: 0	
12:26:21:037 RT : MAC -> PHY : PHY PARAM CHNG REQ	
12:26:21:038 RT : CLPC : Recvd Power adj:8	
12:26:21:292 RT : LMAC-SRC : Config PHY PowOff:23 FreqOff: 0 TimeOff: 0	
12:26:21:292 RT : MAC -> PHY : PHY PARAM CHNG REQ	
12:26:21:292 RT : CLPC : Recvd Power adj:8	
12:26:21:297 WARNING : FN:31780 S-BS metrics are not updated	
12:26:21:297 RT : UL FEC Code Changed from 0 to 1	
12:26:21:397 RT : FN:31800 PHY-MEAS CINR:13 RSSI:-73 STC-enable:0	
12:26:21:397 RT : MPI COMP-DLMAP RSSI:-66 CINR:15 FN:31800	
12:26:21:497 WARNING : FN:31020 S-BS metrics are not updated	
12:26:21:53 RT : LMAC-SRC : Config PHY PowOff:19 FreqOff: 0 TimeOff: 0	
12:26:21:537 RT : MAC -> PHY : PHY PARAM CHNG REO	
12:26:21:537 RT : CLPC : Recvd Power adj:8	
12:26:21:797 RT : UL FEC Code Changed from 1 to 2	
12:26:22:047 RT : UL FEC Code Changed from 2 to 3	
12:26:22:096 WARNING : FN:31940 S-BS metrics are not updated	
12:26:22:196 WARNING : FN:31960 S-BS metrics are not updated	
12:26:22:296 WARNING : FN:31980 S-BS metrics are not updated	
12:26:22:392 RT : TCA POOL:PoolId:O StackTop:33 PoolBlockSize:8 Remaining No.OfBlocks:9	
For Help, press F1	

Figure 7-7: CL PC - Final situation

7.1.2.3.3 Unexpected behaviors/results

None.

7.1.2.4 Conclusions and recommendations

The testing allowed checking successfully the correct use of CQI channels during the Closed Loop Power Control Execution.

7.1.3 Verification Exercise # P2_LAB1_3 Quality of Service

7.1.3.1 Verification Exercise Scope

The purpose of this Test Case is to verify that all QoS related requirements are satisfied (SF creation and deletion, traffic parameters, bandwidth management) for different Scheduling Types and for different traffic priorities, in both directions.

7.1.3.2 Conduct of Verification Exercise

7.1.3.2.1 Verification Exercise Preparation

founding members

Avenue de Corte et e corte et et e corte et e corte et e corte et e corte et et et et e

Avenue de Cortenbergh 100 | B -1000 Bruxelles

The test bed described in Figure 3-2 was arranged, except the Spectrum Analyser/Signal Generator and Fading Simulator, which were not needed in this test.

7.1.3.2.2 Verification Exercise execution

Step nr.	Action	Action description (if needed)	PCO (Point of Control and Observation)	Result
1.	Switch on BS			ОК
2.	Set 1 SF (SF1) with the scheduling type (QoS class) to be used as 1 among BE/nrtPS/rtPS		Mngt PC connected to ASN- GW/AAA	ОК
3.	Switch on MS			ОК
4.	Start an IP Flow with a configuration compatible with the SF Classification for DL (then for UL) traffic	Using IPERF	IPERF @ PC connected to ASN- GW x DL (MS x UL)	ОК
5.	Verify that the IP packets are transferred on the air interface	Using IPERF	IPERF @ PC connected to MS x DL (ASN-GW x UL)	ОК
6.	Verify that data exceeding the MSTR is dropped or delayed	Using IPERF	IPERF @ PC connected to MS x DL (ASN-GW x UL)	ОК
7.	Set 1 additional SF (SF2) with the same configuration of the SF of step 3 except for MSTR		Mngt PC connected to ASN- GW/AAA	ОК
8.	Restart MS			ОК
9.	Start two IP Flow one compatible with SF1 configuration and the other with SF2. SF1 throughput < SF2 throughput SF1 throughput + SF2 throughput > Channel capacity	Using IPERF	IPERF @ PC connected to ASN- GW x DL (MS x UL)	ОК

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles

10.	Check fairness between flows	Using IPERF	IPERF @ PC connected to MS x DL (ASN-GW x UL)	ОК
11.	Increase the Traffic Priority of SF2 (SF2 higher priority than SF1)		Mngt PC connected to ASN- GW/AAA	ОК
12.	Restart MS			ОК
13.	Start two IP Flow one compatible with SF1 configuration and the other with SF2. SF1 throughput > SF2 throughput SF1 throughput + SF2 throughput > Channel capacity	Using IPERF	IPERF @ PC connected to ASN- GW x DL (MS x UL)	ОК
14.	Check unfairness between flows (SF1 throughput > SF2 throughput)	Using IPERF	IPERF @ PC connected to MS x DL (ASN-GW x UL)	ОК
15.	Switch off MS			ОК
16.	Pass to another scheduling type (QoS class) and repeat steps from 2 to 18 until all types have been tested			ОК

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles

7.1.3.2.3 Deviation from the planned activities

None.

7.1.3.3 Verification exercise Results

7.1.3.3.1 Summary of Verification exercise Results

ID	Result	Description	When observed?	Expected result	Obtained result	VO
1.	Priority	Verify the behaviour of two SFs with the same configuration except traffic priorities	Step 14 Step 16	Behaviour of two SFs with the same configuration except traffic priorities	ОК	AeroMACS_VO_Interop_04_A
2.	MSTR	Verify that the Maximum Sustained Traffic Rate value for a SF is respected	Step 6	Maximum Sustained Traffic Rate value for a SF is respected	ОК	AeroMACS_VO_Interop_04_B
3.	DSA	Verify that the correct DSA procedure is implemented	Step 5 Step 6	The correct DSA procedure is implemented	ОК	AeroMACS_VO_Interop_05_A
4.	BW allocation	Verification of correct allocation of the MAC resources	Step 5 Step 6 Step	Correct allocation of the MAC resources	ОК	AeroMACS_VO_Interop_07_A AeroMACS_VO_Interop_07_B AeroMACS_VO_Interop_07_C AeroMACS_VO_Interop_07_D

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles

www.sesarju.eu

63 of 184

Edition 00.03.00

Project Number 15.02.07 D10 - AeroMACS Verification Plan & Report - Phase 2 (v00.03.00 revised final)

Edition 00.03.00

	10		
	Step 14 Step 16		

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles

64 of 184

7.1.3.3.2 Analysis of Verification Exercise Results

As usual, MS and BS were switched on, and the Network Entry was completed. The attenuation was set at a value such to allow BS and MS to establish a 16-QAM ½ connection.

Since the BS imposed a DL:UL ratio equal to 35:12, the maximum data throughput available in DL (channel capacity) is estimated being about 3.7 Mbps (excluding FCH+DLMAP+ULMAP overheads in DL)

Under these conditions, two Service Flows with Scheduling Type Best Effort and same priority but different MSTRs were set up at the BS (see Table 11).

Service Flow	Scheduling Type	DL MSTR	UL MSTR
SF1	BE	4 Mbps	600 Kbps
SF2	BE	3 Mbps	400 Kbps

Table 11: Service Flows characteristics

Then, two IP Flows were subsequently started with IPERF, compatibly with the SFs classification rules for DL and with the following throughputs:

- IP flow on SF1: 4.5 Mbps _
- IP flow on SF2: 5 Mbps. _

The needed bandwidth was assigned by the BS to the MS thanks to the BW-REQ/BW-RSP mechanism, and the data transfer started. In Figure 7-8 it may be observed certain fairness between the exchanged data flows. The difference between them is compatible with the difference between MSTR1 and MSTR2 values.

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles

www.sesarju.eu

Microsoft Office 2010 _ 17 × Edit View Picture Tools Help Type a question for help 🛛 🕼 🛛 🎥 Edit Pictures... 🛛 🖓 Auto Correct 🖕 # 🛤 🛤 83 Edit View Terminal Tabs Help File iew Terminal Tabs Help 488 (48%) 687.0-688.0 sec 256 KBytes 2.10 Mbits/sec 4.083 ms 232/ ▲131.0 sec 122 KBytes 999 Kbits/sec 31 . Transfer Bandwidth Jitter Lost/Total Datagrams Transfer Bandwidth IDI Interval 31 688.0-689.0 sec 256 KBytes 2.10 Mbits/sec 3.653 ms 233/ 122 KBytes 31 489 (48%) 999 Kbits/sec Interval 689.0-690.0 sec 255 r Transfer Transfer ID] Bandwidth Jitter Lost/Total **DL IPERF SF2** 255 KBytes 2.09 Mbits/sec 3.871 ms 233/ File Edit View Terminal Tabs Help IDj Interval Bandwidth Jitter Lost/Tota 39.0-40.0 sec 200 KBytes 31 1.64 Mbits/sec 4.528 ms 411/ 611 (67%) 256 KBytes 2.10 Mbits/sec 3.843 ms 232/ 31 690.0-691.0 sec Lost/Total Datagrams Interval 691.0-692.0 sec 255 M Transfer IDÌ Interval Transfer Bandwidth Jitter Jitter Bandwidth ID Lost/Tota 1.63 Mbits/sec 31 40.0-41.0 sec 199 KBytes 4.453 ms 412/ 611 (67%) 255 KBytes 2.09 Mbits/sec 3.877 ms nsfer Bandwidth Jitter Los 233/ 31 Transfer Jitter Lost/Total Datagrams ID] Interval Bandwidth IDI Lost/Total 692.0-693.0 sec 256 k Interval Transfer 4.453 ms 411/ 610 (67%) 3 41.0-42.0 sec 199 KBytes 1.63 Mbits/sec 256 KBytes 2.10 Mbits/sec 4.187 ms 233/ TD1 Interval Transfer Bandwidth litter Lost/Total Datagrams IDI Interval Bandwidth Jitter Lost/Total 42.0-43.0 sec 200 KBytes 1.64 Mbits/sec 4.509 ms 410/ 610 (67%) 693.0-694.0 sec 256 KBytes 2.10 Mbits/sec 3.883 ms 233/ 31 31 Transfer Bandwidth Jitter Lost/Total Datagrams ID] Interval ID Transfer Bandwidth Jitter Interval 694.0-695.0 sec 255 K Transfer Interval Lost/Total 255 KBytes 2.09 Mbits/sec 3.989 ms 232/ insfer Bandwidth Jitter Lost/Tota 43.0-44.0 sec 199 KBytes 1.63 Mbits/sec 4.484 ms 411/ 610 (67%) 31 31 Jitter IDÍ Interval Transfer Bandwidth Lost/Total Datagrams ID Lost/Total 695.0-696.0 sec 256 k Interval Transfer 4.551 ms 44.0-45.0 sec 200 KBytes 1.64 Mbits/sec 410/ 610 (67%) 256 KBytes 2.10 Mbits/sec 3.980 ms nsfer Ban<u>dwidth J</u>itter Los 31 31 233/ Transfer Bandwidth Jitter ID] Interval Lost/Total Datagrams IDI Lost/Total Interval 45.0-46.0 sec 199 KBytes 1.63 Mbits/sec 4.574 ms 411/ 610 (67%) 255 KBytes 2.09 Mbits/sec 4.361 ms 233/ 696.0-697.0 sec Transfer Lost/Total Datagrams TD1 Interval Bandwidth Jitter Interval 697.0-698.0 sec 255 r Transfer ID Transfer Bandwidth Jitter Lost/Total 46.0-47.0 sec 199 KBytes 1.63 Mbits/sec 4.765 ms 409/ 608 (67%) 255 KBytes 2.09 Mbits/sec 4.363 ms 233/ 31 31 Lost/Total Datagrams ID Interval Transfer Bandwidth Jitter ID Bandwidth Jitter Lost/Total 1.64 Mbits/sec 256 KBytes 2.10 Mbits/sec 4.561 ms 232/ 31 47.0-48.0 sec 200 KBvtes 4.758 ms 411/ 611 (67%) 698.0-699.0 sec 3] IDI Transfer Lost/Total Datagrams Interval Bandwidth Jitter 1.63 Mbits/sec 410/ 609 (67%) 48.0-49.0 sec 199 KBytes 4.749 ms Jitter L LITCUT 31 THILE THE THE RX packets:9645 errors:0 dropped:0 overruns:0 frame:0 Transfer Lost/Total Datagrams TD1 Interval Bandwidth TX packets:6388 errors:0 dropped:0 overruns:0 carrier:0 49.0-50.0 sec 199 KBytes 1.63 Mbits/sec 4.978 ms 411/ 610 (67%) 31 collisions:0 txqueuelen:1000 RX bytes:7395076 (7.0 MiB) TX bytes:580331 (566.7 KiB) IDI Interval Transfer Bandwidth Jitter Lost/Total Datagrams 3] 50.0-51.0 sec 200 KBytes 1.64 Mbits/sec 4.806 ms 411/ 611 (67%) Interrupt:18 Base address:0x2000 [root@localhost LOGS_FOR_PWR_CTRL_10JUL2014]# ifconfig eth0 125.125.4 [root@localhost LOGS_FOR_PWR_CTRL_10JUL2014]# [root@localhost LOGS_FOR_PWR_CTRL_10JUL2014]# ifconfig eth0 125.125.40.61 [root@localhost LOGS_FOR_PWR_CTRL_10JUL2014]# arp -s 125.125.4.55 00:00:77:B6:75:0A [root@localhost LOGS_FOR_PWR_CTRL_10JUL2014]# 🔯 🛯 root@localhost:/home... 🔳 DL IPER SF1 root@localhost:/home... 🚯 Applications Places System 🔮 🚳 💹 🗾 🚯 root Thu Jul 10, 1:54 PM 🐗 🗸 DL_25F_SAMEPRIORITY_DIFF_DATA.png 4 • Zoom: 🔍

Figure 7-8: IPERF Log - 2 SFs with the same priority but different MSTR

Then the test was repeated for the UL, using the same Service Flows set before. This time the IP Flows were both set to 1 Mbps. However, this time the channel capacity was about 880 Kbps, as the active MCS was QPSK ³/₄. As it is possible to see from the IPERF logs in Figure 7-9 and Figure 7-10, the total throughput was compliant with the channel capacity. Again, the difference between the throughputs is compatible with the difference between UL MSTR1 and MSTR2 values.

Project Number 15.02.07	
D10 - AeroMACS Verification Plan & Report - Phase 2 (v00.03.00 revised final)	

冒	LSF1A	AfterSF2ULStart - WordPad		×
Eile	<u>E</u> dit	<u>V</u> iew Insert F <u>o</u> rmat <u>H</u> elp		
D	2			
Γī	3]	94.0-95.0 sec 59.0 KBytes	483 Kbits/sec 8.458 ms 63/ 122 (52%)	•
L [3]	95.0-96.0 sec 59.0 KBytes	483 Kbits/sec 7.742 ms 64/ 123 (52%)	
L [3]	96.0-97.0 sec 59.0 KBytes	483 Kbits/sec 8.084 ms 63/ 122 (52%)	
L [3]	97.0-98.0 sec 58.0 KBytes	475 Kbits/sec 8.574 ms 63/ 121 (52%)	
L [3]	98.0-99.0 sec 60.0 KBytes	492 Kbits/sec 8.172 ms 63/ 123 (51%)	
L [3]	99.0-100.0 sec 62.0 KBytes	508 Kbits/sec 10.029 ms 63/ 125 (50%)	
L [3]	100.0-101.0 sec 63.0 KBytes	516 Kbits/sec 5.941 ms 59/ 122 (48%)	
L [3]	101.0-102.0 sec 53.0 KBytes	434 Kbits/sec 12.139 ms 65/ 118 (55%)	
L [3]	102.0-103.0 sec 61.0 KBytes	500 Kbits/sec 8.405 ms 62/ 123 (50%)	
L [3]	103.0-104.0 sec 59.0 KBytes	483 Kbits/sec 8.382 ms 62/ 121 (51%)	
L [3]	104.0-105.0 sec 67.0 KBytes	549 Kbits/sec 4.892 ms 62/ 129 (48%)	
L C	3]	105.0-106.0 sec 60.0 KBytes	492 Kbits/sec 7.537 ms 56/ 116 (48%)	
L C	3]	106.0-107.0 sec 60.0 KBytes	492 Kbits/sec 7.417 ms 62/ 122 (51%)	
L [3]	107.0-108.0 sec 59.0 KBytes	483 Kbits/sec 8.998 ms 63/ 122 (52%)	
L C	3]	108.0-109.0 sec 59.0 KBytes	483 Kbits/sec 9.338 ms 64/ 123 (52%)	
L C	3]	109.0-110.0 sec 62.0 KBytes	508 Kbits/sec 7.257 ms 63/ 125 (50%)	
L [3]	110.0-111.0 sec 62.0 KBytes	508 Kbits/sec 6.152 ms 60/ 122 (49%)	
L [3]	111.0-112.0 sec 64.0 KBytes	524 Kbits/sec 5.580 ms 59/ 123 (48%)	
L [3]	112.0-113.0 sec 58.0 KBytes	475 Kbits/sec 7.320 ms 59/ 117 (50%)	
1	3]	113.0-114.0 sec 58.0 KBytes	475 Kbits/sec 8.033 ms 64/ 122 (52%)	
1	3]	114.0-115.0 sec 58.0 KBytes	475 Kbits/sec 8.274 ms 64/ 122 (52%)	-
For H	lelp, pr	ess F1	NUM	//

Figure 7-9: UL - throughput on SF1

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles

Project Number 15.02.07 D10 - AeroMACS Verification Plan & Report - Phase 2 (v00.03.00 revised final)

T UI	. 5F2. t	xt - WordPad								_ 🗆	×
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew <u>I</u> nsert F <u>o</u> rma	: <u>H</u> elp								
D	≈ [- <u>-</u>	X 🖻 🛍 🗠	B							
[3]	58.0-59.0 sec	42.0 KByt	es 344	Kbits/sec	21.894	ms	75/	117	(64%)	
Γ	3]	59.0-60.0 sec	46.0 KByt	es 377	Kbits/sec	17.801	ms	80/	126	(63%)	
Γ	3]	60.0-61.0 sec	47.0 KByt	es 385	Kbits/sec	17.289	ms	86/	133	(65%)	
Γ	3]	61.0-62.0 sec	49.0 KByt	es 401	Kbits/sec	20.518	ms	75/	124	(60%)	
Γ	3]	62.0-63.0 sec	41.0 KByt	es 336	Kbits/sec	17.533	ms	77/	118	(65%)	
Γ	3]	63.0-64.0 sec	49.0 KByt	es 401	Kbits/sec	20.724	ms	77/	126	(61%)	
[3]	64.0-65.0 sec	48.0 KByt	es 393	Kbits/sec	19.538	ms	74/	122	(61%)	
[3]	65.0-66.0 sec	48.0 KByt	es 393	Kbits/sec	19.825	ms	74/	122	(61%)	
[3]	66.0-67.0 sec	48.0 KByt	es 393	Kbits/sec	13.934	ms	74/	122	(61%)	
[3]	67.0-68.0 sec	47.0 KByt	es 385	Kbits/sec	14.037	ms	75/	122	(61%)	
[3]	68.0-69.0 sec	47.0 KByt	es 385	Kbits/sec	18.399	ms	63/	110	(57%)	
[3]	69.0-70.0 sec	47.0 KByt	es 385	Kbits/sec	20.371	ms	76/	123	(62%)	
[3]	70.0-71.0 sec	48.0 KByt	es 393	Kbits/sec	16.892	ms	77/	125	(62%)	
[3]	71.0-72.0 sec	48.0 KByt	es 393	Kbits/sec	16.456	ms	75/	123	(61%)	
^C	Wait	ing for serve	r threads t	o complete	e. Interrup	pt again	to	force	quit.		
Γ	3]	72.0-73.0 sec	48.0 KByt	es 393	Kbits/sec	16.999	ms	74/	122	(61%)	
Γ	3]	73.0-74.0 sec	47.0 KByt	es 385	Kbits/sec	17.001	ms	76/	123	(62%)	
Γ	3]	74.0-75.0 sec	48.0 KByt	es 393	Kbits/sec	16.349	ms	75/	123	(61%)	
Γ	3]	75.0-76.0 sec	48.0 KByt	es 393	Kbits/sec	15.802	ms	75/	123	(61%)	
Γ	3]	76.0-77.0 sec	48.0 KByt	es 393	Kbits/sec	15.096	ms	74/	122	(61%)	
[3]	77.0-78.0 sec	48.0 KByt	es 393	Kbits/sec	14.785	ms	75/	123	(61%)	-
=or He	elp, pre	ess F1								NUM	ī //

Figure 7-10: UL - throughput on SF2

Subsequently, the Traffic Priority of Service Flow #2 was increased with respect to SF1, and the MS was restarted; the same tests done before in DL and UL were repeated. This time, a reversal of results was observed, both in DL and UL: in fact this time, thanks to the SF2 higher priority, its throughput got higher, to the detriment of SF1 throughput (and despite of the lower MSTR2 threshold). Figure 7-11 shows the DL case.

The tests were repeated with different Scheduling Types (rtps, e-rtps, nrtps), giving similar results.

founding members

<u>_ 8 ×</u>

Type a question for help

Eile Edit View Picture Tools Help

Microsoft Office 2010

i 🕰 斗 | 🎯 Edit Pictures... | 🖄 Auto Correct 🥛

DL IPER SF1 _ D ×	olocalhost:/home/KIRAN/LOGS FOR PWR CTRL 10JUL2014 _ = ×
File Edit View Terminal Tabs Help	View Terminal Tabs Help
Content DL_PER SF1 D File Edit Yiew Terminal Tabs Help [3] 8.0-9.0 sec 453 KBytes 3.71 Mbits/sec 2.741 ms 35/ 488 (7.2%) [1D] Interval Transfer Bandwidth Jitter Lost/Total Datagrams [3] 9.0-10.0 sec 453 KBytes 3.71 Mbits/sec 2.752 ms 35/ 489 (7.2%) [1D] Interval Transfer Bandwidth Jitter Lost/Total Datagrams [3] 10.0-11.0 sec 453 KBytes 3.71 Mbits/sec 2.824 ms 3/4 487 (7%) [1D] Interval Transfer Bandwidth Jitter Lost/Total Datagrams [3] 12.0-13.0 sec 453 KBytes 3.71 Mbits/sec 2.781 ms 35/ 488 (7.2%) [1D] Interval Transfer Bandwidth Jitter Lost/Total Datagrams [3] 13.0-14.0 sec 453 KBytes 3.71 Mbits/sec 2.781 ms 35/ 489 (7.2%) [1D] Interval Transfer Bandwidth Jitter Lost/Total Datagrams [3] 14.0-15.0 sec 17.85 kBy	<pre>blocalhost:/home/KIRAN/LOGS_FOR_PWR_CTRL_10JUL2014 = = * fiew Terminal Tabs Help al Transfer Bandwidth 132.0 sec 122 KBytes 999 Kbits/sec al Transfer Bandwidth DLIPER SF2</pre>
If 31 25.0-26.0 sec 195 KBvtes 1.60 Mbits/sec 17.349 ms 293/ 488 (60%) □ root@localhost:/home □ DL IPER SF1 □ root@localhost:/home	🖬 root@localhost:/home 💷 DL IPERF SF2
Applications Places System	■ root@rocamost./nome ■ DE IFEKT SF2 ■ Cot@root Thu Jul 10, 2:00 PM 40 >
DL_2SF_DIFF_PRIORTY.png	Zoom: 🤤 ———————————————————————————————————

Figure 7-11: SF2 with higher priority

7.1.3.3.3 Unexpected behaviors/results

None

7.1.3.4 Conclusions and recommendations

The testing allowed verifying that all QoS related requirements are satisfied for different Scheduling Types and for different traffic priorities, in both directions.

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles

7.1.4 Verification Exercise # P2_LAB1_4 Security

7.1.4.1 Verification Exercise Scope

Scope of this test is to verify that after Authentication, Data are properly encrypted, according to the required Private Key Management Protocol.

7.1.4.2 Conduct of Verification Exercise

7.1.4.2.1 Verification Exercise Preparation

The test bed described in Figure 3-2 was used, except the Spectrum Analyser/Signal Generator and Fading Simulator, which were not needed in this test.

7.1.4.2.2 Verification Exercise execution

Step nr.	Action	Action description	PCO (Point of Control and Observation)	Result
1.	Switch on MS			ОК
2.	Switch on BS and ASN- GW/AAA			ОК
3.	Establish a communication and verify that the EAP based authentication method is supported:	With Authentication enabled, valid credentials inserted	R6 i/f with wireshark	ОК
4.	Verify that the used PKM protocol is PKMv2	Authentication has been previously enabled	Internal log	ОК
5.	Verify that all the Encrypted Data Traffic is correctly sent and received without errors due to the application of the Encryption procedure		Internal log	ОК
6.	Verify re-authentication	Forced re- authentication on the	R6 i/f with wireshark	ОК

founding members

www.sesarju.eu

Avenue de Cortenbergh 100 | B -1000 Bruxelles

	ASN-GW/AAA	

7.1.4.2.3 Deviation from the planned activities

None.

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

7.1.4.3 Verification exercise Results

7.1.4.3.1 Summary of Verification exercise Results

ID	Result	Description	When observed ?	Expecte d result	Obtained result	VO
1.	Authentication	Verify that authentication and key exchange steps are present	Step 3	Network entry with authentic ation	ОК	AeroMACS_VO_Interop_11_B
2.	Re-Authentication	Verify the re- authentication procedure	Step 6	Re- Authenti cation procedur e	ОК	AeroMACS_VO_Interop_11_C
3.	РКМ	Verify that the Privacy Key Management Protocols used is PKMv2	Step 4	PKMv2	ОК	AeroMACS_VO_Interop_11_D
4.	Data Msg	Data Msgs have the payload encrypted	Step 5	Encrypte d data payload	ОК	AeroMACS_VO_Interop_11_F

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles

www.sesarju.eu

72 of 184

Edition 00.03.00

7.1.4.3.2 Analysis of Verification Exercise Results

The ASN-GW was configured in order to require Authentication to the MS entering the Network; BS and MS were switched on, and the MS started the Net Entry procedure, that was completed successfully. Concerning the Authentication procedure, Wireshark log in Figure 7-12 shows the "Client Hello" message sent by the BS (125.125.40.32, on behalf of the MS) to the ASN-GW (125.125.40.48) starting the Handshake for Authentication, In particular the picture shows the Cipher Suites supported by the MS. The ASN-GW will then select one of the supported suites in a subsequent "Server Hello" message, containing also the BS Certificate (see Figure 7-13). So it is possible to see that the MS and BS negotiate the AES128 Encryption method for data plane.

▲ security.pcap [Wireshark 1.8.6 (SVN Rev 48142 from /trunk-1.8)]								
File Edit View Go Capture Analyze Statistics Telephony Iools Internals Help								
		- x 2 4	् 🗢 🛸 😜 ዥ 🕹		⊕, ⊖, ∞, 🖾 🕍 🕵 % 🧱			
Filter:			▼ Expr	ession Clea	r Apply Save			
No.	Time	Source	Destination	Protocol	Length Info			
1174	11:30:28.566321	125.125.40.48	125.125.40.60	RADIUS	277 Access-Request(1) (id=1, l=233)			
	5 11:30:28.567130		125.125.40.160	TCP	56 ssh > 59021 [АСК] Seq=31437 Ack=10461 Win=65536 Len=(2		
1176	5 11:30:28.567516	125.125.40.60	125.125.40.48	RADIUS	108 Access-Challenge(11) (id=1, l=64)			
	7 11:30:28.567892		125.125.40.32	WIMAX	<pre>88 AR_EAP_Transfer [Request, TLS EAP (EAP-TLS)] - MSID:</pre>			
1178	3 11:30:28.614654	125.125.40.32	125.125.40.48	WIMAX	130 AR_EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID	:00		
1179	9 11:30:28.615317	125.125.40.48	125.125.40.60	RADIUS	330 Access-Request(1) (id=2, 1=286)			
1180	1180 11:30:28.636275 125.125.40.60 125.125.40.48 RADIUS 1134 Access-challenge(11) (id=2, l=1090)							
1181	1181 11:30:28.637169 125.125.40.48 125.125.40.32 wiMAX 1106 AR_EAP_Transfer [Request, TLS EAP (EAP-TLS)] - MSID:00:							
1182 11:30:28.714497 125.125.40.32 125.125.40.48 WiMAX 74 AR_EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:0(
1183_11:30:28.715108_125.125.40.48125.125.40.60RADTHS274_Access_Request(1)_(id=3, 1=230)								
Handshake Type: Client Hello (1)								
	Length:	: 43						
	Version	n: TLS 1.0 (0x0	301)					
	🖃 Random							
			2, 2014 08:30:35.000					
			37c54fe1d166ae9cf0138	559e7246a(0f714727c305			
		n ID Length: O						
		Suites Length:						
		Suites (2 suit						
			HE_RSA_WITH_AES_128_C					
Cipher suite: TLS_RSA_WITH_AES_128_CBC_SHA (0x002f)								
		sion Methods L						
Compression Methods (1 method) ✓								
			· · · · · · · · · · · · · · · · · · ·					
	01 00 2f 01 00 00 7c 54 fe 1d 16 6a			/+s j8		-		
	71 47 27 c3 05 Of			:s				
	01 00							
						-		
	st of cipher suites supported					_		

Figure 7-12: Cipher Suites supported by MS

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles

www.sesarju.eu

©SESAR JOINT UNDERTAKING, 2014. Created by AENA, AIRBUS, DSNA, EUROCONTROL, INDRA, NATMIG, SELEX ES and THALES for the SESAR Joint Undertaking within the frame of the SESAR Programme co-financed by the EU and EUROCONTROL. Reprint with approval of publisher and the source properly acknowledged.

ecurity.pcap [Wireshark 1.8.6 (SVN Rev 48142 from /trunk-1.8)]							
Eile Edit View Go Capture Analyze Statistics Telephony Iools Internals Help							
84 84 84 84 1							
Filter:		Expr	ession Clear	Apply Save			
No. Time	Source	Destination	Protocol	Length Info			
1174 11:30:28.566321		125.125.40.60	RADIUS	277 Access-Request(1			
1175 11:30:28.567130 125.125.40.48 125.125.40.160 тср 56 ssh > 59021 [Аск] seq=31437 Ack=10461 win=65536 Len=0							
1176 11:30:28.567516 125.125.40.60 125.125.40.48 RADIUS 108 Access-Challenge(11) (id=1, l=64) 💻							
1177 11:30:28.567892 125.125.40.48 125.125.40.32 WMMAX 88 AR_EAP_Transfer [Request, TLS EAP (EAP-TLS)] - MSID:00:							
	1178 11:30:28.614654 125.125.40.32 125.125.40.48 WMAX 130 AR_EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:0(
	1179 11:30:28.615317 125.125.40.48 125.125.40.60 RADIUS 330 Access-Request(1) (id=2, 1=286)						
1180 11:30:28.636275 125.125.125.40.60 125.125.40.48 RADIUS 1134 Access-Challenge(11) (id=2, l=1090)							
1181 11:30:28.637169 125.125.40.48 125.125.40.32 WiMAX 1106 AR_EAP_Transfer [Request, TLS EAP (EAP-TLS)] - MSID:00							
1182 11:30:28.714497 125.125.40.32 125.125.40.48 WiMAX 74 AR_EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:00							
1183 11:30:28.715108 125.125.40.48 125.125.40.60 RADTHS 274 Access-Request(1) (id=3. 1=230)							
Version: TLS 1.0 (0x0301)							
Length: 42 ⊟ Handshake Protocol: Server Hello							
Handshake Type: Server Hello (2) Length: 38							
	: TLS 1.0 (0x0301)						
□ Random	. 125 1.0 (0.0501)						
	nix time: Jul 2.	2014 17:14:20.000	000000 w.	Europe Davlight Time			
	n_bytes: 127a6383a						
	ID Length: 0						
Cipher suite: TLS DHE RSA WITH AES 128 CBC SHA (0X0033)							
Compression Method: null (0)							
Compression Method: Instructory TLSVI Record Layer: Handshake Protocol: Certificate							
Content Tyne: Handshake (22)							
0000 00 04 00 01 00 06	68 05 ca 0c 68 0	0 00 00 08 00	h	h			
0010 45 00 04 42 00 00	40 00 40 11 eb 6		. в. е. е.				
0020 7d 7d 28 20 08 b7			}(0			
Frame (1106 bytes) Reassembled EAP							
O M File: "D:\giulio\SESAR\15.2.7\E	xecution Phase\WA Packet	s: 4220 Displayed: 42 Pro	ofile: Default				

Figure 7-13: "Server Hello" from ASN-GW

After the successful MS authentication, the subsequent phase of Registration started. It is possible to observe in Figure 7-14 that the PKMv2 is used. From this point on, all of the Data exchanged between BS and MS were cyphered, and the proper reception at the addressee was observed.

After the expiration of the AK Lifetime timer, the proper Re-Authentication was observed.

founding members

www.sesarju.eu

🗖 sec	🛿 security.pcap [Wireshark 1.8.6 (SVN Rev 48142 from /trunk-1.8)]								
<u>F</u> ile	Eile Edit View <u>G</u> o <u>C</u> apture <u>A</u> nalyze <u>S</u> tatistics Telephony <u>I</u> ools Internals <u>H</u> elp								
8		- x 2 2 9,	🗢 🔿 🖓 💆		O, O, O, 🖸 👹 🗹 畅 % 🖼				
Filter:			Expre	ession Clea	r Apply Save				
No.	Time	Source	Destination		Length Info				
	38 11:38:58.805076		125.125.40.48	WIMAX	74 AR_EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:	00			
	39 11:38:58.805711		125.125.40.60	RADIUS	274 Access-Request(1) (id=18, 1=230)				
	40 11:38:58.807508		125.125.40.48 125.125.40.32	RADIUS WiMAX	610 Access-Accept(2) (id=18, l=566) 86 AR_EAP_Transfer [Success] - MSID:00:00:77:b6:75:0a, T				
	3242 11:38:58.809057 125.125.40.48 125.125.40.32 WiMAX 151 Key_Change_Directive - MSID:00:00:77:b6:75:0a, TID:0x00 3243 11:38:58.811000 125.125.40.32 125.125.40.48 WiMAX 64 Key_Change_Ack - MSID:00:00:77:b6:75:0a, TID:0x0001								
	3244 11:38:58.829287 125:125:40.100 125:255:255.255 NBNS 94 Name query NB WPAP-00>								
32	324511.38:58.955578 125.125.40.32 125.125.40.48 wiMax 218 MS_Attachmet_Reg - MSID:00:00:77:b6:75:0a, TID:00:002								
32	3246 11:38:58.955948 125.125.40.48 125.125.40.32 WMAX 218 MS_Attachment_Rsp - MSID:00:00:77:b6:75:0a, TD:00x0002								
32	_ 3247 11:38:58.957109 125.125.40.32 125.125.40.48 wiMAX 64 MS_Attachment_Ack – MSID:00:00:77:b6:75:0a, тID:0x0002 🗾								
	Length: 2								
	Value: 1								
Ξ 1		n Complete [Compour	d]						
		ion Complete (17)							
_	Length: 10								
		ion Result - Succes	s						
	Length: 1	ation Result (18)							
	Value: Success	(0)							
F			er						
TLV: <u>PKM2 Message Code - EAP Transfer</u> Type: PKM2 Message Code (134)									
Denoth: 1									
Value: EAP Transfer (18)									
0000	00 04 00 01 00 06	68 05 ca 0c_68 0	00 00 08 00	h	h				
0010	45 00 00 87 00 00	40 00 40 11 ef 1	o 7d 7d 28 30 E.	a. a.		-			
0020	7d 7d 28 20 08 b7	08 b7 00 73 4b c	F 01 01 09 87 }}	(s	к	_			
0030 0040	00 6b 00 00 77 b6 00 1a 00 45 00 19		0 00 01 00 00 .k 0 02 02 00 06	w.u					
0050	00 27 00 05 00 14	<u>64 70 64 45 17 7</u>	5 47 03 69 d3 _ 7	do		-			
) 🗹	Frame (frame), 151 bytes	Packel	s: 4220 Displayed: 42 Pro	file: Default					

Figure 7-14: Privacy Key Management Protocol

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles

📶 secur	ecurity.pcap [Wireshark 1.8.6 (SYN Rev 48142 from /trunk-1.8)]							
<u>Eile E</u> d	<u>File Edit Vi</u> ew <u>Go Capture A</u> nalyze <u>S</u> tatistics Telephony <u>T</u> ools <u>I</u> nternals <u>H</u> elp							
		d x 2 2 9,	⇔ ⇔ 🖓 🛣 🕹		Q, Q, Q, 🖭 👪 🔟 畅 % 🕱			
Filter:			▼ Expre	ssion Clea	r Apply Save			
No.	Time	Source	Destination	Protocol	Length Info			
	3 11:43:56.963714		125.125.40.48	TCP	68 59021 > ssh [АСК] Seq=11533 Ack=236397 Win=65280 Len=0			
	4 11:43:58.295924		255.255.255.255	DHCP	620 DHCP Discover - Transaction ID 0x62aba9c9			
	5 11:43:58.295962		125.125.40.48	UDP	648 Source port: 44088 Destination port: cbt			
	6 11:43:58.296599		125.125.40.61	DHCP	352 DHCP Offer - Transaction ID 0x62aba9c9			
	7 11:43:58.375878		255.255.255.255	DHCP	620 DHCP Request - Transaction ID 0x62aba9c9			
	8 11:43:58.375903		125.125.40.48	UDP	648 Source port: 44088 Destination port: cbt			
	9 11:43:58.376947		125.125.40.61	DHCP	352 DHCP ACK - Transaction ID 0x62aba9c9			
	4200 11:43:58.377032 125.125.40.48 125.125.40.48 UDP 2044 Source port: upnotifyp Destination port: ddi-udp-1							
	4201 11:43:58.377046 125.125.40.48 125.125.40.48 UDP 149 Source port: upnotifyp Destination port: ddi-udp-1							
	4202 11:43:58.377082 125.125.40.48 125.125.40.60 RADIUS 244 Accounting-Request (4) (id=27, 1=200)							
	4203 11:43:58.377761 125.125.40.60 125.125.40.48 RADIUS 64 Accounting-Response(5) (id=27, l=20)							
	4204 11:43:58.756853 125.125.40.48 125.125.40.160 SSHv2 2976 Encrypted response packet len=2920							
	4205 11:43:58.758337 125.125.40.160 125.125.40.48 TCP 62 59021 > ssh [ACK] seq=11533 Ack=239317 win=65536 Len=0 4206 11:43:58.758346 125.125.40.48 125.125.40.160 SSHv2 4436 Encrypted response packet len=4380							
			125.125.40.160	SSHV2	4436 Encrypted response packet len=4380			
	7 11:43:58.759775		125.125.40.48	TCP	62 59021 > ssh [ACK] Seq=11533 Ack=242237 Win=65536 Len=0			
	4208 11:43:58.759783 125.125.40.48 125.125.40.160 SSHv2 1516 Encrypted response packet len=140							
4200 11 • 42 • 59 750795 125 125 40 49 125 125 40 160 55 ₩/2 294 Encrymtad response packet lon-229								
⊕ Frame 4199: 352 bytes on wire (2816 bits), 352 bytes captured (2816 bits)								
⊞ Frame 4199: 352 bytes on wire (2816 bits), 352 bytes captured (2816 bits) ⊞ Linux cooked capture								
⊞ Linux cooked capture ⊡ Internet Protocol Version 4, Src: 125.125.40.48 (125.125.40.48), Dst: 125.125.40.32 (125.125.40.32)								
	⊡ Internet Protocol Version 4, Src: 125.125.40.48 (125.125.40.48), Dst: 125.125.40.32 (125.125.40.32) Version: 4							
	Version: 4 Header length: 20 bytes							
Header Tength: 20 bytes ⊞ Differentiated Services Field: 0x00 (DSCP 0x00: Default: ECN: 0x00: Not-ECT (Not ECN-Capable Transport))								
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00: Not-ECT (Not ECN-Capable Transport)) Total Length: 336								
Total Length: 336 Identification: 0xd431 (54321)								
	I dentification: UX0431 (54321)							
0000	00 04 00 01 00 06	68 05 ca 0c 68 0	0 00 00 08 00	h				
		.0000 ff 2f 9b0 0800 0000 000		.P.1/ (
	/a /a 28 20 20 00 d4 31 00 00 ff 11			(
0040	00 43 00 44 01 20	16 1b 02 01 06 0	0 62 ab a9 c9 .c.	.D	b			
0050	<u></u>	COO OO 74 74 78 7	<u> </u>	11	<i>i</i>			
💛 💆 F	ile: "D:\giulio\SESAR\15.2.7\	Execution Phase\ Packet	s: 4220 Displayed: 42 Prof	hie: Default				
			Charles and the second		ass after Authentication: DUCP			

Figure 7-15: First cyphered messages after Authentication: DHCP

7.1.4.4 Conclusions and recommendations

It was verified that, after Authentication, Data are properly encrypted, according to the required Private Key Management Protocol.

7.1.5 Verification Exercise # P2_LAB1_5 Radio Characteristic Requirements

7.1.5.1 Verification Exercise Scope

Scope of this Test is to estimate the tolerated co-channel OFDMA signal and the capability to recover and operate correctly when the co-channel is removed.

7.1.5.2 Conduct of Verification Exercise

7.1.5.2.1 Verification Exercise Preparation

The test bed described in Figure 3-2 was arranged.

7.1.5.2.2 Verification Exercise execution

www.sesarju.eu

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles

Step nr.	Action	Action description (if needed)	PCO (Point of Control and Observation)	Result
1.	Switch on MS			ОК
2.	Switch on BS (BS1)	BS switched on with PTX = 30 dBm		ОК
3.	Verify the frequency filter for each channel of the BS prototype			ОК
4.	Verify that MS connects successfully		Mngt PCs connected to MS and BS	ОК
5.	Measure RSSI level received at MS		Mngt PCs connected to MS	ОК
6.	Switch on the interfering device at the same frequency as MS/BS, applying the maximum possible attenuation	As BS2 TX power is equal to 30 dBm, an initial attenuation equal to 130 dB was set	Use another BS (BS2)	ОК
7.	Gradually reduce the attenuation for BS2, until the MS loses the link with BS1		Variable attenuator	ОК
8.	Measure the attenuation that caused the link loss		Variable attenuator	ОК
9.	Calculate the cochannel interference that caused the loss			ОК
10.	Raise again the attenuation affecting the interfering device		Variable attenuator	ОК
11.	Verify that the MS registers again on BS1		Mngt PC connected to BS	ОК

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles

7.1.5.2.3 Deviation from the planned activities

None.

founding members

े 🍭

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

7.1.5.3 Verification exercise Results

7.1.5.3.1 Summary of Verification exercise Results

ID	Result	Description	When observed?	Expected result	Obtained result	VO
1	Frequency filter	Verify the frequency filter for each channel of the BS prototype	Step 3	Measurement of the frequency filter for each channel	ОК	AeroMACS_VO_RFReal_01_B
2	Co-Channel	Test the tolerated co- channel OFDMA signal	Step 9	Co-channel rejection capability	ОК	AeroMACS_VO_RF_04_A

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles

www.sesarju.eu

79 of 184

Edition 00.03.00

The frequency filter for each channel of the BS prototype was verified. Figure 7-16 shows an example for the 5113.5 MHz channel.

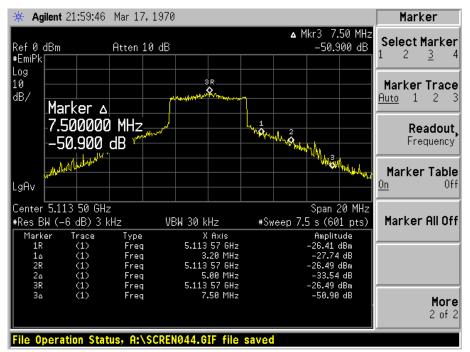


Figure 7-16: Frequency filter at 5113.5 MHz

Then, the MS was switched on and executed the complete Net Entry. The received power level received by the MS was measured as -70 dBm. (BS1 TX Power = 30 dBm and total attenuation = 100 dB).

All the steps described in 7.1.5.2.2 were executed, and it was verified that the MS lost the link when the attenuation affecting BS2 transmission was 10 dB lower than the one affecting BS1 transmission. This indicated a co-channel rejection capability estimate equal to 10 dB.

7.1.5.3.3 Unexpected behaviors/results

None

7.1.5.4 Conclusions and recommendations

The testing allowed proper estimation of the tolerated co-channel OFDMA signal and the capability to recover and operate correctly when the co-channel is removed.

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

©SESAR JOINT UNDERTAKING, 2014. Created by AENA, AIRBUS, DSNA, EUROCONTROL, INDRA, NATMIG, SELEX ES and THALES for the SESAR Joint Undertaking within the frame of the SESAR Programme co-financed by the EU and EUROCONTROL. Reprint with approval of publisher and the source properly acknowledged.

7.1.6 Verification Exercise # P2_LAB1_6 Limited IOT Requirements

7.1.6.1 Verification Exercise Scope

The scope of this Exercise is verifying basic interoperability capability between prototypes from Selex ES and Thales. The verification scenario in this section is limited to one BS with a static MS to check that the various steps of the Initial Network Entry are properly executed.

7.1.6.2 Conduct of Verification Exercise

7.1.6.2.1 Verification Exercise Preparation

The Test Bed used in the SELEX ES Labs for the Air Interface Limited Interoperability Tests is the same reported in Figure 3-2, in which the Mobile Station was a Thales Mobile Station. In particular:

- the ASN-GW used was a COTS Aricent Wing 4.2.0 ASN-GW, compatible with WMF NWG 1.2.
- the AAA Server used was FreeRADIUS 2.1.3.1 (see [4] for details).
- Wireshark 1.8.6 was used to monitor the messages exchange between the Thales MS and the ASN-**GW/AAA Server**

7.1.6.2.2 Verification Exercise execution

Step nr.	Action	Action description (if needed)	PCO (Point of Control and Observation)	Result
1.	Switch on MS			
2.	Switch on BS			
3.	Verify that MS starts off with the scanning of the spectrum. Verify that the correct expected broadcast messages are exchanged, and the preamble is correctly decoded by the MS.		Mngt PCs connected to MS and BS	ОК
4.	Verify that, after successful DL Synchronization, MS and BS exchanges the proper RNG-REQ/RNG- RSP messages, completing the Initial		Mngt PCs connected to MS and BS	ОК

founding members

www.sesarju.eu

Avenue de Cortenbergh 100 | B -1000 Bruxelles

	Ranging		
5.	Verify the correct exchange of Service Basic Capability informations	Mngt PCs connected to MS and BS	ОК
6.	Verify the Security associations and key exchange that concern only to the "air interface" as part of the MS Authentication and Authorization procedures	Mngt PCs connected to MS and BS	NOK
7.	Verify that BS and MS successfully conclude the registration procedure	Mngt PCs connected to MS and BS	NT

7.1.6.2.3 Deviation from the planned activities

It was not possible to complete the last step of the test: step number 7 above as authentication/authorization in step 6 failed.

The reasons for the MS Certificate Authentication failure by the AAA Server were investigated by Selex ES and Thales teams, for more information about the results of this investigation refer to 7.1.6.3.3.

7.1.6.3 Verification exercise Results

7.1.6.3.1 Summary of Verification exercise Results

ID	Result	Description	When observed?	Expected result	Obtained result	VO
1	Scanning and synchronization	Verify that scanning and synchronization are correctly performed	Step 3	Synchronization	ОК	AeroMACS_VO_Limited Interop_A
2	Initial Ranging	Verify that Initial Ranging is correctly performed	Step 4	Initial ranging executed	ОК	AeroMACS_VO_Limited Interop_B
3	Basic Capabilities Negotiation	Verify the correct exchange of SBC information	Step 5	SBC_REQ/SBC _RSP properly exchanged	ОК	AeroMACS_VO_Limited Interop_C
4	Admission control	Verify that Authentication and Authorization procedures are correctly executed on MS and BS side	Step 6	Verify that MS is authenticated by the Ground System	NOK	AeroMACS_VO_Limited Interop_D
5	Registration	Verify that BS and MS	Step 7	Verify that BS and MS	NT	AeroMACS_VO_Limited

founding members

©SESAR JOINT UNDERTAKING, 2014. Created by AENA, AIRBUS, DSNA, EUROCONTROL, INDRA, NATMIG, SELEX ES and THALES for the SESAR Joint Undertaking within the frame of the SESAR Programme co-financed by the EU and EUROCONTROL. Reprint with approval of publisher and the source properly acknowledged.

SUCCE	essfully	successfully	Interop_E
concl	ude the	conclude the	
regis	tration	registration	
proce	edure	procedure	

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles Www.sesarju.eu

84 of 184

7.1.6.3.2 Analysis of Verification Exercise Results

The Thales MS was switched on and started the Spectrum Scanning. Then the Selex BS was switched on, and started transmitting broadcast information.

In order to check the proper execution of the various net Entry phases, the messages exchange between MS and ASN-GW/AAA Server was monitored, using Wireshark.

Figure 7-17 shows the sequence of Pre-attachment messages between MS (IP address = 125.125.40.32) and ASN-GW (IP address = 125.125.40.48).

The first MS_PreAttachment Req message from the MS to the ASN-GW indicates that the MS has successfully executed the Scanning/Synchronization and Initial Ranging Phases (Result IDs 1 and 2), and sent the SBC-REQ to the BS, starting the Basic Capabilities Negotiation.

The subsequent PreAttachment Response and Acknowledgement testify the completion of the Basic Capabilities exchange, during which the MS and BS negotiate the Authorization Policy (PKMv2, EAP_TLS).

2788 13:31:00.490814 125:125:40.60 125:125:40.60 125:125:40.60 2789 13:31:00.543762 125:125:40.60 125:125:40.60 125:125:40.60 126:126:23:1-632) 2790 13:31:00.544153 125:125:40.60 125:125:40.60 125:125:40.60 126:126:23:1-632) 2790 13:31:00.544153 125:125:40.60 125:125:40.48 WMMX 88 AR_EAP_Transfer [Regnest, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TL 2791 13:31:00.644551 125:125:40.60 125:125:40.60 RADIUS 676 Access-Reguest(1) (1d=24, 1=632) 2793 13:31:00.64350 125:125:40.48 125:125:40.48 MMX 86 AR_EAP_Transfer [Failure] - MSID:6c:ad:ef:10:08:03, TLD:0X000b 2794 13:31:00.64350 125:125:40.48 125:125:40.48 MMX 86 AR_EAP_Transfer [Failure] - MSID:6c:ad:ef:10:08:03, TLD:0X000b 2794 13:31:00.64350 125:125:40.48 125:125:40.52 WMMX 86 AR_EAP_Transfer [Failure] - MSID:6c:ad:ef:10:08:03, TLD:0X0001 2799 13:31:00.64350 125:125:40.48 125:125:40.48 WMMX 78 MetExit_MS_State_Change_Reg - MSID:6c:ad:ef:10:08:03, TLD:0X0001 2799 13:31:03.69050 Intel_Oc:68:00 ARP 44 No has 125:125:40.60 Intel_Oc:68:00 2799 13:31:03.590512 125:125:40.48 WMMX 64	Image Image <th< th=""><th>lie Edit</th><th>View Go Canture</th><th></th><th>Rev 48142 from /trunk-1.8)</th><th>1</th><th></th></th<>	lie Edit	View Go Canture		Rev 48142 from /trunk-1.8)	1	
Description Description Description Description 2789 13:31:00.490214 125:125:40.48 125:125:40.60 RADUS 676 Access-Request() (1d=223, 1-622) 2789 13:31:00.490214 125:125:40.60 RADUS 676 Access-Acquest() (1d=223, 1-622) 2790 13:31:00.44751 125:125:40.60 RADUS 676 Access-Acquest() (1d=223, 1-622) 2791 13:31:00.44755 125:125:40.32 WiMAX 88 AR_EAP_Transfer [Request, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TD 2792 13:31:00.647551 125:125:40.60 RADUS 676 Access-Acquest() (1d=224, 1-622) 2793 13:31:00.648750 125:125:40.60 RADUS 676 Access-Acquest() (1d=224, 1-622) 2794 13:31:00.648750 125:125:40.32 WiMAX 80 AR_EAP_Transfer [Falure] - MSID:6c:ad:ef:10:08:03, TD:0X000b 2796 13:31:00.648750 1125:125:40.48 WiMAX 80 AR_EAP_Transfer [Falure] - MSID:6c:ad:ef:10:08:03, TD:0X000b 2796 13:31:00.648750 1125:125:40.48 WiMAX 80 AR_EAP_Transfer [Falure] - MSID:6c:ad:ef:10:08:03, TD:0X0001 2796 13:31:03.690414 125:125:40.48 WiMAX 80 AR_EAP_Transfer [Falure] - MSID:6c:ad:ef:10:08:03, TD:0X0001 <	Image Determinant Clear Apply Seve 1 Determinant Clear Apply Seve International Apple 1 Seve 2788 13331:100.490814 125.125.40.48 125.125.40.48 RADIUS 676 Access-challenge(11) ((14:22), 1-632) T-632) 2788 13331:00.44755 125.125.40.48 125.125.40.48 NADIUS 126 Access-challenge(11) ((14:22), 1-632) T-830:66:14:67:10:08:03, TD: 2791 13331:00.644755 125.125.40.48 125.125.40.48 WMAX 88 AR_LAR_Transfer [Respons, TLS EAP (EAP-TLS)] - MSID:66:14:67:10:08:03, TD: 7293 1331:00.644759 125.125.40.48 125.125.40.48 125.125.40.48 125.125.40.48 125.125.40.48 125.125.40.48 125.125.40.48 125.125.40.48 125.125.40.48 125.125.40.48 125.125.40.48 125.125.40.48 125.125.40.48 125.125.40.48 125.125.40.48 125.125.40.48 125.125.40.48 125.125.40.60 125.125.40.60 126.125.125.40.60 125.125.40.60 126.125.125.40.60 125.125.40.60 125.125.40.60 125.125.40.60 126.125.125.40.60 125.125.40.60 126.125.125.40.60 125.125.40.60 127.125.125.40.60 125.125.40.60				-		Q. Q. 19 M. 19 19 19 19 19 19 19 19 19 19 19 19 19
Image Description Proced Length Integr 2788 13:31:00.490814 125:125:40.48 125:125:40.60 Proced Length Line Line <td< th=""><th>Image Sards Integration Integration Integration 2788 133:10:00.490814 125.125.40.48 RADIUS 676 Access-challengeust(1) (1d-223, 1-632) FRADUS 2788 133:10:00.490814 125.125.40.48 RADIUS 676 Access-challengeust(1) (1d-223, 1-632) 2790 133:31:00.544755 125.125.40.48 125.125.40.48 RADIUS 676 Access-challenge(11) (1d-221, 1-632) 2790 133:31:00.644755 125.125.40.48 125.125.40.48 RMMAX RA R_LAP_Transfer [Respons, TLS EAP (EAP-TLS)] - MSIDIGC:13d:ef:10:08:03, TID:0793 13:31:00.648755 125.125.40.48 RADIUS 676 Access-challenge(11) (1d-224, 1-622) 2793 13:31:00.648750 125.125.40.48 125.125.40.48 RADIUS 676 Access-challenge(11) (1d-224, 1-622) 2794 13:31:00.648750 125.125.40.48 125.125.40.48 RADIUS 676 Access-challenge(11) (1d-224, 1-62) 2795 13:31:00.648750 125.125.40.48 WMAX 78 NetKitLens_State NSIDIG:13d:ef:10:08:03, TID:0X0001 2795 13:31:00.648750 125.125.40.48 WMAX 78 NetKitLens_State NSIDIG:13d:ef:10:08:03, TID:0X0001 2795 13:31:00.648750 125.125.40.48 WMAX 78 NetKitLens_State NSIDIG:13d:15:10:08</th><th>ilter:</th><th><u> </u></th><th></th><th></th><th></th><th></th></td<>	Image Sards Integration Integration Integration 2788 133:10:00.490814 125.125.40.48 RADIUS 676 Access-challengeust(1) (1d-223, 1-632) FRADUS 2788 133:10:00.490814 125.125.40.48 RADIUS 676 Access-challengeust(1) (1d-223, 1-632) 2790 133:31:00.544755 125.125.40.48 125.125.40.48 RADIUS 676 Access-challenge(11) (1d-221, 1-632) 2790 133:31:00.644755 125.125.40.48 125.125.40.48 RMMAX RA R_LAP_Transfer [Respons, TLS EAP (EAP-TLS)] - MSIDIGC:13d:ef:10:08:03, TID:0793 13:31:00.648755 125.125.40.48 RADIUS 676 Access-challenge(11) (1d-224, 1-622) 2793 13:31:00.648750 125.125.40.48 125.125.40.48 RADIUS 676 Access-challenge(11) (1d-224, 1-622) 2794 13:31:00.648750 125.125.40.48 125.125.40.48 RADIUS 676 Access-challenge(11) (1d-224, 1-62) 2795 13:31:00.648750 125.125.40.48 WMAX 78 NetKitLens_State NSIDIG:13d:ef:10:08:03, TID:0X0001 2795 13:31:00.648750 125.125.40.48 WMAX 78 NetKitLens_State NSIDIG:13d:ef:10:08:03, TID:0X0001 2795 13:31:00.648750 125.125.40.48 WMAX 78 NetKitLens_State NSIDIG:13d:15:10:08	ilter:	<u> </u>				
2789 1331:00.490614 123.123.40.40 123.123.40.00	2788 13:1:10.49044 12:1:2:10:40 F00105 F007 ACCESS-FREQUES(L) (10:2:3; H0:02) F00105 F007 ACCESS-FREQUES(L) (10:2:4; H0:02) F00105 F00105 <th>. 1</th> <th>lime</th> <th>Source</th> <th>Destination</th> <th>Protocol</th> <th>Lenath (Info</th>	. 1	lime	Source	Destination	Protocol	Lenath (Info
2789 13:11:00.543762 125.125.40.60 125.125.40.48 PADIUS 126 Access-challenge(11) (1d+223, 1-82) 2790 13:11:00.544153 125.125.40.48 125.125.40.48 WiMAX 88 AR_EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TJ 2792 13:11:00.643753 125.125.40.48 125.125.40.48 WiMAX 474 AR_EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TJ 2793 13:11:00.643763 125.125.40.60 125.125.40.48 RABIUS 126 Access-challenge(11) (1d+224, 1-82) 2794 13:11:00.648480 125.125.40.48 RADIUS 126 Access-challenge(11) (1d+224, 1-82) 2794 13:11:00.648480 125.125.40.48 RADIUS 126 Access-challenge(11) (1d+224, 1-82) 2795 13:11:00.648480 125.125.40.48 RADIUS 126 Access-challenge(11) (1d+224, 1-82) 2795 13:11:00.648450 125.125.40.48 RADIUS 126 Access-challenge(11) (1d+224, 1-82) 2796 13:31:00.648450 125.125.40.48 RADIUS 126 Access-challenge(11) (1d+224, 1-82) 2796 13:31:00.648450 125.125.40.48 RADIUS 126 Access-challenge(11) (1d+224, 1-82) 2796 13:31:00.648450 125.125.40.48 RADIUS 126 Access-challenge(11) (1d+224, 1-82) 2796 13:31:03.65914 125.125.40.48	2789 13:31:00.543762 125.125.40.60 125.125.40.48 RADIUS 126 Access-challenge(1) (id=223, 1-82) 2790 13:31:00.544755 125.125.40.32 125.125.40.48 WMAX 88 AR_EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TDD 2791 13:31:00.64755 125.125.40.48 125.125.40.48 MMAX 474 AR_EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TDD:0000b 2793 13:31:00.648785 125.125.40.48 125.125.40.48 125.125.40.48 125.125.40.49 2794 13:31:00.688786 125.125.40.48 125.125.40.48 125.125.40.48 126.100:08:03, TDD:0000b 2795 13:31:00.688506 125.125.40.48 125.125.40.48 WMAX 78 NETEXTLMS_State_Change.Rsp - MSID:6c:ad:ef:10:08:03, TDD:0000b 2797 13:31:03.590506 Intel_jOc:68:00 APP 44 Who has 125.125.40.40 TDD:0001b 2798 13:31:03.679571 125.125.40.48 WMAX 87 MS_PFARTACHMERT_Rsq - MSID:6c:ad:ef:10:08:03, TDD:00001b 2791 13:31:03.69144 125.125.40.48 WMAX 87 MS_PFARTACHMERT_Rsq - MSID:6c:ad:ef:10:08:03, TDD:00001b 2799 13:31:03.69142 125.125.40.48 WMAX 87 MS_PFARTACHMERT_Rsq - MSID:6c:ad:ef:10:08:03, TDD:00001b 2801 13:31:03.6917921 125.125.40.48 WMAX 87 MS_PF			125.125.40.32		6.11-0407	979 AA_EAF_HIGHTER [KeSponse, HESIEAF (EAF-TES)] - MSID.OC.GU.ET.ID.00.03, HID. 676 Accord Request(1) (54-332, 1-623)
2790 13:31:00.54413 125.125.40.48 125.125.40.32 WiMAX 88 AR_EAP_Transfer [Request, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TJ 2792 13:31:00.64559 125.125.40.48 125.125.40.60 PADIUS 676 Access-Request(1) (id=224, 1=632) 2793 13:31:00.64559 125.125.40.60 125.125.40.60 PADIUS 126 Access-Request(1) (id=24, 1=632) 2793 13:31:00.64580 125.125.40.61 125.125.40.32 WiMAX 86 AR_EAP_Transfer [Failure] - MSID:6c:ad:ef:10:08:03, TD:0X000b 2795 13:31:00.64580 125.125.40.48 125.125.40.32 WiMAX 114 MEExit_MS_State_Change_Reg - MSID:6c:ad:ef:10:08:03, TD:0X000b 2796 13:31:00.64580 125.125.40.48 125.125.40.48 WiMAX 78 MEExit_MS_State_Change_Reg - MSID:6c:ad:ef:10:08:03, TD:0X000b 2797 13:31:00.64580 17t=10c:68:00 ARP 44 Who has 125.125.40.60 Ttel:MS_State_Change_Reg - MSID:6c:ad:ef:10:08:03, TD:0X000l 2798 13:31:03.59930 Intel_0c:68:00 ARP 44 Who has 125.125.40.607 Ttel:MS_State_Change_Reg - MSID:6c:ad:ef:10:08:03, TD:0X000l 2798 13:31:03.59931 125.125.40.48 125.125.40.48 WiMAX 78 MEExit_MS_State_Change_Reg - MSID:6c:ad:ef:10:08:03, TD:0X000l 2799 13:31:03.59931 Intel_0c:68:00 ARP 44 Who has 125.125.40.607 Ttel:MS_State_Change_Reg - MSID:6c:ad:ef:10:08:03, TD:0X000l 2798 13:31:03.679571 125.125.40.32 125.125.40.48 WiMAX 95 MS_PreAttactment_Reg - MSID:6c:ad:ef:10:08:03, TD:0X000l 2801 13:31:03.679571 125.125.40.48 125.125.40.32 WiMAX 95 MS_PreAttactment_Reg - MSID:6c:ad:ef:10:08:03, TD:0X000l 2801 13:31:03.68094 125.125.40.48 125.125.40.32 WiMAX 95 MS_PreAttactment_Ack - MSID:6c:ad:ef:10:08:03, TD:0X000l 2803 13:31:03.68094 125.125.40.48 125.125.40.48 WiMAX 92 AR_EAP_Transfer [Response, Identity] - MSID:6c:ad:ef:10:08:03, TD:0X000l 2803 13:31:03.800978 125.125.40.48 125.125.40.48 WiMAX 92 AR_EAP_Transfer [Response, Identity] - MSID:6c:ad:ef:10:08:03, TD:0X000l 2804 13:31:03.80094 125.125.40.48 125.125.40.48 WiMAX 92 AR_EAP_Transfer [Response, Identity] - MSID:6c:ad:ef:10:08:03, TD:0X000l 2805 13:31:03.80094 125.125.40.48 125.125.40.48 WiMAX 142 AR EAP Transfer [Response, ILS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TD:0X000l	2790 13:31:00.544153 125.125.40.48 125.125.40.32 wimax 88 are_ransfer [Request, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TLD: 2791 13:31:00.644759 125.125.40.48 125.125.40.48 MMAX 47 4 are_EAP_transfer [Request, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TLD: 2793 13:31:00.643759 125.125.40.48 125.125.40.00 125.125.40.48 125.125.40.70 2793 13:31:00.643759 125.125.40.48 125.125.40.32 wimax 80 are_EAP_transfer [Failure] - MSID:6c:ad:ef:10:08:03, TLD:0X000b 2793 13:31:00.684350 125.125.40.48 125.125.40.48 vimax 80 are_EAP_transfer [Failure] - MSID:6c:ad:ef:10:08:03, TLD:0X000b 2793 13:31:00.684353 125.125.40.32 vimax 80 are_EAP_transfer [Failure] - MSID:6c:ad:ef:10:08:03, TLD:0X000b 2793 13:31:03.589050 triel_oc:68:00 APP 44 who has 125.125.40.60 81 d8:30:62:44:f6:02 2793 13:31:03.69741 125.125.40.48 vimax 78 mEtherLament.Agp - MSID:6c:ad:ef:10:08:03, TLD:0X0001 2801 13:31:03.699751 125.125.40.48 125.125.40.43 wimax 87 mEtherLament.Agp - MSID:6c:ad:ef:10:08:03, TLD:0X0001 100:0X0001 2801 13:31:03.600761 125.125.40.48 125.125.40.48 wimax 87 mEtherLament.Agp - MSID:6c:ad:ef:10:08:03, TLD:0X0001 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
2792 13:31:00.645591 125.125.40.48 125.125.40.60 PADIUS 076 Access-Request(1) (id=22, 1-632) 2793 13:31:00.638785 125.125.40.60 125.125.40.32 WiMAX 86 AR_EAP_TRANSFE [Failure] - MSID:6c:ad:ef:10:08:03, TID:0X000b 2795 13:31:00.638450 125.125.40.48 125.125.40.32 WiMAX 114 NetX:tLMS.State_change.Req - MSID:6c:ad:ef:10:08:03, TID:0X000l 2796 13:31:00.638550 Intel_oc:68:00 ARP 44 who has 125.125.40.60 PADIUS 125.125.40.48 2797 13:31:00.63850 Intel_oc:68:00 ARP 44 who has 125.125.40.60 is at d8:30:62:ad:ef:10:08:03, TID:0X000l 2797 13:31:03.590630 Apple_ad:ef:02 APP 44 who has 125.125.40.60 is at d8:30:62:ad:ef:10:08:03, TID:0X000l 2798 13:31:03.699701 125.125.40.48 125.125.40.48 WiMAX 87 MS_PreAttachment_Req - MSID:6c:ad:ef:10:08:03, TID:0X000l 2800 13:31:03.699701 125.125.40.48 125.125.40.48 WiMAX 95 MS_PreAttachment_Req - MSID:6c:ad:ef:10:08:03, TID:0X000l 2801 13:31:03.699701 125.125.40.48 125.125.40.48 WiMAX 95 MS_PreAttachment_ARG - MSID:6c:ad:ef:10:08:03, TID:0X000l 2801 13:31:03.699791 125.125.40.48 125.125.40.48 WiMAX 95 MS_PreAttachment_ARG - MSID:6c:ad:ef:10:08:03, TID:0X000l 2801 13:31:03.699791 125.125.40.48 125.125.40.48 WiMAX 95 MS_PreAttachment_ARG - MSID:6c:ad:ef:10:08:03, TID:0X000l 2801 13:31:03.699791 125.125.40.48 125.125.40.48 WiMAX 92 AR_EAP_TRANSFE [Response, Identity] - MSID:6c:ad:ef:10:08:03, TID:0X000l 2801 13:31:03.809781 125.125.40.48 125.125.40.48 WiMAX 92 AR_EAP_TRANSFE [Response, Identity] - MSID:6c:ad:ef:10:08:03, TID:0X000l 2801 13:31:03.809782 125.125.40.48 125.125.40.48 WiMAX 92 AR_EAP_TRANSFE [Response, Identity] - MSID:6c:ad:ef:10:08:03, TID:0X000l 2801 13:31:03.809782 125.125.40.48 125.125.40.48 WiMAX 92 AR_EAP_TRANSFE [Request] (Id=225, I=23) 2801 13:31:03.809782 125.125.40.48 125.125.40.48 WiMAX 92 AR_EAP_TRANSFE [Request] (Id=225, I=23) 2801 13:31:03.809782 125.125.40.48 125.125.40.48 WiMAX 124 AR EAP TRANSFE [Request] (Id=225, I=23) 2801 13:31:03.801084 125.125.40.48 125.125.40.48 WiMAX 142 AR EAP TRANSFE [Request, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TI 10xx conke	2792 13:31:00.645950 125.125.40.48 125.125.40.60 PADIUS 676 Access-Request (1) (id=224, 1=632) 2794 13:31:00.684580 125.125.40.60 125.125.40.32 wiMAX 86 REAP_TRANSFER [Failure] - MSID:6ctad:ef:10:08:03, TID:0X000b 2795 13:31:00.684581 125.125.40.48 125.125.40.32 wiMAX 114 NEEXiL_MS_State_change_Rep - MSID:6ctad:ef:10:08:03, TID:0X000l 2795 13:31:00.684581 125.125.40.48 125.125.40.48 wiMAX 78 NEEXiL_MS_State_change_Rep - MSID:6ctad:ef:10:08:03, TID:0X000l 2795 13:31:00.684581 125.125.40.48 125.125.40.48 wiMAX 78 NEEXiL_MS_State_change_Rep - MSID:6ctad:ef:10:08:03, TID:0X000l 2795 13:31:00.684581 125.125.40.48 125.125.40.48 wiMAX 78 NEEXiL_MS_State_change_Rep - MSID:6ctad:ef:10:08:03, TID:0X000l 2797 13:31:03.590320 Apple_a4:1f:09 2798 13:31:03.590320 Apple_a4:1f:09 2798 13:31:03.697971 125.125.40.48 125.125.40.48 wiMAX 95 MS_PreAttachment_Rep - MSID:6ctad:ef:10:08:03, TID:0X000l 2801 13:31:03.6979142 125.125.40.48 125.125.40.48 wiMAX 95 MS_PreAttachment_Asp - MSID:6ctad:ef:10:08:03, TID:0X000l 2801 13:31:03.68797 125.125.40.48 125.125.40.28 wiMAX 87 MR_SPREAttachment_Asp - MSID:6ctad:ef:10:08:03, TID:0X000l 2801 13:31:03.68794 125.125.40.48 125.125.40.48 wiMAX 97 MR_SPREAttachment_Asp - MSID:6ctad:ef:10:08:03, TID:0X000l 2801 13:31:03.809763 125.125.40.48 125.125.40.08 ADIUS 274 Access-Request (1) (id=25, 1=230) 2805 13:31:03.80964 125.125.40.48 125.125.40.28 wiMAX 98 AR_EAP_TRANSFE [Request, I Gentity] - MSID:6ctad:ef:10:08:03, TID:0X000l 2807 13:31:03.80064 125.125.40.48 125.125.40.28 wiMAX 88 AR_EAP_TRANSFE [Request, TLS EAP (EAP-TLS)] - MSID:6ctad:ef:10:08:03, TID:0X000l 2807 13:31:03.80064 125.125.40.48 125.125.40.28 wiMAX 88 AR_EAP_TRANSFE [Request, TLS EAP (EAP-TLS)] - MSID:6ctad:ef:10:08:03, TID:0X000l 2807 13:31:03.80064 125.125.40.32 125.125.40.32 wiMAX 88 AR_EAP_TRANSFE [Request, TLS EAP (EAP-TLS)] - MSID:6ctad:ef:10:08:03, TID:0X001 2807 13:31:03.80078 125.125.40.32 125.125.40.32 wiMAX 88 AR_EAP_TRANSFE [Request, TLS EAP (EAP-TLS)] - MSID:6ctad:ef:10:08:03, TID:0X001 2807 13:31:03.8						88 AR_EAP_Transfer [Request, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:0
2793 13:31:00.683785 125.125.40.60 125.125.40.48 PADIUS 126 Access-challenge(11) (1d-224, 1=82) 2794 13:31:00.684850 125.125.40.48 125.125.40.32 wiMax 86 Apter Transfer [Failure] - MSID:6c:ad:ef:10:08:03, TID:0x0001 2795 13:31:00.684850 125.125.40.48 125.125.40.32 wiMax 78 NetExit_MS_state_change_Reg - MSID:6c:ad:ef:10:08:03, TID:0x0001 2797 13:31:00.684850 1125.125.40.32 125.125.40.48 wiMax 78 NetExit_MS_state_change_Reg - MSID:6c:ad:ef:10:08:03, TID:0x0001 2799 13:31:03.590450 Intel_oc:68:00 APP 44 who has 125.125.40.60 rel1125.125.40.48 2799 13:31:03.50930 Apple_a4:fc:92 APP 44 who has 125.125.40.60 is at d8:30:62:a4:fc:92 2799 13:31:03.67971 125.125.40.32 125.125.40.48 wiMax 74 Ms_PreAttachment_Reg - MSID:6c:ad:ef:10:08:03, TID:0x0001 2800 13:31:03.67971 125.125.40.48 125.125.40.32 wiMax 64 Ms_PreAttachment_Reg - MSID:6c:ad:ef:10:08:03, TID:0x0001 2801 13:31:03.684984 125.125.40.32 125.125.40.32 wiMax 64 Ms_PreAttachment_Reg - MSID:6c:ad:ef:10:08:03, TID:0x0001 2801 13:31:03.684984 125.125.40.32 125.125.40.32 wiMax 95 Ms_PreAttachment_Reg - MSID:6c:ad:ef:10:08:03, TID:0x0001 2801 13:31:03.680971 125.125.40.32 125.125.40.32 wiMax 92 Apter_transfer [Request, Identity] - MSID:6c:ad:ef:10:08:03, TID:0x0001 2801 13:31:03.809763 125.125.40.48 125.125.40.48 wiMax 92 Apter_transfer [Request, Identity] - MSID:6c:ad:ef:10:08:03, TID:0x0001 2801 13:31:03.809763 125.125.40.48 125.125.40.48 wiMax 92 Apter_transfer [Request, Identity] - MSID:6c:ad:ef:10:08:03, TID:0x0001 2801 13:31:03.80184 125.125.40.60 125.125.40.48 APAIUS 126 Access-Request(1) (1d=225, 1=23) 2805 13:31:03.80184 125.125.40.61 125.125.40.48 wiMax 92 Apter_transfer [Request, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:0x0001 2804 13:31:03.80184 125.125.40.32 125.125.40.32 wiMax 88 Apter_transfer [Request, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:0x0001 2804 13:31:03.80184 125.125.40.32 125.125.40.32 wiMax 88 Apter_transfer [Request, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:0x0001 2804 13:31:03.80184 125.125.40.32 125.125.40.32 wiMax	2799 13:31:00.683785 125.125.40.60 125.125.40.48 PADUS 126 Access-challenge(11) (id=224, 1=82) 2794 13:31:00.684780 125.125.40.48 125.125.40.48 125.125.40.48 125.125.40.48 2795 13:31:00.684780 125.125.40.48 125.125.40.48 wimax 78 MetExit_MS_State_Change.Rg- MSIDeGcadief:10:08:03, TDD:0X:0001 2795 13:31:03.69050 Intel_Oci68:00 APP APP APP APP 2795 13:31:03.69020 Apple_45:16:02 APP 49 who has 125.125.40.60 Fall Coile:10:08:03, TDD:0X:0001 2795 13:31:03.69791 125.125.40.48 Wimax 78 MEreAtachment_Rep - MSIDEGcadief:10:08:03, TDD:0X:0001 2800 13:31:03.69797 125.125.40.48 Wimax 87 MS_PreAttachment_Rep - MSIDEGcadief:10:08:03, TDD:0X:0001 2801 13:31:03.69797 125.125.40.48 Wimax 87 MS_PreAttachment_Rep - MSIDEGcadief:10:08:03, TD:0X:0001 2801 13:31:03.69797 125.125.40.48 Wimax 92 AR_EAP_Fransfer [Reguest, Identity] - MSIDEGcadief:10:08:03, TD:0X:0001 2801 13:31:03.8004 125.125.40.48 Vimax 92 AR_EAP_Fransfer [Reguest, Identity] - MSIDEGcadief:10:08:03, TD:0X:0001 2801 13:31:03.8004 125.125.40.48 125.125.40.48 125.125.40.52 125.125.40.52 <	2791	13:31:00.644755	125.125.40.32	125.125.40.48	WIMAX	474 AR_EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:
2794 13:31:00.684800 125.125.40.48 125.125.40.32 W1MAX 86 Ag_EAP_Transfer [Failure] - MSTD:6c:ad:ef:10:08:03, TID:0X000L 2796 13:31:00.684850 125.125.40.48 125.125.40.48 14 NetXit_MS_State_Change_Reg - MSTD:6c:ad:ef:10:08:03, TID:0X000L 2796 13:31:00.684850 11e1_02:6800 Apple_a4:fc:92 APP 44 who has 125.125.40.02 Tell_125.125.40.48 2799 13:31:03.589650 Intel_02:68100 Apple_a4:fc:92 APP 44 who has 125.125.40.02 Tell_125.125.40.48 2799 13:31:03.697942 125.125.40.48 2798 13:31:03.697942 125.125.40.48 2798 13:31:03.697942 125.125.40.48 15.125.40.48 2798 13:31:03.697941 125.125.40.48 125.125.40.48 2798 13:31:03.697942 125.125.40.48 125.125.40.48 2798 13:31:03.697942 125.125.40.48 125.125.40.48 2798 13:31:03.697942 125.125.40.48 125.125.40.48 2798 13:31:03.697942 125.125.40.48 125.125.40.48 2798 13:31:03.697942 125.125.40.48 125.125.40.48 2798 13:31:03.697942 125.125.40.48 125.125.40.48 2798 13:31:03.697942 125.125.40.48 125.125.40.48 2798 13:31:03.697942 125.125.40.48 125.125.40.48 2798 13:31:03.697942 125.125.40.48 125.125.40.48 2798 13:31:03.697942 125.125.40.48 125.125.40.48 2798 13:31:03.697942 125.125.40.48 125.125.40.48 2798 125.125.40.48 125.125.40.48 125.125.40.48 2798 125.125.40.48 125.125.40.48 125.125.40.48 2798 125.125.40.48 142 48 EAP Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:08003, TID:08004 125.125.40.	2794 13:31:00.684800 125.125.40.48 125.125.40.32 wiMAX 80 AR_EAP_Transfer [railure] - MSID:6ctadief:10:08:03, TD:0X000b 2795 13:31:00.685544 125.125.40.48 125.125.40.48 wiMAX 78 NetExit_MS_State_Change_Reg - MSID:6ctadief:10:08:03, TD:0X0001 2797 13:31:03.589650 Intel_0c:68:00 APP 44 Who has 125.25.40.60 ts at ds:30:6ctadief:10:08:03, TD:0X0001 2798 13:31:03.590230 Apple_a4ffc:92 ARP 44 Who has 125.125.40.60 is at ds:30:6ctadief:10:08:03, TD:0X0001 2798 13:31:03.699142 125.125.40.32 125.125.40.48 wiMAX 97 MS_PreAttachment_Reg - MSID:6ctadief:10:08:03, TD:0X0001 2801 13:31:03.699142 125.125.40.48 125.125.40.48 wiMAX 97 MS_PreAttachment_Reg - MSID:6ctadief:10:08:03, TD:0X0001 2801 13:31:03.68994 125.125.40.48 125.125.40.48 wiMAX 97 MS_PreAttachment_ARS - MSID:6ctadief:10:08:03, TD:0X0001 2801 13:31:03.689797 125.125.40.48 125.125.40.48 wiMAX 98 MS_PreAttachment_ARS - MSID:6ctadief:10:08:03, TD:0X0001 2801 13:31:03.689797 125.125.40.48 125.125.40.48 wiMAX 98 AR_EAP_Transfer [Response, Identity] - MSID:6ctadief:10:08:03, TD:0X0001 2801 13:31:03.809763 125.125.40.48 125.125.40.48 wiMAX 98 AR_EAP_Transfer [Response, Identity] - MSID:6ctadief:10:08:03, TD:0X0001 2801 13:31:03.809763 125.125.40.48 125.125.40.48 wiMAX 98 AR_EAP_Transfer [Response, Identity] - MSID:6ctadief:10:08:03, TD:0X0001 2801 13:31:03.809763 125.125.40.48 125.125.40.48 wiMAX 98 AR_EAP_Transfer [Response, Identity] - MSID:6ctadief:10:08:03, TD:0X0001 2801 13:31:03.80084 125.125.40.48 125.125.40.48 wiMAX 88 AR_EAP_Transfer [Response, Identity] - MSID:6ctadief:10:08:03, TD:0X0001 2801 13:31:03.80084 125.125.40.48 125.125.40.20 wiMAX 88 AR_EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6ctadief:10:08:03, TD: 2807 13:31:03.979208 125.125.40.32 125.125.40.32 wiMAX 88 AR_EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6ctadief:10:08:03, TD: 2807 13:31:03.979208 125.125.40.32 (125.125.40.32), pst: 125.125.40.48 (125.125.40.48) USER DATAGRA PROTOCOL WEST INTERVENTION (IDENTIFY MEXASPC (2231)) WMX AND CONCOL 30001 AND AND AND AND AND ARA ARA PTARSFER [R						
2795 13:31:00.684850 125.125.40.48 125.125.40.32 wiMAX 114 NETX1F_M5_State_Change_Rep - MSID:6c:ad:ef:10:08:03, TID:0X0001 2796 13:31:00.684554 125.125.40.32 125.125.40.48 wiMAX 78 NETX1_M5_State_Change_Rep - MSID:6c:ad:ef:10:08:03, TID:0X0001 2797 13:31:00.589650 Intel_0c:068100 APP 44 who has 152.125.40.600 TID:0X0001 2799 13:31:03.59020 Apple_a4:fc:92 APP 44 who has 152.125.40.600 TID:0X0001 2799 13:31:03.69714 125.125.40.48 WiMAX 87 MS_PreAttachment_Rep - MSID:6c:ad:ef:10:08:03, TID:0X0001 2800 13:31:03.684984 125.125.40.32 WiMAX 87 MS_PreAttachment_Rep - MSID:6c:ad:ef:10:08:03, TID:0X0001 2801 13:31:03.684984 125.125.40.32 WiMAX 95 MS_PreAttachment_Rep - MSID:6c:ad:ef:10:08:03, TID:0X0001 2801 13:31:03.684984 125.125.40.32 WiMAX 94 MAS_PreAttachment_Rep - MSID:6c:ad:ef:10:08:03, TID:0X0001 2801 13:31:03.684984 125.125.40.32 WiMAX 94 MS_PreAttachment_Rep - MSID:6c:ad:ef:10:08:03, TID:0X0001 2801 13:31:03.80972 125.125.40.32 WiMAX 92 AR_EAP_Transfer [Request, Identity] - MSID:6c:ad:ef:10:08:03, TID:0X0001 2804 13:31:03.80974 125.125.40.48 125.125.40.69 RADIUS 2805 13	2795 13:31:00.684850 125.125.40.48 125.125.40.32 wimax 114 Nertxit_MS_state_change.sp MSID:6c:ad:ef:10:08:03, TDD:0x0001 2796 13:31:00.68554 Intel_oc:68:00 APP 44 who has 125.125.40.602 TELLS_5.40.602 TELLS_5.40.602 2796 13:31:03.590230 Apple_a4:fc:92 APP 44 who has 125.125.40.602 TELLS_5.40.602 TELLS_5.40.602 2799 13:31:03.67931 125.125.40.32 125.125.40.32 125.125.40.32 TDD:0x0001 2800 13:31:03.67931 125.125.40.48 Wimax Wimax 87 MS_preattachment_Reg - MSID:6c:ad:ef:10:08:03, TDD:0x0001 2800 13:31:03.684984 125.125.40.48 Vimax 87 MS_preattachment_Reg - MSID:6c:ad:ef:10:08:03, TDD:0x0001 2801 13:31:03.68497 125.125.40.48 Vimax 92 AR_EAP_transfer [Request, Identity] - MSID:6c:ad:ef:10:08:03, TDD:0x0001 2801 13:31:03.680787 125.125.40.48 Vimax 92 AR_EAP_transfer [Request, Identity] - MSID:6c:ad:ef:10:08:03, TDD:0x0001 2801 13:31:03.68084 125.125.40.60 125.125.40.81 RADIUS 224 Access-Request(1) (id=225, 1=23 2801 13:31:03.80122 125.125.40.81 125.125.40.82 PAP PAP PAP 2805 13:31:03.8094 125.125.40.81 125.125.40.81 PA						
2796 13:31:00.685334 125.125.40.32 125.125.40.48 WMAX 78 NETX1LMS_State_Change.psp - MSID:6c:ad:ef:10:08:03, TID:0X0001 2797 13:31:03.598050 Intel_0::68100 APP 44 who has 125.125.40.60 Intel_0::28102 2799 13:31:03.598050 Apple_a4:f6:92 APP 44 who has 125.125.40.60 Intel_0::68100 2799 13:31:03.699142 125.125.40.48 MIMAX 87 MS_preattachment_Asp - MSID:6c:ad:ef:10:08:03, TID:0X0001 2800 13:31:03.699142 125.125.40.48 125.125.40.48 MIMAX 64 MS_preattachment_Asp - MSID:6c:ad:ef:10:08:03, TID:0X0001 2801 13:31:03.699751 125.125.40.48 125.125.40.48 MIMAX 64 MS_preattachment_Asp - MSID:6c:ad:ef:10:08:03, TID:0X0001 2801 13:31:03.699761 125.125.40.48 125.125.40.48 MIMAX 64 MS_preattachment_Asp - MSID:6c:ad:ef:10:08:03, TID:0X0001 2801 13:31:03.699761 125.125.40.42 125.125.40.48 MIMAX 64 MS_preattachment_Asp - MSID:6c:ad:ef:10:08:03, TID:0X0001 2801 13:31:03.680984 125.125.40.48 125.125.40.48 MIMAX 92 AR_EAP_Transfer [Response, Identity] - MSID:6c:ad:ef:10:08:03, TID:0X0001 2805 13:31:03.680984 125.125.40.48 125.125.40.32 125.125.40.32 125.125.40.32 125.125.40.32 125.125.40.32	2796 13:31:00.68534 125.125.40.32 125.125.40.48 WiMAX 78 NetExit_MS_state_Change_spi - MSID:6C:ad:ef:10:08:03, TD:0x0001 2797 13:31:03.598050 Intel_Oc:66:00 APP 4 who has 125.125.40.02 TD:12,125.40.48 2799 13:31:03.598050 Apple_a4:f6:92 APP 4 Who has 125.125.40.02 TD:0x0001 2799 13:31:03.697912 125.125.40.48 125.125.40.48 WiMAX 87 MS_PreAttachment_Req - MSID:6C:ad:ef:10:08:03, TD:0x0001 2800 13:31:03.6679912 125.125.40.48 125.125.40.48 WiMAX 95 MS_PreAttachment_ARG - MSID:6C:ad:ef:10:08:03, TD:0x0001 2801 13:31:03.668579 125.125.40.48 125.125.40.48 WiMAX 95 MS_PreAttachment_ARG - MSID:6C:ad:ef:10:08:03, TD:0x0001 2801 13:31:03.668579 125.125.40.48 125.125.40.48 WiMAX 95 MS_PreAttachment_ARG - MSID:6C:ad:ef:10:08:03, TD:0x0001 2803 13:31:03.668579 125.125.40.48 125.125.40.48 WiMAX 92 AR_EAP_Transfer [Response, Identity] - MSID:6C:ad:ef:10:08:03, TD:0x0001 2804 13:31:03.809684 125.125.40.48 125.125.40.48 PAR LAP_Transfer [Response, Identity] - MSID:6C:ad:ef:10:08:03, TD:0x0001 2805 13:31:03.801084 125.125.40.48 YMAX 88 AR_EAP_Transfer [Request, TLS EAP (EAP-TLS)] - MSID:6C:ad:ef:10:08:03, TD:0x003, TD:0x001						
277713:31:03.599050 Intel_0c:68:00 AP 44 Mvo has 125.125.40.60 Tell 125.125.40.48 279813:31:03.59030 Apple_a4:fc:92 AP 62:157.125.40.60 Tell 125.125.40.48 279813:31:03.59030 Apple_a4:fc:92 AP 62:157.125.40.60 Tell 125.125.40.48 279913:31:03.679312 125.125.40.32 125.125.40.48 W1MAX 87 MS_preAttachment_Req - MSID:6c:ad:ef:10:08:03, TID:0X0001 280013:31:03.679371 125.125.40.48 125.125.40.32 w1MAX 95 MS_preAttachment_Req - MSID:6c:ad:ef:10:08:03, TID:0X0001 280113:31:03.689797 125.125.40.48 125.125.40.32 w1MAX 95 MS_preAttachment_Req - MSID:6c:ad:ef:10:08:03, TID:0X0001 280313:31:03.6809797 125.125.40.48 125.125.40.48 w1MAX 92 Ap_EAP_Transfer [Request, Identity] - MSID:6c:ad:ef:10:08:03, TID:0X0001 280413:31:03.809162 125.125.40.48 w1MAX 92 Ap_EAP_Transfer [Request, Identity] - MSID:6c:ad:ef:10:08:03, TID:0X0001 280413:31:03.80963 125.125.40.04 RADIUS 274 Access-Request(1) (1d=22, 1=22	2797 13:31:03.589500 Intel_oc:68:00 APP 44 who has 125,125,40,602 rell 125,125,10,48 2798 13:31:03.599501 Apple_a4:fc:92 APP 62+257,125,40,60 63:30;62:a4:fc:92 2798 13:31:03.679571 125,125,40,32 125,125,40,32 wipax 87 Ms_preattachment_Rsp = MSID:6c:ad:ef:10:08:03, TID:0x0001 2800 13:31:03.689194 125,125,40,48 125,125,40,48 wipax 97 Ms_preattachment_Rsp = MSID:6c:ad:ef:10:08:03, TID:0x0001 2801 13:31:03.689194 125,125,40,48 125,122,40,48 wipax 87 Ms_preattachment_Rsp = MSID:6c:ad:ef:10:08:03, TID:0x0001 2802 13:31:03.689194 125,122,40,48 125,122,40,48 Wipax 87 Ms_preattachment_Rsp = MSID:6c:ad:ef:10:08:03, TID:0x0001 2803 13:31:03.689194 125,122,40,48 125,122,40,48 Wipax 87 Ms_preattachment_Rsp = MSID:6c:ad:ef:10:08:03, TID:0x0001 2804 13:31:03.86054 125,125,40,48 125,122,40,48 Wipax 87 Ms_preattachment_Rsp = MSID:6c:ad:ef:10:08:03, TID:0x0001 2804 13:31:03.86054 125,125,40,48 125,125,40,48 125,125,40,48 126,125,40,48 2804 13:31:03.86054 125,125,40,48 125,125,40,48 MMax 82 Ms_preattachment_Rsp = MsiD:6c:ad:ef:10:08:03, TID:0x0001 1207 13:31:03.85064 125,125,40						
2788 13:31:03.59020 Apple_a4:fc:92 APP C+275:125.40.60 is at d0:30:02:04:fc:92 2799 13:31:03.679142 125:125.40.32 125:125.40.48 WiMAX 87 MS_PreAttachment_Rep - MSID:6c:ad:ef:10:08:03, TID:0X0001 2801 13:31:03.69371 125:125.40.48 125:125.40.48 WiMAX 95 MS_PreAttachment_Rep - MSID:6c:ad:ef:10:08:03, TID:0X0001 2801 13:31:03.69371 125:125.40.48 125:125.40.48 WiMAX 95 MS_PreAttachment_Ack MSID:6c:ad:ef:10:08:03, TID:0X0001 2801 13:31:03.69371 125:125.40.48 125:125.40.48 WiMAX 95 MS_PreAttachment_Ack MSID:6c:ad:ef:10:08:03, TID:0X0001 2801 13:31:03.693791 125:125.40.48 125:125.40.48 WiMAX 97 AR_EAP_Fransfer [Reguest, Identity] = MSID:6c:ad:ef:10:08:03, TID:0X0001 2803 13:31:03.690763 125:125.40.48 125:125.40.48 NiMAX 92 AR_EAP_Transfer [Reguest, Identity] = MSID:6c:ad:ef:10:08:03, TID:0X0002 2804 13:31:03.690764 125:125.40.48 NiMAX 92 Access-challenge(11) (id=225, 1=20) 2805 13:31:03.861084 125:125.40.48 NiMAX 142 Access-challenge(11) (id=225, 1=20) 2805 13:31:03.861084 125:125.40.32 U25:125.40.48 WiMAX 12807 13:31:03.979208 125:125.40.32 125:125.40.32 WiMAX 12807 13:31:03.979208 125:125.40.32 125:125.40.32 125:125.40.48	2788 13:1:0:.590230 Apple_44:fc:92 APP -0:17:125.40.60 is at d8:30:62:14:fc:92 2799 13:3:1:0:.679142 125.125.40.48 VMAX 95 Ms_preattachment_Rsp - MSID:6c:ad:ef:10:08:03, TID:0X0001 2800 13:3:1:0:.681994 125.125.40.48 125.125.40.48 VMAX 95 Ms_preattachment_Rsp - MSID:6c:ad:ef:10:08:03, TID:0X0001 2801 13:3:1:0:.681994 125.125.40.48 125.125.40.48 VMAX 95 Ms_preattachment_Rsp - MSID:6c:ad:ef:10:08:03, TID:0X0001 2801 13:3:1:0:.681994 125.125.40.48 125.125.40.48 VMAX 97 Ms_treathertmit_Ack - MSID:6c:ad:ef:10:08:03, TID:0X0001 2803 13:3:1:0:.681994 125.125.40.48 125.125.40.48 VMAX 97 Ms_treathertmit_Ack - MSID:6c:ad:ef:10:08:03, TID:0X0001 2804 13:3:1:0:.809768 125.125.40.48 125.125.40.48 Nax 92 As _LAP_Transfer [Response, Identity] - MSID:40:33, TID:0X0001 2805 13:3:1:0:.809768 125.125.40.48 125.125.40.48 RADIUS 126 Access-challenge(11) (1d=25, 1=23) 2806 13:3:1:0:.809769208 125.125.40.48 125.125.40.48 YMAX 124 Access-challenge(11) (1d=25, 1=23) 2807 13:3:1:0:.979208 125.125.40.48 125.125.40.48 YMAX 124 AR EAP Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:00:08:03, TID:00:08:03, TID:00:08:03, TID:00:08:				125.125.40.40		
2800 13:31:03.679571 125.125.40.48 125.125.40.32 w(Max 95 Ms_PreAttachment_Rsp - MSD:6c:ad:ef:10:08:03, TD:0x0001 2801 13:31:03.684984 125.125.40.48 wiMax 95 Ms_PreAttachment_Rsp - MSD:6c:ad:ef:10:08:03, TD:0x0001 2802 13:31:03.6849797 125.125.40.48 wiMax 87 Ams_PreAttachment_Rsp - MSD:6c:ad:ef:10:08:03, TD:0x0001 2802 13:31:03.680797 125.125.40.48 125.125.40.48 wiMax 87 Ams_PreAttachment_Ack - MSD:6c:ad:ef:10:08:03, TD:0x0001 2804 13:31:03.680797 125.125.40.48 125.125.40.60 RADUS 274 Access-Request(1) (id=22, 1-230) 2804 13:31:03.801024 125.125.40.48 125.125.40.48 wiMax 88 AR_LEAP_Transfer [Response, Identity] - MSD:6c:ad:ef:10:08:03, TD:0x0001 2804 13:31:03.801064 125.125.40.48 wiMax 124 Access-Request(1) (id=22, 1-230) 2805 13:31:03.801064 125.125.40.48 wiMax 124 Access-Request(1) (id=22, 1-230) 2807 13:31:03.99208 125.125.40.48 wiMax 142 AR EAP Transfer [Response, Identity] - MSD:6c:ad:ef:10:08:03, TD:0x001 1nux cocked capture nternet Protocol 125.125.40.32 125.125.40.48 wiMax 142 AR EAP Transfer [Response, TLS EAP (EAP-TLS]] - MSD:6c:ad:ef:10:08:03, TD:0x001 125.125.40.48 125.125.40.48 <td>2800 13:31:03.679571 125.125.40.48 125.125.40.32 wfwax 95 MS_PPeAttachment_Rsp - MSID:6c:ad:ef:10:08:03, TD:0x0001 2801 13:31:03.684984 125.125.40.48 125.125.40.48 125.125.40.48 37 Arc EAP_TFansfer IREsponse, Identity1 _ MSID:6c:ad:ef:10:08:03, TD:0x0001 2802 13:31:03.685979 125.125.40.48 125.125.40.48 wiwax 87 Arc EAP_TFansfer IREsponse, Identity1 _ MSID:6c:ad:ef:10:08:03, TD:0x0001 2803 13:31:03.809763 125.125.40.48 125.125.40.48 wiwax 87 Arc EAP_TFansfer IREsponse, Identity1 _ MSID:6c:ad:ef:10:08:03, TD:0x0001 2804 13:31:03.80964 125.125.40.40 125.125.40.40 PADLES 126 Access-Acquest(1) (id=25, 1=32) 2807 13:31:03.80044 125.125.40.48 wiwax 88 AR_EAP_TFansfer [Request, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TD:0x0001 1mux cocked capture 1/26 Access-Acquest(2) (id=25, 1=25, 0 125.125.40.48 wiwax 142 AR EAP Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TD:0x0001 1mux cocked capture nternet Protocol Version 4, Src: 125.125.40.32 (125.125.40.32), pst: 125.125.40.48 (125.125.40.48) 142 AF EAP Transfer [Response, Identity] - MSID:6c:ad:ef:10:08:03) 1mux cocked capture nternet Protocol Version 4, Src: 125.125.40.32 (125.125.40.32), pst: 125.125.40.48 (125.125.40.48) <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<></td>	2800 13:31:03.679571 125.125.40.48 125.125.40.32 wfwax 95 MS_PPeAttachment_Rsp - MSID:6c:ad:ef:10:08:03, TD:0x0001 2801 13:31:03.684984 125.125.40.48 125.125.40.48 125.125.40.48 37 Arc EAP_TFansfer IREsponse, Identity1 _ MSID:6c:ad:ef:10:08:03, TD:0x0001 2802 13:31:03.685979 125.125.40.48 125.125.40.48 wiwax 87 Arc EAP_TFansfer IREsponse, Identity1 _ MSID:6c:ad:ef:10:08:03, TD:0x0001 2803 13:31:03.809763 125.125.40.48 125.125.40.48 wiwax 87 Arc EAP_TFansfer IREsponse, Identity1 _ MSID:6c:ad:ef:10:08:03, TD:0x0001 2804 13:31:03.80964 125.125.40.40 125.125.40.40 PADLES 126 Access-Acquest(1) (id=25, 1=32) 2807 13:31:03.80044 125.125.40.48 wiwax 88 AR_EAP_TFansfer [Request, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TD:0x0001 1mux cocked capture 1/26 Access-Acquest(2) (id=25, 1=25, 0 125.125.40.48 wiwax 142 AR EAP Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TD:0x0001 1mux cocked capture nternet Protocol Version 4, Src: 125.125.40.32 (125.125.40.32), pst: 125.125.40.48 (125.125.40.48) 142 AF EAP Transfer [Response, Identity] - MSID:6c:ad:ef:10:08:03) 1mux cocked capture nternet Protocol Version 4, Src: 125.125.40.32 (125.125.40.32), pst: 125.125.40.48 (125.125.40.48) <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
1801 13:31:03.684984 125.125.40.32 125.125.40.48 wiMAx 64 Ms_preAttachment_Ack - MSIDiscialief:10:08:03, TID:0X0001	1331:03.684984 125.125.40.32 125.125.40.48 wiNAx 64 MS_preattachment_Ack - MSID:6C:ad:ef:10:08:03, TID:0x0001 1300:1351:03.685797 125.125.40.48 125.125.40.48 wiNAx 97 AR_EAP_transfer [Response, identity] _ MSID:6c:ad:ef:10:08:03, TID:0x0001 1300:1351:03.800763 125.125.40.48 125.125.40.48 wiNAx 92 AR_EAP_transfer [Response, identity] _ MSID:6c:ad:ef:10:08:03, TID:0x0001 1300:1351:03.800644 125.125.40.60 125.125.40.48 wiNAx 92 AR_EAP_transfer [Response, identity] _ MSID:6c:ad:ef:10:08:03, TID:0x0001 1301:131:03.800644 125.125.40.60 125.125.40.60 RADIUS 124 Access-Requaltenget, identity] _ MSID:6c:ad:ef:10:08:03, TID:0x0001 1301:131:03.800644 125.125.40.60 RADIUS 124 Access-Requaltenget, ILS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:0x0001 1300:131:103.800644 125.125.40.60 RADIUS 124 Access-Requaltenget, ILS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:0x001 1300:131:103.800644 125.125.40.32 wiNAx 142 AR EAP Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:0x001 1400:150:150:150:150:150:150:150:150:150:1						
1331:03.685797 125.125.40.48 125.125.40.32 WMAX 87 AmpExh=Fransfer [Request, Identity] = MSID:46:44:ef10508:03, TD:0x0001 1303 133:103.80912 125.125.40.48 125.125.40.60 PADIUS 274 Access-Request(1) (id=225, 1=23) 1304 133:103.80963 125.125.40.48 125.125.40.60 PADIUS 274 Access-Request(1) (id=225, 1=23) 1305 13:31:03.80064 125.125.40.48 125.125.40.48 RADIUS 126 Access-challenge(11) (id=225, 1=25) 1306 13:31:03.80104 125.125.40.48 125.125.40.48 RADIUS 126 Access-challenge(11) (id=225, 1=25) 1306 13:31:03.80104 125.125.40.48 125.125.40.48 WMAX 88 AR_EAP_Transfer [Request, TLS EAP (EAP-TLS)] MSID:6c:ad:ef:10:08:03, TL 1307 13:31:03.97208 125.125.40.48 WMAX 142 AR EAP Transfer [Request, TLS EAP (EAP-TLS)] MSID:6c:ad:ef:10:08:03, TL 1307 13:31:03.97208 125.125.40.32 (125.125.40.48 WMAX 142 AR EAP Transfer [Request, TLS EAP (EAP-TLS)] MSID:6c:ad:ef:10:08:03, TL 1307 13:31:03.97208 725.125.40.32 (125.125.40.48 WMAX 142 AR EAP Transfer [Request, TLS EAP (EAP-TLS)] MSID:6c:ad:ef:10:08:03, TL 1308 13:31:03.800709 87 bytes on wire (696 bits), 87 bytes captured (696 bits) MSID:6c:ad:ef:10:0	1802 13:11:03.68379 125.125.40.48 125.125.40.32 winax 37 Arg EAP_Transfer [Request, Identity] - MSID:6c:ad:ef:10:08:03, TD:0X0001 1803 13:11:03.809763 125.125.40.48 125.125.40.48 winax 37 Arg EAP_Transfer [Request, Identity] - MSID:6c:ad:ef:10:08:03, TD:0X0001 1804 13:11:03.809763 125.125.40.48 125.125.40.40 PADIUS 274 Access-Acquest(1) (id=25, 1=230) 1806 13:31:03.800648 125.125.40.40 125.125.40.40 PADIUS 274 Access-Acquest(1) (id=25, 1=82) 1806 13:31:03.80084 125.125.40.48 125.125.40.48 winax 88 AR_EAP_Transfer [Request, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TD:0 1807 13:31:03.907208 125.125.40.32 winax 142 AR EAP Transfer [Response, Identity] - MSID:6c:ad:ef:10:08:03, TD:0 rame 2799: 87 bytes on wire (696 bits), 87 bytes captured (696 bits) minax 142 AR EAP Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TD:0 rame 2799: 87 bytes on wire (696 bits), 87 bytes captured (696 bits) inax coked capture inax coked capture there reprotocol Version: 1 if lags: R - 0000 0001 = 0x01 if lags: R - 0000 0001 = 0x01 MS State (9) OP IO: Request/initiation (001, = 1) immaxsing Protocol version: 1 NEStD: K2proadb_10:08:03 (6c:ad:ef:10:08:03)						
1803 13:11:03.809122 125.125.40.92 125.125.40.48 WiMAX 92 AR_EAP_Transfer [Response, Identity] - MSD:6c:ad:ef:10:08:03, TD:0x0002 1804 13:11:03.809763 125.125.40.68 125.125.40.74 RADIUS 274 Access-challenge(11) (id=225, 1=230) 1805 13:11:03.809684 125.125.40.80 125.125.40.84 RADIUS 126 Access-challenge(11) (id=225, 1=230) 1806 13:31:03.861064 125.125.40.48 RADIUS 126 Access-challenge(11) (id=225, 1=230) 1807 13:31:03.979208 125.125.40.32 WiMAX 88 AR_EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TD 1807 13:31:03.979208 125.125.40.32 125.125.40.38 WiMAX 142 AR EAP Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TD rame 2799: 87 bytes on wire (696 bits), 87 bytes captured (696 bits) inux cooked capture inux cooked capture rternet Protocol ysci and Protocol, Src Port: wimaxasncp (2231), Dst Port: wimaxasncp (2231) iMax ASI Control Plane Protocol Version: 1 inage (9) 0001 = 0x01 MS state (9) 0001 = 0x01 Message Type: MS_Preattachment_Reg (0 0001 = 1) Length: 43 image (0) image (0)	1803 13:11:03.800122 125:125:40.32 125:125:40.48 wimax 92 AR_EAP_Transfer [Response, Identity] - MSID:66:adief:10:08:03, TID:0X0001 1804 13:13:03.800764 125:125:40.48 125:125:40.48 PADIUS 274 Access-AceusetCh]lengc(11) (1d=225, 1=230) 1805 13:13:03.800764 125:125:40.48 PADIUS 126 Access-Achallengc(11) (1d=225, 1=230) 1805 13:13:03.800764 125:125:40.48 PADIUS 126 Access-Achallengc(11) (1d=225, 1=230) 1806 13:103.80078208 125:125:40.48 WiMax 142 AR EAP_Transfer [Request, TLS EAP (EAP-TLS)] - MSID:66:adief:10:08:03, TID: 1807 13:31:03.8079208 125:125:40.32 125:125:40.48 WiMax 142 AR EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:66:adief:10:08:03, TID: 1807 13:31:03.8079208 125:125:40.48 WiMax 142 AR EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:66:adief:10:08:03, TID: 1908 13:103.8079208 125:125:40.32 125:125:40.48 WiMax 142 AR EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:66:adief:10:08:03, TID: 1918 12:03.8006 125:125:40.32 125:125:40.32 125:125:40.48 125:125:40.48 1918 12:03.8006 125:125:40.32 125:125:40.32 125:125:40.48 125:125:40.48 1918 12:03.8006 125:125:125:40.32 125:125:						
1804 13:11:03.800763 125.125.40.48 125.125.40.60 PADTUS 274 Access-Request(1) (id=225, 1=2.40.7) 1805 13:11:03.860684 125.125.40.48 RADIUS 126 Access-challenge(11) (id=225, 1=2.40.7) 1805 13:11:03.860684 125.125.40.48 125.125.40.32 wiMAX 88 AR_EAP_Transfer [Request, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TL 1805 13:11:03.870208 125.125.40.48 wiMAX 142 AR EAP Transfer [Request, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TL rame 2799: 87 bytes on wire (696 bits), 87 bytes captured (696 bits) inux cooked capture inux cooked capture ntux cooked capture sci patient protocol Sci patient protocol Sci patient protocol Version: 1 Flags: R - 0000 0001 = 0x01 Flags: R - 0000 0001 = 0x01 Flags: R - 0000 0001 = 0x01 MS state (9) 07 10: Request/Initiation (001,, = 1) Message Type: MS_Prexttachment_Req (0 0001 = 1) Length: 43 Sci Sci Sci 0001 = 0.201	1804 13:11:03.800763 125.125.40.48 125.125.40.60 PADIUS 274 AccessRequest(1) (16=25, 1=23) 1805 13:13:103.860684 125.125.40.60 125.125.40.48 PADIUS 276 AccessRequest(1) (16=25, 1=23) 1805 13:13:103.860684 125.125.40.48 125.125.40.48 WiMAX 88 AF_EAP_Transfer [Request, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TDD 1807 13:13:103.979208 125.125.40.32 USIA WIMAX 88 AF_EAP_Transfer [Request, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TDD rame 2799: 87 bytes on wire (696 bits), 87 bytes captured (696 bits) inux cocked capture Inux cocked capture rinux cocked capture Free Datagram Protocol, Src Port: Wimaxasncp (2231), Dst Port: Wimaxasncp (2231) INTERVENCE Version: 1 Flags: R - 0000 0001 = 0xc0 Flags: R - 0000 0001 = 0xc0 Flags: R - 0000 0001 = 0xc0 NESsage Type: MS_Preattachment.Req (0 0001 = 1) Length: 43 MSID: K2proadb_10:08:03 (6c:ad:ef:10:08:03) Reserved: 0x00000 Transaction 1D: 0x0001 Reserved: 0x0000 Transaction 1D: 0x0001						
1805 13:11:03.860684 125,125,40,60 125,125,40,48 RADIUS 126 Access-challenge(11) (id=25, 1=82) 1806 13:11:03.861084 125,125,40,48 125,125,40,48 WiMAX 188 AR_EAP_Transfer [Response. TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TJ 1807 13:31:03.979208 125,125,40,32 125,125,40,48 WiMAX 142 AR EAP Transfer [Response. TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TJ rame 2799: 87 bytes on wire (696 bits), 87 bytes captured (696 bits) inux cooked capture inux cooked capture inux cooked capture inux cooked capture ternet Protocol version 4, Src: 125,125,40,32 (125,125,40,32), Dst: 125,125,40,48 (125,125,40,48) ser Datagram Protocol, Src Port: wimaxasncp (2231) Wixx ASN Control Plane Protocol Version: 1 request,Tinitiation (001,, = 1) Message Type: MS_Prektachment_Req (0 0001 = 1) Length: 43	1805 13:10:0.80054 125.125.40.60 125.125.40.48 PADIUS 126 Access-challenge(11) (1d-225, 1-82) 1806 13:10:0.801054 125.125.40.48 125.125.40.48 WHMAX 188 AF_EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TLD 1807 13:31:03.979208 125.125.40.32 125.125.40.48 WHMAX 142 AR EAP Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TLD rame 2799: 87 bytes on wire (696 bits), 87 bytes captured (696 bits) Intux cooked capture Intux cooked capture ramerner Protocol Version 4, Src: 125.125.40.32 (215.125.40.32), DST: 125.125.40.48 (125.125.40.48) Ser Datagram Protocol, Src Port: wimaxasncp (2231), DST Port: wimaxasncp (2231) IMMAX ASN Control Plane Protocol Version: 1 Flags: R - 0000 0001 = 0x01 NS State (9) OP ID: Request/Initiation (001, = 1) Message Type: MS_Preattachment_Req (0 0001 = 1) Length: 43 NSID: Kzbroadb_10:08:03 (6c:ad:ef:10:08:03) Reserved: 0x00000000 Reserved: 0x0000 Turn for [Compund] ID 0						
1806 13:31:03.861084 125.125.40.48 125.125.40.32 wiMax 88 AR_EAP_Transfer [Request, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TLS EAP (EAP-TLS)] - MSID:	1806 13:11:03.06004 125.125.40.48 125.125.40.32 VMMAX 88 AR_EAP_Transfer [Request, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID 1807 13:11:03.979208 125.125.40.48 VMMAX 88 AR_EAP_Transfer [Request, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID 1ame 2799: 87 bytes on whre (696 bits), 87 bytes captured (696 bits) Intax cooked capture Intax cooked capture Intax cooked capture rternet protocol Version 4, Src: 125.125.40.32 (125.125.40.32), DSt 125.125.40.48 (125.125.40.48) Ser Datagram Protocol, Src Port: Wimaxasncp (2231) Version:1 IfAxx ASU Control Plane Protocol Version:1 Flags: R - 0000 0001 = 0x01 NS State (9) OP 10: Request/Initiation (001 = 1) Message Type: MS_PreatAchement.Req (0 0001 = 1) Length: 43 MSID: K2proadb_10:08:03 (6c:ad:ef:10:08:03) Reserved: 0x0000 Reserved: 0x0000 Transaction 1D: 0x0001 Reserved: 0x0000						
1807 13:31:03.979208 125.125.40.32 125.125.40.48 wiMax 142 AR EAP Transfer [Response. TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03.1 rame 2799: 87 bytes on wire (696 bits), 87 bytes captured (696 bits) inux cooked capture inux cooked capture remet Protocol Version 4, Src: 125.125.40.32 (125.125.40.32), Dst: 125.125.40.48 (125.125.40.48) ser Datagram Protocol, Src Port: wimaxasncp (2231), Dst Port: wimaxasncp (2231) WAX. SAI Control Plane Protocol [Flags: R - 0000 0001 = 0x01 MS State (9) OP ID: Request/Initiation (001 = 1) Message Type: MS_Preattachment_Reg (0 0001 = 1) Length: 43	1807 13:31:03.979208 125.125.40.32 125.125.40.48 wiMax 142 AR EAP Transfer [Resconse. TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03. TID rame 2799: 87 bytes on wire (696 bits), 87 bytes captured (696 bits) inux cooked capture inux cooked capture inux cooked capture inux cooked capture inux cooked capture inux cooked capture inux cooked capture inux cooked capture inux cooked capture inux cooked capture inux cooked capture inux cooked capture inux cooked capture inux cooked capture inux concord version 4, src: 125.125.40.32 (125.125.40.32), bst: 125.125.40.48 (125.125.40.48) ser Datagram Protocol inux concord version 4, src: 125.125.40.32 (125.125.40.32), bst: intervent intervent protocol Version: 1 inux concord version 1 inux concord version 1 Inax SNE (concord version 4, src: 125.125.40.32 (125.125.40.32), bst: intervent interve						
<pre>inux cooked capture internet Protocol version 4, Src: 125.125.40.32 (125.125.40.32), Dst: 125.125.40.48 (125.125.40.48) ser Datagram Protocol, Src Port: wimaxasncp (2231) iMax ASN Control Plane Protocol version: 1 rFlags: R - 0000 0001 = 0x01 MS State (9) OP ID: Request/Initiation (001 = 1) Message Type: MS_Prexttachment_Req (0 0001 = 1) Length: 43</pre>	rame 2799: 87 bytes on wire (696 bits), 87 bytes captured (696 bits) inux cooked capture inux cooked capture in	807	13:31:03.979208	125.125.40.32	125.125.40.48	WIMAX	142 AR EAP Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03. TID:
Transaction ID: 0x0001 Reserved: 0x0000 TLV: MS INFO [Compound]							
0 7d 7d 28 30 08 67 08 67 00 33 72 52 01 01 09 21 }}(0 3.8) 0 00 26 65 ad ef 10 08 03 00 00 00 00 00 01 00 00		MS OP Mes Len MSI Tra Res Tru TLV	gs: R - 0000 0005 state (9) ID: Request/Inft sage Type: MS_PP gth: 43 0: K28F046b.10:(erved: 0x000000 rsaction ID: 0x0 rwed: 0x0000 : HS Info [compc : BS Info [compc] : BS Info [compc : BS Info [com	iation (001, = eAttachment_Reg (8:03 (6c:ad:ef:10:0 0 001 und] 08 b7 00 33 f2 52 08 b7 00 0 43 f0 00 00 00 00 01 4 40 00 10 00	0 0001 = 1) 3:03)		

Figure 7-17: Net Entry - Pre-attachment

85 of 184

Subsequently, the Authentication procedure started. The MS sent its Identity (NAI) by means of a PKMv2-REQ message to the BS, which forwarded it to the ASN-GW by means of a AuthRelay_EAP_Transfer_Response message (packet n° 2803 in Figure 7-18).

The Identity was then forwarded to the AAA-Server (IP address = 125.125.40.60) for its acceptance, that happened properly (packet n°2805 in Figure 7-18).

Thales-Selex IOT	- NetEntry.pcaj	⊃ [Wireshark 1.8.6 (SVN	Rev 48142 from /trunk-	1.8)]			
<u>Eile E</u> dit <u>V</u> iew <u>G</u> o	o <u>C</u> apture <u>A</u> n	alyze <u>S</u> tatistics Telephor	n <u>y T</u> ools Internals <u>H</u> elp				
niker: Expression Clear Apply Save							
oITime	0.004030	Source	Destination	Protocol	Length	Info	
2796 13:31:0		125.125.40.32	125.125.40.48	WiMAX	/8	NetExit_MS_State_Change_Rsp = MSID:6c:ad:ef:10:08:03, TID:0x0001	
2797 13:31:0		Intel_0c:68:00	IS Identity sent to	ASNOW		who has 125.125.40.60? Tell 125.125.40.48	
2798 13:31:0		Apple_a4:tc:92		ARP		125.125.40.60 is at d8:30:62:a4:fc:92	
2799 13:31:0 2800 13:31:0		125.125.40.32 125.125.40.48	125.125.40.48 125.125.40.32	WIMAX WIMAX		MS_PreAttachment_Req = MSID:6c:ad:ef:10:08:03, TID:0x0001 MS_PreAttachment_Rsp = MSID:6c:ad:ef:10:08:03, TID:0x0001	
2800 13:31:0		125.125.40.32	125.125.40.48	WIMAX		MS_PreAttachment_Ack = MSID:6c:ad:ef:10:08:03, TID:0x0001 MS_PreAttachment_Ack = MSID:6c:ad:ef:10:08:03, TID:0x0001	
2802 13:31:0		125.125.40.48	125.125.40.32	WIMAX		AR_EAP_Iransfer [Request, Identity] _MSID:6c:ad:ef:10:08:03, TID:0x0001	
2803 13:31:0	3.809122	125.125.40.32	125.125.40.48	WIMAX		AR_EAP_Transfer [Response, Identity] - MSID:6c:ad:ef;b0:08:03, TID:0x0001	
2804 13:31:0	3.809763	125.125.40.48	125.125.40.60	RADIUS		Access=Request(1) (id=225, 1=230)	
2805 13:31:0		125.125.40.60	125.125.40.48	RADIUS		Access-Challenge(11) (1d=225, 1=82)	
2806 13:31:0		125.125.40.48	125.125.40.32	WIMAX		AR_EAP_Transfer [Request, FLS_EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:0x	
2807 13:31:0 2808 13:31:0		125.125.40.32 125.125.40.48	125.125.40.48 125.125.40.60	WIMAX RADIUS	242	AR_EAP_Transfer [Response, TLS EAP (EAP_TLS)] - MSID:6c:ad:ef:10:08:03, TID:0	
2809 13:31:0		125.125.40.48	125.125.40.48	RADIUS	1167	Access-Request(1) (id=226, 1=298)Acceptance by AAA Server Access-Challenge(11) (id=226, 1=1138)	
2810 13:31:0		125.125.40.48	125.125.40.32	WIMAX		AR_EAP_Transfer [Request, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:0x	
2811 13:31:0		125.125.40.32	125.125.40.48	WIMAX		AR_EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:0	
2812 13:31:0		125.125.40.48	125.125.40.60	RADIUS		Access-Request(1) (id=227, 1=230)	
2813 13:31:0	4.193585	125.125.40.60	125.125.40.48	RADIUS	1162	Access-Challenge(11) (id=227, l=1118)	
			, 92 bytes capture			•	
0000 00 = Differentiated Services Codepoint: Default (0x00) 00 = Explicit Congestion Notification: Not-ECT (Not ECN-Capable Transport) (0x00) Total Length: 76 Identification: 0x0000 (0) # Flags: 0x02 (0on't Fragment) Fragment offset: 0 Time to live: 64 Protocol: UOP (17) ⊞ Header checksum: 0xef56 [correct] Source: 125.125.40.32 (125.125.40.32) Destination: 125.125.40.48 (125.125.40.48) [Source: 6021P: Unknown]							
[Destination GeoIP: Unknown] ⊞ User Datagram Protocol, Src Port: wimaxasncp (2231), Dst Port: wimaxasncp (2231)							
WIMAX ASN CO	ntrol Plane		20 8. 2011		10 10		
Version: 1 ⊞ Flags: R -	0000 0001						
00 00 00 00	01 00 06 0	0 00 77 b6 75 08	00 00 08 00	w.u			
10 45 00 00 20 7d 7d 28 30 00 30 6c 40 00 3e 00	4c 00 00 4 30 08 b7 0 ad ef 10 0 18 02 01 0	0 00 40 11 ef 56 8 b7 00 38 1b d4 8 03 00 00 00 00 0 18 01 36 63 61 2 61 64 69 75 73	7d 7d 28 20 E. 01 01 08 82 }} 00 01 00 00 .0 .64 65 66 31 .>.	.L.@. @v} (08)(
MIMAX ASN Co	ntrol Plane Protoc	ol (wimaxasncp) Packets	: 3461 Displayed: 3461 Marke	ed: O Load time: 0:0	1.171	Profile: Default	

Figure 7-18: Authentication - MS Identity Acceptance

Once the MS Identity was accepted by the AAA Server, the ASN-GW sent a "Server Hello" EAP-TLS Request towards the MS, containing the AAA Server Certificate and asking for the MS Certificate (packet n°2810 in Figure 7-19).

The MS sent an EAP_Response containing its Certificate (packet n°2821 in Figure 7-19).

⊻iew <u>G</u> o <u>C</u> apture {	Instance Statistics Talaphony			
	Augustics releasing	Iools Internals Help		
	. x 2 4 9, 4	> + + + + + + + + + + + + + + + + + + +		Q. Q. 🔟 👪 🔟 🥵 🎉 🛄
		Expresi	sion Clear App	ly. Save
-	Fource			length linfo
				126 Access-Challenge(11) (id=225, l=82)
				<pre>88 AR_EAP_Transfer [Request, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:0</pre>
				142 AR_EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID: 142 AR_EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:
				342 Access-Request(1) (id=226, 1=298)Server Hello
				<u>1162 Access-Challenge(11) (id=226, 1=1118)</u>
3:31:04.063157	<125.125.40.48	125.125.40.32	WIMAX	1116 AR_EAP_Transfer [Request, IDS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:0
3:31:04.128981		125.125.40.48	WIMAX	74 AR_EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:
3:31:04.129608	125.125.40.48	125.125.40.60	RADIUS	274 Access-Request(1) (id=227, 1=230)
3:31:04.193585	125.125.40.60	125.125.40.48	RADIUS	1162 Access-challenge(11) (id=227,]=1118)
3:31:04.194503	125.125.40.48	125.125.40.32	WiMAX	1116 AR_EAP_Transfer [Request, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:0
3:31:04.278966	125.125.40.32	125.125.40.48	Wimax	74 AR_EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:
3:31:04.279597	125.125.40.48	125.125.40.60	RADIUS	274 Access-Request(1) (id=228, 1=230) MS Certificate
3:31:04.358684	125.125.40.60	125.125.40.48	RADIUS	876 Access-Challenge(11) (1d=228, 1=832)
3:31:04.359461		125.125.40.32		834 AR_EAP_Transfer [Request, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:0
3:31:04.529650				44 who has 125.125.40.31? Tell 125.125.40.48
				478 AR_EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:
				680 Access-Request(1) (id=229, 1=636)
				126 Access-Challenge(11) (id=229, 1=82)
				88 AR_EAP_Transfer [Request, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:0
				<pre>474 AR_EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:</pre>
				676 Access-Request(1) (id=230, 1=632)
				126 Access-Challenge(11) (id=230, 1=82)
				<pre>88 AR_EAP_Transfer [Request, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:0</pre>
				474 AR_EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:
				676 Access-Request(1) (id=231, 1=632)
				126 Access-Challenge(11) (id=231, l=82)
				88 AR_EAP_Transfer [Request, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:0 474 AR_EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:0
				474 AR_EAP_H ansier [Response, TLS EAP (EAP-TLS)] = MSID.0C.au.et.10.08.03, TID. 676 Access-Request(1) (id=232, l=632)
				126 Access Challenge(11) (id=222, 1=032)
2821 · 478 bytes	on wire (3824 hits)	478 hytes canti	red (3824 hit	(21
	011 111 12 (3021 2123)	, no sjees cape		
	sion 4. Src: 125.125	.40.32 (125.125.4	0.32). Dst: 1	125.125.40.48 (125.125.40.48)
ion: 1				
s: 0x00				
entication Rela	/ (8)			
D: Indication (LOO = 4)			
	P_Transfer (0 001	.0 = 2)		
th: 434				
		3:03)		
rved: 0x0000000	0			
00 00 01 00 02	00 00 77 66 75 00	00 00 08 00	10.10	
			a a 330	- 10
7d 28 30 08 b7	08 b7 01 ba d1 a0			
b2 6c ad ef 10	08 03 00 00 00 00	00 05 00 001		•
			#.	
			·····0.	
3333333333333333333333333333333333332200eaAfiseDatt:m 007k3032	:11:03.86084 :31:03.970208 :31:03.970208 :31:03.970208 :31:03.970208 :31:03.970208 :31:04.062137 :31:04.128081 :31:04.128081 :31:04.128081 :31:04.128081 :31:04.128081 :31:04.128081 :31:04.270597 :31:04.350844 :31:04.350845 :31:04.350845 :31:04.350845 :31:04.350845 :31:04.820700 :31:05.04567 :31:05.04567 :31:05.04567 :31:05.04567 :31:05.04567 :31:05.04567 :31:05.04567 :31:05.04567 :31:05.190581 :31:05.190581 :31:05.315579 :31:05.3157	<pre>:11:03.860684 125.125.40.60 :31:03.861084 125.125.40.48 :31:03.979208 125.125.40.48 :31:03.979208 125.125.40.48 :31:04.063157 425.125.40.48 :31:04.10981 125.125.40.48 :31:04.129608 125.125.40.48 :31:04.129608 125.125.40.48 :31:04.129608 125.125.40.48 :31:04.129606 125.125.40.48 :31:04.278567 125.125.40.48 :31:04.278567 125.125.40.48 :31:04.35864 125.125.40.48 :31:04.35864 125.125.40.48 :31:04.35864 125.125.40.48 :31:04.439461 125.125.40.48 :31:04.439461 125.125.40.48 :31:04.439461 125.125.40.48 :31:04.439561 125.125.40.48 :31:04.92050 125.125.40.48 :31:04.92050 125.125.40.48 :31:05.04567 125.125.40.48 :31:05.04567 125.125.40.48 :31:05.04567 125.125.40.60 :31:05.073308 125.125.40.60 :31:05.073308 125.125.40.60 :31:05.190581 125.125.40.48 :31:05.190581 125.125.40.48 :31:05.190581 125.125.40.48 :31:05.190581 125.125.40.60 :31:05.242463 125.125.40.48 :31:05.190581 125.125.40.48 :31:05.190581 125.125.40.48 :31:05.242465 125.125.40.48 :31:05.242465 125.125.40.48 :31:05.31379 125.125.40.48 :31:05.3000000000 :31:00.3000000000 :31:00.3</pre>	e Source Destination ::11:03.860684 125.125.40.60 125.125.40.32 ::11:03.860684 125.125.40.81 125.125.40.32 ::11:03.879908 125.125.40.48 125.125.40.48 ::11:03.879908 125.125.40.82 125.125.40.48 ::11:04.26908 125.125.40.60 125.125.40.48 ::11:04.128908 125.125.40.82 125.125.40.48 ::11:04.128908 125.125.40.48 125.125.40.48 ::11:04.278908 125.125.40.48 125.125.40.48 ::11:04.278907 125.125.40.48 125.125.40.48 ::11:04.278907 125.125.40.48 125.125.40.48 ::11:04.278907 125.125.40.48 125.125.40.48 ::11:04.278907 125.125.40.48 125.125.40.48 ::11:04.278907 125.125.40.48 125.125.40.48 ::11:04.278907 125.125.40.48 125.125.40.48 ::11:04.289030 125.125.40.48 125.125.40.48 ::11:04.928010 125.125.40.60 125.125.40.48 ::11:05.014567 125.125.40.60 125.125.40.48 :11:04.92801	s Source Destination Protocol 131103.860684 125.125.40.60 125.125.40.48 RADIUS 13103.860804 125.125.40.32 125.125.40.32 witMax 13103.86081 125.125.40.32 125.125.40.48 witMax 13103.86081 125.125.40.48 125.125.40.48 witMax 13104.063219 125.125.40.48 125.125.40.42 witMax 13104.128081 125.125.40.48 125.125.40.43 witMax 13104.128081 125.125.40.48 125.125.40.48 ADUUS 13104.128081 125.125.40.48 125.125.40.48 RADIUS 13104.129608 125.125.40.48 125.125.40.48 WitMax 13104.279597 125.125.40.48 125.125.40.40 RADIUS 13104.839461 125.125.40.48 125.125.40.40 RADIUS 13104.928010 125.125.40.60 125.125.40.48 RADIUS 13104.928010 125.125.40.61 125.125.40.88 WitMax 13104.928010 125.125.40.61 125.125.40.88 WitMax 13104.928010

Figure 7-19: Authentication – Certificates exchange

At this point, after a conversation with the AAA-Server, the ASN-GW answered for 6 times with an Alert message, the MS tried for 6 other times to re-send the certificate, until at packet n°2848 in Figure 7-20 the ASN-GW answered with an Authentication Failure. (This behavior is compliant with RFC5216). The Net Exit was then executed.

Tha	les-Selex IOT - NetEntry.pr	cap [Wireshark 1.8.6 (SVN)	Rev 48142 from /trunk-1	.8)]	
Eile	<u>E</u> dit ⊻iew <u>G</u> o <u>C</u> apture ,	Analyze Statistics Telephony	Iools Internals Help		
		6 x 2 4 9, 4	⇒ ⇒ ⊕ ₹ 4		2, 0, 🔟 🖉 🔟 🅵 % 💆
Filter:			Express	ion Clear Apply	Save
o.	Time	Source	Destination	Protocol L	ength [Info
28	09 13:31:04.062219	125.125.40.60	125.125.40.48	RADIUS	1162 Access-challenge(11) (id=226, l=1118)
	10 13:31:04.063157	125.125.40.48	125.125.40.32	WIMAX	1116 AR_EAP_Transfer [Request, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:0x
	11 13:31:04.128981	125.125.40.32	125.125.40.48	WIMAX	74 AR_EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:0
	12 13:31:04.129608	125.125.40.48	125.125.40.60	RADIUS	274 Access-Request(1) (id=227, 1=230)
	13 13:31:04.193585	125.125.40.60	125.125.40.48	RADIUS	1162 Access-Challenge(11) (id=227, l=1118)
	14 13:31:04.194503	125.125.40.48	125.125.40.32	WIMAX	1116 AR_EAP_Transfer [Request, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:0x
	15 13:31:04.278966	125.125.40.32	125.125.40.48	WIMAX	74 AR_EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:0
	16 13:31:04.279597 17 13:31:04.358684	125.125.40.48 125.125.40.60	125.125.40.60 125.125.40.48	RADIUS	274 Access-Request(1) (id=228, 1=230)
	18 13:31:04.359461	125.125.40.48	125.125.40.32	WIMAX	876 Access-Challenge(11) (id=228, l=832) 834 AR_EAP_Transfer [Request, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:0x
	19 13:31:04.529650	Intel_0c:68:00	123.123.40.52	ARP	44 who has 125.125.40.31? Tell 125.125.40.48
	20 13:31:04.846403	SequansC_ff:00:02	, ,	ARP	62 125.125.40.31 is at 00:16:08:ff:00:02
	21 13:31:04.889780	125,125,40,32	125,125,40,48	WIMAX	478 AR_EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:0
	22 13:31:04.890633	125,125,40,48	125,125,40,60	RADIUS	680 Access-Request(1) (id=229, 1=636)
	23 13:31:04.928010	125.125.40.60	125.125.40.48	RADIUS	126 Access-Challen <u>ge(11) (id=229</u> , 1=82)
	24 13:31:04.928410	125.125.40.48	125,125,40,32	wimax <	88 AR_EAP_Transfer [Request, TLS EAP (EAP-TLS)]MSID:6c:ad:ef:10:08:03, TID:0x
	25 13:31:05.014567	125.125.40.32	125.125.40.48	wimax/	474 AR EAP Transfer [Response, ILS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, IID:0
	26 13:31:05.015395	125.125.40.48	125.125.40.60	RADIUS	676 Access-Request(1) (1d=230, 1=632)
	27 13:31:05.073308	125.125.40.60	125.125.40.48	RADIUS	126 Access-challenge(11) (id=230, l=82)
	28 13:31:05.073710	125.125.40.48	125.125.40.32	WIMAX .	- 88 AR_EAP_Transfer [Request, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:0x
28	29 13:31:05.189761	125.125.40.32	125.125.40.48	Willax	474 AR_EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:0
28	30 13:31:05.190581	125.125.40.48	125.125.40.60	RADIUS	676 Access-Request(1) (1d=231, 1=632)
28	31 13:31:05.242065	125.125.40.60	125.125.40.48	RADIUS	126 Access-Challenge(11) (id=231, 1=82)
28	32 13:31:05.242463	125.125.40.48 Ale	rts125.125.40.32	wimax .	88 AR_EAP_Transfer [Request, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:0x
28	33 13:31:05.314558	125.125.40.32	125.125.40.48	WIMAX	474 AR_EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:0
	34 13:31:05.315379	125.125.40.48	125.125.40.60	RADIUS	676 Access-Request(1) (id=232, l=632)
	35 13:31:05.372478	125.125.40.60	125.125.40.48	RADIUS	126 Access-Challenge(11) (id=232, 1=82)
	36 13:31:05.372873	125.125.40.48	125.125.40.32	WIMAX	<u>■ 88 AR_EAP_Transfer</u> [Request, TLS EAP (EAP-TLS)] = <u>MS</u> D:6c:ad:ef:10:08:03, TID:0x
	37 13:31:05.489753	125.125.40.32	125.125.40.48	WIMAX	474 AR_EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:0
	38 13:31:05.490565	125.125.40.48	125.125.40.60	RADIUS	676 Access-Request(1) (1d=233, 1=632)
	39 13:31:05.545375	125.125.40.60	125.125.40.48	RADIDE	126 Access-Challenge(11) (id=233, l=82)
	40 13:31:05.545779	125.125.40.48	125.125.40.32	XAMIN	<pre>88 AR_EAP_Transfer [Request, TLS EAP (EAP-TLS)] - MEID:6c:ad:ef:10:08:03, TID:0x</pre>
	41 13:31:05.614550	125.125.40.32	125.125.40.48	XAMTW	474 AR_EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:0
	42 13:31:05.615362	125.125.40.48	125.125.40.60	RADIUS	676 Access-Request(1) (1d=234, 1=632)
	43 13:31:05.667651	125.125.40.60	125.125.40.48	RADIUS	126 Access-challenge(11) (id=234, 1=82)
	44 13:31:05.668056	125.125.40.48	125.125.40.32	WIMAX	88 AR_EAP_Transfer [Request, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:0x
	45 13:31:05.779531 46 13:31:05.780345	125.125.40.32 125.125.40.48	125.125.40.48 125.125.40.60	WİMAX RADIUS	474 AR_EAP_Transfer [Response, TLS EAP (EAP-TLS)] - MSID:6c:ad:ef:10:08:03, TID:0 676 Access-Request(1) (1d=235, 1=632)
	47 13:31:05.828357	125.125.40.48	125.125.40.48	RADIUS	126 Access-Challenge(11) (id=235, 1=82)
	48 13:31:05.828838	125.125.40.48	125.125.40.32	WIMAX	86 AR_EAP_Transfer [Failure] - MSID:6c:ad:ef:10:08:03, TID:0x000b
	49 13:31:05.829873	125.125.40.48	125.125.40.32	WIMAX	114 NetExit_MS_State_Change_Reg - MSID:6c:ad:ef:10:08:03, TID:0x0001
	50 13:31:05.830570	125.125.40.32	125.125.40.48	WIMAX	78 NetExit_MS_state_change_Rsp = MSID:6c:ad:ef:10:08:03, TID:0x0001
	51 13:31:08.679352	Interpha_b6:75:08		ARP	62 who has 125.125.40.48? Tell 125.125.40.32
Fra	ame 2849: 114 bytes	on wire (912 hits).	. 114 bytes cantur	ed (912 hits)	
000	00 04 00 01 00 06	68 05 ca 0c 68 00	00 00 08 00	hh	
10	45 00 00 62 00 00 7d 7d 78 70 08 b7	40 00 40 11 ef 40	7d 7d 28 30 E	o@. @@}}(C	
020	7d 7d 28 20 08 b7 00 46 6c ad ef 10	08 b7 00 4e 4b aa 08 03 00 00 00 00	00 01 00 00 E1	C	
040	00 67 00 20 00 66	00 06 6c ad ef 10	08 03 00 0a .g.		
050	00 04 7d 7d 28 30		28 30 00 03}	}(0}}(0	
)60)70	00 02 ff fe 00 1a 02 02	00 0a 00 19 00 06	0a bc de 00		
		normal and a second	· ·	an la arrit	n flunduk
1	File: "D:\giulio\SESAR\15.2.7\I	Execution Phase) Packets:	3461 Displayed: 3461 Marked	: U LOAD time: U:01.17	1 Profile: Default

Figure 7-20: Authentication – Net Exit

7.1.6.3.3 Unexpected behaviors/results

The MS Certificate Authentication failure by the AAA Server was investigated by Selex ES and Thales teams, and it was not possible to identify a definitive reason.

One difference noted between the two implementations is that the Thales Ground System and MS Certificate were compliant to a FreeRADIUS version 1.1.7, while the AAA Server used by Selex ES was a FreeRADIUS 2.1.3.1. This could imply differences in the expected MS Certificates, or differences in some expected messages formats (e.g. the AR_EAP_Transfer_Response message sent by the Thales MS and refused by the Selex AAA Server).

Further investigations are recommended, to reach an unambiguous conclusion, using these indications as starting point.

7.1.6.4 Conclusions and recommendations

The testing allowed checking successfully the messages exchanges between BS and MS concerning the phases of Scanning, Synchronization, Initial Ranging, and Basic Capabilities Negotiation. The Authentication failed, and it was not possible to identify a definitive reason. However some useful indications were identified and described in the previous chapters. They can be used as starting point for further investigations.

founding members

88 of 184

There are currently discussions ongoing among various standardization Authorities (ICAO, WMF, EUROCAE, RTCA) about the security framework necessary for AeroMACS. There is the need to define a clear Certification Authority scheme, which is required in order to be able to use AeroMACS on a worldwide basis. The results of this test confirm also the need to identify unambiguously the WiMAX network protocols and messages formatting related to Authentication/Encryption.

It is suggested to plan ad-hoc activities with this purpose in the near future (SESAR2020/VLD could be suitable opportunities), to be conducted in strict coordination with the relevant standardization Authorities.

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

89 of 184

7.2 Thales lab verification exercises

7.2.1 Verification Exercise # TLAB2_010

7.2.1.1 Verification Exercise Scope

Test Service flow control:

Verify the completion of the control messages to successfully complete the creation, change and deletion of a service flow to the MS.

7.2.1.2 Conduct of Verification Exercise

7.2.1.2.1 Verification Exercise Preparation

Lab-test_bed_01 is prepared.

7.2.1.2.2 Verification Exercise execution

Step	action	Action result	PCO	Result
1	Set frequency on the GS : 5093,5 MHz Provision new RF parameter on the GS	New frequency provisioned on GS	GS control MMI Spectrum analyzer	ок
2	Set frequency scan of MS : 5093,5 MHz 5098,5 MHz 50103,5 MHz	MS connects eventually to the GS	GS control MMI	ок
3	Attenuators are tuned to get a high modulation rate (16QAM3/4) Initiate traffic in the DL thanks to the traffic generator (Iperf): Datarate 5 Mbps	established	lperf	ок
4	Create a new SF: BE with a max datarate of 300 kbps which is far below generated data throughput	A new SF is created	GS control MMI	ок
5	Allocate SF to MS and verify that it is dynamically taken into account	Datarate goes down to 300 kbps	lperf	OK
6	Delete SF and verify that it is dynamically taken into account	Datarate goes back to 5 Mbps	lperf	ОК

7.2.1.2.3 Deviation from the planned activities

None.

7.2.1.3 Verification exercise Results

7.2.1.3.1 Summary of Verification exercise Results

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

90 of 184

The SF change is dynamically allocated to the MS and the data traffic is transmitted via the created connection. After SF deletion the data traffic is no more sent on its connection. Hence, the SF creation change and deletion are successfully completed.

7.2.1.3.2 Analysis of Verification Exercise Results

Below, we put some details on the test execution. The screenshot from iperf server which is located on a PC connected to MS are shown.

One can see that first the data rate is around 5 Mbps which is compliant to what is sent and the default SF that is initially set.

Then the SF that limits the max data rate to 300 kbps is applied. One can see that the data rate received by iperf goes down and stabilizes at the 300 kbps limit.

Then the SF is deleted and the data rate goes back to 5 Mbps.

[1928] 15.0-16.0 sec 0.00 Bytes 0.00 bits/sec 1.063 ms 0/ 0 (-1.5z [1928] 17.0-18.0 sec 0.00 Bytes 0.00 bits/sec 1.863 ms 0/ 0 (-1.5z [1928] 18.0-19.0 sec 0.00 Bytes 0.00 bits/sec 1.863 ms 0/ 0 (-1.5z [1928] 18.0-19.0 sec 0.00 Bytes 0.00 bits/sec 1.863 ms 0/ 0 (-1.5z [1928] 20.0-21.0 sec 0.00 Bytes 0.00 bits/sec 1.863 ms 0/ 0 (-1.5z [1928] 21.0-22.0 sec 1/4 KBytes 1.42 Mbits/sec 1.863 ms 0/ 0 (-1.5z [1928] 22.0-23.0 sec 1/4 KBytes 1.42 Mbits/sec 1.863 ms 0/ 0 (-1.5z [1928] 22.0-23.0 sec 1/4 KBytes 1.42 Mbits/sec 1.863 ms 0/ 0 (-1.5z [1928] 22.0-23.0 sec 1/4 KBytes 1.42 Mbits/sec 1.863 ms 0/ 0 (-1.5z [1928] 22.0-24.0 sec 1/4 KBytes 1.42 Mbits/sec 1.863 ms 0/ 0 (-1.5z [1928] 23.0-24.0 sec 1/4 KBytes 1.42 Mbits/sec 5.443 ms 275/ 428 (64z [1928] 25.0-25.0 sec 3/9 (datagrams received out-of-order [1928] 25.0-25.0 sec 3/9 (KBytes 2.98 Mbits/sec 37.358 ms 0/ 26 (0z) [1928] 25.0-25.0 sec 3/9 (KBytes 303 Kbits/sec 37.358 ms 0/ 25 (0z) [1928] 22.0-33.0 sec 35.6 KBytes 292 Kbits/sec 53.937 ms 391/ 416 (94) [1928] 30.0-33.0 sec 35.6 KBytes 292 Kbits/sec 53.937 ms 391/ 416 (94) [1928] 31.0-32.0 sec 37.0 KBytes 303 Kbits/sec 48.946 ms 409/ 435 (94) [1928] 31.0-32.0 sec 37.0 KBytes 292 Kbits/sec 53.216m ms 0/ 26 (0z) [1928] 32.0-33.0 sec 35.6 KBytes 292 Kbits/sec 53.216m ms 0/ 25 (0z) [1928] 32.0-33.0 sec 35.6 KBytes 292 Kbits/sec 53.216m ms 396/ 435 (94) [1928] 33.0-34.0 sec 37.0 KBytes 303 Kbits/sec 12.477 ms 306/ 435 (94) [1928] 34.0-35.0 sec 37.0 KBytes 303 Kbits/sec 12.477 ms 306/ 435 (94) [1928] 36.0-37.0 sec 37.0 KBytes 303 Kbits/sec 12.477 ms 0/ 0 (-1. [1928] 34.0-35.0 sec 37.0 KBytes 292 Kbits/sec 69.536 ms 410/ 435 (94) [1928] 36.0-37.0 sec 37.0 KBytes 303 Kbits/sec 12.477 ms 0/ 0 (-1. [1928] 34.0-35.0 sec 37.0 KBytes 303 Kbits/sec 12.477 ms 0/ 0 (-1. [1928] 34.0-35.0 sec 37.0 KBytes 303 Kbits/sec 12.477 ms 0/ 0 (-1. [1928] 44.0-45.0 sec 0.27. KBytes 1.78 Mbits/sec 12.477 ms 0/ 0 (-1. [1928] 44.0-45.0 sec 0.21.6 KBytes 1.78 Mbits/sec 12.477 ms 0/ 0 (-1. [1928] 44.0-45.0 sec 0.400 Bytes	es Invi	te de commar	ides -	iperf -s	-u -i 1 -	p 50001						_
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	[1928]	11.0-12.0	sec	611	KBytes		Mbits/se	c 4.02	9 ms	0/		(0%)
$\begin{array}{llllllllllllllllllllllllllllllllllll$		12.0-13.0	sec									
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			sec		KBytes							
[1928] 16.0-17.0 sec 0.00 Bytes 0.00 bits/sec 1.863 ms 0/ 0 (-1.5% [1928] 18.0-19.0 sec 0.00 Bytes 0.00 bits/sec 1.863 ms 0/ 0 (-1.5% [1928] 19.0-20.8 sec 0.00 Bytes 0.00 bits/sec 1.863 ms 0/ 0 (-1.5% [1928] 19.0-20.8 sec 0.00 Bytes 0.00 bits/sec 1.863 ms 0/ 0 (-1.5% [1928] 21.0-22.0 sec 0.00 Bytes 0.00 bits/sec 1.863 ms 0/ 0 (-1.5% [1928] 21.0-22.0 sec 174 KBytes 1.42 Mbits/sec 1.863 ms 0/ 0 (-1.5% [1928] 21.0-22.0 sec 174 KBytes 1.42 Mbits/sec 1.863 ms 0/ 0 (-1.5% [1928] 21.0-22.0 sec 174 KBytes 1.77 Mbits/sec 1.843 ms 275/ 428 (64% [1928] 25.0-26.0 sec 342 KBytes 1.77 Mbits/sec 9.482 ms 382/ 65% [1928] 25.0-26.0 sec 342 KBytes 327 Kbits/sec 32.208 ms 0/ 28 (0% [1928] 25.0-26.0 sec 35.6 KBytes 327 Kbits/sec 37.358 ms 0/ 26 (0% [1928] 28.0-29.8 sec 37.0 KBytes 303 Kbits/sec 37.358 ms 0/ 25 (0% [1928] 28.0-29.8 sec 37.0 KBytes 303 Kbits/sec 53.937 ms 391/ 416 (94 [1928] 31.0-31.0 sec 35.6 KBytes 292 Kbits/sec 53.937 ms 391/ 416 (94 [1928] 31.0-31.0 sec 35.6 KBytes 292 Kbits/sec 63.361 ms 409/ 435 (94 [1928] 31.0-31.0 sec 35.6 KBytes 292 Kbits/sec 53.937 ms 391/ 416 (94 [1928] 31.0-32.0 sec 37.0 KBytes 303 Kbits/sec 66.361 ms 409/ 435 (94 [1928] 31.0-32.0 sec 37.0 KBytes 303 Kbits/sec 54.484 ms 409/ 435 (94 [1928] 31.0-32.0 sec 37.6 KBytes 292 Kbits/sec 65.361 ms 410/ 435 (94 [1928] 31.0-32.0 sec 35.6 KBytes 292 Kbits/sec 65.361 ms 410/ 435 (94 [1928] 31.0-32.0 sec 35.6 KBytes 292 Kbits/sec 64.946 ms 409/ 435 (94 [1928] 31.0-32.0 sec 35.6 KBytes 303 Kbits/sec 48.946 ms 409/ 435 (94 [1928] 31.0-32.0 sec 35.6 KBytes 303 Kbits/sec 51.248 ms 409/ 435 (94 [1928] 31.0-32.0 sec 35.6 KBytes 303 Kbits/sec 54.484 ms 409/ 435 (94 [1928] 31.0-32.0 sec 37.0 KBytes 303 Kbits/sec 52.278 ms 408/ 434 (94 [1928] 31.0-32.0 sec 37.0 KBytes 303 Kbits/sec 51.248 ms 409/ 435 (94 [1928] 41.0-42.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 41.0-42.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 41.0-42.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 41.0-42.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/									3 ms		_29	(3.4%)
[1928] 17.0-18.0 sec 0.00 Bytes 0.00 bits/sec 1.863 ms 0/ 0 (-1.5% [1928] 19.0-20.0 sec 0.00 Bytes 0.00 bits/sec 1.863 ms 0/ 0 (-1.5% [1928] 20.0-21.0 sec 0.00 Bytes 0.00 bits/sec 1.863 ms 0/ 0 (-1.5% [1928] 21.0-22.0 sec 1.74 KBytes 1.00 bits/sec 1.863 ms 0/ 0 (-1.5% [1928] 22.0-23.0 sec 1.74 KBytes 1.42 Mbits/sec 1.863 ms 0/ 0 (-1.5% [1928] 22.0-24.0 sec 1.74 KBytes 1.42 Mbits/sec 1.863 ms 0/ 0 (-1.5% [1928] 23.0-24.0 sec 2.16 KBytes 1.78 Mbits/sec 9.482 ms 278/ 428 (64% [1928] 25.0-26.0 sec 342 KBytes 1.78 Mbits/sec 9.482 ms 278/ 428 (64% [1928] 25.0-26.0 sec 342 KBytes 2.280 Mbits/sec 9.482 ms 278/ 428 (64% [1928] 25.0-26.0 sec 3.6 KBytes 327 Kbits/sec 37.358 ms 0/ 28 (8% [1928] 25.0-26.0 sec 3.6 KBytes 327 Kbits/sec 37.358 ms 0/ 28 (8% [1928] 28.0-29.0 sec 37.0 KBytes 303 Kbits/sec 37.358 ms 0/ 26 (8% [1928] 28.0-29.0 sec 35.6 KBytes 292 Kbits/sec 53.937 ms 391/ 416 (94 (1928] 30.0-31.0 sec 35.6 KBytes 292 Kbits/sec 48.946 ms 409/ 435 (94 (1928] 31.0-32.0 sec 35.6 KBytes 292 Kbits/sec 66.84 ms 409/ 435 (94 (1928] 31.0-34.0 sec 35.6 KBytes 292 Kbits/sec 66.84 ms 409/ 435 (94 (1928] 31.0-36.0 sec 37.6 KBytes 292 Kbits/sec 68.157 ms 36/ 434 (94 (1928] 31.0-36.0 sec 35.6 KBytes 292 Kbits/sec 68.157 ms 36/ 434 (94 (1928] 31.0-36.0 sec 37.6 KBytes 292 Kbits/sec 68.157 ms 36/ 435 (94 (1928] 31.0-36.0 sec 37.6 KBytes 292 Kbits/sec 68.157 ms 36/ 435 (94 (1928] 31.0-36.0 sec 37.6 KBytes 292 Kbits/sec 68.157 ms 36/ 439 (94 (1928] 30.0-36.0 sec 37.6 KBytes 292 Kbits/sec 51.2477 ms 36/ 435 (94 (1928] 31.0-36.0 sec 37.6 KBytes 292 Kbits/sec 51.2477 ms 36/ 435 (94 (1928] 31.0-36.0 sec 37.6 KBytes 292 Kbits/sec 51.2477 ms 36/ 434 (94 (1928] 31.0-36.0 sec 37.6 KBytes 292 Kbits/sec 51.2477 ms 9/ 435 (94 (1928] 31.0-36.0 sec 37.6 KBytes 292 Kbits/sec 51.2477 ms 8/ 40/ 435 (94 (1928] 31.0-36.0 sec 37.6 KBytes 303 Kbits/sec 51.2477 ms 8/ 40/ 435 (94 (1928] 31.0-36.0 sec 37.6 KBytes 303 Kbits/sec 51.2477 ms 8/ 40/ 435 (94 (1928] 41.0-41.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 8/ 40/ (-1. 11928] 44.0-45.0 sec 0.00 Bytes 0.00 b			sec						MS		0 (-	1.\$%)
[1928] 18.0-19.0 sec 0.00 Bytes 0.00 bits/sec 1.863 ms 0/ 0 (-1.5% [1928] 19.0-20.0 sec 0.00 Bytes 0.00 bits/sec 1.863 ms 0/ 0 (-1.5% [1928] 21.0-22.0 sec 0.00 Bytes 0.00 bits/sec 1.863 ms 0/ 0 (-1.5% [1928] 21.0-22.0 sec 0.00 Bytes 0.00 bits/sec 1.863 ms 0/ 0 (-1.5% [1928] 23.0-24.0 sec 118 KBytes 1.42 Mbits/sec 1.842 mbits/sec 9.492 ms 3275 / 428 (64% [1928] 25.0-26.0 sec 216 KBytes 1.77 Mbits/sec 9.492 ms 327 / 428 (64% (65% [1928] 25.0-26.0 sec 32 (KBytes 2.20 Mbits/sec 32.20 ms 0/ 28 (0e% [1928] 27.0-28.0 sec 35.6 KBytes 227 Kbits/sec 37.140 ms 0/ 25 (0k% [1928] 28.0-29.0 sec 35.6 KBytes 292 Kbits/sec 37.140 ms 0/ 25 (0k% [1928] 30.0-31.0 sec 35.6 KBytes 292 Kbits/sec 6.64 ms 409/ 434 (94 1928] 31.0-32.0 sec 35.6 KBytes 292 Kbits/sec 6.64 ms 409/ 435 (94 1928] 33.0-34.0 sec 35.6 KBytes									MS		0 (-	1.\$%)
[1928] 19.0-20.0 sec 0.00 Bytes 0.00 bits/sec 1.863 ms 0/ 0 <-1.5x		17.0-18.0									0 (-	1.5%)
[10] Interval Transfer Banduidth Jitter Lost/Total Datag [1928] 22.0-23.0 sec 0.00 Bytes 0.00 bits/sec 1.863 ms 0/ 0 <-1.5%		18.0-19.0										
[1928] 20.0-21.0 sec 0.00 Bytes 0.00 bits/sec 1.863 ms 0/ 0 (-1.5% [1928] 22.0-23.0 sec 1.74 KBytes 0.00 bits/sec 1.863 ms 0/ 0 (-1.5% [1928] 22.0-23.0 sec 1.74 KBytes 1.42 Mbits/sec 8.477 ms 3430/3552 (97% [1928] 23.0-24.0 sec 216 KBytes 1.78 Mbits/sec 9.482 ms 278/428 (64% [1928] 25.0-26.0 sec 342 KBytes 1.77 Mbits/sec 9.482 ms 278/428 (64% [1928] 25.0-26.0 sec 342 KBytes 2.80 Mbits/sec 9.482 ms 278/428 (64% [1928] 25.0-26.0 sec 342 KBytes 2.80 Mbits/sec 9.482 ms 278/428 (64% [1928] 25.0-26.0 sec 39.9 KBytes 327 Kbits/sec 37.358 ms 0/ 28 (0% [1928] 28.0-27.0 sec 37.0 KBytes 303 Kbits/sec 37.358 ms 0/ 28 (0% [1928] 28.0-27.0 sec 37.6 KBytes 292 Kbits/sec 37.358 ms 0/ 26 (0% [1928] 28.0-27.0 sec 37.6 KBytes 292 Kbits/sec 37.140 ms 0/ 25 (0% [1928] 28.0-30.0 sec 35.6 KBytes 292 Kbits/sec 53.937 ms 391/416 (94 [1928] 31.0-32.0 sec 35.6 KBytes 292 Kbits/sec 56.361 ms 00/ 434 (94 [1928] 31.0-32.0 sec 35.6 KBytes 292 Kbits/sec 56.361 ms 400/434 (94 [1928] 33.0-34.0 sec 35.6 KBytes 292 Kbits/sec 56.361 ms 410/435 (94 [1928] 33.0-34.0 sec 35.6 KBytes 292 Kbits/sec 56.361 ms 410/435 (94 [1928] 33.0-34.0 sec 35.6 KBytes 292 Kbits/sec 64.804 ms 409/435 (94 [1928] 33.0-34.0 sec 37.0 KBytes 303 Kbits/sec 41.00 ms 306/211 (90 km 366/389 (94 [1928] 38.0-37.0 sec 35.6 KBytes 292 Kbits/sec 56.361 ms 410/435 (94 [1928] 38.0-37.0 sec 35.6 KBytes 292 Kbits/sec 41.00 ms 306/211 (9 [1928] 13.0-34.0 sec 37.0 KBytes 303 Kbits/sec 212.477 ms 0/ 0 (-1. [1928] 41.0-42.0 sec 0.000 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 43.0-44.0 sec 0.000 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 44.0-45.0 sec 0.000 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 43.0-44.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 44.0-45.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 44.0-45.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 44.0-45.0 sec 218 KBytes 1.78 Mbits/sec 10.633 ms 275/428 (64% [1928] 54.0-50.0 sec 218 KBytes 1.78 Mbits/sec 10.633 ms 275/428 (64% [1928] 54.0-50.0 sec 218 KBytes 1.78 Mbits/sec 10			sec			พ.พพ	bits/sec				0 (-	1.5%)
											tal	atagra
19281 22.0-23.0 sec 174 KBytes 1.42 Mbits/sec 8.477 ms 3430/3552 3552												
119281 23.0-24.0 sec 216 KBytes 1.78 Mbits/sec 9.482 ms 275/ 428 (65% 119281 25.0-26.0 sec 216 KBytes 2.80 Mbits/sec 9.394 ms 382/ 622 (61% 119281 25.0-26.0 sec 96 datagrams received out-of-order 382/ 622 (61% 119281 26.0-27.0 sec 37.0 KBytes 327 Kbits/sec 37.358 Mo/ 28 (0% 119281 28.0-29.0 sec 35.6 KBytes 303 Kbits/sec 37.140 ms 0/ 25 (0% 119281 31.0-32.0 sec 35.6 KBytes 292 Kbits/sec 53.737 ms 391/ 416 (94 119281 31.0-32.0 sec 35.6 KBytes 292 Kbits/sec 63.26 ms 409/ 435 (94 119281 32.0-35.0 sec 35.6 KBytes 292 Kbits/sec 63.26 ms 409/ 435 (94 119281 34.0-35.0 sec <td></td> <td>1.3%/</td>												1.3%/
11928] 24.0-25.0 sec 216 KBytes 1.77 Mbits/sec 9.482 ms 278/ 430 (65× 11928] 25.0-26.0 sec 342 KBytes 2.80 Mbits/sec 9.394 ms 382/ 622 (61× 11928] 25.0-26.0 sec 39.9 KBytes 2.80 Mbits/sec 9.394 ms 382/ 622 (61× 11928] 25.0-26.0 sec 39.9 KBytes 327 Kbits/sec 37.358 ms 0/ 28 (0× 11928] 27.0-28.0 sec 35.6 KBytes 292 Kbits/sec 37.358 ms 0/ 26 (0× 11928] 28.0-29.0 sec 35.6 KBytes 292 Kbits/sec 37.140 ms 0/ 26 (0× 11928] 30.0-31.0 sec 35.6 KBytes 292 Kbits/sec 37.140 ms 0/ 25 (0× 11928] 31.0-32.0 sec 35.6 KBytes 292 Kbits/sec 53.937 ms 391/ 416 (94 11928] 31.0-32.0 sec 35.6 KBytes 292 Kbits/sec 56.361 ms 409/ 435 (94 11928] 33.0-34.0 sec 35.6 KBytes 292 Kbits/sec 56.361 ms 410/ 435 (94 11928] 33.0-34.0 sec 35.6 KBytes 292 Kbits/sec 56.361 ms 410/ 435 (94 11928] 33.0-34.0 sec 35.6 KBytes 292 Kbits/sec 56.361 ms 410/ 435 (94 11928] 35.0-36.0 sec 37.0 KBytes 292 Kbits/sec 56.361 ms 410/ 435 (94 11928] 35.0-36.0 sec 37.6 KBytes 292 Kbits/sec 68.157 ms 396/ 421 (94 11928] 37.0-38.0 sec 37.7 KBytes 208 Kbits/sec 51.278 ms 408/ 434 (94 11928] 38.0-39.0 sec 37.7 KBytes 208 Kbits/sec 51.2487 ms 408/ 434 (94 11928] 39.0-40.0 sec 41.3 KBytes 308 Kbits/sec 512.477 ms 0/ 0 (-1. 11928] 44.0-41.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. 11928] 44.0-45.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. 11928] 44.0-45.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. 11928] 44.0-45.0 sec 1.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. 11928] 44.0-45.0 sec 1.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. 11928] 44.0-45.0 sec 1.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. 11928] 44.0-45.0 sec 218 KBytes 1.78 Mbits/sec 10.631 ms 281/ 434 (65 11928] 44.0-49.0 sec 218 KBytes 1.78 Mbits/sec 10.631 ms 275/ 428 (64 11928] 53.0-54.0 sec 216 KBytes 1.78 Mbits/sec 2.910 ms 275/ 428 (64 11928] 55.0-54.0 sec 218 KBytes 1.78 Mbits/sec 2.910 ms 275/ 428 (64 11928] 55.0-54.0 sec 218 KBytes 1.78 Mbits/sec 2.910 ms 275/ 428 (64 11928] 55.0-54.0 sec 218 KBytes 1.78 Mbits/sec 5.628 ms 281/ 434 (65 11928] 55.0-54.0 sec												
119281 25.0-26.0 sec 342 KBytes 2.80 Mbits/sec 9.394 ms 382/ 622 (61: 119281 25.0-26.0 sec 39.9 KBytes 327 Kbits/sec 32.208 ms 0/ 28 (0: 119281 27.0-28.0 sec 35.6 KBytes 292 Kbits/sec 37.358 ms 0/ 26 (0: 119281 28.0-29.0 sec 37.0 KBytes 292 Kbits/sec 37.140 ms 0/ 26 (0: 119281 28.0-30.0 sec 35.6 KBytes 292 Kbits/sec 37.140 ms 0/ 26 (0: 119281 31.0-32.0 sec 37.0 KBytes 292 Kbits/sec 53.937 ms 391/ 416 (94 119281 31.0-32.0 sec 35.6 KBytes 292 Kbits/sec 66.361 ms 409/ 435 (94 119281 34.0-35.0 sec 35.6 KBytes 292 Kbits/sec 68.157 ms 396 (94 119281 35.0-36.0 sec 37.0 KBytes 303 Kbits/sec 12.477 ms 0/ (21 (94 119281 37.0-38.0 sec 37.0 KBytes 303 Kbits/sec 212.477 ms 0/ (-1. 119281 43.0-44.0 sec 0.00 bits/sec 212.477 ms 0/												
11928] 25.0-26.0 sec 96 datagrams received out-of-order 11928] 26.0-27.0 sec 39.9 KBytes 327 Kbits/sec 32.208 ms 0/ 28 (0%, 11928] 27.0-28.0 sec 35.6 KBytes 292 Kbits/sec 37.358 ms 0/ 26 (0%, 11928] 28.0-29.0 sec 37.0 KBytes 303 Kbits/sec 37.140 ms 0/ 25 (0%, 11928] 30.0-31.0 sec 35.6 KBytes 292 Kbits/sec 37.140 ms 0/ 25 (0%, 11928] 31.0-32.0 sec 37.0 KBytes 202 Kbits/sec 37.140 ms 0/ 25 (0%, 11928] 32.0-33.0 sec 35.6 KBytes 292 Kbits/sec 48.946 ms 409/ 435 (94, 11928] 31.0-32.0 sec 35.6 KBytes 292 Kbits/sec 68.684 ms 409/ 435 (94, 11928] 33.0-34.0 sec 35.6 KBytes 292 Kbits/sec 68.684 ms 409/ 435 (94, 11928] 33.0-34.0 sec 35.6 KBytes 292 Kbits/sec 68.157 ms 396/ 421 (94, 11928] 35.0-36.0 sec 37.0 KBytes 203 Kbits/sec 68.157 ms 396/ 421 (94, 11928] 35.0-36.0 sec 37.0 KBytes 203 Kbits/sec 68.157 ms 396/ 421 (94, 11928] 37.0-38.0 sec 37.0 KBytes 303 Kbits/sec 53.278 ms 408/ 434 (94, 11928] 38.0-39.0 sec 37.0 KBytes 303 Kbits/sec 51.278 ms 408/ 434 (94, 11928] 39.0-40.0 sec 41.3 KBytes 303 Kbits/sec 212.477 ms 2083/ 2112 (9, 110] Interval Transfer Bandwidth Jitter Lost/Total Datag 11928] 40.0-41.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. 11928] 44.0-43.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. 11928] 44.0-45.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. 11928] 44.0-45.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. 11928] 44.0-45.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. 11928] 44.0-45.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. 11928] 44.0-45.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. 11928] 44.0-45.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. 11928] 44.0-45.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. 11928] 44.0-45.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. 11928] 45.0-46.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. 11928] 45.0-46.0 sec 218 KBytes 1.78 Mbits/sec 10.638 ms 275/ 428 (64, 11928] 51.0-52.0 sec 218 KBytes 1.78 Mbits/sec 10.648 ms 275/ 428 (64, 11928] 55.0-54.0 sec 218 KBytes 1.78 Mbits/s												
19281 26.0-27.0 sec 39.6 KBytes 327 Kbits/sec 32.208 ms 0/ 28 (0////////////////////////////////////										304/	044	10171
119281 27.0-28.0 sec 37.0 KBytes 292 Kbits/sec 37.358 ms 0/ 25 (0%. 119281 28.0-29.0 sec 37.0 KBytes 303 Kbits/sec 37.358 ms 0/ 26 (0%. 119281 30.0-31.0 sec 35.6 KBytes 292 Kbits/sec 37.37 ms 391/ 416 (94. 119281 31.0-31.0 sec 35.6 KBytes 292 Kbits/sec 53.937 ms 391/ 416 (94. 119281 31.0-34.0 sec 35.6 KBytes 292 Kbits/sec 52.684 ms 409/ 435 (94. 119281 34.0-34.0 sec 35.6 KBytes 292 Kbits/sec 66.566 ms 410/ 435 (94. 119281 34.0-37.0 sec 35.6 KBytes 292 Kbits/sec 68.157 ms 396/ 421 (94. 119281 36.0-37.0 sec 32.7 KBytes 303 Kbits/sec 53.278 ms 408/ 434 (94. 119281 39.0-40.0 sec 41.3 KBytes 303 Kbits/sec 212.477 ms 0/ 0<(-1.										0/	29	(02)
11928] 28.0-29.0 sec 37.0 KBytes 303 Kbits/sec 37.140 ms 0/ 25 (0%) 11928] 30.0-31.0 sec 35.6 KBytes 292 Kbits/sec 37.140 ms 0/ 25 (0%) 11928] 31.0-32.0 sec 35.6 KBytes 292 Kbits/sec 53.937 ms 391/ 416 (94) 11928] 32.0-33.0 sec 35.6 KBytes 292 Kbits/sec 62.684 ms 409/ 435 (94) 11928] 33.0-34.0 sec 35.6 KBytes 292 Kbits/sec 65.361 ms 410/ 435 (94) 11928] 35.0-36.0 sec 35.6 KBytes 292 Kbits/sec 65.26 ms 410/ 435 (94) 11928] 36.0-37.0 sec 35.6 KBytes 292 Kbits/sec 68.157 ms 396/ 421 (94) 11928] 37.0-38.0 sec 37.0 KBytes 303 Kbits/sec 51.26 ms 408/ 434 (94) 11928] 39.0-40.0 sec 37.0 KBytes 303 Kbits/sec 51.277 ms 306/ 421 (94) 11928] 41.0-42.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/<0 (-1.						202	Khite/ca	27 3	58 me			(0.)
[1928] 29.0-30.0 sec 35.6 KBytes 292 Kbits/sec 37.140 ms 0/ 25 (0%) [1928] 30.0-31.0 sec 35.6 KBytes 292 Kbits/sec 3.937 ms 391/ 416 (94) [1928] 31.0-32.0 sec 35.6 KBytes 292 Kbits/sec 62.684 ms 409/ 435 (94) [1928] 32.0-33.0 sec 35.6 KBytes 292 Kbits/sec 62.684 ms 409/ 435 (94) [1928] 34.0-35.0 sec 35.6 KBytes 292 Kbits/sec 69.526 ms 410/ 435 (94) [1928] 35.0-36.0 sec 37.0 KBytes 202 Kbits/sec 69.526 ms 410/ 435 (94) [1928] 37.0-38.0 sec 35.6 KBytes 292 Kbits/sec 69.526 ms 410/ 435 (94) [1928] 38.0-39.0 sec 37.0 KBytes 303 Kbits/sec 53.278 ms 408/ 434 (94) [1928] 38.0-39.0 sec 37.0 KBytes 303 Kbits/sec 212.477 ms 0/ 0 (-1. [1928] 40.0-41.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 41.0-42.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 42.0-43.0 sec 0.00 Bytes <td></td> <td>28 0-29 0</td> <td></td> <td></td> <td></td> <td>202</td> <td>Khite/ee</td> <td>c 39 2</td> <td>61 me</td> <td></td> <td></td> <td></td>		28 0-29 0				202	Khite/ee	c 39 2	61 me			
[1928] 31.0-32.0 sec 37.0 KBytes 303 Khits/sec 48.946 ms 409/ 435 (94 [1928] 32.0-33.0 sec 35.6 KBytes 292 Khits/sec 56.6 ms 410/ 435 (94 [1928] 33.0-34.0 sec 35.6 KBytes 292 Khits/sec 56.6 fm s 410/ 435 (94 [1928] 34.0-35.0 sec 35.6 KBytes 292 Khits/sec 56.6 fm s 410/ 435 (94 [1928] 36.0-36.0 sec 37.0 KBytes 303 Khits/sec 54.484 ms 409/ 435 (94 [1928] 37.0-38.0 sec 37.0 KBytes 303 Khits/sec 54.484 ms 409/ 435 (94 [1928] 38.0-39.0 sec 37.0 KBytes 208 Khits/sec 68.157 ms 396/ 421 (94 [1928] 38.0-39.0 sec 37.0 KBytes 303 Khits/sec 51.2 fm s 40.05 ms 366/ 389 (94 [1928] 39.0-40.0 sec 41.3 KBytes 303 Khits/sec 212.477 ms 0/ 0 (-1. [1928] 40.0-41.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 42.0-43.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 45.0-46.0 sec							Khits/se					(94%)
119281 32.0-33.0 sec 35.6 KBytes 292 Kbits/sec 62.684 ms 409/ 434 (94 119281 33.0-34.0 sec 35.6 KBytes 292 Kbits/sec 66.361 ms 410/ 435 (94 119281 34.0-34.0 sec 35.6 KBytes 292 Kbits/sec 69.526 ms 410/ 435 (94 119281 35.0-36.0 sec 37.0 KBytes 303 Kbits/sec 68.157 ms 396/ 421 (94 119281 37.0-38.0 sec 32.7 KBytes 292 Kbits/sec 68.157 ms 366/ 389 (94 119281 37.0-38.0 sec 37.0 KBytes 303 Kbits/sec 51.278 ms 408/ 434 (94 119281 39.0-40.0 sec 41.3 KBytes 303 Kbits/sec 52.278 ms 408/ 434 (94 119281 41.0-42.0 sec 0.00 Bytes 300 bits/sec 212.477 ms 0/ 0 <-1.												(94%)
119281 33.0-34.0 sec 35.6 KBytes 292 Kbits/sec 56.361 ms 410/435 (94 119281 35.0-35.0 sec 35.6 KBytes 292 Kbits/sec 59.526 ms 410/435 (94 119281 35.0-37.0 sec 35.6 KBytes 292 Kbits/sec 69.526 ms 410/435 (94 119281 36.0-37.0 sec 35.6 KBytes 292 Kbits/sec 68.157 ms 396/421 (94 119281 37.0-38.0 sec 32.7 KBytes 268 Kbits/sec 40.005 ms 366/389 (94 119281 39.0-40.0 sec 37.0 KBytes 303 Kbits/sec 51.278 ms 408/434 (94 119281 41.0-41.0 sec 0.00 Bytes 303 Kbits/sec 212.477 ms 0/<0 (-1.												
[1928] 34.0-35.0 sec 35.6 KBytes 292 Kbits/sec 69.526 ms 410/ 435 (94 [1928] 35.0-36.0 sec 37.0 KBytes 303 Kbits/sec 54.484 ms 409/ 435 (94 [1928] 37.0-38.0 sec 32.6 KBytes 292 Kbits/sec 68.157 ms 396/ 421 (94 [1928] 37.0-38.0 sec 32.7 KBytes 268 Kbits/sec 40.005 ms 366/ 389 (94 [1928] 38.0-39.0 sec 37.0 KBytes 303 Kbits/sec 53.278 ms 408/ 434 (94 [1928] 39.0-40.0 sec 41.3 KBytes 303 Kbits/sec 212.477 ms 0/ 0 (-1. [1928] 40.0-41.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 42.0-43.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 43.0-44.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 45.0-46.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 45.0-46.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 45.0-46.0 sec 1.00 Bytes 0												(94%)
119281 35.0-36.0 sec 37.0 KBytes 303 Kbits/sec 54.484 ms 409/ 435 (94 119281 36.0-37.0 sec 35.6 KBytes 292 Kbits/sec 68.157 ms 396/ 421 (94 119281 38.0-39.0 sec 32.7 KBytes 268 Kbits/sec 40.05 ms 366/ 389 (94 119281 38.0-39.0 sec 37.0 KBytes 303 Kbits/sec 53.278 ms 408/ 434 (94 119281 39.0-40.0 sec 41.3 KBytes 338 Kbits/sec 53.278 ms 408/ 434 (94 119281 40.0-41.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. 119281 41.0-42.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. 119281 42.0-43.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. 119281 43.0-44.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. 119281 45.0-46.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. 119281 45.0-46.0 sec 1.00 Bytes 0.00 bits/sec<										410/		(94%)
11928] 36.0-37.0 sec 35.6 KBytes 292 Khits/sec 68.157 ms 396/ 421 (94 11928] 37.0-38.0 sec 32.7 KBytes 268 Kbits/sec 40.005 ms 366/ 389 (94 11928] 38.0-39.0 sec 37.0 KBytes 303 Kbits/sec 52.27 km 40.405 ms 366/ 389 (94 11928] 39.0-40.0 sec 41.3 KBytes 303 Kbits/sec 512.477 ms 2083/ 2112 (9 [1928] 40.0-41.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 41.0-42.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 42.0-43.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 44.0-45.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 44.0-45.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 44.0-47.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 44.0-47.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 44.0-47.0 sec 0.00	[1928]		sec							409/		(94%)
[1928] 37.0-38.0 sec 32.7 KBytes 268 Kbits/sec 40.005 ms 366/389 (94 [1928] 38.0-39.0 sec 37.0 KBytes 303 Kbits/sec 53.278 ms 408/434 (94 [1928] 39.0-40.0 sec 41.3 KBytes 303 Kbits/sec 212.477 ms 008/9 (112) [1928] 40.0-41.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 41.0-42.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 42.0-43.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 43.0-44.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 45.0-46.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 45.0-46.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 45.0-46.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 45.0-46.0 sec 1.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1.	[1928]	36.0-37.0	sec		KBytes	292	Kbits/se	c 68.1	57 ms	396/	421	(94%)
[1928] 39.0-40.0 sec 41.3 KBytes 338 Kbits/sec 212.477 ms 2083/2112 (9 [ID] Interval Transfer Bandwidth Jitter Lost/Total Datag [1928] 40.0-41.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 41.0-42.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 42.0-43.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 44.0-45.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 44.0-45.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 44.0-45.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 44.0-44.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 44.0-44.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 44.0-47.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 47.0-48.0 sec 1.71 KBytes 1.40 Mbits/sec 12.477 ms <	[1928]	37.0-38.0	sec	32.7	KBytes	268			105 ms	366/	389	(94%)
[ID] Interval Transfer Bandwidth Jitter Lost/Total Datag [1928] 40.0-41.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 41.0-42.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 42.0-43.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 43.0-44.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 44.0-45.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 44.0-45.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 44.0-47.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 47.0-48.0 sec 171 KBytes 1.40 Mbits/sec 7.521 ms 3067/ 3187 (96.2) [1928] 48.0-49.0 sec 218 KBytes 1.78 Mbits/sec 10.681 ms 281/ 434 (65 [1928] 51.0-51.0 sec 218 KBytes 1.78 Mbits/sec 10.681 ms 275/ 428 (64.2)	[1928]		sec		KBytes							
119281 40.0-41.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. 119281 41.0-42.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. 119281 42.0-43.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. 119281 43.0-44.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. 119281 44.0-45.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. 119281 45.0-46.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. 119281 45.0-47.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. 119281 45.0-47.0 sec 1.00 Bytes 1.00 bits/sec 12	[1928]	39.0-40.0	sec									
[1928] 42.0-43.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 43.0-44.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 44.0-45.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 45.0-46.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 45.0-46.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 47.0-48.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 47.0-48.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 47.0-48.0 sec 171 KBytes 1.40 Mbits/sec 7.521 ms 3067/ 3187 (96% [1928] 47.0-50.0 sec 218 KBytes 1.78 Mbits/sec 10.681 ms 281/ 434 (65 [1928] 51.0-52.0 sec 218 KBytes 1.78 Mbits/sec 10.633 ms 275/ 428 (64% [1928] 52.0-53.0 sec 218 KBytes 1.78 Mbits/sec 3.456 ms 275/ 42									r L		tal D	atagra
[1928] 42.0-43.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 43.0-44.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 44.0-45.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 45.0-46.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 45.0-46.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 47.0-48.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 47.0-48.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 47.0-48.0 sec 171 KBytes 1.40 Mbits/sec 7.521 ms 3067/ 3187 (96% [1928] 47.0-50.0 sec 218 KBytes 1.78 Mbits/sec 10.681 ms 281/ 434 (65 [1928] 51.0-52.0 sec 218 KBytes 1.78 Mbits/sec 10.633 ms 275/ 428 (64% [1928] 52.0-53.0 sec 218 KBytes 1.78 Mbits/sec 3.456 ms 275/ 42			sec									
[1928] 44.0-45.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 45.0-46.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 46.0-47.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 47.0-48.0 sec 171 KBytes 1.40 Mbits/sec 7.521 ms 3067/ 3187 (96.2) [1928] 47.0-48.0 sec 218 KBytes 1.78 Mbits/sec 10.681 ms 281/ 434 (65 [1928] 50.0-51.0 sec 218 KBytes 1.78 Mbits/sec 10.633 ms 275/ 428 (64 [1928] 51.0-52.0 sec 218 KBytes 1.78 Mbits/sec 10.648 ms 281/ 434 (65% [1928] 52.0-53.0 sec 218 KBytes 1.78 Mbits/sec 5.628 ms 281/ 434 (65% [1928] 53.0-54.0 sec 218 KBytes 1.78 Mbits/sec 3.456 ms 275/ 428 (64% [1928] 54.0-55.0 sec 218 KBytes 1.78 Mbits/sec 2.910 ms 276/ 428 (64% [1928] 55.0-56.0 sec 218 KBytes 1.78 Mbits/sec <td></td> <td>(-1.5%</td>												(-1.5%
[1928] 44.0-45.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 45.0-46.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 46.0-47.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 47.0-48.0 sec 171 KBytes 1.40 Mbits/sec 7.521 ms 3067/ 3187 (96.2) [1928] 47.0-48.0 sec 218 KBytes 1.78 Mbits/sec 10.681 ms 281/ 434 (65 [1928] 50.0-51.0 sec 218 KBytes 1.78 Mbits/sec 10.633 ms 275/ 428 (64 [1928] 51.0-52.0 sec 218 KBytes 1.78 Mbits/sec 10.648 ms 281/ 434 (65% [1928] 52.0-53.0 sec 218 KBytes 1.78 Mbits/sec 5.628 ms 281/ 434 (65% [1928] 53.0-54.0 sec 218 KBytes 1.78 Mbits/sec 3.456 ms 275/ 428 (64% [1928] 54.0-55.0 sec 218 KBytes 1.78 Mbits/sec 2.910 ms 276/ 428 (64% [1928] 55.0-56.0 sec 218 KBytes 1.78 Mbits/sec <td></td> <td>(-1.\$% (-1.\$%</td>												(-1.\$% (-1.\$%
[1928] 45.0-46.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 46.0-47.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 47.0-48.0 sec 171 KBytes 1.40 Mbits/sec 7.521 ms 3067/3187 (962) [1928] 47.0-48.0 sec 121 KBytes 1.78 Mbits/sec 10.681 ms 281/434 (652) [1928] 48.0-49.0 sec 218 KBytes 1.78 Mbits/sec 10.633 ms 275/428 (642) [1928] 50.0-51.0 sec 218 KBytes 1.78 Mbits/sec 10.548 ms 271/423 (642) [1928] 51.0-52.0 sec 218 KBytes 1.78 Mbits/sec 3.466 ms 275/428 (642) [1928] 52.0-53.0 sec 218 KBytes 1.78 Mbits/sec 3.466 ms 275/428 (642) [1928] 54.0-55.0 sec 218 KBytes 1.78 Mbits/sec 3.456 ms 275/428 (642) [1928] 55.0-56.0 sec 218 KBytes 1.78 Mbits/sec 2.910 ms 276/428 (642) [1928] 55.0-56.0 sec 218 KBytes 1.78 Mbits/sec 1.426 ms 276/428 (642) [1928] 55.0-56.0 sec 218 KBytes 1.78 Mbits/sec 1.426 ms 276/428 (642) [1928] 55.0-56.0 s											N	(-1.5%
[1928] 46.0-47.0 sec 0.00 Bytes 0.00 bits/sec 212.477 ms 0/ 0 (-1. [1928] 47.0-48.0 sec 171 KBytes 1.40 Mbits/sec 7.521 ms 3067/3187 (96%) [1928] 48.0-49.0 sec 218 KBytes 1.78 Mbits/sec 10.681 ms 281/434 (65) [1928] 49.0-50.0 sec 218 KBytes 1.78 Mbits/sec 10.633 ms 275/428 (64) [1928] 51.0-51.0 sec 216 KBytes 1.78 Mbits/sec 10.638 ms 271/423 (64) [1928] 52.0-53.0 sec 218 KBytes 1.78 Mbits/sec 3.456 ms 275/428 (64%) [1928] 52.0-53.0 sec 218 KBytes 1.78 Mbits/sec 3.456 ms 275/428 (64%) [1928] 53.0-54.0 sec 218 KBytes 1.78 Mbits/sec 3.456 ms 275/428 (64%) [1928] 54.0-55.0 sec 216 KBytes 1.78 Mbits/sec 3.456 ms 276/428 (64%) [1928] 55.0-56.0 sec 216 KBytes 1.78 Mbits/sec 3.456 ms 276/428 (64%) [1928] 55.0-56.0 sec 218 KBytes 1.78 Mbits/sec 1.425 ms 276/428 (64%) [1928] 55.0-57.0 sec 218 KBytes 1.78 Mbits/sec 6.140 ms 275/428 (64%) [1928] 57.0-58.0 s	119281	44.0-45.0									ទ	<-1.\$%
[1928] 47.0-48.0 sec 171 KBytes 1.40 Mbits/sec 7.521 ms 3067/3187 3067/3187 3067/3187 3067/3187 3067/3187 3067/3187 3067/3187 3067/3187 3067/3187 3067/3187 3067/3187 3067/3187 3067/3187 3067/3187 3067/3187 3067/3187 3067/3187 3067/3187 3067/3187 4065 [1928] 49.0-50.0 sec 218 KBytes 1.78 Mbits/sec 10.633 ms 281/434 454 (457 [1928] 51.0-52.0 sec 216 KBytes 1.77 Mbits/sec 10.638 ms 271/423 64 [1928] 52.0-53.0 sec 218 KBytes 1.78 Mbits/sec 5.628 ms 281/434 457 [1928] 52.0-54.0 sec 218 KBytes 1.78 Mbits/sec 3.456 ms 275/428 6642 [1928] 53.0-54.0 sec 216 KBytes 1.78 Mbits/sec 3.456 ms 275/428 6642 [1928] 55.0-56.0 sec 216 KBytes 1.78 Mbits/sec 2.910 ms 276/428 6642 [1928] 55.0-57.0 sec 218 KBytes 1.78 Mbits/sec 6.140 ms 275/428 6642 [1928] 57.0-58.0 sec 420 KBytes 1.78 Mbits/sec 6.140 ms 275/4	119281	45.0-46.0									2	(-1.3%
[1928] 48.0-49.0 sec 218 KBytes 1.78 Mbits/sec 10.681 ms 281/ 434 (65 [1928] 49.0-50.0 sec 218 KBytes 1.78 Mbits/sec 10.633 ms 275/ 428 (64 [1928] 50.0-51.0 sec 216 KBytes 1.78 Mbits/sec 10.548 ms 271/ 423 (64 [1928] 51.0-52.0 sec 218 KBytes 1.78 Mbits/sec 10.548 ms 281/ 434 (655 [1928] 52.0-53.0 sec 218 KBytes 1.78 Mbits/sec 5.628 ms 281/ 434 (652 [1928] 53.0-54.0 sec 218 KBytes 1.78 Mbits/sec 4.489 ms 275/ 428 (642 [1928] 54.0-55.0 sec 218 KBytes 1.78 Mbits/sec 3.456 ms 275/ 428 (642 [1928] 55.0-56.0 sec 218 KBytes 1.78 Mbits/sec 2.910 ms 276/ 428 (642 [1928] 55.0-56.0 sec 218 KBytes 1.78 Mbits/sec 12.452 ms 276/ 429 (64 [1928] 55.0-56.0 sec 218 KBytes 1.78 Mbits/sec 61.40 ms 275/ 428 (642 [1928] 57.0-58.0 sec 420 KBytes 3.44 Mbits/sec 61.40 ms 275/ 428 (642 [1928] 57.0-58.0 sec 5 datagra								212.47	7 ms		1405	(-1.5%
[1928] 49.0-50.0 sec 218 KBytes 1.78 Mbits/sec 10.633 ms 275/ 428 (64 [1928] 50.0-51.0 sec 216 KBytes 1.77 Mbits/sec 10.548 ms 271/ 423 (64 [1928] 51.0-52.0 sec 218 KBytes 1.78 Mbits/sec 5.628 ms 281/ 434 (652 [1928] 52.0-53.0 sec 218 KBytes 1.78 Mbits/sec 4.489 ms 275/ 428 (642 [1928] 53.0-54.0 sec 218 KBytes 1.78 Mbits/sec 3.456 ms 275/ 428 (642 [1928] 53.0-56.0 sec 216 KBytes 1.77 Mbits/sec 2.910 ms 276/ 428 (642 [1928] 55.0-56.0 sec 216 KBytes 1.78 Mbits/sec 12.452 ms 276/ 428 (642 [1928] 55.0-56.0 sec 218 KBytes 1.78 Mbits/sec 6.140 ms 275/ 428 (642 [1928] 57.0-58.0 sec 420 KBytes 3.44 Mbits/sec 96.255 ms 412/ 707 (58 [1928] 57.0-58.0 sec 5 datagrams received out-of-order												
[1928] 50.0-51.0 sec 216 KBytes 1.77 Mbits/sec 10.548 ms 271/ 423 (64 [1928] 51.0-52.0 sec 218 KBytes 1.78 Mbits/sec 5.628 ms 281/ 434 (65% [1928] 52.0-53.0 sec 218 KBytes 1.78 Mbits/sec 4.489 ms 275/ 428 (64% [1928] 53.0-54.0 sec 218 KBytes 1.78 Mbits/sec 3.456 ms 275/ 428 (64% [1928] 54.0-55.0 sec 216 KBytes 1.77 Mbits/sec 2.910 ms 276/ 428 (64% [1928] 55.0-56.0 sec 218 KBytes 1.78 Mbits/sec 12.452 ms 276/ 428 (64% [1928] 55.0-56.0 sec 218 KBytes 1.78 Mbits/sec 6.140 ms 275/ 428 (64% [1928] 57.0-58.0 sec 420 KBytes 3.44 Mbits/sec 96.255 ms 412/ 707 (58 [1928] 57.0-58.0 sec 5 datagrams received out-of-order						1 70						
[1928] 51.0-52.0 sec 218 KBytes 1.78 Mbits/sec 5.628 ms 281/ 434 (65% [1928] 52.0-53.0 sec 218 KBytes 1.78 Mbits/sec 4.489 ms 275/ 428 (64% [1928] 53.0-54.0 sec 218 KBytes 1.78 Mbits/sec 3.456 ms 275/ 428 (64% [1928] 54.0-55.0 sec 218 KBytes 1.78 Mbits/sec 2.910 ms 276/ 428 (64% [1928] 55.0-56.0 sec 218 KBytes 1.78 Mbits/sec 12.452 ms 276/ 428 (64% [1928] 55.0-56.0 sec 218 KBytes 1.78 Mbits/sec 12.452 ms 276/ 428 (64% [1928] 56.0-57.0 sec 218 KBytes 1.78 Mbits/sec 6.140 ms 275/ 428 (64% [1928] 57.0-58.0 sec 420 KBytes 3.44 Mbits/sec 96.255 ms 412/ 707 (58 [1928] 57.0-58.0 sec 5 datagrams received out-of-order						1 77						
[1928] 52.0-53.0 sec 218 KBytes 1.78 Mbits/sec 4.489 ms 275/ 428 (64% [1928] 53.0-54.0 sec 218 KBytes 1.78 Mbits/sec 3.456 ms 275/ 428 (64% [1928] 54.0-55.0 sec 216 KBytes 1.77 Mbits/sec 2.910 ms 276/ 428 (64% [1928] 55.0-56.0 sec 218 KBytes 1.78 Mbits/sec 12.452 ms 276/ 429 (64 [1928] 55.0-57.0 sec 218 KBytes 1.78 Mbits/sec 6.140 ms 275/ 428 (64% [1928] 57.0-58.0 sec 420 KBytes 3.44 Mbits/sec 96.255 ms 412/ 707 (58 [1928] 57.0-58.0 sec 5 datagrams received out-of-order												
[1928] 53.0-54.0 sec 218 KBytes 1.78 Mbits/sec 3.456 ms 275/ 428 (64% [1928] 54.0-55.0 sec 216 KBytes 1.77 Mbits/sec 2.910 ms 276/ 428 (64% [1928] 55.0-56.0 sec 218 KBytes 1.78 Mbits/sec 12.452 ms 276/ 429 (64 [1928] 56.0-57.0 sec 218 KBytes 1.78 Mbits/sec 6.140 ms 275/ 428 (64% [1928] 57.0-58.0 sec 420 KBytes 3.44 Mbits/sec 96.255 ms 412/ 707 (58 [1928] 57.0-58.0 sec 5 datagrams received out-of-order		52 0-53 0				1 78				201/	428	
[1928] 54.0-55.0 sec 216 KBytes 1.77 Mbits/sec 2.910 ms 276/ 428 (64% [1928] 55.0-56.0 sec 218 KBytes 1.78 Mbits/sec 12.452 ms 276/ 429 (64 [1928] 56.0-57.0 sec 218 KBytes 1.78 Mbits/sec 6.140 ms 275/ 428 (64% [1928] 57.0-58.0 sec 420 KBytes 3.44 Mbits/sec 96.255 ms 412/ 707 (58 [1928] 57.0-58.0 sec 5 datagrams received out-of-order		53 0-54 0								275/		
[1928] 55.0-56.0 sec 218 KBytes 1.78 Mbits/sec 12.452 ms 276/ 429 (64 [1928] 56.0-57.0 sec 218 KBytes 1.78 Mbits/sec 6.140 ms 275/ 428 (64% [1928] 57.0-58.0 sec 420 KBytes 3.44 Mbits/sec 96.255 ms 412/ 707 (58 [1928] 57.0-58.0 sec 5 datagrams received out-of-order										276/		
[1928] 56.0-57.0 sec 218 KBytes 1.78 Mbits/sec 6.140 ms 275/ 428 (64% [1928] 57.0-58.0 sec 420 KBytes 3.44 Mbits/sec 96.255 ms 412/ 707 (58 [1928] 57.0-58.0 sec 5 datagrams received out-of-order						1 78						
[1928] 57.0-58.0 sec 420 KBytes 3.44 Mbits/sec 96.255 ms 412/ 707 (58 [1928] 57.0-58.0 sec 5 datagrams received out-of-order						1.78						
[1928] 57.0-58.0 sec 5 datagrams received out-of-order												
L17201 30.0 37.0 Sec - 020 ADVLES - 3.13 MD1ts/Sec - 54.004 MS -10/ 430 (-2	[1928]	58.0-59.0	sec		KBytes		Mbits/se			-10/	430	(-2.3
[1928] 58.0-59.0 sec 10 datagrams received out-of-order												
[1928] 59.0-60.0 sec 419 KBytes 3.43 Mbits/sec 3.772 ms 50/ 344 (15%										50/	344	(15%)
[1928] 59.0-60.0 sec 83 datagrams received out-of-order												
[ID] Interval Transfer Bandwidth Jitter Lost/Total Datag										ost/To	tal D	atagra
[1928] 60.0-61.0 sec 656 KBytes 5.38 Mbits/sec 4.245 ms 0/ 461 (0%)			sec			5.38	Mbits/se	c 4.24				
[1928] 61.0-62.0 sec 658 KBytes 5.39 Mbits/sec 2.664 ms 0/ 462 (0%)	[1928]	61.0-62.0	sec							0/	462	(0%)

Figure 7-21: TLAB2_010 iperf screenshot

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

91 of 184

7.2.1.3.3 Unexpected behaviors/Results

None

7.2.1.4 Conclusions and recommendations

The creation, change and deletion of a service flow to the MS have been successfully verified.

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

92 of 184

7.2.2 Verification Exercise # TLAB2_020

7.2.2.1 Verification Exercise Scope

Test channel selectivity and transmit power measurements:

Verify the receiver adjacent channel selectivity, verify the BS/MS transmission mask in terms of adjacent and non-adjacent channel interferences, verify the BS output power to assess OFDMA crest factor.

7.2.2.2 Conduct of Verification Exercise

7.2.2.2.1 Verification Exercise Preparation

Lab-test_bed_01 is prepared with an additional signal generator to simulate the interfering signal on adjacent and alternate channel.

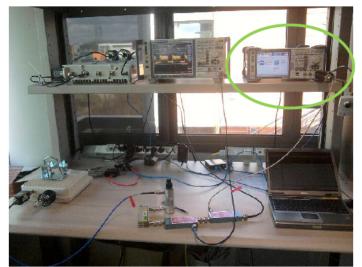


Figure 7-22: test bed configuration with a signal generator

7.2.2.2.2 Verification Exercise execution

See also IEEE 802.16-2009 § 8.3.11.2 "Receiver adjacent and alternate channel rejection".

Step	action	Action result	PCO	Result
Phase	1 Adjacent and non-adjacent channel lea	akage ratio	-	
1	Set frequency on the GS : 5093,5 MHz Provision new RF parameter on the GS	New frequency provisioned on GS	GS control MMI Spectrum analyzer	OK
2	Set frequency scan of MS : 5093,5 MHz 5098,5 MHz 5103,5 MHz	MS connects eventually to the GS	GS control MMI	ОК
3	Initiate traffic through the traffic generator (Iperf)	Communication established	lperf	OK

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

4	Measure through spectrum analyzer adjacent and alternate channel leakage ration of MS and BS		Spectrum Analyzer	ок
Phase	2 ACS (Receiver adjacent channel selec	tivity)		
1	Set frequency on the GS : 5093,5 MHz Fix modulation to 64QAM3/4 Provision new RF parameter on the GS	New frequency provisioned on GS	GS control MMI Spectrum analyzer	ОК
2	Set frequency scan of MS : 5093,5 MHz 5098,5 MHz 5103,5 MHz	MS connects eventually to the GS	GS control MMI	ок
3	Initiate traffic through the traffic generator (Iperf)	Communication established	lperf	ОК
4	Increase attenuation to set the signal's strength close to the rate dependent receiver sensitivity (+3 dB)		lperf	ОК
5	Generate the interfering signal on adjacent channel. Raise its power level until the error rate is obtained. Note down the difference between the interfering signal and the desired channel: it is the corresponding adjacent channel rejection.	Adjacent Channel rejection characterized for 64QAM3/4	Spectrum Analyzer Iperf	ОК
6	Generate the interfering signal on alternate channel. Raise its power level until the error rate is obtained. Note down the difference between the interfering signal and the desired channel: it is the corresponding adjacent channel rejection.	rejection characterized for 64QAM3/4	Spectrum Analyzer	ОК
7	Fix modulation to 16QAM3/4 And redo step 3, 4, 5, and 6	Adjacent Channel rejection characterized for 16QAM3/4 Alternate Channel rejection characterized for 64QAM3/4	Spectrum Analyzer	ОК
Phase	e 3 Crest factor measurement			
1	Set frequency on the GS : 5093,5 MHz	New frequency provisioned on GS	GS control MMI Spectrum	ОК

founding members

	Provision new RF parameter on the GS		analyzer	
2	Set frequency scan of MS :	MS connects eventually	GS control MMI	OK
	5093,5 MHz	to the GS		
	5098,5 MHz			
	5103,5 MHz			
3	Initiate traffic through the traffic generator (Iperf)	Communication established	lperf	ОК
4	Measure the crest factor on the spectrum analyzer	Measurement around 9 dB	Spectrum Analyzer	OK

7.2.2.3 Deviation from the planned activities

None.

7.2.2.3 Verification exercise Results

7.2.2.3.1 Summary of Verification exercise Results

Phase 1: ACLR

The measured adjacent and non-adjacent channel interference levels of GS / MS mask are given in table below:

Adjacent Channel Leakage Ratio of GS Mask	Alternate Channel Leakage Ratio of GS Mask
-42 dB	-51 dB
Adjacent Channel Leakage Ratio of MS Mask	Alternate Channel Leakage Ratio of MS Mask
-44 dB	-53 dB

Phase 2: ACS

The adjacent and alternate channel selectivity gives following results:

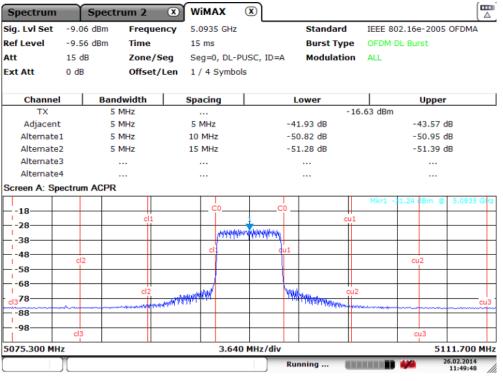
Modulation / coding	Adjacent channel Rejection (dB)	Alternate channel Rejection (dB)
	/ limit in IEEE 802.16-2009 table 313 (dB)	/ limit in IEEE standard 802.16- 2009 table 313 (dB)
16 QAM ¾	24 / 10	38 / 29
64 QAM ¾	20 / 4	29 / 23

Phase 3: crest factor

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

95 of 184


The measured crest factor with traffic is about 9 dB, which corresponds to what is expected.

7.2.2.3.2 Analysis of Verification Exercise Results

Phase 1: ACLR

Adjacent Channel Power Ratio (ACPR) or Adjacent Channel Leakage Ratio (ACLR) is a measure of the transmitter energy that is 'leaking' into an adjacent or alternate channel. Ideally, a transmitter could keep all of its transmitted energy in its assigned channel, but realistically some small amount of the transmitter energy will show up in other nearby channels. A spectrum analyzer is used to make this measurement: the first step is to measure the in-channel power; after this, the analyzer measures the frequency offset 1 channel away, and the 'leakage' power is measured as the difference in these two measurements (called ACP ratio or ACLR).

Below we see the result for the DL (values expressed in difference compared to central channel (TX)):

Date: 26.FEB.2014 11:49:48

Below we see the result for the UL (values expressed in difference compared to central channel (TX)):

founding members

96 of 184

-	-10 dBm	Frequen	cy 5.0935 GHz		Standard	IEEE 802.1	6e-2005	OFDMA
lef Level	-10 dBm	Time	20 ms		Burst Type	OFDM UL B	urst	
Att	5 dB	Zone/Se	g Seg=0, UL-Pl	JSC, ID=A	Modulation	ALL		
Ext Att	0 dB	Offset/L	en 0 / 9 Symbols	5				
Channel	E	Bandwidth	Spacing	L	ower		Upper	
ТХ		5 MHz			-19	.07 dBm		
Adjacent		5 MHz	5 MHz	-44	4.59 dB		-45.21 d	В
Alternate1		5 MHz	10 MHz	- 54	4.10 dB		-53.42 d	в
Alternate2		5 MHz	15 MHz	- 56	5.82 dB		-55.94 d	в
Alternate3								
Alternate4								
Screen A: Spe		PR						
						Mkr1 -33.24	4 dBm @	5.0935 GH:
		cl1	co		cu1	Mkr1 -33.24	4 dBm @	5.0935 GH
20					cu1	Mkr1 -\$3.24	4 øBm @	5.0935 GH
				co	cu1	Mkr1 -33.24	4 ¢Bm ©	5.0935 GH
20	cl2			C0	cul		4 dBm @	5.0935 GH
20			C0	C0	cul			5.0935 GHz
20 30 40 50		c1	C0	C0				5.0935 GH
20 30 40 50 60 70				C0	cu1			
-20 -30 -40 -50 -60 -70 -280	cl2	cl1 cl2			cu2	Uhlmanaren	cu2	
- 20 30 40 50 60 70	cl2	cl1 cl2			cu2		cu2	

Phase 2: ACS

The adjacent channel rejection and alternate channel rejection is measured by setting the desired signal's strength above but close to (3 dB) the rate dependent receiver sensitivity and raising the power level of the interfering signal until the sensitivity specified error rate is obtained. The power difference between the interfering signal and the desired channel is the corresponding adjacent channel rejection.

The interfering signal in the adjacent or alternate channel is a conforming OFDMA signal, not synchronized with the signal in the channel under test but with same type of parameters: 5ms frame, 5MHz bandwidth.

The screenshot below from the spectrum analyser shows the spectrum of the signal under test (central) and the spectrum of the interfering signal either in adjacent channel or alternate channel. The difference between both signal power is highlighted.

64QAM ³/₄ case:

Project Number 15.02.07Edition 00.03.00D10 - AeroMACS Verification Plan & Report - Phase 2 (v00.03.00 revised final)Edition 00.03.00

Spectrum	Spec	trum 2	WiMAX	×		
Sig. Lvl Set	-23.2 dBm	Freque	ncy 5.0935 GHz	Stand	ard IEEE 80	2.16e-2005 OFDMA
Ref Level	-23.7 dBm	Time	15 ms	Burst	Type OFDM D)L Burst
Att	0 dB	Zone/S	eg Seg=0, DL-P	USC, ID=A Modul	lation ALL	
Ext Att	0 dB	Offset/	Len 1 / 30 Symb	ols		
Channel	Ba	ndwidth	Spacing	Lower		Upper
тх		5 MHz			-41.86 dBm	
Adjacent		5 MHz	5 MHz	-40.70 dB		20.38 dB
Alternate		5 MHz	10 MHz	-41.69 dB		-26.82 dB
Alternate2				•••		
Alternate3 Alternate4						
Screen A: Spe		 R				
					Mkr1 -	6.62 dBm @ 5.0935 GHz
			C0	C0		
-42	d	1		printprintent	MANNA MARTANA UI	
				÷ 1		
62			handhalandha	wantelety demonstrations		
-72						
- cl282					1	
						cu2
						Served the designed and the server a
112	cl2	2			cu2	2
5080.500 MH	z		2.600) MHz/div		5106.500 MHz
Spectrum	Spe	ctrum 2	WiMAX	×		
Sig. Lvl Set						(=
-	-20 dBm	Freque	ncy 5.0935 GHz	Stand	ard IEEE 80	02.16e-2005 OFDMA
Ref Level	-20 dBm -10 dBm	Freque Time	ncy 5.0935 GHz 15 ms	Stand Burst		(=
2			15 ms	Burst	Type OFDM C	2.16e-2005 OFDMA
Ref Level	-10 dBm	Time	15 ms Seg Seg=0, DL-P	Burst USC, ID=A Modu	Type OFDM C	2.16e-2005 OFDMA
Ref Level Att Ext Att	-10 dBm 10 dB 0 dB	Time Zone/S Offset/	15 ms Seg Seg=0, DL-P (Len 1 / 30 Symb	Burst USC, ID=A Modul ols	Type OFDM C	02.16e-2005 OFDMA DL Burst
Ref Level Att	-10 dBm 10 dB 0 dB	Time Zone/S	15 ms Geg Seg=0, DL-P Len 1 / 30 Symb	Burst USC, ID=A Modu	Type OFDM C	2.16e-2005 OFDMA
Ref Level Att Ext Att Channel	-10 dBm 10 dB 0 dB	Time Zone/S Offset/	15 ms Seg Seg=0, DL-P (Len 1 / 30 Symb	Burst USC, ID=A Modul ols	Type OFDM C lation ALL	02.16e-2005 OFDMA DL Burst
Ref Level Att Ext Att Channel TX	- 10 dBm 10 dB 0 dB	Time Zone/S Offset/ andwidth 5 MHz	15 ms Geg Seg=0, DL-P (Len 1 / 30 Symb Spacing 	Burst USC, ID=A Modul ols	Type OFDM C lation ALL	02.16e-2005 OFDMA DL Burst Upper
Ref Level Att Ext Att Channel TX Adjacent	- 10 dBm 10 dB 0 dB Ba 1	Time Zone/S Offset/ andwidth 5 MHz 5 MHz	15 ms Geg Seg=0, DL-P (Len 1 / 30 Symb Spacing 5 MHz	Burst USC, ID=A Modul ols Lower -28.28 dB	Type OFDM C lation ALL	D2.16e-2005 OFDMA DL Burst Upper -8.43 dB
Ref Level Att Ext Att Channel TX Adjacent Alternate Alternate	- 10 dBm 10 dB 0 dB 1 Ba 1 2 3	Time Zone/S Offset/ andwidth 5 MHz 5 MHz 5 MHz 5 MHz	15 ms Geg Seg=0, DL-P (Len 1 / 30 Symb Spacing 5 MHz 10 MHz	USC, ID=A Modul ols Lower -28.28 dB -28.35 dB	Type OFDM C lation ALL	Upper -8.43 dB 32.96 dB
Ref Level Att Ext Att Channel TX Adjacent Alternate Alternate Alternate	- 10 dBm 10 dB 0 dB 1 Ba 1 2 3 4	Time Zone/S Offset/ 5 MHz 5 MHz 5 MHz 5 MHz 5 MHz 	15 ms Seg Seg=0, DL-P (Len 1 / 30 Symb Spacing 5 MHz 10 MHz 15 MHz	USC, ID=A Modul ols -28.28 dB -28.35 dB -28.34 dB	Type OFDM C lation ALL	Upper -8.43 dB -12.49 dB
Ref Level Att Ext Att Channel TX Adjacent Alternate Alternate	- 10 dBm 10 dB 0 dB 1 Ba 1 2 3 4	Time Zone/S Offset/ 5 MHz 5 MHz 5 MHz 5 MHz 5 MHz 	15 ms Seg Seg=0, DL-P Len 1 / 30 Symb Spacing 5 MHz 10 MHz 15 MHz 	USC, ID=A Modul ols -28.28 dB -28.35 dB -28.34 dB 	Type OFDM D lation ALL -45.30 dBm	Upper -8.43 dB 32.96 dB -12.49 dB
Ref Level Att Ext Att Channel TX Adjacent Alternate Alternate Alternate Screen A: Sp	- 10 dBm 10 dB 0 dB 1 Ba 1 2 3 4	Time Zone/S Offset/ 5 MHz 5 MHz 5 MHz 5 MHz 5 MHz 	15 ms Seg Seg=0, DL-P Len 1 / 30 Symb Spacing 5 MHz 10 MHz 15 MHz 	USC, ID=A Modul ols -28.28 dB -28.35 dB -28.34 dB 	Type OFDM C lation ALL	Upper -8.43 dB 32.96 dB -12.49 dB
Ref Level Att Ext Att Channel TX Adjacent Alternate Alternate Alternate Screen A: Sp	- 10 dBm 10 dB 0 dB 1 Ba 1 2 3 4	Time Zone/S Offset/ 5 MHz 5 MHz 5 MHz 5 MHz 5 MHz 	15 ms Seg Seg=0, DL-P Len 1 / 30 Symb Spacing 5 MHz 10 MHz 15 MHz 	Burst Modul ols <u>Lower</u> -28.28 dB -28.35 dB -28.34 dB 	Type OFDM D lation ALL -45.30 dBm	Upper -8.43 dB 32.96 dB -12.49 dB 1.41 dBm @ 5.0935 GHz
Ref Level Att Ext Att Channel TX Adjacent Alternate: Alternate: Alternate: Alternate: Screen A: Sp	- 10 dBm 10 dB 0 dB 1 Ba 1 2 3 4	Time Zone/S Offset/ ondwidth 5 MHz 5 MHz 5 MHz 5 MHz 5 MHz 7 MHz 7 MHz	15 ms Seg Seg=0, DL-P Len 1 / 30 Symb Spacing 5 MHz 10 MHz 15 MHz 	Burst Modul ols <u>Lower</u> -28.28 dB -28.35 dB -28.34 dB 	Type OFDM D lation ALL -45.30 dBm	Upper -8.43 dB 32.96 dB -12.49 dB 1.41 dBm @ 5.0935 GHz
Ref Level Att Ext Att TX Adjacent Alternate: Alternate: Alternate: Alternate: Screen A: Sp	- 10 dBm 10 dB 0 dB 1 Ba 1 2 3 4	Time Zone/S Offset/ ondwidth 5 MHz 5 MHz 5 MHz 5 MHz 5 MHz 7 MHz 7 MHz	15 ms Seg Seg=0, DL-P Len 1 / 30 Symb Spacing 5 MHz 10 MHz 15 MHz 	Burst Modul ols <u>Lower</u> -28.28 dB -28.35 dB -28.34 dB 	Type OFDM D lation ALL -45.30 dBm	Upper -8.43 dB 32.96 dB -12.49 dB 1.41 dBm @ 5.0935 GHz
Ref Level Att Ext Att Channel TX Adjacent Alternate Alternate Alternate Screen A: Sp	- 10 dBm 10 dB 0 dB 1 Ba 1 2 3 4	Time Zone/S Offset/ ondwidth 5 MHz 5 MHz 5 MHz 5 MHz 5 MHz 7 MHz 7 MHz	15 ms Seg Seg=0, DL-P Len 1 / 30 Symb Spacing 5 MHz 10 MHz 15 MHz 	Burst Modul ols Lower -28.28 dB -28.35 dB -28.34 dB 	Type OFDM D lation ALL -45.30 dBm	Upper -8.43 dB 32.96 dB -12.49 dB 1.41 dBm @ 5.0935 GHz
Ref Level Att Ext Att Channel TX Adjacent Alternate: Alternate: Alternate: Alternate: Screen A: Sp -20 -30 30 50 60	- 10 dBm 10 dB 0 dB Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba C C C C C C C C	Time Zone/S Offset/ ondwidth 5 MHz 5 MHz 5 MHz 5 MHz 5 MHz 7 MHz 7 MHz	15 ms Seg Seg=0, DL-P Len 1 / 30 Symb Spacing 5 MHz 10 MHz 15 MHz 	Burst Modul ols Lower -28.28 dB -28.35 dB -28.34 dB 	Type OFDM D lation ALL -45.30 dBm	Upper -8.43 dB 32.96 dB -12.49 dB
Ref Level Att Ext Att Channel TX Adjacent Alternate: Alternate: Alternate: Alternate: Screen A: Sp -20 -30 -30 -60 -70	- 10 dBm 10 dB 0 dB Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba C C C C C C C C	Time Zone/S Offset/ ondwidth 5 MHz 5 MHz 5 MHz 5 MHz 5 MHz 7 MHz 7 MHz	15 ms Seg Seg=0, DL-P Len 1 / 30 Symb Spacing 5 MHz 10 MHz 15 MHz 	Burst Modul ols Lower -28.28 dB -28.35 dB -28.34 dB 	Type OFDM D lation ALL -45.30 dBm	Upper -8.43 dB 32.96 dB -12.49 dB 1.41 dBm @ 5.0935 G fz evenue cu2
Ref Level Att Ext Att TX Adjacent Alternate: Alternate: Alternate: Alternate: Screen A: Sp -20 -30 -30 -40 -50 -60 -70 -60 -70	- 10 dBm 10 dB 0 dB Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba C C C C C C C C	Time Zone/S Offset/ andwidth 5 MHz 5 MHz 5 MHz 5 MHz 5 MHz 5 MHz 2 MHz cl1	15 ms Seg Seg=0, DL-P Len 1 / 30 Symb Spacing 5 MHz 10 MHz 15 MHz 	Burst Modul ols Lower -28.28 dB -28.35 dB -28.34 dB 	Type OFDM D lation ALL -45.30 dBm	Upper -8.43 dB 32.96 dB -12.49 dB 1.41 dBm @ 5.0935 G fz evenue cu2
Ref Level Att Ext Att Channel TX Adjacent Alternate Alternate Alternate Screen A: Sp -20 -30 30 50 60 70 380 99	- 10 dBm 10 dB 0 dB Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba C C C C C C C C	Time Zone/S Offset/ andwidth 5 MHz 5 MHz 5 MHz 5 MHz 5 MHz 5 MHz 2 MHz cl1	15 ms Seg Seg=0, DL-P Len 1 / 30 Symb Spacing 5 MHz 10 MHz 15 MHz 	Burst Modul ols Lower -28.28 dB -28.35 dB -28.34 dB 	Type OFDM D lation ALL -45.30 dBm	Upper -8.43 dB 32.96 dB -12.49 dB 1.41 dBm @ 5.0935 GHz while
Ref Level Att Ext Att TX Adjacent Alternate: Alternate: Alternate: Alternate: Screen A: Sp -20 -30 -30 -40 -50 -60 -70 -60 -70	- 10 dBm 10 dB 0 dB Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba C C C C C C C C	Time Zone/S Offset/ andwidth 5 MHz 5 MHz 5 MHz 5 MHz 5 MHz 5 MHz 2 MHz cl1	15 ms Seg Seg=0, DL-P Len 1 / 30 Symb Spacing 5 MHz 10 MHz 15 MHz 	Burst Modul ols Lower -28.28 dB -28.35 dB -28.34 dB 	Type OFDM D lation ALL -45.30 dBm	Upper -8.43 dB 32.96 dB -12.49 dB 1.41 dBm @ 5.0935 G fz evenue cu2
Ref Level Att Ext Att Channel TX Adjacent Alternate Alternate Alternate Screen A: Sp -20 -30 30 50 60 70 380 99	- 10 dBm 10 dB 0 dB Ba cla	Time Zone/S Offset/ andwidth 5 MHz 5 MHz 5 MHz 5 MHz 5 MHz 5 MHz 2 MHz cl1	15 ms Seg Seg=0, DL-P 'Len 1 / 30 Symb Spacing 5 MHz 10 MHz 15 MHz 	Burst Modul ols Lower -28.28 dB -28.35 dB -28.34 dB 	Type OFDM D lation ALL -45.30 dBm	Upper -8.43 dB 32.96 dB -12.49 dB 1.41 dBm @ 5.0935 G dz ddddddddddddddddddddddddddddddddddd

founding members

े 🗵

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

98 of 184

16 QAM ¾ case:

Spectrum	Sp	ectrum 2	× N	/iMAX	×					
Sig. Lvl Set	-20 dBm	Freque	ency 5.	0935 GHz			Standard	IEEE 80	02.16e-2005	OFDMA
Ref Level	-10 dBm	Time	1	5 ms			Burst Type	e OFDM (OL Burst	
Att	10 dB	Zone/S	Seg S	eg=0, DL-	PUSC, ID=	4	Modulatio	n ALL		
Ext Att	0 dB	Offset/	Len 1	/ 30 Sym	bols					
Channel	E	Bandwidth	Sp	acing		L	ower		Upper	•
ТХ		5 MHz					-	41.42 dBm		
Adjacent		5 MHz	5	MHz		-3	2.34 dB		24.18 d	B
Alternate	1	5 MHz	10	MHz		-3	2.49 dB		-22.05	dB
Alternate2	2	5 MHz	15	MHz		-3	2.47 dB		-32.48 (dB
Alternate	3									
Alternate4	4			•••						
Screen A: Sp	ectrum AC	PR								
					C	, I		Mkr1 -	56.16 dBm @	5.0935 GHz
		cl1		tĩ—		ĩ-	CL	1		
						WWM	-			
-40						ŧ-				
	cl2			cl1	C	u 1			cu2	
				MMMph	that which the the	-				L
					1	<u> </u>				
80		cl2					c	u2		
- cl3 ⁸⁰								hammenter		cu3
	cl3								cu3	
5075.300 MH	z			3.64	0 MHz/div	-			51	11.700 MHz

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

Project Number 15.02.07	Edition 00.03.00
D10 - AeroMACS Verification Plan & Report - Phase 2 (v00.03.00 revised final)	

Spectrum	Spe	ectrum 2	X WiMAX	×			
Sig. Lvl Set	-20 dBm	Frequen	cy 5.0935 GHz		Standard	IEEE 802.16e-200	5 OFDMA
Ref Level	-10 dBm	Time	15 ms		Burst Type	OFDM DL Burst	
Att	10 dB	Zone/Se	g Seg=0, DL-Pl	JSC, ID=A	Modulation	ALL	
Ext Att	0 dB	Offset/L	en 1/30 Symbo	ols			
Channel	B	andwidth	Spacing	Lo	wer	Uppe	er
ТХ		5 MHz			-51	.84 dBm	
Adjacent		5 MHz	5 MHz	-21	.77 dB	-2.55	dB
Alternate	1	5 MHz	10 MHz	-21	.84 dB	39.42	dB
Alternate	2	5 MHz	15 MHz	-21	.81 dB	-5.89	dB
Alternate	3						
Alternate	4						
Screen A: Sp	ectrum AC	PR					
20				CO		Mkr1 -71.17 dBm	5.0935 GHz
-30		cl1			cu1	sundalalalalalaintalalalal	
-40							
			cl1	cu1			
	cl2					cu2	
			11.1	and a state of the	ľ		
70		cl2	(outropers,	AL COMMITTING AND	MMMM cu2	Marken .	
- _{cl3} 80					Man Manual Contract		way www.cu3
					·		
	- 12			++			
	cl3					cu3	
5075.300 MH	z		3.640	MHz/div		5	111.700 MHz

We can see the 16QAM3/4 is more robust than the 64QAM3/4 by around 7 dB which is what was expected.

Phase 3: Crest factor

The WiMAX option of our spectrum analyser directly computes the crest factor as one can see in following picture. The crest factor with data transmission active is around 9 dB, in conformance with what was expected.

	Min	Mean Limit	Max Limit	Unit
TD Pwr. DL Pream.	- 6.85	- 6.85	- 6.85	dBm
TD Pwr. Subframe	- 10.49	- 10.49	- 10.48	dBm
TD Power Zone	- 10.86	- 10.86	- 10.86	dBm
Crest Factor	8.91	9.23	9.52	dB

7.2.2.3.3 Unexpected behaviors/Results

None.

7.2.2.4 Conclusions and recommendations

The prototypes present a good behaviour compared to what is expected in standard.

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

100 of 184

7.2.3 Verification Exercise # TLAB2_030

7.2.3.1 Verification Exercise Scope

MS channel quality report and MS transmit synchronisation Verify that MS channel quality report to BS and verify the MS transmitted centre frequency precision.

7.2.3.2 Conduct of Verification Exercise

7.2.3.2.1 Verification Exercise Preparation

Lab-test_bed_01 is prepared.

Spectrum Analyzer is moved to replace MS in order to measure the actual received power of the MS

7.2.3.2.2 Verification Exercise execution

Step	action	Action result	PCO	Result
Phase	1 MS feedback to BS			
1	Set frequency on the GS : 5093,5 MHz	New frequency provisioned on GS	GS control MMI	OK
	Provision new RF parameter on the GS		Spectrum analyzer	
2	Set frequency scan of MS : 5093,5 MHz 5098,5 MHz 5103,5 MHz	MS connects eventually to the GS	GS control MMI	ОК
3	Initiate traffic through the traffic generator (Iperf)	Communication established	lperf	OK
4	Measure through spectrum analyzer the received level at MS antenna port and compare with the RSSI measured by MS itself and received on BS		Spectrum Analyzer MS MMI GS control MMI	ок
Phase	2 Central frequency measurement			
1	Set frequency on the GS : 5093,5 MHz Provision new RF parameter on the GS	New frequency provisioned on GS	GS control MMI Spectrum analyzer	OK
2	Set frequency scan of MS : 5093,5 MHz 5098,5 MHz 5103,5 MHz	MS connects eventually to the GS	GS control MMI	ОК
3	Initiate traffic through the traffic generator (Iperf)	Communication established	Iperf	ОК
4	Measure through spectrum analyzer the central frequency of MS	Measured frequency on Spectrum Analyzer	Spectrum Analyzer	OK

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

7.2.3.2.3 Deviation from the planned activities

None.

7.2.3.3 Verification exercise Results

7.2.3.3.1 Summary of Verification exercise Results

Phase 1: Measured RSSI on the MS is in good correlation with measured power from the spectrum analyser. The RSSI transmitted by MS to the BS is good (1 dB rounding) except for RSSI above -40 dBm, as they are floored to -40 dBm on BS control MMI.

Phase 2: The measured centre frequency on the UL doesn't deviate more than 2% of the subcarrier spacing compared to the BS center frequency.

7.2.3.3.2 Analysis of Verification Exercise Results

Phase 1: MS feedback

	received Power On Spectrum Analyzer	MS MMI	BS control MMI
Att 1	TD Power DL preamble -56 dBm Power DL Preamble -51 dBm	RSSI -54 dBm	RSSI -55 dBm
Att 2	TD Power DL preamble -46 dBm Power DL Preamble -41 dBm	RSSI -44 dBm	RSSI -45 dBm
Att 3	TD Power DL preamble -36 dBm Power DL Preamble -31 dBm	RSSI -34 dBm	RSSI -40 dBm
Att 4	TD Power DL preamble -26 dBm Power DL Preamble -21 dBm	RSSI -24 dBm	RSSI -40 dBm
Att 5	- Non synchronized -	RSSI -64 dBm	RSSI -65 dBm
Att6	- Non synchronized -	RSSI -75 dBm	RSSI -76 dBm

Phase 2:

The measured centre frequency on the DL is : 5 093 464 737 Hz (5093,5 MHz - 35263,17 Hz)

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

Spectrum	Spectr	'um 2 🛛 🗴	WIMAX 🗵		
Sig. Lvl Set	-38.2 dBm	Frequency	5.0935 GHz	Standard	IEEE 802.16e-2005 OFDMA
Ref Level	-28.2 dBm	Time	20 ms	Burst Type	OFDM DL Burst
Att	0 dB	Zone/Seg	Seg=0, DL-PUSC, ID=A	Modulation	ALL
Ext Att	0 dB	Offset/Len	1 / 4 Symbols		

Result Summary of Analyzed Subframes

2

No. of Subframes

No. of oubframos	5					
	Min	Mean	Limit	Мах	Limit	Unit
Center Freq. Error	- 35260.39	- 35263.17	± 40748	- 35266.85	± 40748	Hz

The center frequency of the Spectrum analyser is tuned to 5 093 464 737 Hz and the spectrum analyser is plugged in the UL to measured the MS spectrum.

The measured UL centre frequency is: 5 093 464 720 Hz (5 093 500 - 35279,74)

Spectrum	Spectr	'um 2 🛛 🗴	WIMAX 🔆 🗵		
Sig. Lvl Set	0.857 dBm	Frequency	5.0935 GHz	Standard	IEEE 802.16e-2005 OFDMA
Ref Level	10.9 dBm	Time	20 ms	Burst Type	OFDM UL Burst
Att	25 dB	Zone/Seg	Seg=0, UL-PUSC, ID=A	Modulation	ALL
Ext Att	0 dB	Offset/Len	0 / 9 Symbols		

Result Summary of Analyzed Subframes

No. of Subframes	3							
	Min		Mean	Limit		Max	Limit	Unit
Center Freq. Error	- 35276.37	*	- 35279.74	± 219	*	- 35286.29	± 219	Hz

The subcarrier spacing is: 5 600 000 / 512 = 10937,5 Hz

2% of subcarrier spacing is: 219 Hz

The deviation of the MS centre frequency compared to the BS frequency divided by to the subcarrier spacing is < 2%: 5 093 464 737 - 5 093 464 720 = 17 Hz compared to 219 Hz

7.2.3.3.3 Unexpected behaviors/Results

The DL RSSI read on the BS control MMI is at maximum -40 dBm. This behaviour doesn't prevent performing the outdoor testing as the DL RSSI is generally well below -40 dBm and the RSSI shown on MS MMI is correct.

7.2.3.4 Conclusions and recommendations

The testing allowed checking successfully the feedback of MS information to the BS and the MS centre frequency precision.

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

Edition 00.03.00

7.2.4 Verification Exercise # TLAB2_040

7.2.4.1 Verification Exercise Scope

IOT testing

Verify the interoperability of Selex MS with Thales GS over the air interface.

7.2.4.2 Conduct of Verification Exercise

7.2.4.2.1 Verification Exercise Preparation

Lab-test_bed_01 is prepared. Selex MS replaced Thales MS.

Figure 7-23: Selex MS in Thales lab (Baseband 1U rack below and RF 1U rack above)

7.2.4.2.2 Verification Exercise execution

Step	Action	Action result	PCO	Result
Phase	1	•		
	Set frequency on the GS : 5093,5 MHz Provision new RF parameter on the GS	New frequency provisioned on GS	GS control MMI Spectrum analyzer	ОК
2	Set frequency scan of Selex MS : 5093,5 MHz	MS performs successive stages for registration: Scanning / synchronization Initial ranging Basic capabilities negotiation Admission control Registration And connects eventually to the GS	GS control MMI	рОК

founding members

104 of 184

7.2.4.2.3 Deviation from the planned activities

Only the first step of the verification exercise could be successfully verified: scanning and preamble detection.

It is noted that the testing session was held as planned during July in Thales lab with remote assistance of Selex team. Despite numerous attempts to identify the source of the problem, no improvement was achieved, and the test campaign was closed.

A tentative second session was initially identified in September, but it was not possible to conduct it as the equipment could not finally be made available due to budget limitations and high activity in other AeroMACS related projects.

7.2.4.3 Verification exercise Results

7.2.4.3.1 Summary of Verification exercise Results

The results are:

Scanning / preamble detection => OK

Synchronization => NOK

Initial ranging => NT

Basic capabilities negotiation => NT

Admission control => NT

Registration => NT

7.2.4.3.2 Analysis of Verification Exercise Results

The Thales BS is switched on and starts transmitting broadcast information.

The Selex MS is switched on and starts the Spectrum Scanning.

Selex MS Logs indicate that the MS, after scanning, stops on the BS frequency and identifies the preamble sent by the BS: scanning and preamble detection is achieved.

After this first synchronization step, the MS logs indicate a "FCH decoding failed", meaning that the MS doesn't decode successfully the Frame Control Header (FCH) sent by the BS. As a result, synchronization is not finalized and the subsequent Network Entry phases are not executed.

During the tests, this situation was observed irrespectively of the value of attenuation inserted between MS and BS and various parameterizations.

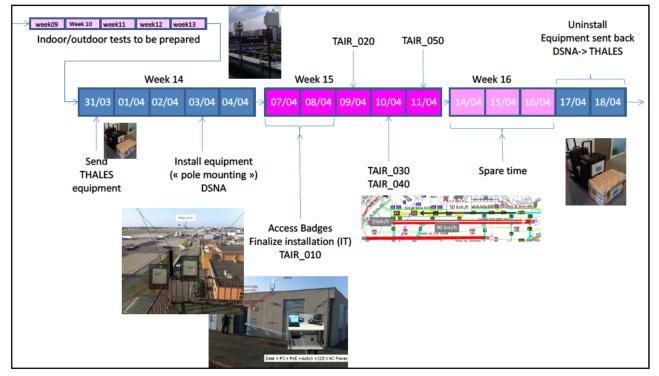
7.2.4.3.3 Unexpected behaviors/Results

Only a part of this IOT is OK: scanning and preamble detection. Despite both Selex ES and Thales teams' investigation efforts, it was not possible to demonstrate further interoperability in the frame of this test campaign.

7.2.4.4 Conclusions and recommendations

Only a small part of this interoperability testing is OK (additional IOT results can be found in 7.1.6).

It is suggested to plan ad-hoc activities with the purpose to complete IOT in the near future (SESAR2020/VLD could be suitable opportunities) in coordination with the relevant standardization authorities.


founding members

7.3 Thales Toulouse airport verification exercises

7.3.1 Introduction

Thanks to an appropriate preparation, the optimized test schedule is planned as follows:

Figure 7-24: Detailed Airport schedule

Four Thales engineers were trained to have access to the Airport and Airport tests exercises were written and presented by THALES and then, analyzed and accepted by DSNA prior the testing period.

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

Figure 7-25: Training for Airport Clearance and test plan preparation (TAIR_10 up to TAIR_50)

Below, the results of the preparation phase before Toulouse Airport test campaign are summarized. Outdoor tests were performed in the vicinity of Thales premises in order to assess the behavior of the equipment in different propagation conditions that will be met at Toulouse: LOS, NLOS, and mobility.

Two main setups were used:

- Installation in the countryside near Thales test premises near Paris: test up to 4 km in LOS.

Figure 7-26: Setup of the BS on a tower and MS on a truck for outdoor tests

- Installation in Thales premises Gennevilliers: test in NLOS and mobility, registration to the two base stations. Furthermore, the testing software that records positions along with MS measurements (called survey tool) was also verified.

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

107 of 184

Figure 7-27: Outdoor tests in gennevilliers premises in NLOS

Figure 7-28: Outdoor tests in Gennevilliers @ 80 km/h

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

108 of 184

7.3.2 Verification Exercise # TAIR_010

7.3.2.1 Verification Exercise Scope

Installation and Main performances verification on the field:

1) Install BS1 and BS2 in PB and fix MS in PA

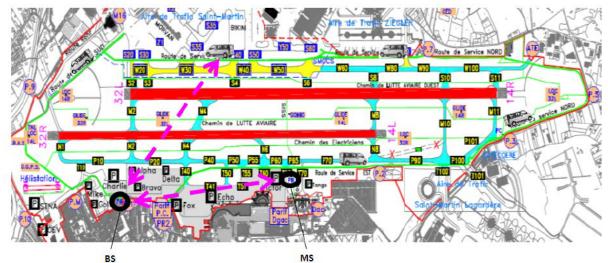
2) Perform main AeroMACS performances measurements at fix MS point:

Scanning, ranging, registration, throughput, QOS, mean power ...

3) Install one MS in car.

- BS1 on (BS2 off): perform a lap on the "route de service" (green below) and record MS RSSI on the fly
- BS2 on (BS1 off): perform a lap again and record MS RSSI on the fly

7.3.2.2 Conduct of Verification Exercise


7.3.2.2.1 Verification Exercise Preparation

Equipment: BS1&2 + 1 fix MS + 1 MS in a car+ Spectrum Analyzer

Resources:

- Thales: 2 engineers
- DSNA: Required people for installation, one driver with a car.

Links and car trajectories: (the "route de service" will be used twice)

7.3.2.2.2 Verification Exercise execution

Step	action	Action result	PCO	Result
Phase	1 installation, scanning performance an	d successful completion of the	ranging process	
1	Install GS 1 and GS 2 as depicted in § 3.5.3.2 Orientation: BS1_TH : az 300° tilt : -3° BS2_TH : az 210° tilt : -3° Take pictures of installation	GS started GPS synchronized Photos saved	GS control MMI	ок

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

109 of 184

	AeromACS verification Plan & Report		,	
2	GS2 is switched off.	New frequency provisioned on GS	GS control MMI	OK
	Set frequency on the GS 1:			
	5093,5 MHz			
	Provision new RF parameter on the GS 1			
3	Install fix MS as depicted in § 3.5.3.3	MS installed	MS Web	OK
	Take pictures of installation	MS accessed through its computer	interface	
		Photos saved		
4	Set frequency list of MS :	MS connects eventually to		OK
	5093,5 MHz	the GS 1	MMI	
	5098,5 MHz	F=5093,5 MHz	MS web interface	
	5103,5 MHz			
5	Initiate traffic in the UL or DL thanks to the traffic generator (lperf)	Communication established in both directions (UL and	lperf	OK
	Check RSSI on both side : MS and BS	DL)		-61 dBm
		Store information about RSSI / modulation	BS/MS MMI	
76	GS1 is switched off. GS2 is switched ON	New frequency provisioned on GS	GS control MMI	OK
	Set frequency on the GS 2:			
	5103,5 MHz			
	Provision new RF parameter on the GS 2			
7	Fix MS eventually connects to GS2	MS frequency 5103,5 MHz	MS web	OK
		Store information about RSSI / modulation	interface	-73 dBm
Phase	e 2 Lap on the Airport surface / fast cover	rage survey		
1	GS 2 is switched OFF	MS 2 connects eventually to		OK
	GS 1 is switched ON	the GS 1	MMI	
	Switch off MS 1	F=5093,5 MHz	MS web interface	
	Install MS 2 in a DSNA car	Photos saved	internate	
	Switch ON MS2			
	Take pictures of installation			
	Set frequency list of MS 2 :			
	5093,5 MHz			
	5008 5 MU-			
	5098,5 MHz			

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

	AeromACS verification Plan & Report			
2	Perform a lap on the "route de service" (green road on previous picture) and record MS RSSI on the fly with survey tool		Test application	OK
3	Switch OFF GS 1 Switch ON GS 2	MS2 connects eventually to the GS 2 F=5103,5 MHz	GS or MS MMI	OK
5	Perform a lap on the "route de service" and record MS RSSI on the fly with survey tool		Test application	OK
Phase	3 MLS interferences measurements			
1	Measure the possible interferences with Spectrum Analyzer: MLS signal near MLS emitter (F _{MLS} = 5038,8 MHz) (Check if there is any AMT perturbation F _{AMT} = 5126 and above)		Spectrum Analyzer	OK MLS detecte d No AMT
2	Perform a communication between MS2 and BS while closed to MLS	Communication performed	lperf	OK
Phase	4 Modulation performances			
1	GS 1 is ON Switch on MS1 (fix location) Switch off GS 2 Switch off MS 2	MS 1 connects eventually to the GS 1 F=5093,5 MHz	GS or MS MMI	ОК
2	Fix modulation to 64QAM 5/6 in DL in the GS Start iperf in DL with a 10Mbps datarate Go back to step 2 after switching	the GS1 in the selected modulation Read the DL max datarate		OK Up to 64QAM 3/4
	successively to 64QAM ³ / ₄ , 64QAM 2/3, 64QAM ¹ / ₂ , 16 QAM ³ / ₄ , 16 QAM ¹ / ₂ , QPSK ³ / ₄ and QPSK ¹ / ₂			
4	Fix modulation to 64QAM 5/6 in UL in the GS Sart iperf in UL with a 3Mbps datarate	MS 1 connects eventually to the GS 1 in the selected modulation Read the UL max datarate	lperf	OK Up to 64QAM 2/3
5	Go back to step 2 after switching successively to 64QAM ³ / ₄ , 64QAM 2/3, 64QAM ¹ / ₂ , 16 QAM ³ / ₄ , 16 QAM ¹ / ₂ , QPSK ³ / ₄ and QPSK ¹ / ₂			-

founding members

Phase	Phase 5 QOS performances							
1	GS 1 is ON and MS1 (fix location) is ON	MS 1 connects eventually to the GS 1	GS or MS MMI	OK				
	GS 2 and other MS are OFF	F=5093,5 MHz						
2	Fix the QOS scheme to BE	Read the DL max datarate	lperf	OK				
	Start iperf in DL with a 10Mbps datarate	And check that it is limited as indicated by the QOS policy						
3	Go back to step 2 after switching the QOS to n-RT, RT, UGS	QOS changed	GS MMI	OK				

7.3.2.2.3 Deviation from the planned activities

None.

The exercise was performed as expected. Two days were needed, first day was dedicated to installation and first lap of the Airport, and second day was dedicated to MLS interferences and modulation performances measurements.

7.3.2.3 Verification exercise Results

Phase 1: Installation, and completion of the scanning, synchronization, ranging process

GS 1 and GS 2 are installed on the former control tower and the fix MS in the building called "PB". Once the pieces of equipment are started, the fix MS connects successfully to both BS:

- DL RSSI from GS1 is -61 dBm (f=5093,5 MHz),
- DL RSSI from GS2 is -73 dBm (f=5103,5 MHz)

The pictures below show the installation on the field.

Figure 7-29: The former control tower with the 2 Thales BS

Figure 7-30: BS orientation and operator position

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

113 of 184

Figure 7-31: MS1 at "PB" fix location (+ two equipped vehicles with MS2 and MS3)

Phase 2 Lap on the Airport surface / fast coverage survey

Additionally to the one installed at the fix point, two MS were installed in DSNA cars to perform tests all around the Toulouse Airport. One or two antennas are installed on the vehicle roof and connected to the MS via RF cables. The MS is connected to a PC which is equipped with a special survey tool that is able to record at the same time the vehicle position (thanks to a GPS installed on the vehicle roof and connected to the PC) and the RSSI level (from MS). The results are displayed in real time on the Airport map in THALES survey tool.

The following pictures show the vehicle installation.

Figure 7-32: 2 DGAC Vehicle installation with 2 Thales MS

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

The following pictures show the coverage map of the BS 1 and the BS 2. They are obtained while driving around the airport at a speed between 30 to 50 km/h speed. They are similar to the simulations: the whole Airport is covered. It was reported that the MIMO A for the MS equipped with two antennas gives an additional 2 to 3 dB reception gain (compensating loss in antenna cables).

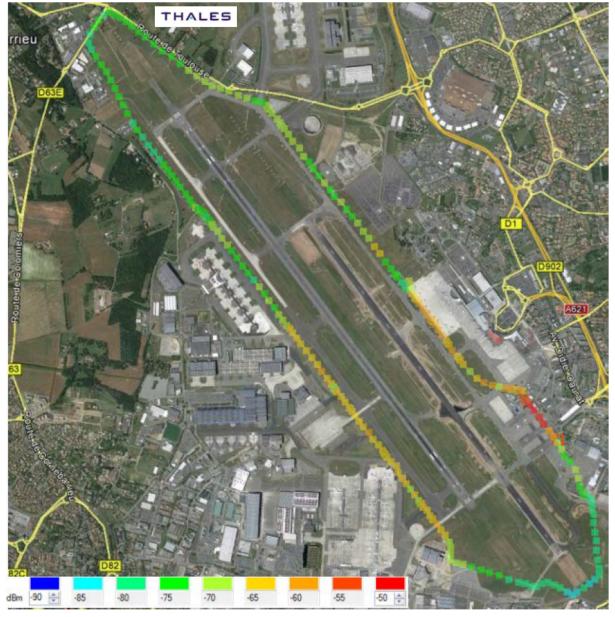


Figure 7-33: BS1 Airport measured coverage (BS 2 off)

Simulations with a propagation tool were done to compare the field results with simulations. The results can be found on map below. The same scale of colours for the RSSI is used in order to have a quick visual comparison: the measured levels are similar to the simulations. Additional analysis is given in the TAIR_020 test (see § 7.3.3.3).

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

116 of 184

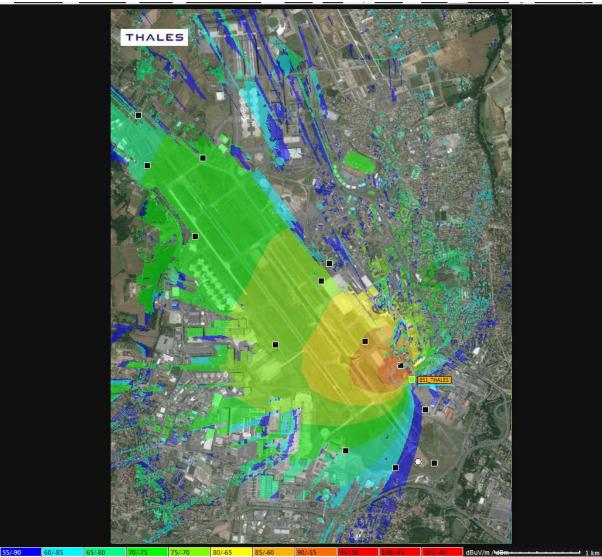


Figure 7-34: Thales BS1 coverage calculation

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

117 of 184

Figure 7-35: Thales BS2 Airport measured coverage (BS1 off)

Simulations with a propagation tool were done to compare the field results with simulations. The results can be found on map below. The same scale of colours for the RSSI is used in order to have a quick visual comparison. The measured levels are similar to the simulations once we considered side lobe of the antenna in the simulation (it explains the propagation up to the remote end of the airport).

118 of 184

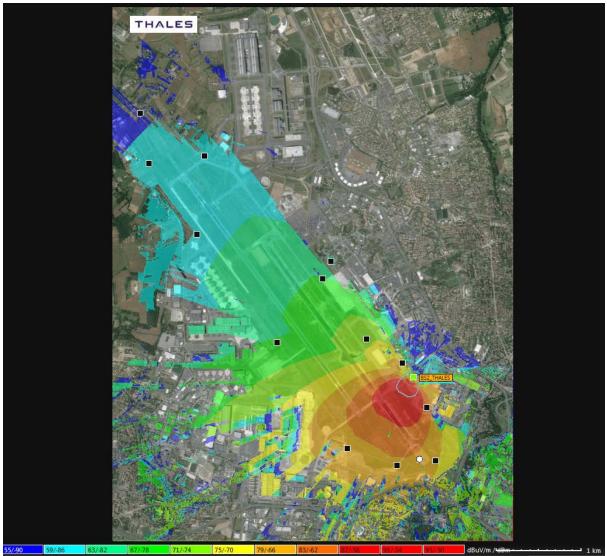


Figure 7-36: Thales BS2 coverage calculation

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

119 of 184

Phase 3 MLS Spectrum measurements

The MLS (Microwave Landing Systems) signal use Time Division Multiplexing (TDM) including azimuth and elevation signals. These signals are Continuous Wave (CW) with DPSK preambles with 3 dB bandwidth of 15.626 kHz. It is the preambles that may interfere with other systems and notably AeroMACS due to its low out-of-band attenuation. The frequency of MLS is 5038,8 MHz.

In P15.02.07. D04 deliverable, it was stated that "MLS transmitters may cause harmful interference to AeroMACS receivers when installed at the same airport, even when the two systems are separated in frequency by several tens of MHz".

Some measurements were made nearby the MLS (see picture below) in Toulouse to see the impact of MLS on AeroMACS.

Figure 7-37: MLS (south) test location

The frequency gap between Toulouse minimum authorized frequency (5093,5 MHz) and the MLS is: 54,7 MHz. Based on D04, such a frequency gap means that no interferences are expected above a distance of 250 m.

More precisely, in D04 assuming a rejection of -70 dB (more than 3 channels spacing from MLS frequency), the interference zone was defined as follow:

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

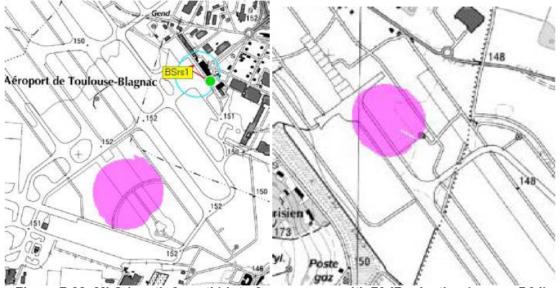


Figure 7-38: MLS (south & north) interference zone with 70dB rejection (source D04)

We went as close as possible from the MLS sites see trajectory below (distance approximately 150 m) to be in the computed interfered area of MLS.

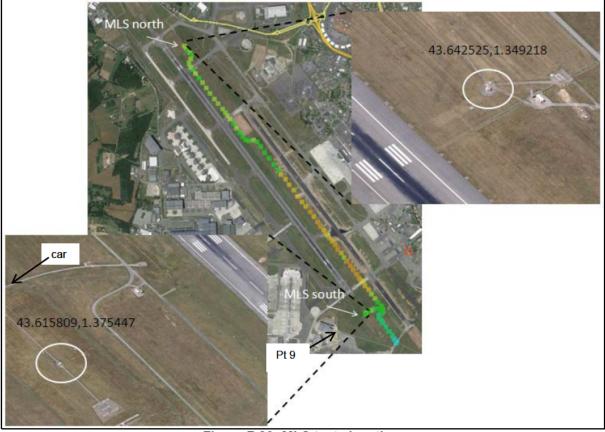


Figure 7-39: MLS tests location

 Close to MLS north (MLS for site angles), we performed in DL a constant 8.9 Mbps communication (modulation between 64QAM ³/₄ and 64QAM 5/6) with a DL RSSI of -68 dB: no interferences were apparently noticed.

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

121 of 184

- In the vicinity of MLS south (MLS for azimuth angles), we performed a DL communication: the DL data rate varied between 3,5 and 5 Mbps (modulation between 16 QAM ½ and 64 QAM 1/2). These variations lead us think about experiencing interferences from the MLS.
- A close up on the recordings near MLS South seems to confirm this assumption: one can see below that the RSSI seems sometimes increased artificially potentially due to MLS interference (left picture), while the CINR is at the same time comparatively low (right picture), confirming the hypothesis of the interferences presence, close to the MLS signal source. A degradation of about 4 dB in CINR (light blue points at center of image) while CINR can increase of about 4 dB (red point at center of image).

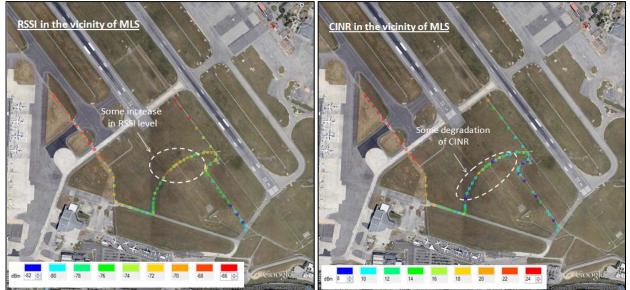


Figure 7-40: Close analyse in the vicinity of MLS

Concerning other potential sources of interferences, note that no AMT and no other AeroMACS system signals were detected on the Airport during our field trials. Below the spectrum measurements:

			THALES	大学を出し
	Detect: RMS Ref:-20 dBm Att:0 dB -30	Trig: Free Trace: Max	RBW: 10 kHz UBW: 10 kHz SWT: 7.5 s	11
MLS Measure 👩	-40 MLS -50 -60 -70			6
MLS	-80 -90 -106000 MHz -110		ACS 5150 MHz	
	Center: 5.075 GHz	-C: Span: 1	50 MHz	

Figure 7-41: Spectrum measurement near MLS signal (south)

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

122 of 184

Detect: RMS Ref: -20 dBm Att: 0 dB	Trig:Free F Trace:Max E	RBW: 10 kHz JBW: 10 kHz GWT: 7.5 s			
-30 -40					4
-50 -60 MLS					
-70	AeroMACS				
-80					
-1005000 MHz		5150 MHz			-
-110 Center: 5.075 GHz	-⊲: Span: 150 MH	z			
			×		
	1		(AB		
MLS Measure	the second			MLS (North)	

Figure 7-42: Spectrum measurements near MLS signal (north)

Phase 4 Modulation performances

All the modulations were tested in DL and UL from the MS1 on the fix point (PB) and the BS1. Additionally, a test was performed closer from BS1 location with a MS in car to test the upper modulations 64QAM5/6 (see TAIR_20, point 1) as it happens they would not be working at PB.

The results are summarized in following table and are similar to what was measured in lab. Note: the throughput comes from the information displayed by *iperf*. It is an "UDP" throughput: the effective radio throughput is a bit higher if one considers the UDP headers.

MCS	UL throughput	DL throughput
QPSK1/2	0,4 Mbps	1,7 Mbps
QPSK3/4	0,7 Mbps	2,6 Mbps
16QAM1/2	0,9 Mbps	3,5 Mbps
16QAM3/4	1,4 Mbps	5,3 Mbps
64QAM1/2	1,4 Mbps	5,3 Mbps
64QAM2/3	1,9 Mbps	7,0 Mbps
	KO at fix point (PB) which is too far No other measurement	
64QAM3/4	attempt performed	8,0 Mbps
64QAM5/6	KO at PB 2,3 Mbps measured nearer to BS1	KO at PB 8,9 Mbps measured nearer to BS1

Phase 5 QOS performances

Each QOS service flow (BE, nRTP, RTP, eRTP, UGS) was successively and dynamically assigned to the MS while having a 1 Mbps communication. The max data rate of each service flow was set to 300

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

123 of 184

kbps. As expected, the throughput of the communication was limited to 300 kbps once the SF is allocated to the MS.

Additional results

The fix MS at PB is most of the time in line of sight with the BS. In fact, as it is located near the terminal area, it happens that the aircrafts drives close to PB and generates a mask between the MS antenna and the BS antenna (as one can see on the picture below taken from the BS location). The corresponding RSSI degradation was between 10 to 15 dB.

Figure 7-43: Mask due to aircraft which hide the antenna on PB

A measurement of the net entry time was also performed:

- The MS scan is programmed to scan all frequencies between 5093,5 MHz (included) and 5147,5 (included), with a step size of 250 kHz (217 frequencies) (note: all the frequencies are scanned equivalently, no signal threshold etc...)
- The MS is off
- The time between the moment when the MS is switched on and a ping is performed successfully through the AeroMACS link is around: 2 minutes and 10 seconds. All the frequencies were scanned.

7.3.2.3.1 Unexpected behaviors/Results

None

7.3.2.4 Conclusions and recommendations

The TAIR-10 test case allows controlling the installation of the pieces of equipment (BS1 and BS2 in the former control tower, MS in cars and in fix location) and verifying the main performances of AeroMACS on the field.

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

124 of 184

Additionally, interferences in the vicinity of the MLS were evaluated and the potential effects of Aircraft masks were quantified.

Main conclusion is that the coverage of the whole Toulouse Airport can be achieved with two BS in LOS conditions.

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

125 of 184

7.3.3 Verification Exercise # TAIR_020

7.3.3.1 Verification Exercise Scope

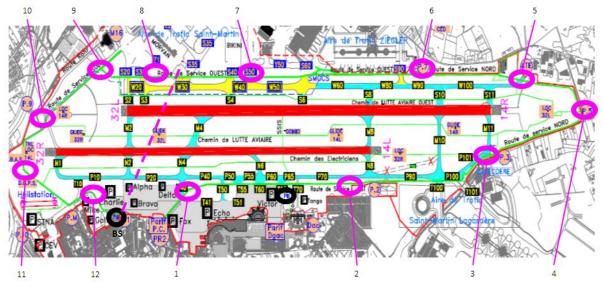
Cell coverage and MS channel quality reporting:

Verify the maximum distance in the airport where the datalink is synchronized, and assess the different modulation schemes and the throughput hence supported.

At each point of the "route de service' in green, stop and perform measurements in LOS (RSSI, max throughput, jitter and delay). The "route de service" is used twice to assess the coverage of the two servicing cells:

- first time with BS 1 on (BS 2 off)
- and second time with BS2 on (BS 1 off)

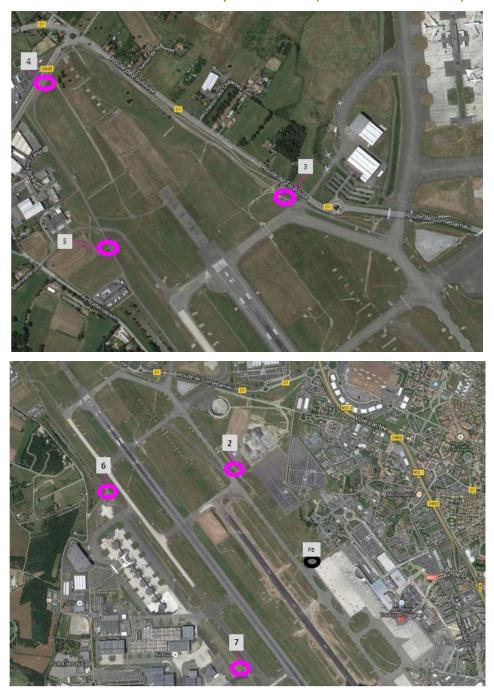
7.3.3.2 Conduct of Verification Exercise


7.3.3.2.1 Verification Exercise Preparation

Equipment: BS1&2 + 1 MS in a car+ Spectrum Analyzer

Resources:

- Thales: 2 engineers
- DSNA: a driver with a car.


Potential measurement points and car trajectories:

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

126 of 184

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

127 of 184

7.3.3.2.2 Verification Exercise execution

Step	action	Action result	PCO	Result
Phase	1 Cell coverage of GS 1			
1	GS1 is switched ON	GS 1 is started	GS control	ОК
	GS2 is switched OFF		MMI	
	GS1 is provisioned with frequency: 5093,5 MHz			
	Fix MS 1 is OFF			
2	Set frequency scan of MS 2 (mobile) : 5093,5 MHz	MS connects eventually to the GS	MS MMI	ОК
	5098,5 MHz	F=5093,5 MHz		
	5103,5 MHz			
	Go to point 1 and stop			
3	Adaptive modulation is selected on the		GPS MMI	ОК
	GS as MS profile	different measurements	GS/MS MMI	
	Site survey tool is shut down		MS MMI	
	Perform measurements:		ping cmd	
	Write down geo-localization		iperf cmd	
	Write down measured RSSI / CINR on MS MMI and on BS MMI			
	'ping' in both direction and write down			

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles

	meen Bound Trin Time	,	*	
	mean Round Trip Time			
	Initiate a bidirectional 'iperf' communications to evaluate DL and UL throughput:			
	Write down mean maximum throughput			
	Write down mean jitter			
	Write down the UL and DL modulations (during 'iperf')			
4	Go to most approrpiate points around airport from 2 to 12 and stop and perform steps 3 to 5 to characterize cell coverage	-	-	ОК
Phase	2 Cell coverage of GS 2			
1	GS1 is switched OFF	GS 2 is started	GS control	OK
	GS2 is switched ON		MMI	
	GS2 is provisioned with frequency: 5103,5 MHz			
	Fix MS 1 is OFF			
2	Set frequency scan of MS 2 (mobile) : 5093,5 MHz	MS connects eventually to the GS	MS MMI	OK
	5098,5 MHz	F=5103,5 MHz		
	5103,5 MHz			
3	Adaptive modulation is selected on the GS as MS profile	Written down are the measurements.	GPS MMI GS/MS MMI	OK
	Go to point 1 and stop			
	Perform measurements:		ping cmd iperf cmd	
	Write down geo-localization		ipen and	
	Write down measured RSSI / CINR on MS MMI (site survey tool is shut down) and on BS MMI			
	'ping' in both direction and write down mean Round Trip Time (RTT)			
	Initiate a bidirectional 'iperf' communications to evaluate DL and UL throughput:			
	Write down mean maximum throughput			
	Write down mean jitter / latency			
	Write down the UL and DL modulations (during 'iperf')			
6	Go to the most appropriate points 2 to	1	-	OK

founding members

12 and stop and perform steps 3 to 5 to		
characterize cell coverage.		

7.3.3.2.3 Deviation from the planned activities

None.

TAIR_20 was performed on day 3 as expected.

7.3.3.3 Verification exercise Results

Phase 1 Cell coverage of GS 1

A circle trip was performed all around the airport with stops at some points to perform communications and measurements. It was verified that the modulation and coding scheme were changed accordingly to the received level and signal to noise ratio. The results are also compared with the coverage simulations. The complete set of measurements of BS1 is reported below.

Point 1.1:

- DL RSSI: -47 dBm, UL RSSI: -110² dBm, UL CINR: 22 dB, DL CINR: 30.5 dB
- Max MCS: 64QAM 5/6 (DL) 64QAM 5/6 (UL)
- Max throughput: 8.91 Mbits/sec (DL), 2.29 Mbits/sec (UL)
- Mean RTT: 72 ms, mean latency: 36 ms, mean jitter: 7 ms

Point 3:

- DL RSSI: -68 dBm, UL RSSI: -117 dBm, UL CINR: 15 dB, DL CINR: 25.5 dB
- Max MCS: 64QAM 5/6 (DL) / 64QAM ½ (UL)
- Max throughput: 8.00 Mbits/sec (DL) / 1.37 Mbits/sec (UL)
- Mean RTT: 70 ms, mean latency: 35 ms, mean jitter: 3 to 8 ms

Point 4:

- DL RSSI: -78 dBm, UL RSSI: -125.0 dBm, UL CINR: 10 dB, DL CINR: 18.3 dB
- Max MCS: 64QAM ¹/₂ (DL), QPSK ³/₄ (UL)
- Max throughput: 4.53 Mbits/sec (DL), 680 Kbits/sec (UL)
- Mean RTT: 78 ms, mean latency: 39 ms, mean jitter: 4 to 7,5 ms

Point 6:

- DL RSSI: -72 dBm, UL RSSI: -121.5 dBm, UL CINR: 11.5 dB, DL CINR: 21.4 dB
- Max MCS: 64QAM 5/6 (DL) 16QAM 1/2 (UL)
- Max throughput: 6.60 Mbits/sec (DL), 743 Kbits/sec (UL)
- Mean RTT: 72 ms, mean latency: 36 ms, mean jitter: 3 to 4 ms

founding members

 Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

² In UL the RSSI is measured by subcarrier

Point 7:

- DL RSSI: -68 dBm, UL RSSI: -114 dBm, UL CINR: 16.5 dB, DL CINR: 23.2 dB
- Max MCS: 64QAM 5/6(DL) / 64QAM ½ (UL)
- Max throughput: 6.79 Mbits/sec (DL) / 1.24 Mbits/sec (UL)
- Mean RTT: 71 ms , mean latency: 36 ms , mean jitter: 3 to 8 ms

Point 9:

- DL RSSI: -70 dBm, UL RSSI: -115,5 dBm, UL CINR: 15 dB, DL CINR: 18.5 / 21.0 dB
- Max MCS: 64QAM ½ (DL) 16QAM ¾ (UL)
- Max throughput: 4.00 Mbits/sec (DL) / 1.25 Mbits/sec (UL)
- Mean RTT: 70 ms, mean latency: 35 ms , mean jitter: 2.5 to 7.5 ms

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

Point 11:

- DL RSSI: -87 to -84 dBm, UL RSSI: -126,5 dBm, UL CINR: 0.5, DL CINR: 0 to 2 dB
- Max MCS / Max throughput: no measurements as iperf didn't work
- Mean RTT: 91 ms (DL: 10% of ping lost, max RTT 341 ms / UL: 28% of ping lost max RTT: 172 ms)
- \Rightarrow As expected from simulations, this point is at the limit of coverage of BS1.

Point 12:

- DL RSSI: -75 dBm, UL RSSI: -118,5 dBm, UL CINR: 8 dB, DL CINR: 11.0 dB
- Max MCS: 16QAM 1/2 (DL) / 16QAM 1/2 (UL)
- Max throughput: 2.27 Mbits/sec (DL) / 745 Kbits/sec (UL)
- Mean RTT: 70 ms, mean latency: 35 ms , mean jitter: 2.7 to 4.8 ms
- ⇒ Contrary to simulations, this point is still reachable from BS1..

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

The measurements are compared to the simulations below. Globally the results are similar to simulations. The received level at point 11 and point 12 are much better than expected: it was analysed that it is due to the side lobe of the antenna that was not sufficiently considered in simulation³. Point 9 is not as good as expected (when compared to point 6 for example). It is believed that MLS interference could have influenced the data rate at this point.

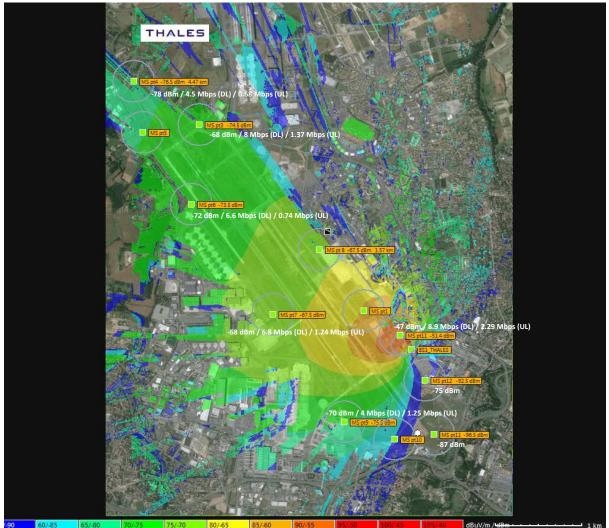


Figure 7-44: THALES BS1 coverage measurements versus simulation

Phase 2 Cell coverage of GS 2

The complete set of measurements for BS2 is reported below.

Point 1:

- DL RSSI: -70 dBm, UL RSSI: -118.0 dBm, UL CINR: 14.5 dB, DL CINR: 12 dB
- Max MCS: 16QAM 3/4 (DL) /16QAM 3/4 (UL)
- Max throughput: 3.69 Mbits/sec (DL) / 1.20 Mbits/sec (UL)
- Mean RTT: 72ms, mean latency: 36 ms, mean jitter: 4 to 7,5 ms

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

133 of 184

³ BS2 coverage simulation was considered with antenna side lobe to confirm this assumption.

Point B:

- DL RSSI: -79 dBm, UL RSSI: -127.5 dBm, UL CINR: 6 dB, DL CINR: 9,5 dB
- Max MCS: 16QAM ½ (DL) /QPSK ¾ (UL)
- Max throughput: 3.2 Mbits/sec (DL) / 583 Kbits/sec (UL)
- Mean RTT: 73ms, mean latency: 36 ms, mean jitter: 6.5 to 7.5 ms

Point 3:

- DL RSSI: -81 dBm, UL RSSI: -124.5 dBm, UL CINR: 7 dB, DL CINR: 8.79
- Max MCS: QAM16 1/2 (DL) / QPSK 1/2 (UL)
- Max throughput: 3.40 Mbits/sec (DL) / 188 Kbits/sec (UL)
- Mean RTT: 71 ms, mean latency: 35 ms, mean jitter: up to 16 ms (UL)

Point 4:

- DL RSSI: 86 dBm, UL RSSI: -123.5 dBm, UL CINR: 8 dB, DL CINR: 6.5 dB
- Max MCS: QPSK 1/2 (DL) / QPSK 1/2 (UL)
- Max throughput: 2.43 Mbits/sec (DL) / 111 Kbits/sec (UL)
- Mean RTT: 77 ms, Mean latency: 38 ms, mean jitter: 7 up to 22 ms (UL)

Point 5:

- DL RSSI: -83 dBm, UL RSSI: -126 dBm, UL CINR: 7 dB, DL CINR: 9.5 dB
- Max MCS: QAM16 1/2 (DL) / QPSK 3/4 (UL)
- Max throughput: 3.34 Mbits/sec (DL) / 378 Kbits/sec (UL)
- Mean RTT: 72 ms, mean latency: 36 ms, mean jitter: 5.5 ms

Point 6:

- DL RSSI: -79 dBm, UL RSSI: -125.5 dBm, UL CINR: 7.5 dB, DL CINR: 12.5 dB
- Max MCS: 64QAM ½ (DL) / QPSK ¾ (UL)
- Max throughput: 4.41 Mbits/sec (DL) / 644 Kbits/sec (UL)
- Mean RTT: 63 ms, mean latency: 36 ms, mean jitter: 3.3 to 7.6 ms

Point 7:

- DL RSSI: -67 dBm, UL RSSI: -115.5 dBm, UL CINR: 19.5 dB, DL CINR: 21 dB
- Max MCS: 64QAM 5/6 (DL) / 64QAM 2/3 (UL)
- Max throughput: 8.66 Mbits/sec (DL) / 1.52 Mbits/sec (UL)
- Mean RTT:70 ms, mean latency: 35 ms, mean jitter: 7 to 9 ms

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

Project Number 15.02.07

D10 - AeroMACS Verification Plan & Report - Phase 2 (v00.03.00 revised final)

Point 9:

- DL RSSI: -68 dBm, UL RSSI: -114.5 dBm, UL CINR: 20 dB, DL CINR: 21 dB
- Max MCS: 64QAM 5/6 (DL) / 64QAM 2/3 (UL)
- Max throughput: 8.68 Mbits/sec (DL) / 1,5 Mbits/sec (UL)
- Mean RTT: 70 ms, mean latency: 35 ms, mean jitter: 2.5 ms to 8.5 ms

Point 10:

- DL RSSI: -60 dBm, UL RSSI: -110.0 dBm, UL CINR: 22.5 dB, DL CINR: 22 dB
- Max MCS: 64QAM 5/6 (DL) / 64QAM 5/6 (UL)
- Max throughput: 8.90 Mbits/sec / 1.59 Mbits/sec
- Mean RTT: 69 ms, mean latency: 35 ms, mean jitter: 2.5 ms to 8.5 ms

Point 11:

- DL RSSI: -65, UL RSSI: -110.0, UL CINR: 23.0, DL CINR: 21
- Max MCS: 64QAM 5/6 (DL) / 64QAM 5/6 (UL)
- Max throughput: 7.94 Mbits/sec (DL) / 1.46 Mbits/sec (UL)
- Mean RTT: 70 ms, mean latency: 35 ms, mean jitter: 3 to 6.5 ms

Point 12:

- DL RSSI: -59 dBm, UL RSSI: -108.5 dBm, UL CINR: 21.5 dB, DL CINR: 16.5 dB
- Max MCS: 64QAM ³/₄ (DL) / 64QAM 5/6 (UL)
- Max throughput: 7.34 Mbits/sec / 1.97 Mbits/sec
- Mean RTT: 77 ms, mean latency: 38 ms, mean jitter: 3 to 6,5 ms

The measurements are compared to the simulations below. Globally the results are similar to simulations.

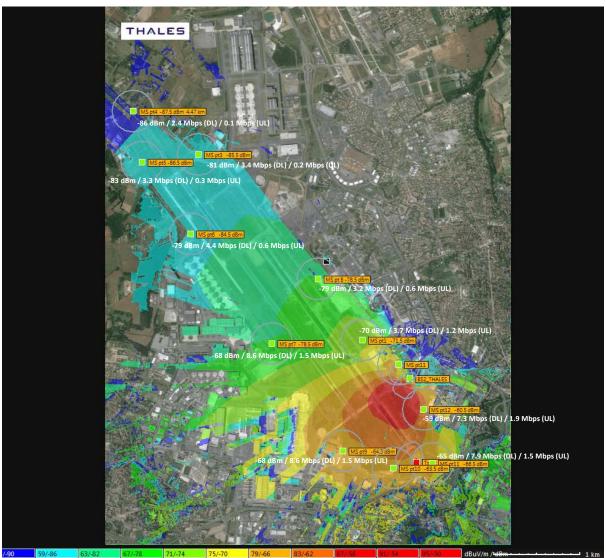


Figure 7-45: BS2 coverage measurements versus coverage simulation

Additional measurements

A measurement was done in extremely low reception conditions in the DGAC parking. With a RSSI around -91 dBm, a DL communications was established in QPSK ½ still offering 1 Mbps DL (TDD ratio 32/15).

7.3.3.3.1 Unexpected behaviors/Results

None

7.3.3.4 Conclusions and recommendations

The test allowed making cell coverage for BS1 on one side and BS2 on the other side. Good performances were reported. They are generally in accordance with simulations.

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

136 of 184

7.3.4 Verification Exercise # TAIR_030

7.3.4.1 Verification Exercise Scope

Real deployment and NLOS performances:

Evaluate the impact of buildings, hangars on the strength of the signal.

Stop in places with near-LOS or Non-LOS conditions. As far as possible, different kind of zones of the Airport are visited: ramp Area, parking Area, Tower Area, Access roads to installations for maintenance operations.

7.3.4.2 Conduct of Verification Exercise

7.3.4.2.1 Verification Exercise Preparation

Equipment: BS1&2 + 1 MS in a car+ Spectrum Analyzer

Resources:

- Thales: 2 engineers
- DSNA: a driver with a car.

Measurement points and car trajectories:

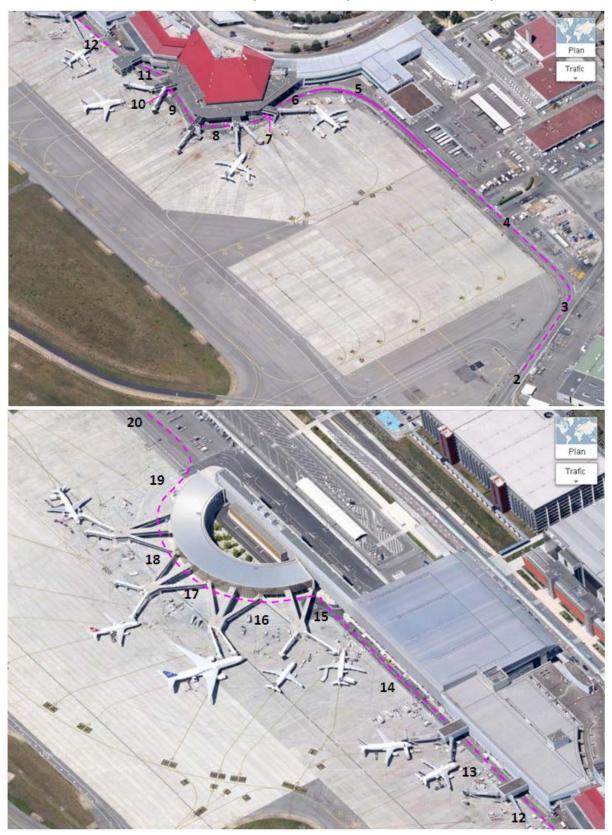
NLOS Zone

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

137 of 184

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

138 of 184



founding members

Avenu

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

139 of 184

founding members

140 of 184

7.3.4.2.2 Verification Exercise execution

Step	action	Action result	PCO	Result
1	GS1 is switched ON	GS 1 is started	GS control	OK
	GS2 is switched OFF		MMI	
	GS1 is provisioned with frequency: 5093,5 MHz			
	Fix MS is OFF			
	Adaptive modulation is selected on the GS as MS profile			
2	Set frequency scan of mobile MS:	MS connects eventually to	MS MMI	OK
	5093,5 MHz	the GS		
	5098,5 MHz	F=5093,5 MHz		
	5103,5 MHz			
3	Perform a trip on the "NLOS car trajectory" (green below) and record MS RSSI on the fly with survey tool	RSSI recorded on the map	Survey tool	ОК
4	Go to point 1 and stop	-	-	
5	Adaptive modulation is selected on the GS as MS profile	Written down are the measurements	GS/MS MMI ping cmd	OK
	Perform measurements:		iperf cmd	
	Write down geo-localization / (Take a picture to illustrate the NLOS conditions)		GPS MMI	
	Write down measured RSSI / CINR on MS MMI (site survey tool is shut down) and on BS MMI			
	'ping' in both direction and write down mean Round Trip Time			
	Initiate a bidirectional 'iperf' communications to evaluate DL and UL throughput:			
	Write down mean maximum throughput			
	Write down mean jitter			
	Write down the UL and DL modulations (during 'iperf')			
8	Go to 'NLOS' measurement point 3, 5, 7, 9, 11, 13, 15, 18, 19 and stop where possible and perform steps 5 to 7		-	OK

7.3.4.2.3 Deviation from the planned activities

None.

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

141 of 184

7.3.4.3 Verification exercise Results

The recordings of the DL RSSI on the fly are in accordance with the NLOS conditions: the more obstacles, the less signal. Communications are still possible even in very important NON LOS conditions. The distances are between 330 m (point #1) and 1400 m (point #19). Detailed performances and pictures of the "NLOS" position are displayed in following pages.

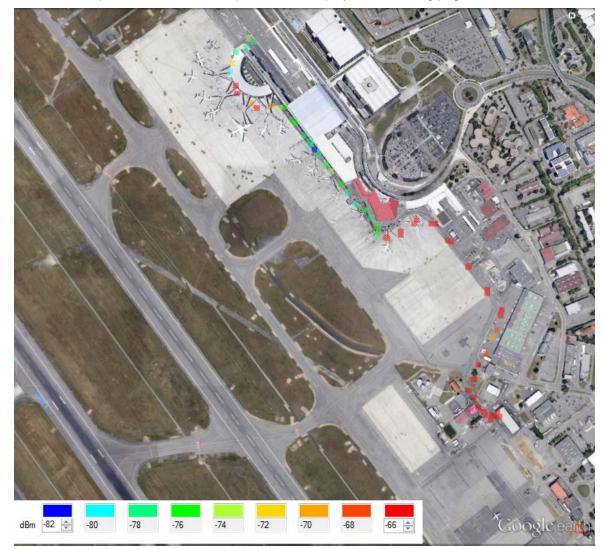


Figure 7-46: Recordings on the Fly of the RSSI in NLOS conditions

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

142 of 184

founding members

143 of 184

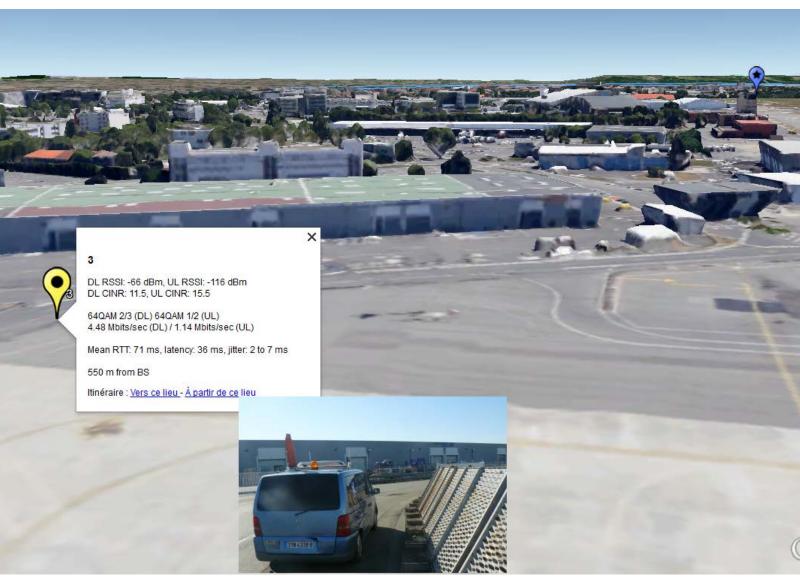
Edition 00.03.00

Project Number 15.02.07Edition 00.03.00D10 - AeroMACS Verification Plan & Report - Phase 2 (v00.03.00 revised final)Edition 00.03.00

Figure 7-47: NLOS point #1 measurement details

founding members

144 of 184


founding members

145 of 184

Edition 00.03.00

Project Number 15.02.07Edition 00.03.00D10 - AeroMACS Verification Plan & Report - Phase 2 (v00.03.00 revised final)Edition 00.03.00

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

146 of 184

Figure 7-48: NLOS point #3 measurement details

Edition 00.03.00

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

147 of 184

Edition 00.03.00

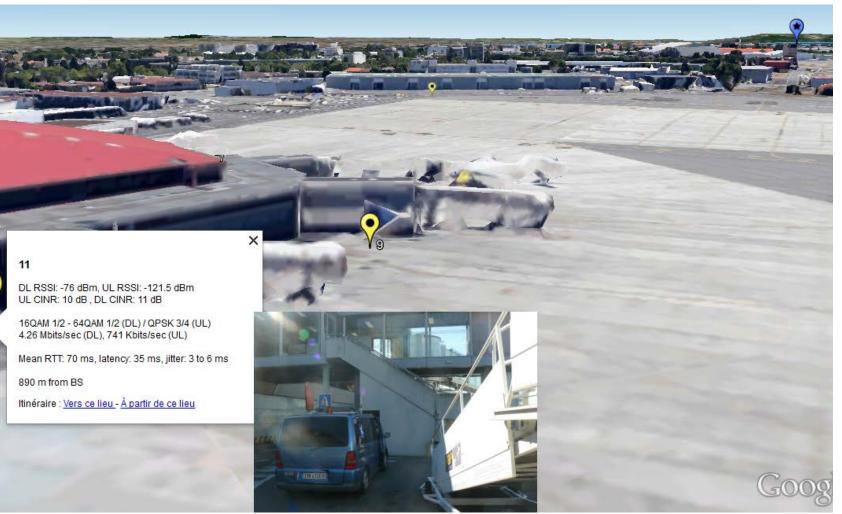
Figure 7-49: NLOS point #7 measurement details

Note: This point was quite in visibility with the BS although it was located at the ramp access.

founding members

148 of 184

Project Number 15.02.07Edition 00.03.00D10 - AeroMACS Verification Plan & Report - Phase 2 (v00.03.00 revised final)Edition 00.03.00


Figure 7-50: NLOS point #9 measurement details

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

149 of 184

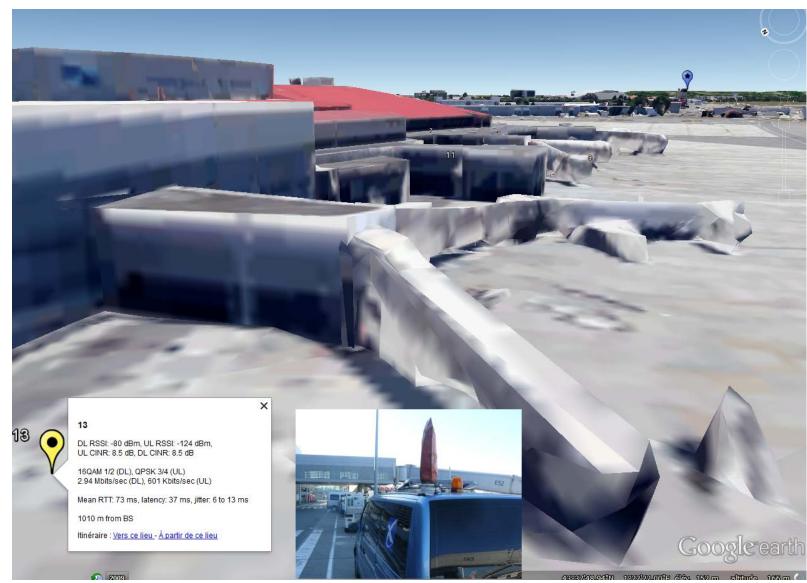
Edition 00.03.00

Figure 7-51: NLOS point #11 measurement details

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

150 of 184


founding members

151 of 184

Edition 00.03.00

Project Number 15.02.07Edition 00.03.00D10 - AeroMACS Verification Plan & Report - Phase 2 (v00.03.00 revised final)Edition 00.03.00

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

152 of 184

Edition 00.03.00

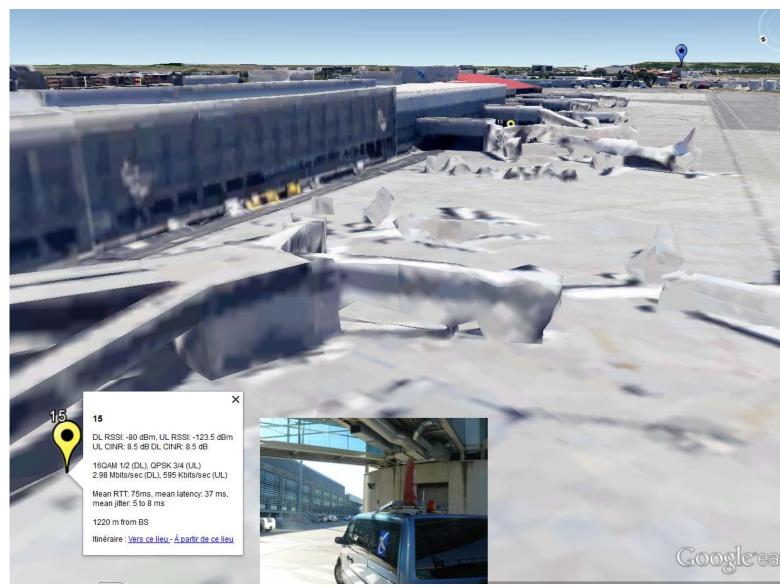

Project Number 15.02.07 D10 - AeroMACS Verification Plan & Report - Phase 2 (v00.03.00 revised final)

Figure 7-52: NLOS point #13 measurement details

founding members

153 of 184

founding members

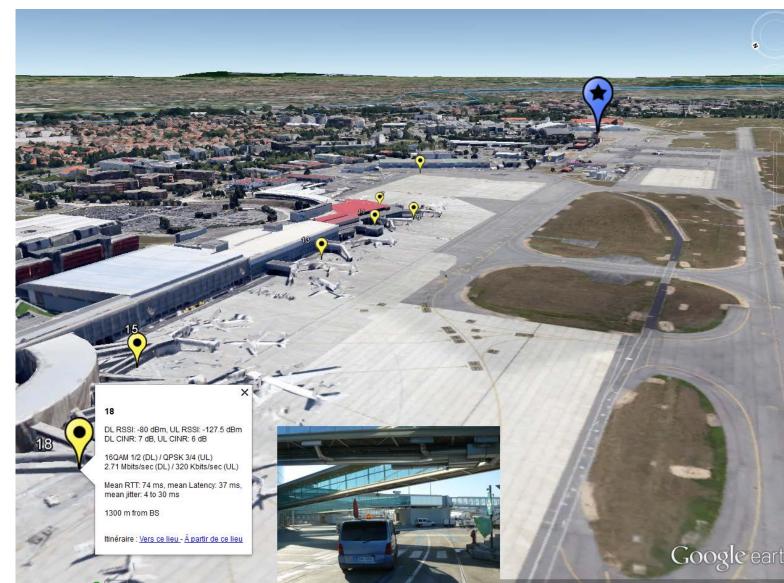
Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

154 of 184

Edition 00.03.00

Edition 00.03.00

Project Number 15.02.07 D10 - AeroMACS Verification Plan & Report - Phase 2 (v00.03.00 revised final)


Figure 7-53: NLOS point #15 measurement details

founding members

155 of 184

Project Number 15.02.07Edition 00.03.00D10 - AeroMACS Verification Plan & Report - Phase 2 (v00.03.00 revised final)Edition 00.03.00

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

156 of 184

Edition 00.03.00

Project Number 15.02.07 D10 - AeroMACS Verification Plan & Report - Phase 2 (v00.03.00 revised final)

Figure 7-54: NLOS point #18 measurement details

founding members

157 of 184

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

158 of 184

Edition 00.03.00

Project Number 15.02.07 D10 - AeroMACS Verification Plan & Report - Phase 2 (v00.03.00 revised final)

Figure 7-55: NLOS point #19 measurement details

founding members

159 of 184

Additional measurements

We had an opportunity to do some measurements outside of the Airport; these measurements are reported below.

Figure 7-56: Measurements on the outside of the Airport

7.3.4.3.1 Unexpected behaviors/Results

None

7.3.4.4 Conclusions and recommendations

The testing allowed showing the impact of NLOS conditions of propagation.

Up to 10-20 dB of attenuation can be noticed in the worst case (NLOS point 19 compared to LOS PB point (fix MS)). Still the communications are still possible with off course limited data rates compared with LOS conditions (fix MS in PB compared to NLOS point 19 for example).

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

160 of 184

Simulations were also performed but they are too much pessimistic compared to field results. As an example the figure below shows that no communications are expected in the gates area. One should note that even if we use a clutter map to represent the obstacles above the ground this represents not all the real phenomena explaining the differences between simulations and field measurements.

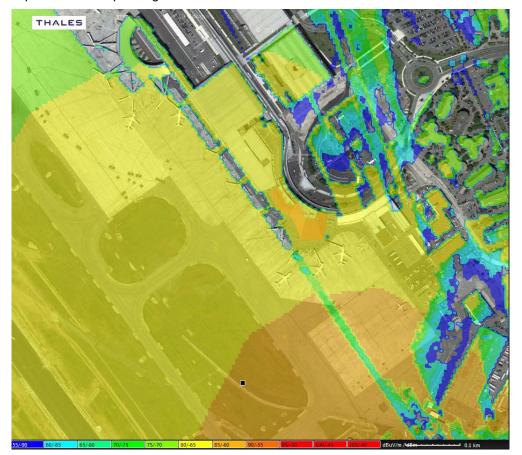


Figure 7-57: Simulated field strength near the terminal

In general, we found in the NLOS conditions:

- Mean UL modulation: QPSK ³/₄, Mean DL modulation : 16QAM ¹/₂
- UL Throughput from 200 kbits/s up to 750 kbits/s in the most adverse situations in the Toulouse configuration (point #9 up to # 19) and from 1 to 1.5 Mbit/s in nearer NLOS location from BS (point #3 and point #1). 2.26 Mbits/s in point #7 which was more in LOS.
- DL Throughput from 2.3 Mbits/s up to 4.2 Mbits/s in the most adverse situations in the Toulouse configuration (point #9 up to # 19) and up to 8.9 Mbits/s in the nearest NLOS location (point #1).

In the case of AeroMACS on board an aircraft, we can expect far better propagation conditions as the antenna will be at the top of the Aircraft (several meters above the ground) and the Aircraft in front of the terminals. In this case, it is expected to be very often in the best case situation represented by point #7.

Finally, we were able to perform a relatively good (video tuned to a 500 kbps constant bit rate) quality video communications between the MS and the BS to confirm this good behaviour.

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

7.3.5 Verification Exercise # TAIR_040

7.3.5.1 Verification Exercise Scope

Mobility performances / Channel selectivity:

Evaluate the impact of mobility on the data communications and channel selectivity

- 0 km/h: performance check before mobility, registration to the servicing BS.
- At 50 km/h: uses of taxiway or runway (depending upon authorization),
 - parameters are recorded while driving at a constant speed of 50 km/h,
 MS being preliminary.
- At 90 km/h: use of runway (depending upon authorization and vehicle capacity).

7.3.5.2 Conduct of Verification Exercise

7.3.5.2.1 Verification Exercise Preparation

Equipment: BS1&2 + 1 MS in a car+ Spectrum Analyzer Resources:

- Thales: 2 engineers
- DSNA: a driver with a car.

Measurement points and car trajectories:

7.3.5.2.2 Verification Exercise execution

Step	action	Action result	PCO	Result
Phase	1 Mobility @ 50 km/h			
1	GS1 is switched ON GS2 is switched OFF	GS 1 is started	GS control MMI	OK
	GS1 is provisioned with frequency: 5093,5 MHz			
	Fix MS is OFF			
	Adaptive modulation is selected on the GS as MS profile			
2	Set frequency scan of mobile MS : 5093,5 MHz	MS connects eventually to the GS F=5093,5 MHz	MS MMI	OK

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

	5098,5 MHz			
	5103,5 MHz			
3	Vehicle is stopped at the start of the runway or taxiway. Start survey tool.	RSSI recorded on the map	Survey tool	ОК
	Perform a trip @ 50 km/h on the car trajectory (runway or taxiway) and record MS RSSI on the fly with survey tool.			
4	Vehicle is stopped at the start of the runway or taxiway. Survey tool is shut down.		Iperf cmd	OK
	Start "iperf" with a duration greater than trip duration in both direction			
	Perform a second trip @ 50 km/h on the car trajectory (runway or taxiway).			
	Stop iperf and write down iperf results			
5	Perform step 3 & 4 at 90 km/h	Results recorded		ОК
				120 km/h also done

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

163 of 184

7.3.5.2.3 Deviation from the planned activities

The mobility tests were done on the day planned. The speed tests were done on the taxiway at 50 km/h, 90 km/h and also up to 120 km/h. Finally the mobility test was located on the Whisky Taxiway from W60 to W100 which was more convenient regarding aircraft traffic and was also interesting in terms of distance from the BS (the farthest possible location). Off course, we gave priority to the Aircrafts, as shown below.

Figure 7-58: Mobility test location (ATE -> Taxiway W 100 to W 60 - round trip)

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

Figure 7-59: Priority to the Aircrafts traffic on the taxiway

7.3.5.3 Verification exercise Results

Below, the maps show the recordings of the DL RSSI at the different speed: 50 km/h, 90 km/h and 120 km/h. The mean achieved data rates are also mentioned.

founding members

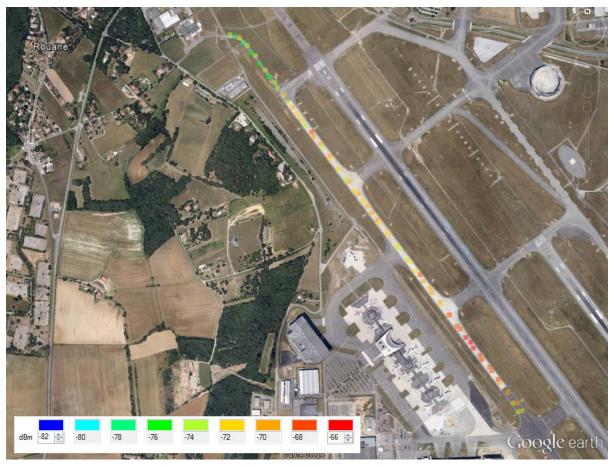


Figure 7-60: recorded RSSI of mobility test at 50 km/h

The mean data throughputs obtained during the round trip at 50 km/h are:

- 7,4 Mbits/sec in DL
- 1 Mbits/sec in UL

We did also a round trip with fix data rates lower than the maximum achievable ones:

- In UL 400 Kbits/sec was generated and transmitted with no errors
- In DL 1.50 Mbits/sec was generated and transmitted with no errors

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

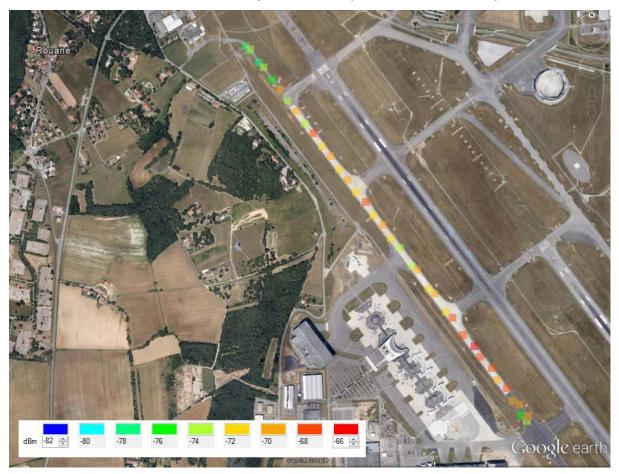


Figure 7-61: recorded RSSI of mobility test at 90 km/h

The mean data throughputs obtained during the round trip at 90 km/h are:

- 6,98 Mbits/sec in DL,
- 918 kbits/sec in UL.

We did also a round trip with fix data rates lower than the maximum achievable ones:

- In UL a data stream of 400 Kbits/sec was generated and transmitted with no errors,
- In DL a data stream of 1.50 Mbits/sec was generated and transmitted with no errors.

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

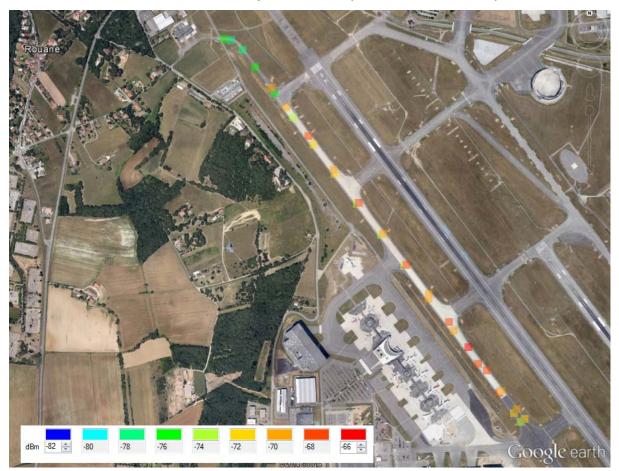


Figure 7-62: recorded RSSI of mobility test at 120 km/h

7.3.5.3.1 Unexpected behaviors/Results

None

7.3.5.4 Conclusions and recommendations

The testing allowed measuring the performances of AeroMACS in mobility conditions up to 120 km/h.

When observing the recordings, one can see that there are more data rates fluctuations at 90 km/h than at 50 km/h triggering a mean data rate lower at 90 km/h. Nonetheless, it shall be noted that globally the performances are similar: RSSI mean around -71 dBm and CINR mean around 25 dB in both cases (including at 120 km/h).

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

7.3.6 Verification Exercise # TAIR_050

7.3.6.1 Verification Exercise Scope

Multi-channel test:

Evaluate the impact of 2 BS with overlapping coverage using alternate or adjacent channels

- BS1 and BS2 are on,

- 3 MS used: 2 vehicles and 1 fix point.

7.3.6.2 Conduct of Verification Exercise

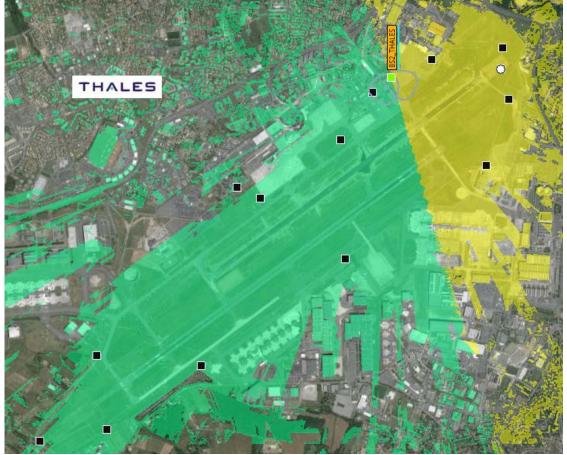
7.3.6.2.1 Verification Exercise Preparation

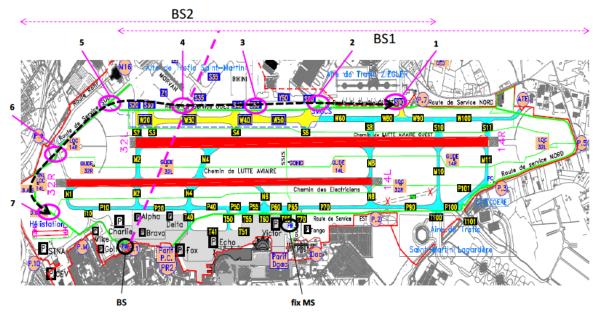
Equipment: BS1&2 + 2 MS in a car + 1 fix MS Resources:

Resources:

- Thales: 3 engineers
- DSNA: 2 drivers / 2 cars.

In order to define the car trajectories, the best server map was calculated:




Figure 7-63: THALES BS1 / BS2 best server map

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

169 of 184

Measurement points and car trajectories:

7.3.6.2.2 Verification Exercise execution

Step	action	Action result	PCO	Result	
Phase	Phase 1 Multi-channel tests with alternate channels spacing				
1	GS1 is switched ON	GS 1 is started	GS control	OK	
	F=5093,5 MHz	GS 2 is started	MMI		
	GS2 is switched ON				
	F=5103,5 MHz				
	Adaptive modulation is selected on the GS as MS profile				
2	Go to fix MS location	Fix MS connects eventually	MS MMI	ОК	
	Set frequency on fix MS to 5093,5 MHz Write down RSSI	to the GS 1 F=5093,5 MHz (screenshot of MS MMI)			
3	Set frequency on the two mobile MS: MS in car 1 5093,5 MHz MS in car 2 5103,5 MHz Go to point 1 with cars Write down RSSI	MS in car 1 connects eventually to the GS 1 F=5093,5 MHz MS in car 2 connects eventually to the GS 2 F=5103,5 MHz RSSI written down for both MS (screenshot of MS MMI)	MS MMI	ОК	
4	Start survey tool. GO with both cars from point 1 to point	RSSI recorded on the map	Survey tool	OK	

founding members

170 of 184

DTO - AeromACS Vernication Fian & Report - Fhase 2 (Vol.03.00 Tevised final)				
	7 with no stop (the cars are going through the overlapping area)			
	During the trip, record on the fly the car trajectory with DL RSSI & CINR with survey tool (for both MS)			
Phase	2 Multi-channel tests with adjacent chann	nels spacing		
1	GS2 frequency is switched to adjacent channel frequency of GS1	adjacent channel	GS MMI	ОК
	F=5098,5 MHz	frequency		
2	The frequency of the MS in car 2 is set to 5098,5 MHz	MS in car 2 connects eventually to the GS 2	MS MMI	ОК
	(car are still on point 7)	F=5098,5 MHz		
3	Start survey tool with new file name.	RSSI recorded on the map	Survey tool	OK
	GO with both cars from point 7 back to point 1 (the cars are going through the overlapping area)			
	During the trip, record on the fly the car trajectory with DL RSSI & CINR with survey tool (for both MS)			
Phase	3 Complementary measurement with adj	acent channels spacing		
1	Survey tool is shut down.	Measurements performed	lperf	ОК
	Stop in point 1 (max influence of BS1 on BS2) or alternatively 2 depending on capacity at connecting on BS2 at point 1:	and recorded.	Ping MS MMI	
	Perform iperf in DL and record iperf results			
	Perform ping in DL			
	Write down:			
	DL Modulation			
	DL CINR / DL RSSI			
	Mean DL throughput			
	Mean DL RTT			
2	Stop in point 4 (equivalent influence		lperf	OK
	between BS1 and BS2). Do the same measurements as in step 1.	and recorded.	Ping	
			MS MMI	
3	Stop in point 7 (max influence of BS2 on BS1) or 6 depending on capacity of		lperf	OK
	connecting on BS1 at point 7 Do the		Ping	
	same measurements as in step 1.		MS MMI	

7.3.6.2.3 Deviation from the planned activities

None: measurements done with the 3 MS and 2 BS.

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

171 of 184

Figure 7-64: The two MS at point 7

Figure 7-65: 3 MS at PB

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

172 of 184

7.3.6.3 Verification exercise Results

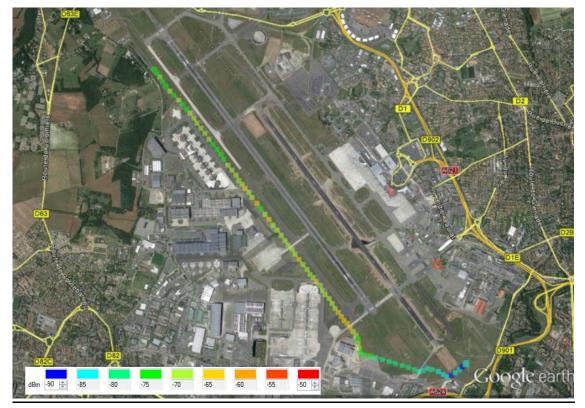


Figure 7-66: Alternate channels - BS1 measurements

Figure 7-67: Adjacent channels - BS1 measurements

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

173 of 184

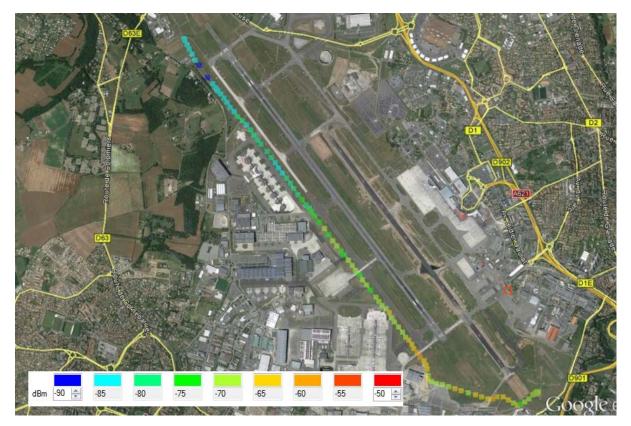


Figure 7-68: Alternate channels - BS2 measurements

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

174 of 184

Figure 7-69: Adjacent channels - BS2 measurements

From previous recordings, one can see that operating on adjacent or alternate channels seems not to have a noticeable difference.

For instance measures of RSSI and CINR at point 1 for BS2, using alternate (5103,5 MHz) or adjacent channel (5098,5 MHz) to BS1 (5093,5 MHz, DL RSSI = -74 dBm) are similar: around -83 dBm and 10 dB. Besides, the communication is established with: DL throughput of 3,10 Mbps and UL throughput 470 kbps similar to what was obtained in TAIR_20_point#5, where BS1 was off.

The same applies for BS1 at point 7: RSSI = -85 dBm and CINR = 4 dB in both cases, BS2 being on alternate channels or BS2 being on adjacent channels (with a DL RSSI level of -66 dBm).

Additional results:

Test with 3 MS (DL RSSI fix MS \sim -62 dBm and DL RSSI Mobile MS \sim -70 dBm) localised at PB and connected to BS1:

- UL throughput shared between the MS: 450 to 500 kbps per MS
- DL throughput shared between the MS: around 2 Mbps per MS

Two MS on one BS with good reception level (point #4, RSSI = -66 dBm) were able to establish simultaneous communications of 1 Mbps in UL (per MS) and around 3 Mbps in DL (per MS).

7.3.6.3.1 Unexpected behaviors/Results

None

7.3.6.4 Conclusions and recommendations

The test case allowed checking multi-channel influence. No influence was noticeable during the tests.

Appendix A IOT

A.1 Purpose of the IOT Appendix

P15.02.07-D10 document includes the Verification Plan and Verification Report of the P15.02.07 phase 2 verification activities.

The P15.02.07 Phase 2 verification activities included:

- Laboratory tests: performances measurement related to the new AeroMACS profile and interoperability between different vendors pieces of equipment,
- Field tests: tests in real airport environment focussed on the ground segment datalink.

The results of the different Verification test cases analysed in D10 are summarized in the following table:

Test Case nr.	Test Case Name	VO's addressed	Result
TLAB2_010	Service flows control	AeroMACS_VO_Interop_05 B/C	ОК
TLAB2_020	channel selectivity and transmit power measurements	AeroMACS_VO_RF_04 B/C AeroMACS_VO_RF_05 A/B AeroMACS_VO_RF_08 E	ОК
TLAB2_030	MS channel quality report and MS transmit synchronisation	AeroMACS_VO_Interop_06 A/B AeroMACS_VO_RF_11 A	ОК
TLAB2_040	IOT between Thales GS and Selex MS	AeroMACS_VO_Limited_Interop A/B/C/D/E	рОК
P2 LAB1 1	Connection Re-establishment	AeroMACS VO Interop 03 B	OK
P2_LAB1_2	Power Control	AeroMACS_VO_Interop_06_A/B AeroMACS_VO_Interop_10_ C/D	ОК
P2_LAB1_3	Quality of Service	AeroMACS_VO_Interop_07_ B/C	ОК
P2_LAB1_4	Security	AeroMACS_VO_Interop_11_C/D/F	ОК
P2_LAB1_5	Radio Performance	AeroMACS_VO_RF_04_A AeroMACS_VO_RFReal_01_B	OK
P2_LAB_6	IOT between Selex Ground System and Thales MS	AeroMACS_VO_Limited Interop A/B/C/D/E	рОК
TAIR_010	Installation and main performances verification (modulations, data rate, QOS, MS channel quality report, transmit power, MS scanning & ranging performances)	AeroMACS_VO_Interop_02 C AeroMACS_VO_Interop_04 B AeroMACS_VO_Interop_06 C/D AeroMACS_VO_RF_08 B AeroMACS_VO_RF_09 A/B/C AeroMACS_VO_RF_09 A/B/C	ОК
TAIR_020	Cell coverage in LOS, Modulation performances, link adaptation, and MS channel quality reporting	AeroMACS_VO_RF_01 A/D AeroMACS_VO_Interop_06 C/D AeroMACS_VO_Interop_02 C/D/E AeroMACS_VO_RFReal_03 A/B/C/D/E/F/G/H/I AeroMACS_VO_RFReal_02 A/B/C/D	ок
TAIR_030	Real deployment and NLOS performances	AeroMACS_VO_RFReal_04 B AeroMACS_VO_RFReal_02 A/B/C/D	ОК
TAIR_050	Mobility tests	AeroMACS_VO_RFReal_08 B AeroMACS_VO_RF_04 D	ОК
TAIR_060	Multi-channel tests	AeroMACS_VO_RFReal_07 A/B/C/D	ОК

Table 12: Summary of P.15.02.07 Laboratory and Airport tests phase 2 results

founding members

176 of 184

- OK: Verification test achieves the verification objective expectations
- NOK (Non OK): Verification test does not achieve the verification objective expectations
- POK (Partially OK): Verification test achieves partially the verification objective expectations
- NT (Not Tested): Verification test not performed

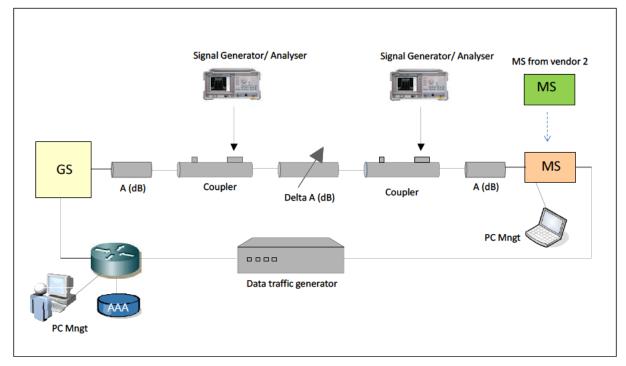
While the overall P.15.02.07 results including Lab and Airport testing were satisfactory, the InterOperability Tests (IOT) finalized with some unresolved issues.

Under the situation that additional IOT tests could not be executed within the project, the scope of this appendix is focused in the Interoperability Tests status: summarizing the IOT tests performed and the related issues, and providing recommendations for future activities. Detailed description of the interoperability tests results are contained in D10 Sections 7.1.6 and 7.2.4.

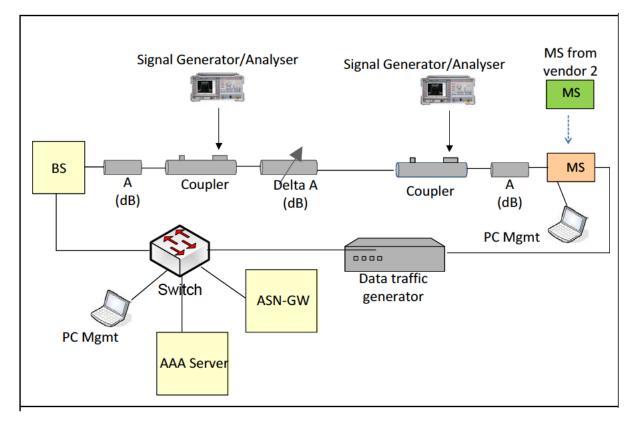
A.2 P.15.02.07 IOT Context

The P.15.02.07 interoperability tests perimeter, as defined in D05, consists of the testing of interoperability limited to air interface with the verification objectives presented in following table:

General VO Id	Title	Purpose
AeroMACS_VO_Limited Interop_A	Scanning and synchronization	When switched on, MS starts off with the scanning of the spectrum. Verify that the correct expected broadcast messages are exchanged, the preamble is correctly decoded by the MS.
AeroMACS_VO_Limited Interop_B	Initial Ranging	Verify that, after successful DL Synchronization, MS and BS exchanges the proper RNG-REQ/RNG-RSP messages, completing the Initial Ranging
AeroMACS_VO_Limited Interop_C	Basic Capabilities Negotiation	Verify the correct exchange of Service Basic Capability informations.
AeroMACS_VO_Limited Interop_D	Admission control	Security associations and key exchange that concern only to the "air interface" as part of the MS Authentication and Authorization procedures.
AeroMACS_VO_Limited Interop_E	Registration	Verify that BS and MS successfully conclude the registration procedure


Table 13: AeroMACS Limited Interoperability Verification Objectives

The IOT tests were performed with same testbed as described in D10 § 3.5.2.1, where the mobile stations are exchanged between manufacturers. The following pictures represent the Thales and Selex ES IOT testbeds:


founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

Figure 7-71: IOT Selex ES testbed

The summary of IOT test cases for both Selex ES and Thales is shown below:

178 of 184

Test Case	Test Case Name	Lab.	VO's addressed
nr.		Environment	
TLAB2_040	IOT test between	Lab_test_bed_01	AeroMACS_VO_Limited Interop
	Thales GS and	with Selex MS	A/B/C/D/E
	Selex MS		
P2_LAB_6	IOT between	Lab_test_bed_02	AeroMACS_VO_Limited Interop
	Selex Ground	with Thales MS	A/B/C/D/E
	System and		
	Thales MS		

Table 14: Identification of Phase 2 IOT test cases

Each test case is divided in several steps to address the VOs described in Table 13. More information can be found in D10, Chapter 7 and in § A.3 below.

founding members

The following picture gives a summary of the status of the IOT.

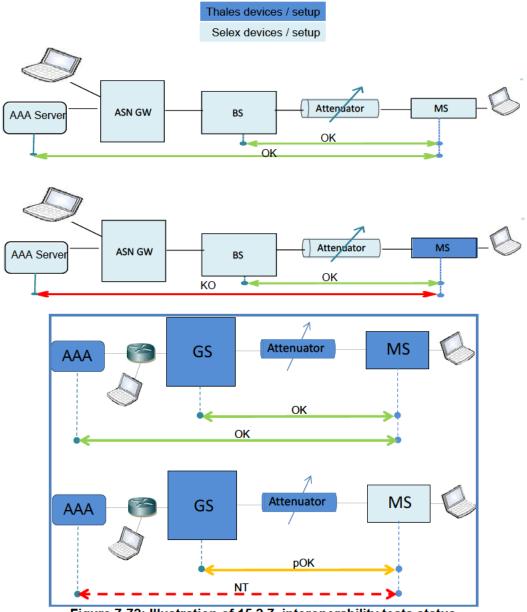


Figure 7-72: Illustration of 15.2.7. interoperability tests status

A.3 IOT incident comments

A.3.1 #P2_LAB1_6

Information on this test case is included in D10, chapter 7.1.6.

The verification test results were the following:

founding members

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

180 of 184

- Scanning / preamble detection (AeroMACS_VO_Limited Interop A) => OK
- Synchronization (AeroMACS_VO_Limited Interop A) => OK
- Initial ranging (AeroMACS_VO_Limited Interop B)=> OK
- Basic capabilities negotiation (AeroMACS_VO_Limited Interop C) => OK
- Admission control (AeroMACS_VO_Limited Interop D) => NOK
- Registration (AeroMACS_VO_Limited Interop E) => NT

Description of issues:

- Authentication/authorization procedure failed
- It was not possible to complete registration

A.3.1.1 Analysis of results

Analysis of this IOT test can be found in D10 Section 7.1.6.3.2.

A.3.1.2 Mitigation actions

It was not possible to finalize authentication/authorization procedure.

An action was identified to perform additional investigation, involving Thales, Selex ES, Indra and Eurocontrol teams.

Wireshark captures, MS certificate files, AAA certificate files, certificate configuration files were analyzed with the objective to obtain additional information. A conclusive result was not reached; hence the recommendations contained in D10 are confirmed. In particular, a clearer definition of the security framework is recommended, in order to define unambiguously the AeroMACS Certification Authority, the rules to generate the certificates, and the protocol versions to be implemented by the various actors.

A.3.1.3 Comments and recommendations

Further work within standardization activities in field of security is recommended, to define properly the certificate deployment infrastructure, a "normalized" authentication, and a clear definition of security framework.

A.3.2 # TLAB2_040

Information on this test case is included in D10, Chapter 7.2.4.

The verification test results were the following:

- Scanning / preamble detection (AeroMACS_VO_Limited Interop A) => OK
- Synchronization (AeroMACS_VO_Limited Interop A) => NOK
- Initial ranging (AeroMACS_VO_Limited Interop B)=> NT
- Basic capabilities negotiation (AeroMACS_VO_Limited Interop C) => NT
- Admission control (AeroMACS_VO_Limited Interop D) => NT
- Registration (AeroMACS_VO_Limited Interop E) => NT

Description of issues:

- Synchronization failed
- Subsequent steps could not be executed

A.3.2.1 Analysis of results

Analysis of this IOT test can be found in D10 Section 7.2.4.3.2.

A.3.2.2 Mitigation actions

An action was proposed to consider repetition of some IOT tests. The teams involved considered the possibility to schedule one IOT session in September, but in the end this additional session could not be arranged due to budget limitations and equipment availability needed for other Sesar projects.

A.3.2.3 Comments and recommendations

It was not possible to draw any definitive conclusion as the test failed in the early stages.

It is suggested to plan ad-hoc activities with the purpose to complete IOT in the near future (SESAR2020/VLD could be suitable opportunities) in coordination with the relevant standardization authorities.

8 References

8.1 Reference Documents

The following documents were used to provide input:

- [1] P 15.02.07 D05.2 AeroMACS Verification Strategy
- [2] P 15.02.07 D05.1 AeroMACS prototypes description
- [3] P 15.02.07 D06 AeroMACS integration & testing phase 1
- [4] <u>http://freeradius.org/</u>
- [5] P15.02.07 D04- AeroMACS Deployment & Integration Analysis

founding members

-END OF DOCUMENT-

Avenue de Cortenbergh 100 | B -1000 Bruxelles www.sesarju.eu

184 of 184