

Final Project Report on the concept and benefits for improving TP using AOC data

Document information

Project title Improved Airline Flight Plan Information into ATC Trajectory Prediction (TP) Tool

Project N° 05.05.02 Project Manager NATS

Deliverable Name Final Project Report on the concept and benefits for improving TP using AOC data

Deliverable ID D04
Edition 00.01.02
Template Version 02.00.00

Task contributors

National Air Traffic Services Ltd (NATS), EUROCONTROL

Abstract

This document is the last deliverable for SESAR P 05.05.02. It provides the final set of Operational Requirements for use of Airline Operational Control (AOC) data in the computation of ground-based trajectory prediction. The report documents the results of validation exercise VP-301 (Release 2). The validation was performed using actual operational scenarios and operational data on a near-operational system and evaluated the performance benefits by gathering expert judgement. The document reports the Cost Benefit Analysis (CBA) for the concept identifying the costs and benefits associated with airspace users providing their actual take-off aircraft mass and speed profile flight planning data to Air Navigation Service Providers (ANSPs). The document also describes the Safety Criteria for the proposed concept.

Authoring & Approval

2

3

5

Prepared By			
Name & company	Position / Title	Date	
NATS		16/05/2012	
EUROCONTROL		16/05/2012	

Reviewed By		
Name & company	Position / Title	Date
EUROCONTROL		09/05/2012
NATS		02/05/2012
EUROCONTROL		02/05/2012
EUROCONTROL		09/05/2012
EUROCONTROL		10/05/2012
EUROCONTROL		09/05/2012
EUROCONTROL		09/05/2012
ENAV		09/05/2012
Aviation Civile		10/05/2012
Thales		09/05/2012
Thales		09/05/2012
Sicta		10/05/2012
Novair		10/05/2012
AENA		10/05/2012

Approved By		
Name & company	Position / Title	Date
NATS		17/05/2012
EUROCONTROL		17/05/2012

4 Document History

Edition	Date	Status	Author	Justification
00.00.01	25/04/2012	Draft	As Above	Document Ready for Review
00.01.01	16/05/2012	Final	As Above	Comments included and document updated.
00.01.02	014/08/2012	Final	As Above	Revised in response to SJU Comments.

6 Intellectual Property Rights (foreground)

7 The content of this deliverable is considered to be SJU foreground IPR.

8 Table of Contents

9	EXECUTIV	E SUMMARY	8
10	1 INTRO	DUCTION	9
11	1.1 Sc	COPE OF THE DOCUMENT	9
12	1.2 Pt	JRPOSE OF THE DOCUMENT	10
13		TENDED AUDIENCE	
14		ROJECT BACKGROUND	
15		ROJECT SCOPE	
16		ELATIONSHIP TO OTHER DELIVERABLES	
17		RUCTURE OF THE DOCUMENT	
18		CRONYMS AND TERMINOLOGY	
19	2 OPER	ATIONAL REQUIREMENTS FOR USE OF AOC DATA	19
20		PERATIONAL CONCEPT DESCRIPTION	
21	2.2 Di	ETAILED OPERATING METHODS	19
22	2.2.1	Previous Operating Method	20
23	2.2.2	New SESAR Operating Method	
24	2.2.3	Differences between new and previous Operating Methods	
25	_	PERATIONAL REQUIREMENTS	
26		RACEABILITY OF OPERATIONAL REQUIREMENTS TO OIS	
		ARY OF V2 VALIDATION ACTIVITIES	
27			
28		TRODUCTION	
29		ST OF V2 VALIDATION EXERCISES	
30		JMMARY OF VALIDATION SCENARIOS	
31	3.4 St	JMMARY OF ASSUMPTIONS	31
32		HOICE OF METHODS AND TECHNIQUES	
33		ALIDATION EXERCISES REPORTS AND RESULTS	
34	3.6.1	EXE-05.05.02-VALP-0069.0100	
35	3.6.2	EXE-05.05.02-VALP-0069.0200	
36	3.6.3	EXE-05.05.02-VALP-0069.0400	
37	<i>3.6.4</i>	EXE-05.05.02-VALP-0300.0100	
38	3.7 Co	DNCLUSIONS AND RECOMMENDATIONS	36
39	3.7.1	Conclusions	36
40	3.7.2	Recommendations	37
41	4 CONT	EXT OF THE V3 VALIDATION	38
42		DNCEPT OVERVIEW	
43	4.2 St	JMMARY OF VALIDATION EXERCISE/S	39
44	4.2.1	Summary of Expected Exercise/s outcomes	39
45	4.2.2	Benefit mechanisms investigated	
46	4.2.3	Summary of Validation Objectives and success criteria	
	4.2.4		
47		Summary of Validation Scenarios	
48	4.2.5	Summary of Assumptions	
49	4.2.6	Choice of methods and techniques	
50	4.2.7	Validation Exercises List and dependencies	45
51	5 COND	UCT OF V3 VALIDATION EXERCISES	46
52	5.1 E	ERCISES PREPARATION FOR EXE-05.05.02-VALP-0301.0100	46
53	5.2 E	(ERCISES EXECUTION	46
54	-	EVIATIONS FROM THE PLANNED ACTIVITIES	
55	5.3.1	Deviations with respect to the Validation Strategy	
56	5.3.2	Deviations with respect to the Validation Plan	
57		LIDATION EXERCISE REPORT: EXE-05.05.02-VALP-0301.0100	
58		KERCISE SCOPE	
59	6.1.1	Exercise Level	
60	6.1.2	Description of the Operational concept being addressed	<i>48</i>

61	6.2 CONDUCT OF VALIDATION EXERCISE	
62	6.2.1 Exercise Preparation	
63	6.2.2 Exercise Execution	
64	6.2.3 Deviation from the planned activities	50
65	6.3 SUMMARY OF EXERCISES RESULTS	
66	6.3.1 Summary of Objective Findings	
67	6.3.2 Results on concept clarification	52
68	6.3.3 Results per KPA	52
69	6.3.4 Results impacting regulation and standardisation initiatives	53
70	6.4 ANALYSIS OF EXERCISE RESULTS	53
71	6.4.1 Unexpected Behaviours/Results	
72	6.5 CONFIDENCE IN RESULTS OF VALIDATION EXERCISE	53
73	6.5.1 Quality of Validation Exercise Results	53
74	6.5.2 Significance of Validation Exercise Results	
75	6.6 REQUIREMENT COVERAGE	
76	6.7 OVERVIEW OF VALIDATION OBJECTIVES STATUS FOR P 05.05.02	
77	6.8 CONCLUSIONS AND RECOMMENDATIONS	
78	6.8.1 Conclusions	
79	6.8.2 Recommendations	
80	7 COST BENEFIT ANALYSIS METHODOLOGY	58
81	7.1 Introduction	58
82	7.2 COST BENEFIT ANALYSIS OBJECTIVE	60
83	7.3 COST BENEFIT ANALYSIS METHODOLOGY	
84	7.4 ANSP VIEW	
85	7.4.1 Qualitative Model Description	
86	7.5 AIRLINES VIEW	
87	7.5.1 Benefit Assumptions	
88	7.5.2 Cost Assumptions	
	·	
89		
90	8.1 ANSP Cost Benefit Analysis Results	
91	8.1.1 ANSP Benefits	
92	8.1.2 ANSP Costs	
93	8.2 AIRLINE COST BENEFIT ANALYSIS RESULTS	
94	8.3 ENVIRONMENT RESULTS	
95	8.4 Cost Benefit Sensitivity Analysis	71
96	8.4.1 Airlines Model: Sensitivity Analysis - Overall	
97	8.4.2 Airlines Model: Sensitivity Analysis – Participation Rate (% of flight data sharing	g) 73
98	8.4.3 CBA Conclusions and Recommendations	
99	9 SAFETY ASSESSMENT	76
100		
101	9.2 SAFETY ASSESSMENT ANALYSIS	
102	9.2.1 Safety Related Validation Activities	
103	9.3 SAFETY ASSESSMENT RECOMMENDATIONS	77
104	10 CONCLUSIONS AND RECOMMENDATIONS	78
105	10.1 CONCLUSIONS	79
106	10.1 CONCLUSIONS	
100	TU.2 RECOMMENDATIONS	80
107	11 REFERENCES	81
108	11.1 APPLICABLE DOCUMENTS	81
109	11.2 REFERENCE DOCUMENTS	
110	APPENDIX A COVERAGE MATRIX	ga
111	APPENDIX B SECTORS SELECTION	86
112	B.1 Brecon	86
113	B.1.1 Arguments	86

Project ID 05.05.02 Edition: 00.01.02 D04 - Final Project Report on the concept and benefits for improving TP using AOC data

114	B.1.2 Time interval	86
115	B.2 DOVER	
116	B.2.1 Arguments	
117	B.2.2 Time interval	
118	APPENDIX C COLLECTED DATA	89
119	C.1 OVERVIEW	89
120	C.2 OPERATOR FLIGHT PLANNING DATA	90
121	APPENDIX D VALIDATION ENVIRONMENTS	93
122	D.1 IFACTS System	93
123	D.1.1 Trajectory Prediction (TP)	
124	D.1.2 Medium Term Conflict Detection (MTCD)	
125	D.1.3 Level Assessment Display (LAD)	93
126	D.1.4 Separation Monitor (SM)	93
127	D.1.5 Tactical What-if	
128	D.2 TRAJECTORY PREDICTION RESEARCH TOOL (TPRT)	
129	D.3 REPLAY-AIDED VALIDATION ENVIRONMENT (RAVE)	94
130	APPENDIX E SUBJECTIVE VALIDATION RESULTS (EXE 0301.0100)	95
131	E.1 VALIDATION SCENARIO AND SYSTEM PREPARATION	95
132	E.1.1 LAC Brecon Scenario	
133	E.1.2 LAC Dover Scenario	
134	E.1.3 Airspace Information	
135	E.1.4 Additional Information	
136	E.2 VALIDATION RESULTS	
137	E.2.1 Vertical Profile	
138	E.2.2 Modification of Uncertainty	
139	E.2.3 Differences between types of AOC data	
140	APPENDIX F AIRLINES COST BENEFIT ANALYSIS MODEL	
141	F.1 EXCEL AIRLINE CBA MODEL FILE	
142	F.2 AIRLINE MODEL FILE OVERVIEW	
143	F.2.1 "Description" worksheet	
144	F.2.2 "Model Input" worksheet	
145	F.2.3 "Model Output" worksheet	
146	F.2.4 "Model Assumptions" worksheet	
147	F.2.5 "Aircraft Assumptions" worksheetF.2.6 "Trial" worksheet	
148		
149	APPENDIX G SENSITIVITY ANALYSIS FOR CBA MODEL	
150	APPENDIX H PROBABILISTIC ANALYSIS FOR CBA MODEL	
151	APPENDIX I OVERVIEW OF VALIDATION OBJECTIVES STATUS FOR P 05.05.02	110

List of tables

154	Table 1: Core flight planning parameters to improve TP performance	22
155	Table 2: Supporting flight planning parameters to improve TP performance	
156	Table 3: Traceability of Operational Requirements to Operational Improvements	
157	Table 4: List of V2 Validation Exercises	
158	Table 5: Methods and Techniques	
159	Table 6: EXE 0069.0100 Validation Objectives and exercises results	
160	Table 7: EXE 0069.0200 Validation Objectives and exercises results	
161	Table 8: EXE 0069.0400 Validation Objectives and exercises results	
162	Table 9: EXE 0300.0100 Validation Objectives and exercises results	
163	Table 10: EXE-0301.0100 Validation of the impact of using AOC data on TP and CDnR system .	
164	Table 11: Summary of expected validation exercises outcome	
165	Table 12: Link to high-level objectives	
166	Table 13: Metrics and Indicators	
167	Table 14: Summary of proposed scenarios	
168	Table 15: Methods and Techniques	
169	Table 16: Exercises execution/analysis dates	
170	Table 17: Summary of Validation Exercise Results	51
171	Table 18: Validation Objectives and exercises results for EXE 0301.0100	
172	Table 19: Validation Objectives Analysis Status in EX 0301.0100	
173	Table 20: Requirements Coverage Synthesis	
174	Table 21: Workshop Attendees	
175	Table 22: Main Airline type data set results	
176	Table 23: Low Cost Airline type data set results	
177	Table 24: Regional Airline type data set results	
178	Table 25: ECAC data set results	
179	Table 26: EUA data results	
180	Table 27: Sensitivity Changes - % baseline false alerts	
181	Table 28: Sensitivity Changes - % improved false alerts	
182	Table 29: Preliminary high level performance requirements Coverage Matrix	
183	Table 30: Preliminary requirements Coverage Matrix	
184	Table 31: High level properties of recorded data	
185	Table 32: Number of flights / aircraft types with associated flight planning data	
186	Table 33: Parameters Analysis by range category	
187	Table 34: Summary table of controller responses sorted by AOC data type and uncertainty (non-	
188	interactions excluded)	
189	Table 35: Proportions of controller responses to uncertainty settings	
190	Table 36: Summary table of controller responses sorted by AOC data as applied by run (non-AO	
191	interactions excluded)	
192	Table 37: Baseline constants used in the Airlines Model	
193	Table 38: Base Case Assumptions used in the Airlines Model	
194	Table 39: Scenario assumptions used in the Airlines Model	
195	Table 40: Cost Data used in the Airlines Model	
196	Table 41: Aircraft Assumptions used in the Airlines Model	
197	Table 42: Overview: Validation Objectives, Exercises Results and Validation Objectives Analysis	
198	Status for P 05.05.02	115
199		
200	List of figures	
201	Figure 1: Current system (ground TP)	20
202	Figure 2: Alternative system (ground TP using AOC data)	
203	Figure 3: Validation Exercises List and dependencies	
204	Figure 4: Trajectory prediction and uncertainty zone, without AOC data	59
205	Figure 5: Trajectory prediction and uncertainty zone, with AOC data (Mass & speed)	
206	Figure 6: Current situation - Flow Management Position (FMP)	
207	Figure 7: Future Situation - Flow Management Position (FMP)	
208	Figure 8: Current situation – Controller	65

Project ID 05.05.02 Edition: 00.01.02 D04 - Final Project Report on the concept and benefits for improving TP using AOC data

209	Figure 9: Future Situation - Controller	65
210	Figure 10: Identifying the number of level-offs that could be avoided (at ECAC level) using Validat	ion
211	results	
212	Figure 11: Breakdown of level-offs avoided by flight level and types of aircraft	67
213	Figure 12: AOC Tornado diagram	72
214	Figure 13: Cumulative Probability Curve for the concept of using AOC	73
215	Figure 14: LAC Brecon Sector	87
216	Figure 15: LAC Dover Sectors	88
217	Figure 16: The westbound NAT tracks on the 21st of January	89
218	Figure 17: Overview of flights on the 21st of January included in the analysis; blue tracks represen	t
219	outbound flights, yellow tracks represent inbound flights.	90
220	Figure 18: European detail overview of flights on the 21st of January included in the analysis; blue	
221	tracks represent outbound flights, yellow tracks represent inbound flights	90
222	Figure 19: Overview of flights on the 28th of March included in the analysis; blue tracks represent	
223	outbound flights, yellow tracks represent inbound flights	91
224	Figure 20: European detail overview of flights on the 28th of March included in the analysis; blue	
225	tracks represent outbound flights, yellow tracks represent inbound flights	
226	Figure 21: Overview of Replay-Aided Validation Environment (RAVE)	94
227	Figure 22: Table of content for the Airline Model Tool	. 100
228	Figure 23: Airline Model – Model Inputs Sheet	. 101
229	Figure 24: Airline Model – Model Outputs Sheet	. 102
230	Figure 25: AOC concept Tornado diagram	
231	Figure 26: AOC Concept Cumulative Probability Curve	. 109
232		

Executive summary

233

253

254

255

256 257

258

259

260

261

262

263264

265

266

267268

269

270

271272

273274

275

276

277

278279

- 234 This project is focussed on the near-term use of flight planning data, prior to the advent of standards
- and infrastructure to support full trajectory exchange between aircraft and ATC systems. As such the
- concept is to be one of the early wins from the SESAR research phase.
- 237 This document provides the final set of Operational Requirements for ground ATC systems that
- 238 facilitate the use of Airline Operational Control (AOC) data in the computation of ground-based
- trajectory prediction. The prime objective of these requirements is to improve the accuracy of the
- 240 computed trajectory prediction (TP). The performance of such TPs influences the operational benefits
- of the advanced controller tools like CDnR and AMAN.
- 242 The proposed set of Operational Requirements will be included in the consolidated set of operational
- 243 requirements for the TMA Trajectory Management Framework.
- 244 The document describes the validation process and results for the concept of using operator flight
- 245 planning (AOC) data to improve ground-based trajectory predictions (TP) accuracy. The results of the
- V3 validation exercise VP-301 are reported (Release 2).
- 247 The V3 validation results reported in this document build on the V2 validation exercises results
- 248 reported earlier in this project Ref. [13]. This validation stage covers complex operational scenarios as
- 249 well as cost benefit analysis and safety criteria.
- The V3 validation demonstrated the concept on a (near-) operational system and tested the following key areas:
- 252 > The resulting benefit to operations.
 - The ability to implement the concept.
 - > The assessment that the concept has not reduced safety.
 - > The possibility of introducing this concept as part of the early benefit implementations.

The document also reports the Cost Benefit Analysis (CBA) performed for the concept of using AOC data in the computation of ground-based trajectory prediction (TP) tools. The CBA aimed to identify the costs and benefits associated with airlines providing their actual take-off aircraft mass and speed profile flight planning data to Air Navigation Service Providers (ANSP).

ANSP Benefits

- Safety benefits due to a reduction in the number of missed conflicts resulting in avoiding increased/peaks of controller workload. There is also a knock-on effect that avoiding safety incidents also saves the costs associated with investigating them.
- > Controller workload reduction since the improved trajectory predictions will reduce the number of false alerts that controllers receive, so they will perform fewer unnecessary actions.

ANSP Costs – these are limited to ground system software development costs as costs such as software maintenance, training etc. are considered to be sufficiently small that they would be covered by current planned budgets.

Airline Results

The Airline model focused on the benefit that improved trajectories would reduce the number of false conflict alerts shown to controllers and therefore fewer climbing aircraft (in climb/cruise conflicts) would have to level-off unnecessarily. The model provides results at ECAC level and for an individual airline that is sharing the additional data.

- Based on all the assumptions made in the model, a positive Benefit to Cost ratio (B/C) ranging between 6.7 and 8.2 is calculated for airlines with a fleet of mainly single and twin aisle aircraft.
- The magnitude of the Net Present Value is small. However it is acceptable in a 'kaizen' (continuous improvement) style of management taking into account that the B/C is possibly high enough, except for Regional types of aircraft.

Introduction

283

292 293

294

284 During SESAR step 1, no interaction with the Reference Business Trajectory (RBT) takes place 285 during departure and the main trajectory management interactions take place in the arrival metering, 286 sequencing and merging phases based on i4D and ASPA S&M concepts [8]. However, Air Traffic

Control (ATC) will need detailed, up-to-date trajectory data to drive advanced controller tools, such as 287

- 288 Conflict Detection and Resolution (CDnR), Arrival Manager (AMAN), Departure Manager (DMAN) and 289 Conformance Monitoring (CM).
- Furthermore, it is recognised that in some situations the Shared Business Trajectory (SBT)/Reference 290 291 Business Trajectory (RBT) may also not be adequate for such tools when:
 - The information is not sufficiently detailed for the purpose of the tool,
 - The aircraft concerned is not yet equipped for data sharing (mixed equipage), or
 - The required trajectory has to be derived from different input data ('What-If').
- 295 Therefore, ATC will need to operate local Trajectory Predictors (TP) based on the actual state and 296 intentions of the aircraft.
- 297 The performance of such TPs influences the operational benefits of the advanced controller tools. Previous research has shown that the provision of operator flight-planning data could permit 298 significant improvements in the performance of TP applications. This project investigates the 299 300 operational use of flight-planning data provided by airspace users to produce Trajectory Predictors
- and assess the benefits to (ATM) system performance [9]. 301
- 302 Since the scope of potential changes required to make use of flight planning data are limited to
- 303 ground systems (airline, military and ATC) an opportunity exists to develop and implement the
- 304 concept in the relatively near-term.
- 305 The concept does not require a change to flight operations to provide a benefit from improved TP
- 306 performance. This also implies that benefits may arise even if not all operators are participating.
- 307 Therefore the concept also does not require a mandate on sharing flight planning information,
- 308 however the more operators participating the greater the benefits expected.
- 309 The project focused on defining the operational uses of the data and demonstrated the operational
- 310 benefits that can be achieved for the interested stakeholders. It validated the requirements for
- 311 exchanging data between airspace users and ATC systems but has not investigated the means of
- 312 achieving this.

313

1.1 Scope of the document

- 314 This is the final operational technical deliverable from this project. The scope of this document covers
- a number of different areas that can be summarised as follows: 315
- Final set of Operational Requirements: Within the scope of this document is to introduce the final 316
- 317 set of Operational Requirements to the concept of using operator flight planning data to improve
- 318 trajectory prediction in SESAR Time Based Operations implementation, this is based on the
- 319 preliminary set of Operational Requirements as described in [10].
- 320 This project introduces the concept for use of AOC data to improve Trajectory Prediction [11] and the
- associated operational requirements. This project will be prior to the advent of standards and 321
- 322 infrastructure to support full trajectory exchange between aircraft and ATC systems. Projects P
- 323 05.05.01 and P 04.05 primarily address longer term solutions.
- 324 Some operators currently do also update their flight plan at the FOC while the aircraft is airborne. The
- 325 project will allow for such updates from the FOC to be used but will not require operators to perform
- 326 such flight planning updates.
- 327 <u>V3 validation activities:</u> Within the scope of this document is to provide the validation process and
- 328 results for the concept of using operator flight planning data to improve trajectory predictions. The
- 329 document uses the validation plan as defined in D02 Ref [12] towards E-OCVM V3 Re [7]. The results
- 330 at V3 validation stage are based on the validation results at V2 stage as reported in [13]. The
- 331 document describes how stakeholders' needs defined and formalised as a set of requirements in the
- 332 Preliminary Operational Requirements Ref. [10] and the updated final set of these requirements as
- 333 defined in this document are validated.

- 334 As such the document details the V3 validation activities and results for the project aiming to validate 335 the concept as defined in D01 Ref. [11].
- Cost Benefit Analysis: Another activity that fits within the scope of this document is to report about 336
- 337 the Cost Benefit Analysis (CBA) performed for the concept of using AOC data in computing ground
- trajectory prediction as defined in [11]. The report includes the CBA results and the assumptions that 338
- were made to produce them as well as the CBA model. Also the report contains a description of the 339
- 340 process that was followed to produce the CBA results.

1.2 Purpose of the document

The purpose of this document is: 342

341

343

344

345

346 347

348 349

350

353 354

355

356 357

358

359

360

361 362

363

364

365

366

367

368

369

- Introduce the final operational requirements for the use of operational flight data in the computation of ATC trajectory prediction.
- Report the validation process and results for the concept of using operator flight planning data to improve trajectory prediction in ATC operational system.
- Report cost benefit analysis process and results for the concept of using operator flight planning data to improve trajectory prediction in ATC operational system.
- Report safety assessment for the concept of using operator flight planning data to improve trajectory prediction in ATC operational system.
- As such the document concludes V3 validation, Cost Benefit Analysis (CBA) activities and safety 351 352 assessment of project 05.05.02.

1.3 Intended audience

- This section lists specific projects or groups that may have an interest in this report. In general the reader is assumed to be familiar with the ATM process, in particular in the TMA environment and the associated terminology.
- SESAR P 05.05.01: This project addresses the definition of the business and mission trajectory, the capture and drafting of operational requirements on the creation, amendments and distribution of the reference business/mission trajectory within the TMA environment. In light of the scope of P 05.05.01 it is important for this document to be read by this work package to ensure that the results from using airline flight plan data will be considered with the wider TMA Trajectory Management Framework.
- **SESAR P 05.02:** There are two main objectives to this work package:
 - Develop, refine and provide detail as required to the ATM Target Concept for TMA operations (SESAR CONOPS).
 - Provide a validation strategy which is derived from both a top down and bottom up approach.
- By making this document available to SESAR P 05.02 it is ensured that the use of airline flight plan data is consistent with and supports the wider TMA operational concept. That would allow the results reported by P 05.05.02 in this document to be considered in the overall TMA concept assessment.
- 370 SESAR P 05.03: The objective of project P 05.03 is to perform a pre-operational validation across several concept functions/elements of the TMA operation. Considering this document by P 05.03 371 372 makes sure that the results from the use of FOC data concept and the validation approach are 373 considered in integration validation activities for stage V3.
- 374 SESAR P 05.06.02: The fast time simulation of the effects of TP accuracy on tactical de-confliction of CCDs may be of interest to improve the availability of efficient vertical profiles. 375
- 376 SESAR WP 03: While this project performs its own integrated validation, the techniques and strategy 377 may be used in future integrated validation which may include the concept of using additional 378 planning information to enhance ground based TP capability.
- 379 SESAR P 07.06.02: The overall objectives of project 07.06.02 are to refine the definition of the business/mission trajectory, its lifecycle, the associated procedures and system functions to support 380 trajectory sharing and progressive refinement/optimisation at network level. The project also ensures 381

Project ID 05.05.02 Edition: 00.01.02 D04 - Final Project Report on the concept and benefits for improving TP using AOC data

- 382 consistency with the other initiatives including Flight Object Programme (ICOG) and future FPL
- 383 concept (ICAO). The project collects airlines data and hence sharing information through this
- document will be in the interest of both projects and SESAR project in general.
- 385 **SESAR WP 08:** This work package objective is to establish the framework which defines seamless
- 386 information interchange between all providers and users of shared ATM information. It is likely that the
- 387 flight planning information will need to be distributed over SWIM. Considering this document by WP
- 388 08 will ensure that the results from using AOC parameters will be considered in the framework.
- 389 **SESAR WP 10.02:** This SWP defines and validates the technical enablers of ground ATC systems
- 390 relating to trajectory management, specifically the contribution of ATC systems to the amendment and
- distribution of the RBT and Mission Trajectory (MT) in the realm of En-route and TMA.
- 392 **SESAR P 10.02.01:** The objective of this project is to describe how the ATC system will develop the
- 393 trajectory management services that will be required to satisfy the TM related operational
- requirements from the various operational work packages.
- 395 SESAR WP 11: It is important the flight plan data adopted in project 05.05.02 are approved by the
- 396 FOC projects within WP11.
- 397 **SESAR WP 16:** The validation results in this document together with the initial CBA results reported
- in this document should provide the inputs to the CBA as specified by WP16. As such the validation
- results reported in this document should be aligned to the higher level WP16 strategy.
- 400 Airspace Users: Making the validation and cost benefit results in this document available to airspace
- 401 users would help to demonstrate the concept and the benefit from using AOC data to various
- 402 operators.
- 403 Flight planning system manufacturers: It is possible that some flight planning systems may need
- 404 modification to supply the required parameters. Making the document available to flight planning
- 405 system manufactures would help in establishing the operational requirements proposed in this
- 406 document with the various suppliers.

1.4 Project Background

- 408 A trajectory prediction function is an essential component of many current and planned ATC support
- 409 tools (e.g. DMAN, AMAN, MTCD ...). The utility and potential of the ATC tools required by Time
- 410 Based Operations as per SESAR SJU Story Board will be limited by the accuracy of the trajectory
- 411 predictor.

407

424

- 412 Existing trajectory prediction functions have known limitations in accuracy, particularly for climbing
- 413 and descending flight profiles. Current ATC tools can encounter limited controller acceptability due to
- 414 their high false alert rates and re-sequencing rates which result from the poor accuracy of trajectory
- 415 predictions.
- 416 The introduction of SESAR time and trajectory based concepts will necessitate much higher controller
- 417 reliance on ATC support tools. The full potential of such tools will not be achieved unless the
- 418 trajectory prediction accuracy can be improved. I.e. TP-based ATC tools will not provide operational
- 419 benefits such as increased capacity and environmental gains unless the underlying TP performance
- 420 is improved.
- This project assesses the use of flight-planning data provided by airspace users in improving the
- 422 accuracy of ground Trajectory Predictor. The poor accuracy of Trajectory Prediction in most cases is
- 423 due to lack of knowledge of aircraft operation condition rather than the TP model itself.

1.5 Project Scope

- This project is focussed on the near-term use of airline flight-planning data, prior to the advent of standards and infrastructure to support full trajectory exchange between aircraft and ATC systems.
- 427 The provisions of airline flight-planning data should permit significant improvements in the
- 428 performance of ATC trajectory prediction systems. These trajectory prediction systems are a core
- 428 performance of ATC trajectory prediction systems. These trajectory prediction systems are a core function with many advanced controller tools, such as Medium Term Conflict Detection (MTCD) and
- 430 Arrival Manager (AMAN). This project investigates the operational use of flight-planning data provided
- by airspace users in computing ground-based trajectory prediction and also assesses the benefits.

Project ID 05.05.02 Edition: 00.01.02 D04 - Final Project Report on the concept and benefits for improving TP using AOC data

- 432 This project focuses on defining the operational uses of the data and demonstrating the operational
- 433 benefits that can be achieved. It assesses the requirements for exchanging data between airline and
- 434 ATC systems but not investigate the means of achieving this.

1.6 Relationship to Other Deliverables

- This document is one of five deliverables from project 05.05.02. 436
- 437 Project 05.05.02 deliverables in details are:

435

- 438 Deliverable one is "D01 - Concept for use of AOC data to improve Trajectory Prediction" Ref. [11] that
- introduced the concept of using operator flight planning data to improve ground trajectory prediction. 439
- 440 The second deliverable is "D06 – Preliminary Operational Requirements for use of AOC data" Ref.
- 441 [10] that provides a preliminary set of operational requirements for the use of Airline Operational
- 442 Control (AOC) data in the computation of ground-based trajectory predictions. The final set of
- 443 operational requirements is included in the current document.
- The third deliverable is "D02 Validation Plan for Enhanced TP using AOC data" Ref. [12] that 444
- 445 presented the strategy and plan for phases V2 and V3 validation of the concept of using AOC data in
- 446 ground-based trajectory prediction. The document described various exercises to be performed
- during the V2 and V3 validation phases. 447
- 448 The fourth document is "D03 - Validation Results for Enhanced TP using AOC data" Ref. [13] that
- provides all V2 validation results and observations for the concept described in D01 and operational 449
- requirements as described in D06 based on the validation plan as described in D02. 450
- 451 This document is the final technical deliverable to this project. The document includes the final set of
- 452 operational requirements together with V3 validation results that include cost benefit analysis results.

1.7 Structure of the document 453

- This document is the last technical deliverable for SESAR P 05.05.02. As such the document will be 454
- reporting on various issues: final operational requirements, V3 validation and Cost Benefit analysis, 455
- so each section of the document will follow the appropriate SESAR template. The document is the 456
- 457 final deliverable as defined in Ref. [9].
- 458 The document consists of twelve sections. Section 2 provides the final set of Operational
- Requirements for the use of AOC data in computing ground trajectory prediction. Section 3 provides a 459
- summary of V2 validation activities and results. Section 4 covers the concept of the V3 validation 460
- 461 while section 5 describes the conduct of V3 validation exercises and section 6 summarises the V3
- exercises reported results including Exercise VP-301 results (Release 2). 462
- Section 7 covers the Cost Benefit Analysis methodology while section 8 reports the CBA results. 463
- 464 Section 9 covers Safety Benefit issues related to the introduction of the concept of using AOC data in
- 465 computing ground trajectory prediction. Finally section 10 provides conclusions
- recommendations. 466
- 467 The document also contains a number of appendices:
- 468 Appendix A: This appendix covers the coverage matrix completed with validation exercises results
- and validation objectives analysis status. 469
- Appendix B: This appendix covers the sectors selection process with their arguments and time 470
- 471 interval.
- 472 Appendix C: This appendix gives a summary of the recorded data and operators data collected to be
- used in this validation. 473
- 474 Appendix D: This appendix gives a quick overview of the various tools and environment used in this
- validation. 475
- 476 Appendix E: This appendix lists various results from the subjective validation activity [0301.0100].
- 477 Appendix F: This appendix covers the EXCEL Airlines Cost Benefit Analysis model.
- 478 Appendix G: This appendix gives background to the sensitivity analysis for the CBA model.

- 479 Appendix H: This appendix gives background to the probabilistic analysis for the CBA model.
- Appendix I: This appendix gives overview of validation objectives status for P 05.05.02

482 1.8 Acronyms and Terminology

Term	Definition
ACARS	Aircraft Communications Addressing and Reporting System
ADD	Architecture Definition Document
ADEP	Airport of Departure
ADES	Airport of Destination
Aircraft Intent	Aircraft Intent is the aircraft operations plan that defines precisely HOW the aircraft intends to meet the constraints and preferences defined in the Flight Intent.
	Aircraft Intent constitutes an unambiguous description of the trajectory, essential to provide interoperability among the stakeholders.
AMAN	Arrival Manager: An ATM tool that determines the optimal arrival sequence times at the aerodrome and/or possibly at other common route fixes (e.g. IAF)
ANSP	Air Navigation Service Provider
AO	Aircraft Operator
AOC	Airline Operational Control
AP16	EUROCONTROL-FAA Action Plan 16
ASM	Airspace Management
ASPA	Airborne Spacing
ATC	Air Traffic Control
ATCO	Air Traffic Controller
ATFCM	Air Traffic Flow and Capacity Management
ATM	Air Traffic Management
ATS	Air Traffic Service
ATSU	Air Traffic Service Unit
AU	Airspace User
B/C	Benefit to Cost Ratio
BADA	Base of Aircraft Data – EUROCONTROL
BADA reference mass	BADA reference mass is the mass for which other BADA performance

Term	Definition
	coefficients are calculated.
вт	The Business Trajectory (BT) is the representation of an airspace user's intention with respect to a given flight, guaranteeing the best outcome for this flight (as seen from the airspace user's perspective), respecting momentary and permanent constraints.
	The term Business Trajectory describes a concept of operation, rather than a set of data.
СВА	Cost Benefit Analysis
CCD	Continuous Climb Departure
CDA	Continuous Descent Approach
CDnR	Conflict Detection and Resolution
CFMU	Central Flow Management Unit – EUROCONTROL
CFSP	Computerised Flight Plan Service Provider
CI	Cost Index
СМ	Conformance Monitoring
CNS	Communication, Navigation and Surveillance
CO ₂	Carbon Dioxide
CPDLC	Controller Pilot Datalink Communications
СТА	Controlled Time of Arrival
CTAS	Center-TRACON Automation System – FAA
DAP	Downlinked Airborne Parameters
DMAN	Departure Manager
DOD	Detailed Operational Description
DST	Decision Support Tools
E-ATMS	European Air Traffic Management System
E-OCVM	European Operational Concept Validation Methodology
ECAC	European Civil Aviation Conference
ECTL	EUROCONTROL
EMOSIA	European Models for ATM Strategic Investment Analysis
ЕТА	Estimated Time of Arrival
ETFMS	Enhanced Tactical Flow Management System

Term	Definition
ETO	Estimated Time Overhead
EU	European Union
EUA	European Emission Allowance
EU ETS	European Union Emissions Trading Scheme
FACTS	Future Area Control Tools Set – NATS
FASTI	First ATC System Tools Implementation
FDP	Flight Data Processing
Flight Intent	The Flight Intent is an element of the Flight Object that describes the constraints and preferences that are applicable to the flight. It describes what needs to be achieved.
Flight Object (FO)	The Flight Object (FO) represents the system instance view of a particular flight. It is the flight object that is shared among the stakeholders
	The information in the FO includes aircraft identity, Communications, Navigation and Surveillance (CNS) and related capabilities, flight performance parameters, flight crew capabilities including for separation procedures, and the flight plan (which may or may not be a 4DT), together with any alternatives being considered. Once a flight is being executed, the flight plan in the flight object includes the "cleared" flight profile, plus any desired or proposed changes to the profile, and current aircraft position and near-term intent information. Allocation of responsibility for separation management along flight segments is also likely to be stored.
FMP	Flow Management Position
FOC	Flight Operations Centre
FPL	ICAO Flight Plan message
FTE	Full Time Equivalent
FSS	Flight Service Station (USA)
FTS	Fast Time Simulator
GAT	General Air Traffic
I4D	Initial 4D (from B04.02)
iFACTS	Interim Future Area Control Tools Set – NATS
IFPS	Integrated Flight Plan Processing System
IFR	Instrument Flight Rules
INTEROP	Interoperability Requirements
IRS	Interface Requirements Specification
	•

Term	Definition			
MAC-AIM	Mid Air Collision Accident Incident Model			
MSP	Multi-Sector Planner			
мт	The military Mission Trajectory (MT) is similar, but more complex than a civil Business Trajectory. A military mission trajectory will usually consist of a transit to and from an airspace reservation with mission specific dimensions and characteristics. Outside and inside of an airspace reservation a single trajectory could be used by multiple aircraft.			
мтоw	Measured Take-Off Weight			
NPV	Net Present Value			
OAT	Operational Air Traffic			
OFA	Operational Focus Areas			
OFPL	Operational Flight Plan			
OSED	Operational Service and Environment Definition			
PBN	Performance Based Navigation			
PDC	Pre Departure Clearance			
RAVE	Replay-Aided Validation Environment (NATS).			
RBT	The Reference Business Trajectory refers to the Business Trajectory during the execution phase of the flight. It is the Business Trajectory which the airspace user agrees to fly and the Air Navigation Service Providers (ANSP) and Airports agree to facilitate (subject to separation provision).			
RFL	Requested Flight Level			
RMT	Reference Mission Trajectory			
RNAV	Area Navigation			
RNP	Required Navigation Performance			
RPL	Repetitive Flight Plan			
SAAM	System for traffic Assignment & Analysis at Macroscopic level			
sc	Safety Criteria			
SBT	Shared Business Trajectory			
SESAR	Single European Sky ATM Research Programme			
SESAR Programme	The programme which defines the Research and Development activities and Projects for the SJU.			
SID	Standard Instrument Departure			

Term	Definition		
SITA	Société Internationale de Télécommunications Aéronautiques		
	Airlines télécommunications and Information Service		
SJU	SESAR Joint Undertaking (Agency of the European Commission)		
SJU Work Programme	The programme which addresses all activities of the SESAR Joint Undertaking Agency.		
SOP	Standard Operating Procedure		
SPR	Safety and Performance Requirements		
STAR	Standard Terminal Arrival Route		
SUT	System Under Test		
SWIM	System Wide Information Management		
TAD	Technical Architecture Description		
ТВО	Trajectory Based Operations refers to the use of 4D trajectories as the basis for planning and executing all flight operations supported by the air navigation service provider.		
тст	Tactical Controller Tool (separation assurance support)		
ТМА	Terminal Manoeuvring Area. Within scope of SESAR, the TMA is defined as the airspace containing that portion of the flight between take-off and Top of Climb and between Top of Descent and landing.		
ТР	Trajectory Predictor. From B04.02: Trajectory prediction is the process that estimates a future trajectory of an aircraft through computation. This is performed by a Trajectory Predictor.		
TPRT	Trajectory Predictor Research Tool (NATS)		
том	Take-Off Mass		
тос	Top of Climb		
TOD	Top of Descent		
тѕ	Technical Specification		
T/D	Touch-Down		
T/O	Take-Off		
VALP	Validation Plan		
VALR	Validation Report		
VALS	Validation Strategy		
VFR	Visual Flight Rules		
-			

Edition: 00.01.02 D04 - Final Project Report on the concept and benefits for improving TP using AOC data

Term	Definition	
VOPI	Value of Perfect Information	
VP	/erification Plan	
VR	Verification Report	
vs	Verification Strategy	
W.d	Working days	
woc	Wing Operations Centre	

484 2 Operational Requirements for use of AOC data

This project introduces the use of operational flight plan data in the computation of ground-based Trajectory Prediction (TP). In this section of the document we present the final operational requirements for the use of AOC data. This final set of requirements is based on the initial set of operational requirements as described in Ref. [10].

2.1 Operational Concept Description

This project is focussed on the near-term use of operator flight planning data, no interaction with the Reference Business Trajectory (RBT) takes place during departure and only limited interaction takes place during arrival metering [8]. However, Air Traffic Control (ATC) will need detailed, up-to-date trajectory data to drive advanced controller tools, such as Conflict Detection and Resolution (CDnR), Arrival Manager (AMAN), Departure Manager (DMAN) and Conformance Monitoring (CM).

Therefore, ATC will need to operate local (ground-based) Trajectory Predictors (TP) based on the actual state and intentions of the aircraft.

The performance of such TPs influences the operational benefits of the advanced controller tool. This project will investigate the operational use of flight-planning data provided by airspace users and assess the benefits to (ATM) system performance [9].

The scope of potential changes required to make use of flight planning data are limited to ground systems (airline, military and ATC). The concept does not require a change to flight operations to provide a benefit from improved TP performance. The concept also does not require a mandate on sharing flight planning information.

The project focuses on defining the operational uses of the data and demonstrating the operational benefits that can be achieved. The project will not specify how TP systems should implement the data.

One of the main sources of uncertainty in predicted trajectories is the fact that assumptions are made on a certain set of inputs describing flight intent. Some of these inputs are more accurately or even exactly known by the operator. Some of the parameters most likely to be able to improve trajectory accuracy are considered in this project:

- Take-Off Mass (TOM)
- Climb/Descend Speed
- 513 ➤ True Airspeed

489

507

508

509 510

511

512

518

519 520

525

526 527

528

529 530

531

- 514 Mach number (or TAS & temperature)
- 515 Fuel used (planned)

The operators taking part in this project agreed to sharing flight planning information to investigate if that would lead to improvements to operations. Key needs for AUs in this concept are:

- > A low investment and maintenance cost,
- > The ability to automate the transmission process (no significant additional workload),
- Data should be accessible only to ATSUs and should not be stored longer than necessary.

Under these conditions the participating operators agreed to share the data. The participating operators understand the benefit of providing this AOC data to ATC systems for their respective specific flights. Without the supply of this data it will difficult for the ATC systems to provide them with their preferences.

2.2 Detailed Operating Methods

In this section we present two examples: The first is the current ground baseline system that consists of the current ground TP together with its client applications but does not use AOC data. The second example represents the modified (New SESAR) system that consists of improved ground TP. The improved ground TP will use AOC data available before take-off (e.g. aircraft Take-Off Mass). The client applications will be the same client applications as in the current baseline.

2.2.1 Previous Operating Method

532

533 534

535 536

537

538539540

541 542

543

544545

546

547 548

549

550

551 552

553

554

The **current** baseline system consists of the current ground TP together with its client applications. TP client applications considered in this work could be: arrival sequencing (AMAN tool), CDnR.

For the purpose of validation, not only the TP component but the entire system must be taken into account. The coverage must include the TP component and its client applications. Coverage of the validation environment and traffic information are included. For more details see validation environments in Appendix D while traffic samples are covered in Appendix B and Appendix C.

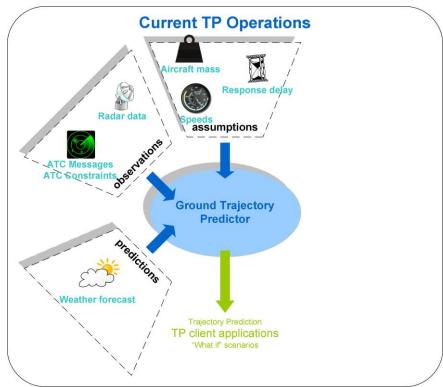


Figure 1: Current system (ground TP)

2.2.2 New SESAR Operating Method

The modified (New SESAR) system consists of improved ground TP. The improved ground TP will use AOC data available before take-off (e.g. aircraft TOM). The client applications will be the same client applications as in the current baseline. The client applications' settings may be updated to take maximum benefits of the improved ground TP predictions.

For the purpose of validation the full system must be taken into account not only the TP component. The scope of validation must include the TP component as well as its ATC tools which make use of TP results.

The ATC environment and traffic characteristics also affect their potential benefits and must be reflected in the validation activities. Environment and traffic details are detailed in Appendix D, Appendix C and Appendix B.

Figure 2: Alternative system (ground TP using AOC data)

Remark 1: AOC data amount may vary in quantity and quality (e.g. aircraft equipage, AOC arrangement, ground TP improvement across Europe).

Remark 2: During the study various alternatives considered: the TP client applications could also be modified to take advantage of the improved TP. Different level of TP deployment considered.

The selected flight planning parameters to improve TP performance is considered.

In Table 1 a list of the core flight planning parameters to improve TP performance is considered, while in Table 2 a list of supporting AOC parameters that is used in the computation of TP is considered.

During the validation activities we restricted the assessment on parameters in Table 1; parameters in Table 2 were not included in this assessment.

Parameter	Potential Value for TP Accuracy improvement	
Preferred climb speed (CAS / Mach)	Easily implemented and demonstrated potential benefit in previous research. Easiest when reported as CAS & Mach	
Preferred descent speed (CAS / Mach)	Easily implemented and demonstrated potential benefit in previous research. Easiest when reported as CAS & Mach	
Take-Off Mass	Is easily implemented and has demonstrated potential benefit in previous research. Enables aircraft performance to be more accurately modelled, and reduces uncertainty. The accuracy of this parameter depends on the source of the data and time before flight.	
Indicator if TOM is calculated or planned	May further reduce prediction uncertainty as mass is more certain depends if the TOM calculated based on assumptions regarding number of passengers, bags and fuel or it is the load-	

555 556

557

558 559

560

561562563

564

565

566

Parameter	Potential Value for TP Accuracy improvement	
	sheet TOM.	

Table 1: Core flight planning parameters to improve TP performance

Parameter Potential Value for TP Accuracy improvement			
All parameters below are considered to be reported for every significant point in the flight plan (i.e. waypoint, TOD/TOC). Note that this includes the climb and descent phases.			
Position Needed for interpolation of fuel used/speed profile.			
Altitude	Speed profile likely to be altitude dependent (not distance).		
Point Significance (Waypoint name, TOD)	Supports determining the vertical profile and reduction in vertical uncertainty.		
TAS	During climb, the preferred cruise speed is estimate by ATC. Supports determining the speed profile.		
Mach Number	During climb, the preferred cruise Mach is estimate by ATC. Supports determining the speed profile.		
Fuel used	Relatively easy to implement, provides more accurate estimate of instantaneous mass.		

Table 2: Supporting flight planning parameters to improve TP performance

2.2.3 **Differences between new and previous Operating Methods**

The main difference between the current and new SESAR operating method is that the new SESAR system uses AOC data in the computation of ground Trajectory Prediction (TP).

578

572 573

574

575 576

577

2.3 Operational Requirements

This section considers the final set of operational requirements.

581 [REQ] 1

Identifier	REQ-05.05.02-OSED-0100.0100		
Requirement Airspace user shall provide AOC data to an agreed pre-defined form minimum accuracy and frequency or schedule as agreed with each a user participating.			
Title	Airspace user data input		
Status	<final></final>		
Rationale	To ensure the accuracy of the computed TP. <operational></operational>		
Category			
Validation Method <review design="" of=""></review>			

582 583

[REQ Trace]

Relationship	Linked Element Type	Identifier	Compliance
<satisfies></satisfies>	<atms requirement=""></atms>	DOD Requirement Identifier	N/A
<satisfies></satisfies>	<kpi></kpi>	Efficiency	<partial></partial>
<satisfies></satisfies>	<kpi></kpi>	Safety	<partial></partial>
<applies_to></applies_to>	<operational process=""> or <operational service=""></operational></operational>	<i4d></i4d>	<partial></partial>

584 585

[REQ] 2

[[128] 2		
Identifier	REQ-05.05.02-OSED-0100.0200	
Requirement	The ground ATC-system shall check that the supplied AOC data is in predefined format.	
	defined format.	
Title	AOC data format	
Status	<final></final>	
Rationale	To ensure the correct representation of the AOC data in the TP model.	
Category	/ <operational></operational>	
Validation Method	<review design="" of=""></review>	

586 587

[REQ Trace]

[REG Habe]			
Relationship	Linked Element Type	Identifier	Compliance
<satisfies></satisfies>	<atms requirement=""></atms>	DOD Requirement Identifier	N/A
<satisfies></satisfies>	<kpi></kpi>	Safety	<partial></partial>
<applies_to></applies_to>	<operational process=""> or</operational>	<i4d></i4d>	N/A

588 589

[REQ] 3

_[NEQ]3		
Identifier	REQ-05.05.02-OSED-0100.0300	
Requirement	The means of transport of AOC data shall be in line with future SWIM	
architecture.		
Title	SWIM processing	
Status <final></final>		
Rationale	To comply with SESAR high-level design.	
Category	<operational></operational>	
Validation Method	<review design="" of=""></review>	

590 591

IREQ Tracel

_[INEQ Hace]			
Relationship	Linked Element Type	Identifier	Compliance
<satisfies></satisfies>	<atms requirement=""></atms>	DOD Requirement Identifier	N/A
<satisfies></satisfies>	<kpi></kpi>	Efficiency	<partial></partial>
<satisfies></satisfies>	<kpi></kpi>	Safety	<partial></partial>
<applies_to></applies_to>	<operational process=""> or <operational service=""></operational></operational>	<i4d></i4d>	N/A
	<operational service=""></operational>		

D04 - Final Project Report on the concept and benefits for improving TP using AOC data

593 [REQ] 4

Identifier	REQ-05.05.02-OSED-0200.0000
Requirement	The ground ATC-systems shall have the mechanism to receive AOC data.
Title	ATC-system able to receive and handle AOC data
Status	<final></final>
Rationale	To be able to use AOC in the computation of TP.
Category	<operational></operational>
Validation Method	<review design="" of=""></review>

Edition: 00.01.02

594

595 [REQ Trace]

[INE & ITAGO]			
Relationship	Linked Element Type	Identifier	Compliance
<satisfies></satisfies>	<atms requirement=""></atms>	DOD Requirement Identifier	N/A
<satisfies></satisfies>	<kpi></kpi>	Efficiency	<full></full>
<satisfies></satisfies>	<kpi></kpi>	Safety	<partial></partial>
<applies_to></applies_to>	<operational process=""> or</operational>	<i4d></i4d>	<partial></partial>

596

597 [REQ] 5

Identifier	REQ-05.05.02-OSED-0200.0100
Requirement	The ground ATC-system shall accept any delivered data that in compliance with the specified format and agreed accuracy as per Req. REQ-05.05.02-OSED-0100.0100.
Title	AOC Data Acceptance
Status	<final></final>
Rationale	To secure system's access to the supplied AOC data.
Category	<operational></operational>
Validation Method	<review design="" of=""></review>

598 599

[REQ Trace]

Relationship	Linked Element Type	Identifier	Compliance
<satisfies></satisfies>	<atms requirement=""></atms>	DOD Requirement Identifier	N/A
<satisfies></satisfies>	<kpi></kpi>	Safety	<partial></partial>
<applies_to></applies_to>	<operational process=""> or</operational>	<i4d></i4d>	<partial></partial>
	<operational service=""></operational>		

600

601 [REQ] 6

[[1, [2, [3]]]	
Identifier	REQ-05.05.02-OSED-0200.0200
Requirement	The ground ATC-system shall perform the necessary verification of the provided data to check that the provided AOC data are within the valid range for each of these data items as agreed with each airspace user.
Title	AOC Data Verification
Status	<final></final>
Rationale	To handle and remove gross error in the supplied AOC data.
Category	<operational></operational>
Validation Method	<review design="" of=""></review>

602 603

[REQ Trace]

[\\			
Relationship	Linked Element Type	Identifier	Compliance
<satisfies></satisfies>	<atms requirement=""></atms>	DOD Requirement Identifier	N/A
<satisfies></satisfies>	<kpi></kpi>	Safety	<full></full>
<applies_to></applies_to>	<operational process=""> or <operational service=""></operational></operational>	<i4d></i4d>	<partial></partial>

D04 - Final Project Report on the concept and benefits for improving TP using AOC data

Edition: 00.01.02

605 [REQ] 7

Identifier	REQ-05.05.02-OSED-0300.0000
Requirement	The ground ATC-system shall use the received AOC Data in its Trajectory
	Prediction calculation.
Title	ATC-system uses AOC Data in Trajectory Prediction calculation
Status	<final></final>
Rationale	To improve the accuracy of the computed TP.
Category	<operational></operational>
Validation Method	<review design="" of=""></review>

606

607 [REQ Trace]

Relationship	Linked Element Type	Identifier	Compliance
<satisfies></satisfies>	<atms requirement=""></atms>	DOD Requirement Identifier	N/A
<satisfies></satisfies>	<kpi></kpi>	Efficiency	<full></full>
<applies_to></applies_to>	<operational process=""> or <operational service=""></operational></operational>	<i4d></i4d>	<partial></partial>

608

609 [REQ] 8

[[_\]	
Identifier	REQ-05.05.02-OSED-0300.0100
Requirement In the case of faulty data, the ground ATC-system shall use the baseline sys	
	in calculating the required Trajectory Prediction.
Title	Gross-Error data handling
Status	<final></final>
Rationale	To ensure ground system stability.
Category	<operational></operational>
Validation Method	<review design="" of=""></review>

610

611 [REQ Trace]

	[🕳			
П	Relationship	Linked Element Type	Identifier	Compliance
-	<satisfies></satisfies>	<atms requirement=""></atms>	DOD Requirement Identifier	N/A
_	<satisfies></satisfies>	<kpi></kpi>	Safety	<partial></partial>
•	<applies_to></applies_to>	<operational process=""> or <operational service=""></operational></operational>	<i4d></i4d>	<partial></partial>

612

613 [REQ] 9

[] -	
Identifier	REQ-05.05.02-OSED-0300.0200
Requirement	The TP component shall report internally to the ground ATC-system which scheme (baseline or "AOC data enabled") is used in calculating the trajectory prediction.
Title	ATC-system Internal Reporting
Status	<final></final>
Rationale	That is for traceability purpose.
Category	<operational></operational>
Validation Method	<review design="" of=""></review>

614615

[REQ Trace]

[
Relationship	Linked Element Type	Identifier	Compliance
<satisfies></satisfies>	<atms requirement=""></atms>	DOD Requirement Identifier	N/A
<satisfies></satisfies>	<kpi></kpi>	Efficiency	<partial></partial>
<applies_to></applies_to>	<operational process=""> or <operational service=""></operational></operational>	<i4d></i4d>	<partial></partial>

D04 - Final Project Report on the concept and benefits for improving TP using AOC data

[REQ] 10 617

_[IXEQ] 10	
Identifier	REQ-05.05.02-OSED-0400.0000
Requirement	The ground ATC-system shall be able to work with "mix mode" functionality, i.e. some flights are supported by AOC data others are not (baseline).
Title	Mixed Mode Functionality
Status	<final></final>
Rationale	The AOC data concept is not mandatory and this functionality is required to ensure the usability of the system all the time.
Category	<operational></operational>
Validation Method	<review design="" of=""></review>

618

619 [REQ Trace]

Relationship	Linked Element Type	Identifier	Compliance
<satisfies></satisfies>	<atms requirement=""></atms>	DOD Requirement Identifier	N/A
<satisfies></satisfies>	<kpi></kpi>	Efficiency	<partial></partial>
<satisfies></satisfies>	<kpi></kpi>	Safety	<partial></partial>
<applies_to></applies_to>	<operational process=""> or <operational service=""></operational></operational>	<i4d></i4d>	<partial></partial>

620

[REQ] 11 621

[1,4=04] 1.1		
Identifier	REQ-05.05.02-OSED-0400.0100	
Requirement	If there is no suitable AOC data available the ground ATC-system shall be able	
	to make trajectory predictions without AOC data.	
Title	AOC data not available	
Status	<final></final>	
Rationale	The AOC data concept is not mandatory and this functionality is required to	
	ensure the usability of the system all the time.	
Category	<operational></operational>	
Validation Method	<review design="" of=""></review>	

622 623

[REQ Trace]

[,]			
Relationship	Linked Element Type	Identifier	Compliance
<satisfies></satisfies>	<atms requirement=""></atms>	DOD Requirement Identifier	N/A
<satisfies></satisfies>	<kpi></kpi>	Efficiency	<partial></partial>
<satisfies></satisfies>	<kpi></kpi>	Safety	<partial></partial>
<applies_to></applies_to>	<operational process=""> or</operational>	<i4d></i4d>	<partial></partial>
	<operational service=""></operational>		

624 625

[REQ] 12

וועבען וב	
Identifier	REQ-05.05.02-OSED-0400.0200
Requirement	If the AOC data is available for a flight the ground ATC-system shall aim to improve the accuracy of the trajectory prediction for that flight by using the provided AOC data.
Title	AOC data available
Status	<final></final>
Rationale	To improve the quality of produced TP.
Category	<operational></operational>
Validation Method	<review design="" of=""></review>

626 627

IREQ Tracel

[INE GOOD]			
Relationship	Linked Element Type	Identifier	Compliance
<satisfies></satisfies>	<atms requirement=""></atms>	DOD Requirement Identifier	N/A
<satisfies></satisfies>	<kpi></kpi>	Efficiency	<partial></partial>
<applies_to></applies_to>	<operational process=""> or <operational service=""></operational></operational>	<i4d></i4d>	<partial></partial>

628

Edition: 00.01.02

26 of 116

Project ID 05.05.02 Edition: 00.01.02 D04 - Final Project Report on the concept and benefits for improving TP using AOC data

629 [REQ] 13

Identifier	REQ-05.05.02-OSED-0400.0300
Requirement	If AOC data is available for a flight that shall not require AOC data to be available for other flights.
Title	ATC-system ability to switch between two options
Status	<final></final>
Rationale	The AOC data concept is not mandatory and this functionality is required to ensure the usability of the system all the time.
Category	<operational></operational>
Validation Method	<review design="" of=""></review>

630

631 [REQ Trace]

Relationship	Linked Element Type	Identifier	Compliance
<satisfies></satisfies>	<atms requirement=""></atms>	DOD Requirement Identifier	N/A
<satisfies></satisfies>	<kpi></kpi>	Efficiency	<partial></partial>
<applies_to></applies_to>	<operational process=""> or <operational service=""></operational></operational>	<i4d></i4d>	<partial></partial>

632

633 [REQ] 14

Identifier	REQ-05.05.02-OSED-0500.0000
Requirement	The ground ATC-system shall observe various data access restrictions as agreed with airspace users.
Title	Data Access Restrictions
Status	<final></final>
Rationale	To observe airspace user's restrictions in the data handling.
Category	<operational></operational>
Validation Method	<review design="" of=""></review>

634

635 [REQ Trace]

Relationship	Linked Element Type	Identifier	Compliance
<satisfies></satisfies>	<atms requirement=""></atms>	DOD Requirement Identifier	N/A
<satisfies></satisfies>	<kpi></kpi>	Efficiency	<partial></partial>
<applies_to></applies_to>	<operational process=""> or <operational service=""></operational></operational>	<i4d></i4d>	<partial></partial>

636

637 [REQ] 15

Identifier	REQ-05.05.02-OSED-0500.0100
Requirement	The system shall comply with any time restrictions that have been agreed with airspace users not to keep the AOC supplied data after the completion of a flight.
Title	Data access time restriction mechanism
Status	<final></final>
Rationale	To observe airspace user's restrictions in the data handling.
Category	<operational></operational>
Validation Method	<review design="" of=""></review>

638 639

[REQ Trace]

Relationship	Linked Element Type	Identifier	Compliance
<satisfies></satisfies>	<atms requirement=""></atms>	DOD Requirement Identifier	N/A
<satisfies></satisfies>	<kpi></kpi>	Efficiency	<partial></partial>
<applies_to></applies_to>	<operational process=""> or <operational service=""></operational></operational>	<i4d></i4d>	<partial></partial>

640

2.4 Traceability of Operational Requirements to Ols

642

645 646

647

643 The high-level operational requirement for this project is defined in the 4.2 Detailed Operational 644 Descriptions, Ref. [19]:

Identifier	REQ-04.02-DOD-0003.0001
Requirement	Trajectory data as available from AOC shall be used to improve ground
	Trajectory Prediction accuracy.

This section traces the Operational Requirements defined and validated by P05.05.02 to the Operational Improvements (OIs) as identified in the DoD Ref. [19]:

Operational Requirement Identifier	Requirement Description	Ols Code	Ols Description	OSEDs Ref (Master or Contributi ng)
REQ-05.05.02-OSED- 0100.0200	The ground ATC-system shall check that the supplied AOC data is in predefined format.		Automated tools support the ATC team in identifying,	
REQ-05.05.02-OSED- 0400.0100	If there is no suitable AOC data available the ground ATC-system shall be able to make trajectory predictions without AOC data.	CM-0104 Automated Controller Support for Trajectory Management	assessing and resolving local complexity situations through assessment of evolving traffic patterns and evaluation of opportunities to deconflict or to synchronise trajectories.	5.5.2 5.6.5 5.6.7 5.7.2 5.9
REQ-05.05.02-OSED- 0400.0000	The ground ATC-system shall be able to work with "mix mode" functionality, i.e. some flights are supported by AOC data others are not (baseline).	CM-0204 Automated Support for	The system provides real-time assistance to the tactical controller for	
REQ-05.05.02-OSED- 0400.0200	If the AOC data is available for a flight the ground ATC-system shall aim to improve the accuracy of the trajectory prediction for that flight by using the provided AOC data.	Medium Term Conflict Detection & Resolution and Trajectory	monitoring trajectory conformance and provides resolution advisory information based upon predicted conflict detection.	5.5.2 5.9
REQ-05.05.02-OSED- 0400.0300	If AOC data is available for a flight that shall not require AOC data to be available for other flights.	Conformance Monitoring		
REQ-05.05.02-OSED- 0100.0100	Airspace user shall provide AOC data to an agreed pre-defined format, minimum accuracy and frequency or schedule as agreed with each airspace user participating.		Use of trajectory data as available from AOC (initially probably on a low	
REQ-05.05.02-OSED- 0200.0100	The ground ATC-system shall accept any delivered data that in compliance with the specified format and agreed accuracy as per Req. REQ-05.05.02-OSED-0100.0100.	IS-0301	lity DC lit	5.5.2
REQ-05.05.02-OSED- 0100.0300	The means of transport of AOC data shall be in line with future SWIM architecture.	Interoperability between AOC and ATM		
REQ-05.05.02-OSED- 0500.0100	The system shall comply with any time restrictions that have been agreed with airspace users not to keep the AOC supplied data after the completion of a flight.	Systems		
REQ-05.05.02-OSED- 0500.0000	The ground ATC-system shall observe various data access restrictions as agreed with airspace users.		extrapolation, for improved accuracy of ground-based TP computations.	
REQ-05.05.02-OSED- 0200.0000	The ground ATC-systems shall have the mechanism to receive AOC data.		ospatationo.	

REQ-05.05.02-OSED- 0200.0200	The ground ATC-system shall perform the necessary verification of the provided data to check that the provided AOC data are within the valid range for each of these data items as agreed with each airspace user.
REQ-05.05.02-OSED- 0300.0000	The ground ATC-system shall use the received AOC Data in its Trajectory Prediction calculation.
REQ-05.05.02-OSED- 0300.0100	In the case of faulty data, the ground ATC-system shall use the baseline system in calculating the required Trajectory Prediction.
REQ-05.05.02-OSED- 0300.0200	The TP component shall report internally to the ground ATC-system which scheme (baseline or "AOC data enabled") is used in calculating the trajectory prediction.

Table 3: Traceability of Operational Requirements to Operational Improvements

Note: Some of the OIs are studied by more than one project. 5.5.2 does not assess the full scope of these OIs - see column "OSEDs Ref (Master or Contributing)" in Table 3.

648

649 650

651

653 3 Summary of V2 Validation Activities

3.1 Introduction

654

655 656

657

658

659 660

664

665 666

667 668

669 670 The results for the V2 stage validation of the concept of using AOC data in ground based trajectory prediction were presented in deliverable D03 Ref. [13]. Validation was performed in 5 exercises: two analyses using actual operational data to determine the effects on TP accuracy, two to translate the change in accuracy in example operational scenarios and an integrated simulation to gather expert judgement on the effects on an example ATC tool implementation of TP. The final exercise applies the concept to a present-day operational system and evaluates the effects on the ATC tool itself.

This section of the document gives a summary of these activities and highlights the results from V2 stage validation.

The V3 stage validation is covered in the remaining of this document.

3.2 List of V2 Validation Exercises

Exercise Number	Exercise Description	
EXE-05.05.02-VALP-0069.0100	This exercise aims to determine the effect on accuracy of the AOC parameters to current/near term TP systems.	
EXE-05.05.02-VALP-0069.0200	This exercise concerns with the sensitivity of the computed TP to the accuracy of various AOC.	
EXE-05.05.02-VALP-0069.0400	This exercise aims to assess the impact of TP improvements on conflict detection support tools.	
EXE-05.05.02-VALP-0300.0100	This exercise aims to determine the effect of each AOC parameter on the accuracy of computed TP and the overall system performance.	

Table 4: List of V2 Validation Exercises

3.3 Summary of Validation Scenarios

The validation scenario preparation was guided by the concept as described in D01 Ref [11] and the proposed validation plan D02 Ref. [12]. The concept of using AOC data in computation of ground TP is independent of the application that uses the computed TP.

The scenarios required to test TP accuracy are independent of the application of the TP in a tool.
These scenarios will therefore require flight segments with strong vertical components but do not require particular types of ATC operation.

The validation at ATC tools performance level will require an operation in which current or near-term TP-driven ATC tools are used. As an example of these tools we consider NATS iFACTS system. iFACTS is used in London Area Control centre. This area is consistent with the definition of SESAR TMA. The traffic in this area covered by London Area Control centre includes a large amount of climbs and descends.

The TP used in this system is considered representative for current or near-term TP systems in the TMA. Therefore the validation of TP accuracy and ATC tool performance will be based on the iFACTS system.

To drive this validation a selection of operational days and sectors took place to ensure the traffic level and reasonable level of climb and descent flights that can be in the validation scenario.

684 3.4 Summary of Assumptions

685

686 687

688 689

690

691

692 693

694

695 696

697

698

699

700

706

707

708

709 710

711

712

The validation strategy is built on the results of the analysis of TP accuracy of the iFACTS TP algorithm based on recorded operational data (EXE-05.05.02-VALP-0069.0100). This introduces a number of assumptions that affect the complete validation at V2 stage:

- The iFACTS TP algorithm is a BADA based model similar to most of the current and near term TP algorithms. For this reason the iFACTS TP algorithm and its behaviour can be considered a representative for current and near-term TP algorithms in general.
- The recorded accuracy of the iFACTS TP in the London Area airspace is representative of the accuracy of CDnR TMA TPs. This includes the applications of TP that are tested in the fast time simulations of the Paris airspace.
- The recorded dataset provides sufficient variation in fleet, operations, tactical instructions and meteorological effects to allow application of the results in general cases.
- > The AOC data provided in a form that allows the use of such data without large preprocessing activities.

3.5 Choice of methods and techniques

Supported Metric / Indicator	Platform / Tool	Method or Technique	
TP Accuracy	TPRT	Mathematical modelling.Sensitivity Statistical Analysis.	
Safety	The V&V Tool SAMM	Fast Time Simulation	
Efficiency	The V&V Tool SAMM	Fast Time Simulation	
Safety	RAVE	Real Time Simulation	
Efficiency	RAVE	Real Time Simulation	

Table 5: Methods and Techniques

701 3.6 Validation Exercises Reports and Results

702 3.6.1 EXE-05.05.02-VALP-0069.0100

703 3.6.1.1 Exercise Scope

This validation exercise addressed the concept of using AOC data in computing ground Trajectory Prediction.

This phase of validation was concerned with the improvements in accuracy of trajectory prediction with introduction of various AOC parameters into the computation of Trajectory Prediction.

3.6.1.2 Summary of Exercise Results

The accuracy of the Trajectory Prediction is validated by performing comparison of the TP generated using baseline with no AOC data versus TP generated using AOC reported mass, AOC reported speed and the combination between AOC mass and speed. AOC reported data is the data provided by participated airlines to this project.

713 The following summary presents the objectives and exercises results:

Validation Objective ID	Validation Objective Title	Success Criterion ¹	Exercise Results	
OBJ-05.05.02- VALP-0010.0010	Validate that the accuracy of the TP improves considerably when AOC data is used as an information source.	The accuracy of a predicted trajectory is improved considerably when AOC data is used in the prediction when compared to the accuracy without the use of AOC data.	There are a number of cases where accuracy improved: 1. AOC mass for climbed aircraft. 2. AOC speed for climbed aircraft. 3. AOC mass and speed for climbed aircraft. 4. AOC mass for decent aircraft.	
OBJ-05.05.02- VALP-0050.0010	Validate that the selected AOC data can be used in current or near-term TP algorithms.	The TP algorithm used in the test is representative of current or near term TP systems.	Minor modification introduced to iFACTS TP algorithms that allowed the use of AOC data in the iFACTS system.	
OBJ-05.05.02- VALP-0050.0110	Validate that AOC data can be used in current or near-term ATC tools that use trajectory prediction.	AOC data is used in a demonstration using current or near-term operational ATC tools.	The sample data used is a mixed of AOC supported and non-supported aircraft.	

714 715

Table 6: EXE 0069.0100 Validation Objectives and exercises results

3.6.1.2.1 Results per KPA 716

717 Efficiency:

Rate of false conflict alerts due to TP errors, involving aircraft in climb, are improving by 10% for 718 719 conflicts with one aircraft in climb (using AOC mass and speed combined), hence the rate of stopped 720 continuous climb due to conflict alerts is reducing (at most) by 10%.

721 Safety:

- 722 Using AOC mass and speed combined in the case of climbed aircraft brought significant improvement 723 in the accuracy of the computed TP that should result in a reduction in missed and false conflict rates.
- 724 In the case of descent the results were much less conclusive than the case of climb.

725

726

3.6.2 EXE-05.05.02-VALP-0069.0200

3.6.2.1 Exercise Scope 727

- 728 This validation exercise addressed the concept of using AOC data in computing ground Trajectory Prediction. 729
- 730 This phase of validation was concerned with the sensitivity of the computed Trajectory Prediction to
- 731 the accuracy of the various AOC parameters provided by airspace users and used in the computation
- 732 of the Trajectory Prediction.

¹Note that a validation objective can have more than 1 success criterion, please make them appear in the same cell

733 3.6.2.2 Summary of Exercise Results

The sensitivity of the Trajectory Prediction validated. The exercise is to determine the required accuracy of the AOC data to ensure that the TP accuracy benefits determined in exercise 0069.0100 are maintained. The comparison of the TP generated using reported AOC data versus TP generated using modified AOC reported data (i.e. adding or subtracting a percentage error). To do so, a part of exercises will be repeated while parameter values are deviated from their original values. Accuracy is subsequently analysed identically as performed in exercise 0069.0100.

740 The following summary presents the objectives and exercises results:

Validation Objective ID	Validation Objective Title	Success Criterion ²	Exercise Results
OBJ-05.05.02- VALP-0010.0110	Validate that TP stability is not adversely affected by the introduction of AOC data.	A variation limit on the AOC parameters can be established that ensures accuracy equal or greater than the stability without AOC data.	The effect of modification introduced to reported AOC data investigated and stability of the ATC system using TP with AOC data validated.
OBJ-05.05.02- VALP-0010.0010	Validate that the accuracy of the TP improves considerably when AOC data is used as an information source.	The accuracy of a predicted trajectory is improved considerably when AOC data is used in the prediction when compared to the accuracy without the use of AOC data.	The accuracy improvement gained in EXE 0069.0100 maintained.

Table 7: EXE 0069.0200 Validation Objectives and exercises results

743 3.6.2.2.1 Results per KPA

744 **Safety:**

 $74\overline{1}$

742

747

748

749

734

735

736

737

738

739

745 Using AOC mass and speed combined in the case of climbed aircraft brought significant improvement

in the accuracy of the computed TP that should result in a reduction in missed and false conflict rates.

To make sure this gained accuracy is maintained accuracy requirements to the reported AOC data plays a vital rule to ensure the outcome of the project and hence the safety of the proposed scheme.

3.6.3 EXE-05.05.02-VALP-0069.0400

3.6.3.1 Exercise Scope

The exercise scope and justification provided in the validation plan D02 Ref. [12], section 4.4.1 are summarised here.

"Level: The exercise is at ATM system level: It assesses the impact of ground TP trajectory prediction improvement on conflict detection decision support tools quality:

Conflict detection tools are using ground TP to assess the potential conflicts and provide the ATCO with conflict alerts. Due to the trajectory uncertainty, false conflicts (conflicts that are predicted but do not occur) and missed conflicts (conflicts that will occur but were not predicted) alerts are expected.

758 To get the maximum benefit (safety and efficiency) these missed and false alerts shall be minimised.

Using TP improved predictions can participate to this minimisation and lead to quick-win benefits, like the use of more continuous climb (CCD).

²Note that a validation objective can have more than 1 success criterion, please make them appear in the same cell

Project ID 05.05.02 Edition: 00.01.02 D04 - Final Project Report on the concept and benefits for improving TP using AOC data

- The main hypothesis is that both the rate of false and missed alarms are reduced thanks to the use of improved trajectory predictions (CRT-05.05.02-VALP-0030.0110). As a consequence, more
- 763 continuous climb clearance can be used, leading to an efficiency improvement (CRT-05.05.02-VALP-
- 764 0030.0120).
- 765 The following performance indicators will be used:
- 766 > Safety: Rate missed conflict alarms.
- 767 > Efficiency: Number of continuous climbs clearances. Rate of false alerts reduced.
- The airspace of interest are ECAC, and the core area, above FL70 (TCT and MTCD³ tools are not used at lower levels) as a high density airspace.

3.6.3.2 Summary of Exercise Results

- 771 Missed and false conflict alert rates due to TP errors in AOC cases are compared to the missed and false conflict alert rates with a baseline TP (no AOC data).
- The following summary presents the upper-bounds of the performance benefits expected by using AOC data for conflict detection tools applications.

Validation Objective ID	Validation Objective Title	Success Criterion⁴	Exercise Results
OBJ-05.05.02- VALP- 0020.0010	Validate that CDnR tool performance in a high density Area Control airspace improves in when the underlying TP is supported by AOC data.	CDnR tool performance for Area Control improves when the underlying TP is supported by AOC data when compared to performance without the use of AOC data.	There is a benefit in using AOC data for CDnR tool performance. Highest benefit is obtained by using AOC mass and speed data combined. See detailed objectives results below.
OBJ-05.05.02- VALP- 0030.0110	Validate that improved TP accuracy achieved through the use of AOC data leads to improved operational performance when used in a CDnR system in for a Departure Controller	The rates of false and missed alerts of CDnR tool are reduced. (CRT-05.05.02-VALP-0030.0110) The number of continuous climbs available through the CDnR tool is increased. (CRT-05.05.02-VALP-0030.0120)	(ECAC and high density core area results are similar) Compared to performance without the use of AOC Data, Missed conflicts alert rates due to TP errors, reduces by 10% (look-ahead 8-18 minutes) using Mass and Speed AOC data combined, for conflicts with at least one aircraft in climb. The reduction is about 12% for look-ahead 5-8 minutes. Benefits for conflicts missed alerts cruise/cruise are small. False conflicts alert rates due to TP errors, reduces from 5% (cruise/cruise) to 10% (cruise/climb) (look-ahead 8-

³ http://www.eurocontrol.int/fasti/public/standard_page/Tools.html

⁴ Note that a validation objective can have more than 1 success criterion, please make them appear in the same cell

	18 minutes) using Mass and Speed AOC data combined, depending in conflict type.
	The reduction numbers are similar for look-ahead times 5-8 minutes.
	-The increase in continuous climb is related to the false alert rate reduction for conflicts (involving at least on aircraft in climb): The false alert rates decreasing by 10%, the rate of continuous climb stopped unnecessary due to a false alert will reduce at most by 10%.

776 **Tabl**

Table 8: EXE 0069.0400 Validation Objectives and exercises results

777 3.6.3.2.1 Results per KPA

778 **Efficiency**:

775

It is assumed that, when receiving a conflict alert, involving at least one aircraft in climb, the ATCO will stop the climb. If this was a false alert (no conflict would have really occurred), an opportunity to climb

781 continuously has been lost.

Rate of false conflict alerts due to TP errors, involving aircraft in climb, are improving by 10% for conflicts with one aircraft in climb (using AOC mass and speed combined), hence the rate of stopped continuous climb due to conflict alerts is reducing (at most) by 10%.

785 **Safety:**

Safety increases as missed (help ATCO in conflicts detection) and false rates (decrease WL) decrease. Using AOC mass and speed combined brought a reduction in missed and false conflict rates of about 10% (depends on conflict type, benefits usually higher when aircraft in climb are

789 involved in the conflict.

790 3.6.4 EXE-05.05.02-VALP-0300.0100

791 3.6.4.1 Exercise Scope

This validation exercise addressed the concept of using AOC data in computing ground Trajectory

793 Prediction.

794 This phase of validation was concerned with the introduction of various parameters and investigating

the impact of each parameter on the accuracy and stability of the computed Trajectory Prediction and

796 the overall performance of the system.

797 3.6.4.2 Summary of Exercise Results

Validation Objective ID	Validation Objective Title	Success Criterion⁵	Exercise Results
OBJ- 05.05.02- VALP-	Validate that AOC parameter values outside their expected scope can be detected and data can be rejected on	incorrect values for AOC	system test prior to

⁵Note that a validation objective can have more than 1 success criterion, please make them appear in the same cell

0040.0010	that basis.	detected.	
OBJ- 05.05.02- VALP- 0040.0020	Demonstrate possibility of using AOC data for a subset of flights in an operational system.	An operational system is demonstrated to use AOC data in a subset of the flights it handles	AOC data successfully applied for a subset of flights.
OBJ- 05.05.02- VALP- 0040.0210	Validate that TP system can be developed to accept all incoming data regardless of the presence of grossly incorrect values.	AOC data with grossly incorrect values is taken into the system. (Note that OBJ-05.05.02-VALP-0040.0010 prevents this data from subsequently being used)	Investigated during system test prior to simulation activity.
OBJ- 05.05.02- VALP- 0040.0310	Validate that a TP system can be developed that uses baseline functionality without use of AOC data when grossly incorrect AOC data is provided.	TP system generates usable trajectory based on the baseline algorithm for aircraft for which grossly incorrect AOC data is supplied.	Investigated during system test prior to simulation activity.
OBJ- 05.05.02- VALP- 0050.0110	Validate that AOC data can be used in current or near-term ATC tools that use trajectory prediction.	AOC data is used in a demonstration using current or near-term operational ATC tools.	AOC data successfully demonstrated in a near-term operational ATC toolset (iFACTS).
OBJ- 05.05.02- VALP- 0070.0010	Validate that ATC-system (iFACTS) able to receive and handle AOC data.	AOC data provided to iFACTS system that received it and demonstrated the ability to handle it.	AOC data successfully provided, received and handled by a nearterm operational ATC toolset (iFACTS).

798 799

Table 9: EXE 0300.0100 Validation Objectives and exercises results

800 3.6.4.2.1 Results per KPA

The number of differences observed in interactions was limited and as such this validation exercise's results are difficult to report it per KPA.

802803

804

805

808

809

810

811 812

801

3.7 Conclusions and recommendations

3.7.1 Conclusions

A number of activities took place to validate the use of mass and speed AOC data in computing TP.
The V2 validation took place in three stages:

- Objective analysis through validation of Trajectory Prediction accuracy improvements.
- > Subjective analysis through validation of ATC tools, e.g. iFACTS Conflict Detection and Resolution.
- > Assessment of the impact of Trajectory Prediction improvement on conflict detection decision support tools quality.

For the climb phase of the flight all three activities came to the conclusion that the use of mass and speed AOC data gives the best improvements.

815 In details:

- 816 From the objective analysis:
- 817 Using AOC mass and speed data in the computation of trajectory prediction brings the best results for
- the altitude error rate improvements. The results are statistically significant for the overall sample,
- which contains all aircraft range categories, as well as for each aircraft range category.
- 820 From the subjective analysis:
- The introduction of AOC mass and speed data into TP does produce noticeable differences in the
- 822 information displayed in the TP/MTCD tools. These differences were most noticeable for aircraft in the
- 823 climb phase.
- 824 > From statistical analysis:
- The introduction of combination of mass and speed AOC data into the computation of the iFACTS TP
- took place. The associated TP errors for the traffic considered and the modelling of these errors to an
- 827 ETFMS traffic sample leads to:
- Brings safety benefit by reducing the missed and false conflict alert rates due to TP errors.
- 829 > Brings an efficiency benefit as false alert rate due to TP errors improves: the number of continuous climb cancelled due to false alert rates is reduced.
- 831 In the case of using mass AOC data alone or speed AOC data alone for the climb phase still some
- 832 benefits were observed but these were relatively less than when it is a combined mass and speed
- 833 AOC data.
- 834 In the case of descent the results were much less conclusive whatever the sample size.

835 3.7.2 Recommendations

- 836 At V2 level, it is recommended to share AOC data for improving the performance of conflict detection
- 837 tools. Sharing and using both AOC mass and speed in ground TP systems will bring the maximum
- 838 benefit.
- 839 There is a relationship between this work and SESAR P 7.6.2. Both projects require and use similar
- set of AOC data. Collaboration between the two projects would help to consolidate the AOC data
- requirements and its use in improving the accuracy of computed TP.
- 842 It is recommended that the validation is continued at V3 level through exercise EXE-05.05.02-VALP-
- 843 0301.0100 and the business case is developed further. The V3 Validation activities and results are
- reported in this report, see chapters: 4, 5, and 6.

4 Context of the V3 Validation

This section considers the validation of the concept of using operator flight planning data to enhance
Air Traffic Management (ATM) services by improving Trajectory Predictor (TP) performance. This
concept is described in Ref [11]. This validation stage followed stage V2 validation that is fully
reported in D03 Ref.[13] and summary of it can be found in Chapter 4.

Since this is an early benefit, Step 1 project, no validation objectives from higher level projects have been set. The planned validation aims to determine benefits for higher level projects based on the benefit mechanism defined in D01 Ref. [11].

This validation follows the validation plan described in D02, Ref. [12]. D02 provides the validation plan for the concept of using operator flight planning data to improve trajectory predictions towards E-OCVM V2 and V3 Ref. [7].

4.1 Concept Overview

845

853

854

855

856

861

862

863

864 865

866

867

868

869

870

871 872

873

874 875

This project is focussed on the near-term use of operator flight planning data. For more details about the project and its objectives see 2.1.

Based on a number of scenarios in high capacity European airspace a number of cost-benefit mechanisms are proposed. Key benefits are identified in an increased number of continuous climbs.

This validation activity building on the results from V2 validation activities aims to establish the actual benefits of the proposed additional flight plan parameters to operational applications of TP. This study demonstrates the concept on a near-operational system to validate the possibility of early implementation and gathered expert judgement on the effects on ATC tools. This demonstration and subjective validation used NATS' Replay-Aided Validation Environment (RAVE) system.

To establish the benefit to operations, the effect of the improved TP performance on actual operations was assessed. Detailed scenarios that evaluate the effect of TP improvements on controller tools by operational ATCOs were considered during this stage of validation.

One of the arguments that support early implementation is that the concept is expected to provide benefits even if not all operators are participating. The project validated this statement by analysing benefits for mixed equipage scenarios.

The costs of implementation and operation of the concept together with the expected benefits from introducing this concept forms another part of the V3 phase. The CBA task was addressed separately in collaboration with WP 16. The details of this activity are reported in Chapter 7.

EXE-05.05.02-VALP-0301.0100:	EXE-05.05.02-VALP-0301.0100: aims to determine the effect of each AOC parameter on the accuracy of computed TP and the overall system performance
Leading organization	National Air Traffic Services (NATS)
Validation exercise objectives	See D02 Ref. [12], Section 4.6.1.4.
Rationale	This activity determines the effect of each AOC parameter on the computed TP and the overall system performance.
Supporting DOD / Operational Scenario / Use Case	N/A
OI steps addressed	CM-0104
	CM-0204
	IS-0301
Enablers addressed	For details see D02 Ref. [12], Section 4.6.1.8.
Applicable Operational Context	For details see D02 Ref. [12], Section 4.6.1.2.

876

Expected results per KPA	See Section 6.3.3.	
Validation Technique	See D02 Ref. [12], Section 4.6.1.8.	
Dependent Validation Exercises	EXE-05.05.02-VALP-0069.0100 EXE-05.05.02-VALP-0300.0100	

877

Table 10: EXE-0301.0100 Validation of the impact of using AOC data on TP and CDnR system

878 879

880

881 882

883

884

885

4.2 Summary of Validation Exercise/s

4.2.1 Summary of Expected Exercise/s outcomes

This section provides a summary of the expected outcomes of the validation exercises that are under the scope of this validation report.

Table 11 gives a summary of the expected validation exercises outcome per relevant stakeholder and in compliance with the project Ref. [9].

Stakeholder	Involvement	Expected Validation outcome
ATC Service Provider	End User	Evidence that the use of AOC data can be implemented on the general TP architecture of present day systems.
		Evidence that the implementation of AOC data can be done with minimum changes to the general TP architecture of present day systems.
		Evidence of improved performance of advanced tools and evidence that that will in turn lead to improved performance of the ATM system.
		Evidence that the concept of using AOC data and the expected improvement of TP accuracy does not adversely affect safety.
Airspace User	End User	Evidence that the generation and filing of flight planning data does not require high workload from operator flight planners.
		Evidence that sharing AOC data will lead to capacity, efficiency and environmental benefits to the operator.
		Evidence that these benefits outweigh the cost of implementation and operation of the concept.
		Evidence that commercially sensitive information is adequately protected against use for other purposes that ATM performance improvement.
		Evidence that the concept of using AOC data and the expected improvement of TP accuracy does not adversely affect safety while not putting excessive requirements on the operators.
ATC Tools Suppliers	Provider	Evidence that the use of AOC data can be implemented on the general TP architecture of present day systems.
		Evidence of considerable improvement of TP accuracy
CFPS Suppliers	Provider	Evidence that parameters required are generally available in CFPS

Table 11: Summary of expected validation exercises outcome

4.2.2 Benefit mechanisms investigated

889 This section covers two issues:

888

890

891

892

905 906

907

908

909 910

911

912

913914

915

916

922

923

924 925

926

927

928

929

930

931

932

933

- Benefit to operations.
- Effects on safety.

4.2.2.1 Benefit to operations

The TP function is core to many ATC current tools. Improving the TP accuracy leads to performance improvements for ATC tools using TP, so the TP accuracy gain is a key to all other benefits. Trajectory predictions are only part of the inputs to an ATC tool. Effects of TP accuracy on the actual operation are therefore expected to be affected by other factors in the ATC tool. Furthermore, AOC data may improve the accuracy of some inputs to TP. Other inputs (for example wind prediction accuracy) may have a larger effect on accuracy.

- Also, the AOC data itself will be subject to error. Any TP accuracy improvement has to be maintained under the expected AOC data error to be considered relevant.
- So, the accuracy improvement has to be considerable before it can be expected to have noticeable effects on operation tools and hence operations.
- The main objective of this validation is to test that such improvement of controller tools is expected to lead to operational benefits.

4.2.2.2 Effects on safety

Safety is the most single important factor in the acceptance of a new concept. Testing the effect on safety will take the following stages:

- > The first factor that needs to be considered is whether the introduction of the AOC data as a new source of data could introduce its inherent errors.
- > Secondly it is important to test and validate that the implementation of the concept will not lead to any reduction of safety.
- The third objective in this exercise is to test if the introduction of AOC data in computing trajectory prediction will lead to safety benefit.
- Fourth validation objective is to determine whether it is possible to detect grossly incorrect values. This supports the requirement to accept faulty data without endangering safety.

4.2.3 Summary of Validation Objectives and success criteria

- Section 4.1 gives an overview to the validation exercises. The link to the high level objectives can be found in section 4.2.3.1. Note that some operational requirements related to the use of AMAN and performance improvements as defined in the concept document D01 Ref. [11] have not been validated statistically due to a relatively limited set of sample data for the arrival phase.
- 921 An overview of requirements coverage can be found in the validation plan document D02, Ref. [12].

4.2.3.1 Link to high level objectives

Step 1 Validation Targets for OFA 03.01.01: Trajectory Management Framework

- > ENV/FUEL EFF: no target, but some benefit achieved. See Table 12 for details.
- ➤ Airspace Capacity: N/A
- > Airport Capacity: no target
- ➤ Predictability/Flight Duration Variability: -0.12% (En route Variability and TMA departure variability. For AMAN part, it might have an impact but could not be evaluated.
- ➤ Cost Effectiveness: Direct link to capacity.
- ➤ Safety: Reduction of false and missed alerts By the TP not by the ATCO (he might often be able to detect that the CD&R tool didn't see the conflict) have been evaluated, but how these alerts translate into Mid-Air collision rates is not known.

Fro	m B4.1			5.5.2 Data S	Sources
KPA	KPA KPI 5.5.2		V2 V3 Cost Benef		
	12.	Exercise Objective	Validation	Validation	Analysis
SAF1 ATM-related safety outcome	SAF11 O1 I1 Safety level: Accident probability per operation (flight) relative to the 2005 baseline	Validate that ATM system performance improvement through CDnR with no Adverse effects on safety	1.No adverse effect on safety. 2.Reduction in number of missed alerts by 10%.	During V3 validation ATCOs comments concluded that no adverse effect on safety	VOID. This KPI is not concerned with CBA.
ENV1 Environment al Sustainabilit y Outcome ENV11 Atmospheric Effects ENV1111 Gaseous	ENV1111 O1 I1 O1 I1: Average fuel consumption per flight as a result of ATM improvements	Validate that Trajectory accuracy improvement that leads to improvement in average fuel consumption.			Assuming: 1.ECAC wide. 2.100% data sharing and usage. 3.Number of flights per year = 8 760 000 That leads to about 2 million kg fuel economy a year, This leads to an average fue consumption reduction linked to level-off avoidance = 200g per flight.
Emissions	ENV1111 O1 I2: Average CO2 emission per flight as a result of ATM improvements	Validate that Trajectory accuracy improvement that leads to improvement in average CO2 emission.			Assuming: 100% data sharing and usage. There is an estimated reduction of 6100 metric tons of CO ₂ a year. This leads to an average CO emission reduction = 700g of
CAP2 Local airspace capacity	CAP2 O1 I1 Hourly number of IFR flights able to enter the airspace volume	Validate that ATM system performance improvement through CDnR Baseline operation without AOC data	Rate of conflict alerts due to TP errors reduced by 10% that would lead to capacity improvements.	With AOC data applied controllers expressed a preference in 12% of cases. That should lead to increase in the number of handled flights.	Assuming: 100% data sharing and usage. 300 false alerts avoided per day (see Figure 10) that means 109500 conflict resolution actions avoided per year annually at ECAC level. The average conflict resolution time = 51 seconds. Expected impact on fligh duration variability is assumed to be negligible, Calculation of controller workload reduction = 109500 avoided conflict resolutions x 51 seconds (Ref [18]) = 5584500 seconds saved. (93075 minutes or 1551 hours)
PRD1 Business trajectory predictability	PRD1112 Arrival punctuality	Validate that Trajectory accuracy improvement as a result of using AOC data.	Rate of conflict alerts due to TP errors improved by 10% that will improve continuous climb. Arrival punctuality is not concerned by the exercise anymore, as we couldn't do the AMAN evaluation. However, for the		

				concerned part of the trajectory where the project has an impact (i.e. more continuous climbs), the impact on timing is considered negligible.		
	CEF1 ATM Cost Effectivenes S	CEF112 O1 I1 Total annual en route and terminal ANS cost in Europe, €/flight				As a result of improved TP, there is level-offs avoidance which translate into some money saving: Money saving per flight = (Total benefit – Total cost) / number of flights, since: Total cost = \in 225,700.0 Total benefit = \in 1503,386 Number of flights per year = 8760,000 Then: Benefit per flight = (1503386 – 225700) / 8760000 = \in 0.146.
93	Table 12: Link to high-level objectives					

4.2.3.2 Early benefit option 936

935

937

938 939

940

941

942 943

944

945

946

947

948 949

950

A key benefit to this concept is the possibility of early implementation, which is due to the limited changes required to current and near term systems (both ground and airborne). The concept will also provide benefits even if not all airspace users participate.

4.2.3.3 Choice of metrics and indicators

Metric / Indicator	Related SESAR Indicator	Justification
Time difference at point	Accuracy	Improved TP accuracy is the key for any system improvements.
Level difference at point	Accuracy	Improved TP accuracy is the key for any system improvements.
Number of missed/false alerts	Safety	Reduced number of missed and/or false alert should lead to safety improvements.

Table 13: Metrics and Indicators

4.2.4 Summary of Validation Scenarios

The validation scenario preparation was guided by the concept as described in D01 Ref [11] and the proposed validation plan D02 Ref. [12]. The concept of using AOC data in computation of ground TP is independent of the application that uses the computed TP.

The validation at ATC tools performance level will require an operation in which current or near-term TP-driven ATC tools are used. As an example of these tools we consider NATS iFACTS system. iFACTS is used in London Area Control centre. This area is consistent with the definition of SESAR TMA. The traffic in this area covered by London Area Control centre includes a large amount of climbs and descends.

951 The TP used in this system is considered representative for current or near-term TP systems in the TMA. Therefore the validation of ATC tool performance will be based on the iFACTS system. 952

Therefore, to drive this validation, a selection of operational days and sectors took place to ensure the traffic level and reasonable level of climb and descent flights that can be in the validation scenario.

Collected data that represent these scenarios formed a part of this activity, and Table 14 gives a summary of these scenarios. For full details see Appendix B, also AOC data provided by participating airlines played a role in setting-up these scenarios.

Sectors	Arguments	Time Interval
Brecon Region Sectors: LAC 5, 23 Feeders: 6, 36, 8, 3, 7, 9, TC Ockham, PC Wallasey, PC S29, Ireland FIR (via OLDI	 The arguments to select this region are: These sectors have a significant amount of vertical change (in/out of LTMA to West, in/out of Manchester to South). The crossing at Brecon provides significant opportunity for interactions. Mixed fleet present (trans-Atlantic). With cooperation of various airlines that provided the validation activity with a broad range of flights. Relatively large arrival and departure peaks for heavy aircraft. Heavy aircraft arrival and departure peak not within the same interval. Vertical changes achieved by stepped procedures instead of continuous climb/descent. However, many aircraft do get further clearances before reaching level flight. 	Time interval between 15:00 and 18:00 is selected which provides a good mix of supported types.
Dover Region	The arguments to color this region are:	Time interval
Sectors: LAC 15, 16, 17	The arguments to select this region are: ➤ Sector 17 has long descents (delegated from France FIR) often 'when ready'.	between 09:00 and 12:00 is selected which
Feeders: TC BIG,	➤ Lowest amount of sectors (3 + 3 feeders).	provides a good mix of
TIMBA, 25, Paris/Reims FIR (via OLDI)	➤ Largest amount of SJU supported traffic into LTMA.	supported types.
(,	NetJets (business jets) most likely to be represented.	types.
	Regional aircraft best represented.	
	With BA broadest variety of types/ranges in arrivals and departures at the same time.	
	Strong variety of heavy use (by BA) ranging from 200 to 6000 nm	

Table 14: Summary of proposed scenarios

4.2.5 Summary of Assumptions

In Chapter 6 validation exercises will be addressed in details including the assumptions for each exercise. However, the validation strategy is built on the results of the analysis of TP accuracy of the iFACTS TP algorithm based on recorded operational data (EXE-05.05.02-VALP-0069.0100) as detailed in D03 Ref. [13]. This introduces a number of assumptions that affect the complete validation:

- The iFACTS TP algorithm is a BADA based model similar to most of the current and near term TP algorithms. For this reason the iFACTS TP algorithm and its behaviour can be considered a representative for current and near term TP algorithms in general.
- The recorded accuracy of the iFACTS TP in the London Area airspace is representative of the accuracy of CDnR TMA TPs.

953

954

955

956

957

958

959

960 961

962

963 964

965

966

969 970

971

972

- The recorded dataset provides sufficient variation in fleet, operations, tactical instructions and meteorological effects to allow application of the results in general cases.
- The AOC data provided in a form that allows the use of such data without large preprocessing activities.

973 4.2.6 Choice of methods and techniques

Supported Metric / Indicator	Platform / Tool	Method or Technique	
Safety	RAVE	Real Time Simulation	
Efficiency	RAVE	Real Time Simulation	

Table 15: Methods and Techniques

4.2.7 Validation Exercises List and dependencies

976

977 978

979 980 This section lists the validation exercises and dependencies. This can be summarized in the following diagram:

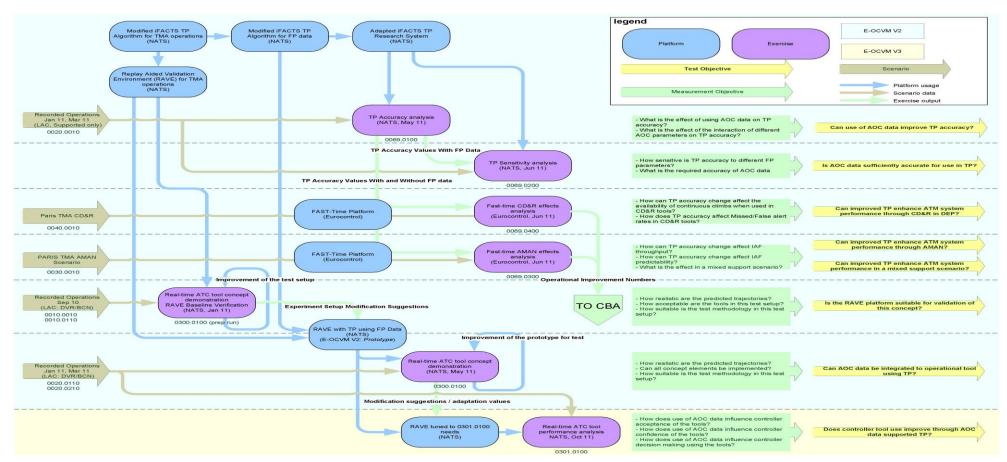


Figure 3: Validation Exercises List and dependencies

981 5 Conduct of V3 Validation Exercises

5.1 Exercises Preparation for EXE-05.05.02-VALP-0301.0100

- This section covers the preparation of validation exercises considered in this report. All validation activities use NATS iFACTS model.
- NATS iFACTS system provides the controller with an advanced set of support tools in order to reduce workload and so increase the amount of traffic he/she can comfortably handle. These tools are based on Trajectory Prediction (TP). iFACTS systems provide decision making support and facilitate the
- 988 early detection of conflicts in and around the sector.

982

996

997

998

999

1000

1001

1002

1003

1004

1005 1006

1007

1008 1009

1010

1011

1012

1013

1014

1015

- 989 This validation exercise uses the NATS Replay-Aided Validation Environment (RAVE).
- The NATS Replay-Aided Validation Environment (RAVE) replays recorded radar data with actual tactical instructions so that the near-term TP/MTCD ATC tools suite (iFACTS, as used in this exercise) thus receives exactly the same inputs as in normal operation. For more details regarding RAVE system see appendix D.3.
- 994 The preparation for this exercise consists of the following steps:
- 995 1. Select suitable date from live operation that contains appropriate level of traffic.
 - Collect various data types required to compute trajectory predictions that include: radar data, RT data, and metrological data.
 - 3. Select all required data for the selected date above to test RAVE.
 - Collect the corresponding AOC data that is matching the selected date above.
 - 5. Handle the collected data and perform some manipulation of the traffic sample collected for this such that individual aircraft radar tracks could be moved forward or backward in time, or to have their cruise level adjusted. This method allowed changes to be made to the traffic sample to ensure that a suitable and comprehensive range of interactions took place.

5.2 Exercises Execution

The following table gives a list of the validation exercise with its start and end execution dates as well as the corresponding dates for its analysis.

Exercise ID	Exercise Title	Actual Exercise execution start date	Actual Exercise execution end date	Actual Exercise start analysis date	Actual Exercise end date
EXE-05.05.02- VALP-0301.0100	Real-time ATC tool performance analysis	21/03/2011	11/11/2011	14/11/2011	01/02/2012

Table 16: Exercises execution/analysis dates

5.3 Deviations from the planned activities

This section provides a list and description for any changes or modifications to the validation plan Ref. [12]. The changes with respect to the content within the Validation Plan should be highlighted within each subsection. Any change (update/creation/deletion) in validation objectives, validation scenarios, validation requirements or in the validation exercises should be expressed in the same way as described in the validation plan.

In the following sub-sections these deviations to the validation strategy or/and validation plan will be covered.

Project ID 05.05.02. Edition: 00.00.00 D04 - Final Project Report on the concept and benefits for improving TP using AOC data

- 1016 5.3.1 Deviations with respect to the Validation Strategy
- There is no deviation from the validation strategy as described in Ref. [12].
- **5.3.2 Deviations with respect to the Validation Plan**
- 1019 There is no deviation from the validation plan as described in Ref. [12].
- 1020

V3 Validation Exercise Report: EXE-05.05.02-VALP-1021 0301.0100 1022 This section provides validation exercise report for exercise EXE-05.05-02-VALP-0301.0100. This report in 1023 1024 accordance with the validation plan as described in Ref. [12]. 6.1 Exercise Scope 1025 1026 This validation exercise addressed the concept of using AOC data in computing ground Trajectory 1027 Prediction. 1028 This phase of validation was concerned with the introduction of various parameters and investigating the impact of each parameter on the accuracy and stability of the computed Trajectory Prediction and 1029 1030 the overall performance of the system. 6.1.1 Exercise Level 1031 1032 This exercise covered both functionality and ground ATC system levels. 6.1.2 Description of the Operational concept being addressed 1033 1034 This validation exercise addressed the concept of using AOC data in computing ground Trajectory 1035 Prediction. 1036 The following set of operational requirements was validated: 1037 REQ-05.05.02-OSED-0100.0100 1038 REQ-05.05.02-OSED-0100.0200 1039 REQ-05.05.02-OSED-0200.0100 1040 REQ-05.05.02-OSED-0200.0200 REQ-05.05.02-OSED-0300.0100 1041 1042 \triangleright REQ-05.05.02-OSED-0300.0200 1043 REQ-05.05.02-OSED-0400.0000 1044 REQ-05.05.02-OSED-0400.0100 REQ-05.05.02-OSED-0400.0200 1045 REQ-05.05.02-OSED-0400.0300 1046 REQ-05.05.02-OSED-0500.0100 1047 1048 REQ-05.05.02-OSED-0500.0200 1049 This phase of validation of the concept of the use of AOC data to improve Trajectory Prediction was a 1050 V3 activity. 6.2 Conduct of Validation Exercise 1051 **6.2.1 Exercise Preparation** 1052 The NATS Replay-Aided Validation Environment (RAVE) replays recorded radar data with actual 1053 tactical instructions so that the near-term TP/MTCD ATC tools suite (iFACTS, as used in this

- 1054
- 1055 exercise) thus receives exactly the same inputs as in normal operation. For more details regarding
- RAVE system see Appendix D.3. 1056
- A suitable date was selected from live operations, same as described in Appendix C. A set of sectors 1057
- 1058 was selected in the required airspace aiming to maximise the benefit from this exercise. For more
- details regarding the selected sectors see Appendix B. 1059

Project ID 05.05.02. Edition: 00.00.00 D04 - Final Project Report on the concept and benefits for improving TP using AOC data

- Various data types on these selected days were recorded including radar data along with the accompanying RT. The RT was transcribed and converted into tactical HMI inputs to the NATS RAVE system. For more details regarding various data types required for this system see Appendix C.
- The RAVE system uses UK NAS output for Flight Plans along with recorded MET data for the sample days supplied by the UK Met office.
- The Airline Operational Control (AOC) data used in the validation was specific data supplied by the airlines contributed to this validation activity for each specific aircraft on that particular day. For more details regarding the data collected for this validation Appendix C.
- The tools suite produced trajectories on the basis of the tactical instructions, supplemented by the AOC data as applied on a run by run basis. This enabled the trajectories to be compared against the flight profile for the aircraft actually flown on the day.
- 1071 In this way each run of this exercise was entirely repeatable and facilitated direct comparison between 1072 different combinations of AOC data and to changes in uncertainty parameters of the trajectory 1073 prediction tools.
- The collection of various data types followed by a data handling activity that allowed for some manipulation of the traffic sample such that individual aircraft radar tracks could be moved forward or backward in time, or to have their cruise level adjusted. The aircraft performance, climb & descent rates, speed, navigation etc. all remain identical and are unaffected by the adjustment process. The entire aircraft profile is moved in one piece. This method allowed changes to be made to the traffic sample to ensure that a suitable and comprehensive range of interactions took place in order to fully test the application of AOC data in a full range of interaction geometries and flight attitudes.

6.2.2 Exercise Execution

1082 **6.2.2.1 Introduction**

1081

1102

- This validation exercise is based on the successful conclusion of exercise EXE-05.05.02-VALP-0300.0100, full details for that exercise can be found in Ref. [13].
- During the validation activity the Real-Time simulation took place with the operation from two NATS operational controllers provided independent opinions for a scripted series of interactions involving a mixture of AOC supported and non-supported aircraft, in climb, level flight and descent.
- The Real-Time validation activity was broken down into 8 runs using 3 traffic samples. Two of the traffic samples used the BCN scenario and the third was based on the DVR scenario. In each simulation run, 2 instances of the RAVE platform were used, on adjacent screens running simultaneously, one showing near-term TP/MTCD tools (iFACTS) with no additional AOC data, the other showing TP/MTCD tools with varied configurations of AOC data applied. During the Real-Time simulation the following validation objective was evaluated in detail:
- 1094 OBJ-05.05.02-VALP-0020.0010
- During the conduct of this validation exercise and results analysis phase we had to observe various security restrictions and conditions as indicated by the airlines supported the project and provided AOC data subject to these security restrictions.

1098 **6.2.2.2 Airspace**

DVR and BCN scenarios were chosen as they covered a wide variety of flight and interaction geometries. Two NATS Swanwick AC controllers took part, one valid for DVR airspace, the other valid for BCN.

6.2.2.3 Traffic samples

Three traffic samples were used: one DVR and two BCN samples. The traffic samples were taken from recordings of radar and RT of actual traffic on two days: 21st January 2011 and 28th March 2011. The resulting samples had been reviewed by the Validation team in detail, initially identifying suitably busy periods, along with examination and logging of all of the interactions in terms of aircraft type,

Project ID 05.05.02. Edition: 00.00.00 D04 - Final Project Report on the concept and benefits for improving TP using AOC data

- 1107 potential AOC equipage, relative climb/descent attitudes, navigational status and predicted closest
- 1108 approach distances.
- As the samples were recordings of actual ATC the traffic was, as expected, separated. In order to
- 1110 establish a comprehensive range of interaction geometries and flight attitudes involving AOC
- supported and non-supported aircraft, some manipulation of the traffic samples took place. The entire
- 1112 flight profiles of a number of aircraft were adjusted, either by advancing or delaying the start time, or
- 1113 by moving it vertically.
- 1114 Specific aircraft, and their resulting interactions, were carefully chosen such that any necessary
- 1115 alterations were kept to a minimum whilst stimulating the required geometries and attitudes of
- 1116 interactions.
- 1117 In this manner a detailed script of interactions was formulated enabling the repeatable testing of a full
- 1118 range of interaction geometries and flight attitudes.

1119 **6.2.2.4 Scripts**

- 1120 The resulting scripted lists covered all possible combinations, i.e.: interactions between AOC
- 1121 supported and non-AOC supported aircraft, both supported, neither supported, climbing aircraft,
- descending aircraft, aircraft on their own navigation and those on headings. Care had been taken to
- ensure that closest approach distances (CAP) were realistic and meaningful to the participating
- 1124 controllers e.g. if the CAP of an interaction is within 5 miles (therefore classified as a Breached
- 1125 interaction) then a controller will have to act upon it immediately, irrespective of whether or not there is
- any variation due to the application of AOC data.
- 1127 In this manner the two participating controllers were asked to independently assess the same
- interactions. Then, as the samples were repeated with different AOC data configurations, reassess
- the same interactions in a structured manner.

6.2.2.5 Simulation configuration

- 1131 Two instances of each scenario were replayed simultaneously on 2 radar suites, side by side. For
- each run screen A was run in standard configuration utilising the near-term TP/MTCD ATC tools suite
- 1133 but without AOC data, while screen B, configured identically, displayed the various AOC and
- 1134 uncertainty configurations as and when applied.
- 1135 The scenarios were run with the facility to be able to "pause" the playback at any desired point,
- allowing detailed examination of displays.
- 1137 The attention of the participating controllers was drawn to each of the scripted interactions in turn and
- they were encouraged, by the validation observers, to select each flight and compare the presentation
- of the flight profiles and interaction details as displayed in the toolsets between the AOC and non-
- 1140 AOC screens.
- 1141 The participants were asked to express their opinions in terms of the displayed urgency, severity and
- position for each interaction, on each of the 2 screens, and then to express any preference for either
- 1143 configuration A or B (or neither). These opinions were recorded on a standardised form along with
- 1144 any verbal comments.
- 1145 The controllers were not informed as to which screen was displaying AOC data or of which
- interactions involved AOC-supported aircraft. In this sense, the exercise was conducted as a blind
- 1147 test.

1152

1130

- 1148 In this manner it was therefore possible to record detailed controller opinions for a wide range of
- 1149 interactions of varying geometries and attitudes with varying AOC data configurations. Thus, as
- described below, detailed results were gained into which configurations of AOC data, uncertainty
- 1151 levels and flight attitude were the most useful in aiding controller's ATC decision making.

6.2.3 Deviation from the planned activities

- 1153 Reflecting the high level of experience with the iFACTS toolset demonstrated by the participating
- 1154 controllers during this workshop, it became apparent during first day of the activity that it was only
- 1155 when applying both mass and speed AOC data that sufficient difference was observed in the portrayal
- 1156 of the interactions for substantive preferences to be expressed. Thus during the second day the

opportunity was taken to deviate from the planned exercise in order to explore a range of uncertainty levels in order to determine their significance.

Two further runs were added at the end of second day to explore error cases in support of OBJ-05.05.02-VALP-0040.0210, from the validation objectives of EXE-05.05.02-VALP-0300.0100.

6.3 Summary of Exercises Results

1159

1160

11611162

1163

1164

1165

1166 1167 1168

1169 1170

11711172

Here the results of the Validation Exercises that provides a summary. The summary is presented in the table below given as an example. This shows the summary of results compared to the success criteria identified within the Validation Plan Ref. [12]. The analysis should cover all the Validation Objectives embedded in all Validation Exercises as per the corresponding Validation Plan.

Exercise	Exercise	Validation	Validation	Success	Exercise Results
ID	Title	Objective ID	Objective Title	Criterion	
EXE- 05.05.02- VALP- 0301.0100	Real-time ATC tool performan ce analysis	OBJ-05.05.02- VALP- 0020.0010	Validate that CDnR tool performance in high density Area Control airspace improves in when the underling TP is supported by AOC data.	CDnR tool performance for Area Control improves when the underlying TP is supported by AOC data when compared to performance without the use of AOC data.	Noticeable improvements in the performance of CDnR when the underlying TP is supported by AOC data.

Table 17: Summary of Validation Exercise Results

Validation Objective ID	Validation Objective Title	Success Criterion	Exercise Results
OBJ- 05.05.02- VALP- 0020.0010	Validate that CDnR tool performance in high density Area Control airspace improves in when the underling TP is supported by AOC data.	CDnR tool performance for Area Control improves when the underlying TP is supported by AOC data when compared to performance without the use of AOC data.	Noticeable improvements in the performance of CDnR when the underlying TP is supported by AOC data.
OBJ- 05.05.02- VALP- 0040.0210	Validate that TP system can be developed to accept all incoming data regardless of the presence of grossly incorrect values.	AOC data with grossly incorrect values is taken into the system. (Note that OBJ-05.05.02-VALP-0040.0010 prevents this data from subsequently being used)	The system successfully switched to current base line using the default BADA values.

Table 18: Validation Objectives and exercises results for EXE 0301.0100

For more detailed results from this validation activity, see Appendix E.

1173 6.3.1 Summary of Objective Findings

- 1174 With the same interaction probed on each of the two radar suites, differences in the displays of the
- 1175 TP/MTCD toolsets were apparent between the AOC supported presentation and the non-AOC
- 1176 supported.
- 1177 Visually comparing the display of the MTCD tools, differences were often noted in the predicted
- positions of interactions, typically with small variations of the order of 1 or 2 miles in the predicted
- separation distance at closest approach point (CAP), or of 1 or 2 minutes of predicted time until CAP.
- There were also occasions when the classification (and associated colour) of an interaction differed
- between the two displays e.g. Not Assured (yellow) in one and Potential Breach (orange) in the other.
- 1182 Similarly the application of AOC data was seen to have influenced the climb profile of some aircraft
- 1183 such that, typically, the climb rate was portrayed by the tools as having increased and the top-of-climb
- 1184 point achieved earlier. The same display also revealed the varied amounts of uncertainty applied run
- 1185 by run.
- However, the differences as observed were frequently not considered to be of sufficient magnitude to
- have any impact upon the assessment of an interaction or on the ATC decision making process. On
- occasions, when the participants expressed a preference for one display over the other, that choice
- was almost exclusively for the more severe and, therefore, cautious interpretation.
- 1190 A summary of subjective findings was compiled at the end of this exercise. These were confirmed by
- the participating controllers as correctly reflecting their opinions:
- 1194 > Those differences were predominantly for aircraft in the climb phase.
- Significant differences were only observed when both Mass and Speed data were applied, combined with reduced uncertainty.
- 1199 Where differences were observed, whichever was the more cautious option was selected. This was due to:
- Trust and confidence in the tools (limited at present as iFACTS is a new system).
- The more cautious approach is more in line with current MOPs.
- 1203 Ability to issue different clearances not achieved with these changes due to above issues:
- Requires trust and confidence in the tools
 - This is not present as it's a new ATC system
- 1206 May also require changes to airspace and procedures to enable different clearances to be 1207 issued
- 1208 The application of incorrect AOC mass data did not adversely affect the performances of the TP/MTCD toolset.

1210 6.3.2 Results on concept clarification

1211 Not applicable.

1205

1212 6.3.3 Results per KPA

- 1213 A number of differences were observed in interactions and it is reasonable to believe that the
- 1214 introduction of AOC data would improve both efficiency and safety of the system. Results are covered
- 1215 as presented per KPA in details in Table 12.

1216 6.3.4 Results impacting regulation and standardisation initiatives

At the end of this project, and after the completion of V3 the information reported standards will need to be developed for the provision of AOC data to ensure both AOC/ATC interoperability and AOC data reliability this seems to be linked with work performed by P 7.6.2.

6.4 Analysis of Exercise Results

1220

1221 1222

1223 1224

1225

1226

1227

1228 1229

1230

1231

Validation Objective ID	Validation Objective Title	Success Criterion	Exercise Results	Validatio n Objective Analysis Status per Exercise
OBJ-05.05.02- VALP- 0020.0010	Validate that CDnR tool performance in high density Area Control airspace improves in when the underling TP is supported by AOC data.	CDnR tool performance for Area Control improves when the underlying TP is supported by AOC data when compared to performance without the use of AOC data.	Noticeable improvements in the performance of CDnR when the underlying TP is supported by AOC data.	Success Criterion is achieved.
OBJ-05.05.02- VALP- 0040.0210	Validate that TP system can be developed to accept all incoming data regardless of the presence of grossly incorrect values.	AOC data with grossly incorrect values is taken into the system. (Note that OBJ-05.05.02-VALP-0040.0010 prevents this data from subsequently being used)	The system successfully switched to current base line using the default BADA values.	Success Criterion is achieved.

Table 19: Validation Objectives Analysis Status in EX 0301.0100

6.4.1 Unexpected Behaviours/Results

The following unexpected behaviour was noticed during the exercises preparation:

The business jets aircraft category was included in the list of aircraft to consider but has been discarded due to the small sample collected. This might not be a problem as this category represents a pretty small segment of the European traffic (however, they might cause conflicts with different aircraft that is included in this study, which could be more complex to solve/detect by the ATCO and his CDnR tools).

6.5 Confidence in Results of Validation Exercise

6.5.1 Quality of Validation Exercise Results

This exercise used recordings of real operational scenarios with associated RT, flight plan and meteorological information on operational algorithms implemented on a validation platform. This was supplemented with specific AOC data obtained directly from a number of airlines.

Project ID 05.05.02. Edition: 00.00.00 D04 - Final Project Report on the concept and benefits for improving TP using AOC data

- 1235 A number of validation scenarios during workshops with the participation of operational ATCOs and
- the results are reported in this document. The report in this section considered the quality of the
- 1237 results for the validation exercises. For more details about the results and its quality see Appendix E.
- 1238 The dual-suite configuration of the validation platform allowed for direct real time comparison between
- 1239 AOC supported and non-supported iterations simultaneously. The comprehensive script
- 1240 encompassed a comprehensive range of interactions for AOC supported aircraft in all attitudes and
- 1241 phases of flight.

1247

6.5.1.1 Traffic samples

- Despite minor manipulation of the traffic sample to engineer some specific scenarios, the majority of
- the traffic samples were unmodified recordings of real radar. Therefore, the traffic was already
- separated and many of the interactions no longer required ATC decisions to be made. Thus the small
- 1246 differences observed with AOC data applied made little impact on the controllers' opinion.

6.5.1.2 iFACTS specific considerations

- 1248 This exercise was conducted using the iFACTS system in standard configuration and, as such, the
- 1249 results of this activity must necessarily reflect the requirements and limitations of iFACTS which, in
- turn, imposes some limitations as to the applicability of the AOC data.
- 1251 In particular, during level flight iFACTS uses radar derived track ground speed. Therefore, it was not
- 1252 anticipated that the use of AOC speed data would have any effect upon the standard iFACTS
- trajectory prediction during this phase of flight. This was borne out during this exercise. In practise,
- 1254 iFACTS already used a more accurate data source in the (recorded) radar derived ground speed than
- 1255 in the AOC prediction of speed.
- 1256 Similarly, when a descend-when-ready instruction is entered into iFACTS the aircraft's descent rate
- and uncertainty are calculated to coincide with either a fix or the sector boundary. For this reason the
- 1258 application of reduced uncertainty during the descent is over-ridden by the iFACTS level-by
- 1259 functionality.
- 1260 Other applications of TP/MTCD tool technology may not have these same limitations and may
- therefore allow a different level of support of AOC data.

1262 6.5.2 Significance of Validation Exercise Results

- 1263 This validation activity used NATS' RAVE system as its validation environment with the use of AOC
- 1264 data collected from live flights. As such the significance of validation results can be summarised as
- 1265 follows:

1268

1269

1270

1271

12721273

1274

1275

1276 1277

1278

- 1266 Statistical significance: has been ensured during the exercise by controlling sample size versus the
- minimum effect to be detected.

Operational significance:

- AOC data used has been collected from live flights, hence is representative of real data in today's operations.
- > Different aircraft categories were considered that make the reported results more representative to today's operations.
 - The validation used NATS' RAVE system which uses live recorded data in computing TP which adds significant value to the results and CDnR assessment. However, it depends on current iFACTS implementation and results may vary with other implementation/operational tools.
- > The participants to the workshops were validated operational controllers that add great significant to the observations and findings of this exercise.

1279 **6.6 Requirement Coverage**

Ops. Req. ID	Ops. Req. Title	OI	Exercise ID	Exercise Title	Validation Objective ID	Validation Objective Title	Validation Objective Analysis Status per exercise	Validation Objective Analysis Status	Req. V&V Status
REQ- 05.05.02- OSED- 0100.0100	Airspace user data input.		EXE- 05.05.02- VALP- 0301.0100	Real-time ATC tool performance analysis	OBJ- 05.05.02- VALP- 0010.0110	Sensitivity to AOC data accuracy	ОК	ОК	ок
REQ- 05.05.02- OSED- 0100.0200	SWIM Processing		EXE- 05.05.02- VALP- 0301.0100	Real-time ATC tool performance analysis		Refer to SWIM			
REQ- 05.05.02- OSED- 0200.0100	AOC Data Acceptance		EXE- 05.05.02- VALP- 0301.0100	Real-time ATC tool performance analysis	OBJ- 05.05.02- VALP- 0040.0210	Uncondition al data acceptance	ОК	ок	ок
REQ- 05.05.02- OSED- 0200.0200	AOC Data Verification		EXE- 05.05.02- VALP- 0301.0100	Real-time ATC tool performance analysis	OBJ- 05.05.02- VALP- 0040.0010	Rejection of invalid data	ок	ок	ок
REQ- 05.05.02- OSED- 0300.0100	Gross-Error data handling		EXE- 05.05.02- VALP- 0301.0100	Real-time ATC tool performance analysis	OBJ- 05.05.02- VALP- 0040.0310	Correct fall back to baseline operation	ок	ок	ок
REQ- 05.05.02- OSED-	ATC-system Internal Reporting		EXE- 05.05.02- VALP-	Real-time ATC tool performance	OBJ- 05.05.02- VALP-	Correct fall back to baseline	ОК	ОК	ОК

0300.0200		0301.0100	analysis	0040.0310	operation			
REQ- 05.05.02- OSED- 0400.0000	Mixed Mode Functionality	EXE- 05.05.02- VALP- 0301.0100	Real-time ATC tool performance analysis	OBJ- 05.05.02- VALP- 0070.0010	Demonstrat e use of AOC data in mixed mode	OK	ОК	ОК
REQ- 05.05.02- OSED- 0400.0100	AOC data not available	EXE- 05.05.02- VALP- 0301.0100	Real-time ATC tool performance analysis	OBJ- 05.05.02- VALP- 0040.0020	Baseline operation without AOC data	ОК	ОК	ОК
REQ- 05.05.02- OSED- 0400.0200	AOC data available	EXE- 05.05.02- VALP- 0301.0100	Real-time ATC tool performance analysis	OBJ- 05.05.02- VALP- 0060.0010	Demonstrat e use of AOC data in TP in operational system.	ОК	ОК	ОК
REQ- 05.05.02- OSED- 0400.0300	ATC-system ability to switch between two options.	EXE- 05.05.02- VALP- 0301.0100	Real-time ATC tool performance analysis	OBJ- 05.05.02- VALP- 0070.0010	Demonstrat e use of AOC data in mixed mode	OK	ОК	ОК
REQ- 05.05.02- OSED- 0500.0100	Data access time restriction mechanism	EXE- 05.05.02- VALP- 0301.0100	Real-time ATC tool performance analysis		Refer to SWIM			
REQ- 05.05.02- OSED- 0500.0200	Data access authorisation mechanism	EXE- 05.05.02- VALP- 0301.0100	Real-time ATC tool performance analysis		Refer to SWIM			

Table 20: Requirements Coverage Synthesis

1281 6.7 Overview of Validation Objectives Status for P 05.05.02

1282 Coverage of the overview of validation objectives status for P 05.05.02 can be found in Appendix I.

6.8 Conclusions and recommendations

1284 6.8.1 Conclusions

1283

1300

- Through analysis of the subjective feedback, comments received and the comparisons detailed in Appendix E Table 34, Table 35 and Table 36 the introduction of AOC mass and speed data into TP does produce noticeable differences in the information displayed in the TP/MTCD tools. These differences were most noticeable for aircraft in the climb phase of flight, but some differences were also noted for aircraft in the descent.
- The most noticeable differences is when AOC mass and speed data are used together while the least noticeable difference when AOC speed data is used alone.
- 1292 It should be noted that in the majority of cases the introduction of AOC data did produce a noticeable
 1293 difference in the display of interactions and trajectories. However, during this exercise, the conditions
 1294 under which the differences were sufficient for the controllers to express a preference were limited to
 1295 interactions involving climbing aircraft along with the application of both Mass and Speed data
 1296 combined with reduced uncertainty. Under these circumstances, preferences were expressed for up
 1297 to 30% of cases.
- The system was robust to the application of incorrect AOC mass data. No preferences or inconsistencies were reported by the controllers under these conditions.

6.8.2 Recommendations

- 1301 It is recommended to share AOC data for improving the performance of conflict detection tools.
- The participant's controllers both suggested that traffic samples taken from busier times of the day would be of benefit.
- 1304 It was observed that the controllers would take considerably less notice of an interaction predicted to be more than 10 miles apart and more than 10 minutes in the future, compared to a prediction around or below the 8 mile line. It is recommended that traffic samples for future activities should be engineered to include a high proportion of interactions within the range of 5-8 miles and 5-10 minutes. These would be interactions to which the controllers would need to take action and would also
- potentially show more critical differences between systems supported with AOC data and unsupported ones.
- 1310 unsupported ones.
- 1311 A range of levels of uncertainty were applied along with Mass & Speed AOC data and the results
- varied accordingly. Varied levels of uncertainty should be applied to non-AOC runs in order to prove
- that the differences noted were due to the application of AOC data.

7 Cost Benefit Analysis Methodology 1314

7.1 Introduction

1315

- 1316 This section covers the Cost Benefit Analysis (CBA) performed for the concept of using Airline Flight
- 1317 Plan Information into Air Traffic Control (ATC) Trajectory Prediction (TP) Tools.
- This study is based on the work that took place during project 05.05.02 in which the impact of the use 1318
- 1319 of different airline flight planning parameters in improving the accuracy of ground trajectory prediction
- 1320 were investigated and validated. Take-off aircraft mass and speed profile were considered as the
- 1321 most interesting parameters.
- 1322 Benefits when these two parameters are used in ground TP system are:
- 1323 1. Fewer assumptions used to predict the trajectories.
 - 2. Smaller uncertainties in the predicted trajectories.
- 1325 3. More stable trajectory predictions.
- 1326 4. More accurate trajectory predictions.
- 1327 Due to data availability only the departure phase is considered in this Cost Benefit Analysis study, so the study considers only prediction improvement for climbing aircraft. 1328
- 1329 The computation of a more accurate trajectory prediction allowed the reduction of the trajectory prediction uncertainty. Figure 4 and Figure 5 show the impact of reducing trajectory prediction 1330
- 1331 uncertainty. This reduced uncertainty buffer would provide benefits in the ATC system as controller
- tools would identify fewer false conflict alerts as well as there being fewer missed conflicts. Since false 1332
- conflict alerts cause additional controller workload as the controller has to assess all conflict alerts and
- 1333
- decide what action to take, so fewer false alerts would mean less unnecessary assessment and 1334
- action but the project could not assessed this assumption due to lack of time. Also for the missed 1335 1336 conflicts the controller has to resolve the conflict in a shorter time frame once it is identified.
- Also from Figure 4 and Figure 5 the reduction of trajectory uncertainty would allow more continuous 1337
- 1338 climb departures.
- 1339 These improvements impact on the ATC system and translate into benefits for both the airlines and
- ANSPs because if there are fewer false conflict alerts then controllers will not need to resolve them, 1340
- 1341 so the aircraft trajectories will not be impacted (e.g. via a level-off).

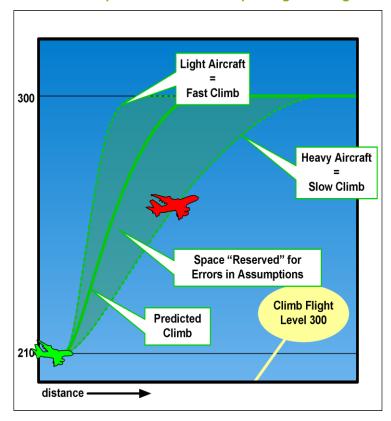


Figure 4: Trajectory prediction and uncertainty zone, without AOC data

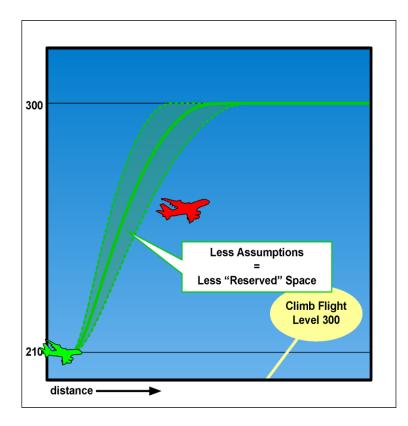


Figure 5: Trajectory prediction and uncertainty zone, with AOC data (Mass & speed)

13421343

1344 1345 1346

1347 1348

- From the validation report (D03) Ref. [13], the main findings from the conflict detection model were that at ECAC and core area scale for the use of AOC Mass and speed information versus the use of current default values from BADA model for ground TP calculations there is:
 - About 10% reduction in medium term conflict detection (for 5-8 minutes look-ahead before conflict) false alerts for climb/cruise conflicts.
 - ➤ A similar reduction (about 10%) observed on climb/climb conflict alerts.
 - No benefits in cruise phase (as expected).

1354

1355

1356

1357

1358

1359 1360

1371

1372

1376

1384

1385

1387

- Likelihood that there are some benefits associated to the descent phase, linked to improved arrival management, but this could not be assessed during the validation due to lack of suitable data.
- 1361 If the project was implemented, these operational benefits could translate into ATC benefits (e.g. 1362 workload reduction, safety improvement) and Airline benefits (e.g. fuel economy), while its implementation will imply some costs (e.g. AOC data communication, ground TP software update). This CBA has been performed to assess the cost and benefit elements.
- This CBA is looking at the near term situation where the airline would be providing the data directly to an ANSP in an ad-hoc fashion via bilateral agreements. It assumes that the same ANSP is managing both the TMA and the En-route sectors where the climb/cruise conflict would occur.
- In the longer term this data could be provided via SWIM and the additional AOC data items could be provided by the airline to the Network Manager (NM) and then distributed to the relevant ANSPs (this link is being investigated in P 07.06.02 Business/Mission Trajectory Management).

7.2 Cost Benefit Analysis Objective

- The Cost and Benefit Analysis objective is to achieve consensus and clarity in answering the following questions:
- 1375 1. What is the economic value of the project?
 - 2. What are the uncertainties and the risks associated to the decision?
- 3. According to the project evaluation what is the reasonable decision that could/should be taken?
- For this project (P 05.05.02) the specific objective is to identify if this quick win project should be recommended for wide deployment. The results will feed the 'Go/No Go' decision to move from R&D to industrialisation (i.e. move from E-OCVM V3 phase to V4 phase, [7]).
- To help answer these questions, information and data have been collected with regard to the following scoping topics:
 - Relevant population impacted by the project
 - Relevant alternatives to be considered
- 1386 > Relevant evaluation of the project.
- As detailed in Section 7.3, the CBA study has followed EMOSIA, EUROCONTROL's approach to CBA. EMOSIA standing for European Models for ATM Strategic Investment Analysis, see Ref. [14] is a comprehensive methodology developed by EUROCONTROL, designed for the European ATM/CNS community, aiming at producing informed decision-making on ATM investments. This approach was used and recommended during the SESAR definition phase.

7.3 Cost Benefit Analysis Methodology

Seeking stakeholder's ownership is preferred to stakeholder's buy-in, through "Scrum⁶" participantdriven meetings aimed at obtaining quick wins or results that can be further refined and detailed whenever necessary with a controlled number of iterations.

Two one-day workshops were necessary to complete the tasks and fulfil the objective for P 05.05.02 Cost Benefit Analysis.

1399 Table 21 shows who attended each one.

Company	Workshop 1 (29 Jan 12)	Workshop 2 (01 March 12)
NATS	Х	Х
Flybe	х	
NOVAIR	х	х
ВА		х
LIDO		Х
FCTI	×	x

Table 21: Workshop Attendees

1401 1402

1403

1404

1405

1406

1407

1408

1410

1411

1412

1413

1400

After presenting the CBA approach, the first workshop was devoted to:

- Framing the decision problem.
 - > Defining and understanding the problem solved by the project.
 - ➤ Collecting information (namely the project documentation consisting of two documents: the project description, D01 [11] and the project validation D02 [12]) and data.
 - > Structuring the alternatives to be considered.
- 1409 > Identifying main stakeholders.
 - Identifying the main assumptions.
 - Identifying the decision risks and uncertainties.

This one-day workshop ended up with a first draft of a conceptual model for each of the main stakeholders (ANSPs and airlines).

1414 1415

Using these inputs and through an exchange with the first workshop's participants, the CBA team divided into two sub-groups. One team developed the models, while the other audited and challenged the developments. This resulted in draft versions of the two models:

1418 1419 1420

1416 1417

> One model, called the 'ANSP Model' is a conceptual model eliciting the benefit mechanisms from a service provider perspective; indeed, the benefits being difficult to quantify are nevertheless qualitatively proven; this conceptual model is detailed in section 7.4.

⁶ In Scrum, projects are divided into succinct work cadences, known as sprints, which are typically one week, two weeks, or three weeks in duration. At the end of each sprint, stakeholders and team members meet to assess the progress of a project and plan its next steps. This allows a project's direction to be adjusted or reoriented based on completed work, not speculation or predictions.

The other model, called the 'Airlines Model', is a quantitative analysis, using the Excel spread sheet software, from an airline perspective; a top-down version of the model calculates the cost and benefits at the ECAC level; a bottom-up version makes it possible for a specific airline to input its own data (number of yearly flights split into three types of aircraft: Regional, Single Aisle, and Twin Aisle) and calculate its potential Net Present Value (see 'relevant evaluation' paragraph below Ref. [15] for more details on NPV) and Benefit to Cost Ratio accruing from the project, this model is detailed in section 7.5.

14281429

1430

1431

1432

1433

1434

1435 1436

1437

1438

1439

1421

1422

1423

1424

1425

1426 1427

- The relevant population was set to three stakeholder segments:
 - Airlines in general (regional, low-cost, flag carriers, cargo, charters).
 - ATC service providers operating in TMAs.
 - > General public through environmental considerations and calculations contained in the airlines model.

The 'Airlines Model' is not at the moment calibrated for airspace users other than airlines because none of these stakeholder segments (General aviation, Business aviation, Military) attended the workshops. Nevertheless the model could be calibrated for these kinds of airspace users.

The relevant alternatives considered in the CBA are:

- 1. Business as usual (or do-nothing scenario): the current situation without precise data on mass and speed in the Trajectory Prediction continues
- 2. Investment in Trajectory Prediction accuracy by providing more precise mass and speed data

1440 1441 1442

The relevant evaluation has been limited to two indicators:

1443 1444 1445

1446 1447

1450

1451

1452 1453

1454

1455

1456 1457

1458

1459

1460

1461 1462

1463

- 1. The Net Present Value, where the difference between the benefits and costs is discounted to calculate today's value of the project.
- 2. The Benefit to Cost Ratio, giving the reward of the project per money unit spent.

All monetary values are in Euro (€); the time horizon is set to 5 years in the simulations but can be entered as an input; the discount rate used is 8% to represent the cost of capital of an airline.

The two models were presented, discussed, challenged and updated during the second one-day workshop.

During this workshop the CBA team carefully distinguished between three actions:

- Verification: consisting of verifying the model is mathematically and logically consistent through a standard set of tests ensuring that frequent usual errors have been avoided; obviously this operation cannot guarantee the model is error-free but does guarantee that a minimum of quality checks has been undertaken
- Calibration: giving the scope of the model validity; at the moment the model is calibrated for the airlines segment of the airspace users; calibrating the model for another kind of airspace user is possible but would require changes to the set of data inputs and the assumptions in the model
- Validation: consisting of the stakeholders using the model with their own data and checking with independent sets of experimental data that the model predictions conform to these experimental data

1465 **7.4 ANSP View**

- During the first CBA workshop, an initial cost/benefits qualitative model was devised for the ANSP, it focussed on measuring improvements compared to the current situation. After the workshop
- questionnaires were sent to the participants to try and get data to quantify ANSP benefits, however
- too few elements were obtained to actually build a quantitative model.
- The CBA team reviewed and updated the conceptual models and then presented them during the
- second workshop (Figure 6 to Figure 9).
- 1472 Remark: Some ANSP costs elements (e.g. ANSP ground TP software update) are included in the
- 1473 Airlines model (see section 7.5) due to the current cost recovery model.

7.4.1 Qualitative Model Description

- Two main ANSP actors were listed as getting benefits thanks to the AOC data sharing: the flow management position & air traffic controllers.
- 1477 For each actor, two conceptual models are proposed:
 - 1. A "current situation" model showing the negative impact events chain (orange coloured) from ground TP inaccuracy to the relevant key performance areas (hexagonal shapes).
 - 2. A "future situation" model showing the benefits events chain (blue coloured) counteracting the negative impacts presented in the previous model (from AOC data usage to the same key performance area identified in the previous model). Remark: light blue coloured cells contain some quantification coming from the validation report.

In summary:

- ➤ For the flow management position Figure 6 and Figure 7, ground Trajectory Prediction improvement will help improve flow management decisions (e.g. opening/closing sectors, regulations) leading to improved environment and economic cost effectiveness.
- ➤ For the controller (planning & executive) see Figure 8 and Figure 9, ground Trajectory Prediction improvements will lead to improved medium term detection conflicts alerts (i.e. less false and missed alerts). Reduction in false alerts and lower missed alert rates will lead to benefits in safety and effectiveness (workload and safety incidents reduction). The workload reduction will also lead to an improved planning/executive controller's productivity providing improved financial cost effectiveness and have its impact on safety (less risk of work overload).

1474

1478

14791480

1481

1482

14831484

1485 1486

1487

1488

1489

1490

1491 1492

1493

7.4.1.1 Flow Management Position (FMP) models

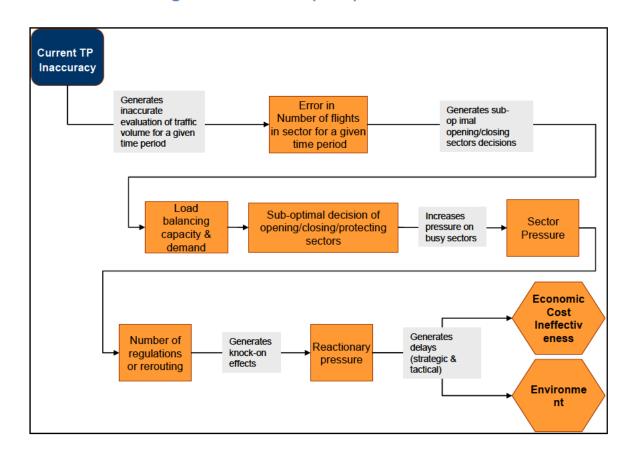


Figure 6: Current situation - Flow Management Position (FMP)

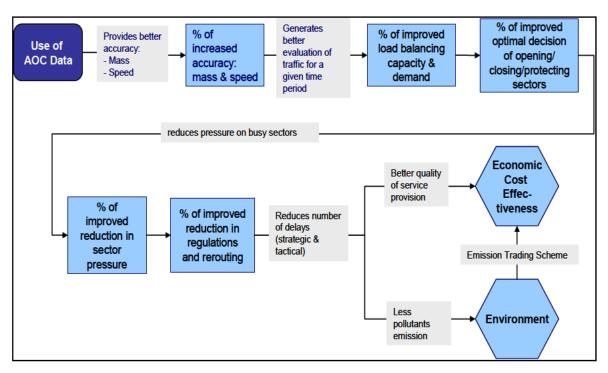


Figure 7: Future Situation - Flow Management Position (FMP)

7.4.1.2 Controller models

1511 1512

1513

1514 1515 1516

1517 1518

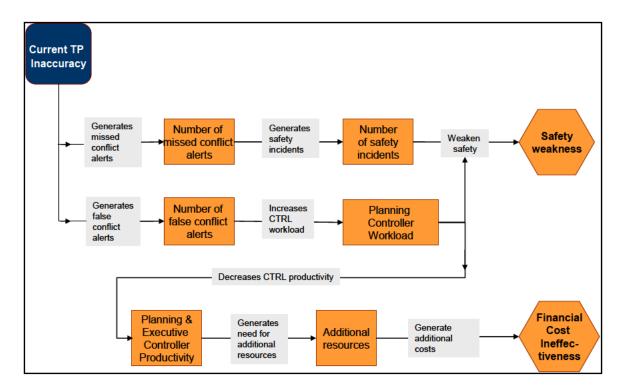


Figure 8: Current situation - Controller

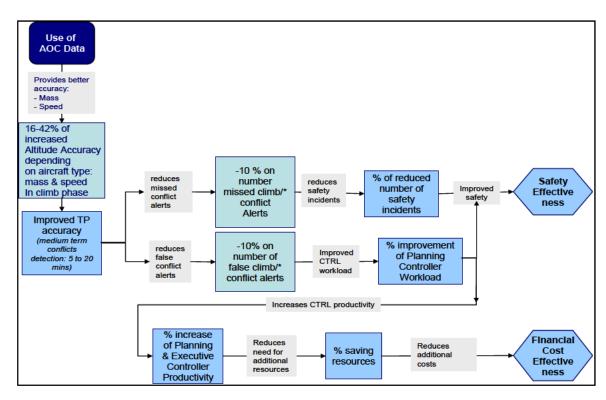


Figure 9: Future Situation - Controller

7.5 Airlines View

1520 1521

1522

1523

1524 1525

1526

1527

1528

1529

1530

1531

1534 1535

1536

During the first CBA workshop, an initial cost/benefits qualitative model was devised for the Airlines. The main airline benefit focussed on improved flight profiles due to aircraft not having to level-off due to controller actions resulting from a false conflict alert. The main benefit would be reduced fuel burn, although smaller benefits linked to flight duration and mechanical stress were also identified. These smaller benefits have not been quantified in the Airlines Model.

The main cost for the airlines would be in providing the AOC take-off aircraft mass and speed profile data to the ANSP handling the departure.

After the first workshop the CBA team developed the following lottery approach diagrams, Figure 10 and Figure 11, to quantify the reduced occurrence of level-off benefits. The data and logic in these diagrams was used to develop the Airlines Model within Excel. An overview of the development process is described in section 7.3.

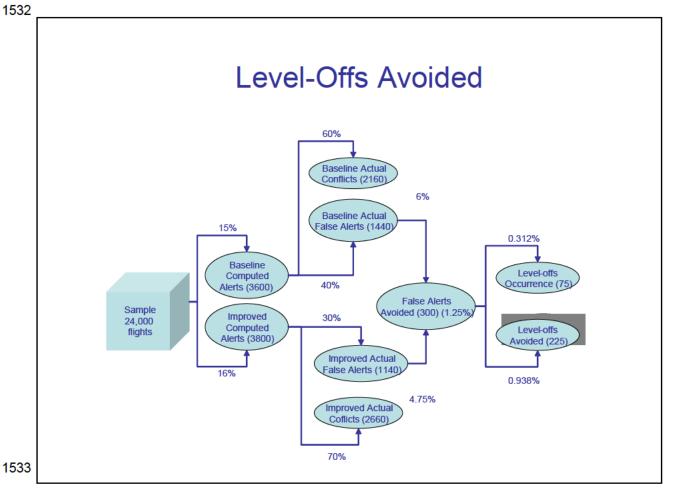


Figure 10: Identifying the number of level-offs that could be avoided (at ECAC level) using Validation results

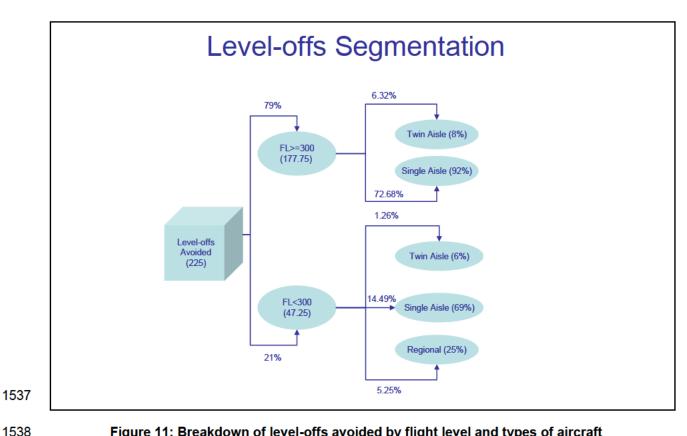


Figure 11: Breakdown of level-offs avoided by flight level and types of aircraft

The Airline Model and its results were presented at the second CBA workshop. Following participant inputs the software development costs (see section 7.5.2) and the percentage of airlines sharing their data were updated (see sections 7.5.1 and 8.4.2).

7.5.1 Benefit Assumptions

1539 1540

1541

1542

1543 1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557 1558

1559

The benefits side of the Airline Model is based on the following assumptions:

- Benefits only come from climb/cruise conflicts; climb/climb conflicts alerts were ignored as they are rarely solved using level-offs and the associated benefit is difficult to assess.
- All airlines participate and share the mass & speed information (before take-off), i.e. 100% flight data sharing.
- This assumption was considered overly optimistic in the second CBA workshop and the model was updated to allow variable participation rates (see section 8.4.2).
- Level-offs avoided below FL 300 assumes a level-off avoided distribution (i.e. of climb/cruise conflicts) similar in each aircraft type proportion as for the global traffic. Level-offs avoided at FL 300 & above assumes that regional flights are not included as these aircraft types are usually not capable of reaching those altitudes.

Full details of the model parameters that are used to calculate the benefits in the Airlines Model can be found in Table 37, Table 38, Table 39 and Table 40 in Appendix F.

7.5.2 Cost Assumptions

As ANSP costs are generally charged to the airlines via cost recovery they are included in the Airline Model.

1560 The main costs that were considered are:

- Flight plan (FPL) transmission costs: these are based on an increase of 10% of a typical FPL SITA message size to provide mass & speed information from about 250 characters to about 275; i.e. 0.075*10% = € 0.0075 per flight plan. It is assumed that the flight plan transmissions are sent to the ANSP where the departure will take place. These costs have hence been counted once, this assumes that any level-off would be avoided within the Enroute sectors of the same ANSP that received the AOC data (with the current ad-hoc data sharing it is assumed that another ANSP would not have access to the AOC data sent to the departure ANSP).
- Software development costs: these represent the necessary investment by the main ground system suppliers on their platforms as well as costs for ANSPs who develop their own ground systems to use the additional AOC data. This includes also adaptation of industry developments for different ANSP platform specificities. These costs, which relate to the development from scratch for a single system to be able to use the AOC data, represent the expected development costs and not the price at which industry would sell such modifications. The cost for one development is estimated at 1 full time equivalent (FTE) calculated as follows: 200 w.d. at 400€/day. This was multiplied by 10 to represent the main ground system suppliers and ANSPs who develop their own ground systems.
- ➤ **Depreciation:** the accounting period in years for a given asset (e.g. updated ground system using AOC data) used in deriving the amortisation of investment expenditure is set to 5 years [16].
- ➢ Discount rate is the annual rate used to discount a stream of cash flows in order to calculate their Net Present Value (NPV). The rate of 8% currently used by some major airlines and ANSPs has been applied.
- Environmental costs which in fact would be a benefit for the airlines as tradable EU Allowance permits have been considered due to less fuel consumption (see section 8.3).
- **Remark:** Costs for updating Flight Planning systems are considered negligible and are not included.
- 1587 The cost inputs to the CBA model are included in Table 40 in Appendix F.

1588 8 Cost Benefit Analysis Results

8.1 ANSP Cost Benefit Analysis Results

8.1.1 ANSP Benefits

1589

1592 1593

1594

1595

1596

1597

1598 1599

1600

1601

1602

1611

16121613

1614 1615

1616

1617

1618

1619

1620

1621 1622

1623 1624

1625

1626 1627

1628

1629

1591 Although not quantified the ANSP benefits deserve attention and consideration. They are twofold:

- A Safety benefit due to a reduction in the number of missed conflicts. A missed conflict results in the controller becoming aware of a conflict later than usual and having less time to react as well as a more limited set of resolution options available to them. In the worst case this can result in a loss of separation, in any case it increases controller workload. Therefore reducing the number of missed conflicts provides a safety benefit and a benefit avoiding increased controller workload. There is also a knock-on effect that avoiding safety incidents also saves the costs associated with investigating them.
- Controller workload reduction because the improved trajectory predictions will reduce the number of false alerts that controllers receive, so they will perform fewer unnecessary actions. This should result in controllers having an increased confidence in the controller tools. Also that could lead to potential increase in sector capacity which benefits both ANSP and airlines.
- 1603 These benefits have been acknowledged by the CBA working group.

1604 **8.1.2 ANSP Costs**

1605 Cost for software development is estimated at 1 FTE per industry ground supplier plus ANSPs who
1606 develop their own ground system (where these costs represent the expected development costs and
1607 not the price at which industry would sell such modifications). These costs are included in the Airline
1608 CBA model due to the current cost recovery model.

Other costs such as software maintenance, training etc. are considered to be sufficiently small that they would be covered by current planned budgets.

8.2 Airline Cost Benefit Analysis Results

In the following tables 4 different cases are considered (each assuming 100% data sharing):

- A so-called typical "main Airline" with 381,790 flights per year made by a fleet of regional aircraft (flying 5 legs a day), single aisle aircraft (flying 4 legs a day), and twin aisle aircraft (flying 2 legs a day); for such an airline the NPV is €287,739 after 5 years and the B/C is 7.8.
- ➤ A so-called typical "low-cost Airline" with 527,425 flights per year with just a fleet of single aisle (flying 5 legs a day); the NPV is €421,972 after 5 years with a B/C of 8.2.
- ➤ A so-called typical "regional Airline" with 141,229 flights per year (flying 5 legs a day); the NPV is negative, -€9,643 after 5 years with a B/C of 0.4 because the cost of transmitting the data is greater than the benefits of level-offs avoidance.
- ➤ The ECAC data set with 8,760,000 flights per year gives an NPV of €5,509,545 and a B/C of 6.7.

Based on the assumptions described in section 7.5, a positive Benefit to Cost ratio ranging between 6.7 and 8.2 is calculated whenever airlines have a fleet comprising mainly single and twin aisle aircraft. For a fleet of only regional aircraft the result shows a negative impact: for each euro invested the return is € 0.4 generating a negative NPV. This is explained by the fact that the additional fuel burn due to level-off is much higher for single and twin aisle aircraft than for regional aircraft.

- 1630 These results assume 100% data sharing and represent the most optimistic situation.
- The reader is invited to make their own calculations using the Excel spread sheet developed by the project, see Appendix F.1 for details on how to get the Excel file.

1	63	2
ı	UJ	J

1634

1635

		Main Airline type data set	
Regional	91,250	Level-offs avoided below FL 300 per year	21,766 € per year
Single	210,240	Level-offs avoided @ FL 300 & above per year	54,799 € per year
Twin	80,300	Total Benefit	76,565 € per year
Total	381,790	Total Cost	9,837 € per year
		Benefit to cost ratio	7.8
		Net present value	287,739 € after 5 y

1636 1637

Table 22: Main Airline type data set results

1	638

	•
Low Cost type dat	a set
Regional	0
Single	527,425
Twin	0
Total	527,425

141,229

Low Cost type data set	
Level-offs avoided below FL 300 per year	32,634 € per year
Level-offs avoided @ FL 300 & above per year	78,812 € per year
Total Benefit	111,446 € per year
Total Cost	13,589 € per year
Benefit to cost ratio	8.2
Net present value	421,972 € after 5 y

1639

Table 23: Low Cost Airline type data set results

1640 1641 1642

Regional type data s	et
Regional	141,229
Single	0
Twin	0

Regional type data set	
Level-offs avoided below FL 300 per year	1,402.46 € per year
Level-offs avoided @ FL 300 & above per year	0.00 € per year
Total Benefit	1,402.46 € per year
Total Cost	3,638.74 € per year
Benefit to cost ratio	0.4
Net present value	-9,643 € after 5 y

1643

Total

Table 24: Regional Airline type data set results

1644 1645

1646

ECAC data set	
Regional:	2,190,000
Single Aisle:	6,044,400
Twin Aisle:	525,600
Total	8,760,000

Your airline results	
Level-offs avoided below FL 300 per year	447,129.04 € per year
Level-offs avoided @ FL 300 & above per year	1,056,257.19 € per year
Total Benefit	1,503,386.23 € per year
Total Cost	225,700.00 € per year
Benefit to cost ratio	6.7
Net present value	5,509,545 € after 5 y

Table 25: ECAC data set results

8.3 Environment Results

1649

1655

1656 1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667 1668

1669

1670

1671

1672

1673

The Airlines model also looks at the Environmental benefits associated with the fuel burn reduction as a result of the avoided level-offs.

While other greenhouse gases are generated such as nitrogen oxides, sulphur oxides and water vapour, the principal greenhouse gas emission from powered aircraft in flight is CO₂. The latter is the gas considered in the Airline model.

To mitigate the climate impacts of aviation, the EU has decided to impose since 1st January 2012 a cap on CO₂ emissions from all domestic and international flights – from or to anywhere in the world – that arrive at or depart from an EU airport. This was done in 2008 by integrating aviation into the EU Emissions Trading System (EU ETS) which, according to the Commission, would be the most cost-efficient and environmentally effective option for controlling aviation emissions. The relevant EU Directive (2008/101/EC) foresees that 85% of the EU allowances (EUA) will be allotted to the aircraft operators free of charge and the remaining 15% will be available for auctioning.

A EUA is a permit to emit one metric tonne of CO₂ under the ETS. The price per permit is rather volatile and can vary between 5€ and 35 €. The current price of 8 € was used in the model.

The ECAC-wide (not per airline) results (with 100% data sharing) are:

 Avoided total cost of CO₂
 228,594 € per year

 Total unused EUA¹ permits
 6,101 per year

 Total unused EUA in €
 48,806 € per year

Table 26: EUA data results

The avoided total cost of CO₂ is given for information. It is not a cost as such for the airlines. It is an international overview of shadow prices for aircraft based on damage as well as prevention cost approaches in order to find a level of incentive for reducing emissions.

8.4 Cost Benefit Sensitivity Analysis

8.4.1 Airlines Model: Sensitivity Analysis - Overall

A sensitivity analysis is a statistical technique in which inputs are changed one at a time or in combination while the effect upon a particular variable is observed.

A high level sensitivity analysis was performed on the ECAC model inputs (assuming 100% data sharing) by giving the main input parameters a range of +/- 10%. The results are shown in a tornado diagram in Figure 12 (more details on tornado diagrams can be found in Appendix G).

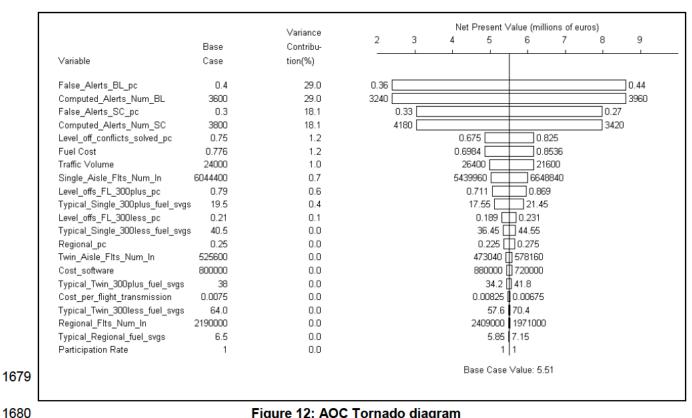


Figure 12: AOC Tornado diagram

The variables at the top of the list contribute the most to the variability of the expected results. (Details of the variables can be found in Appendix F. The name shown in the tornado diagram can be found in the 'short name' column of the tables.) If further effort were available to improve the Airlines CBA model then getting improved data for these variables (e.g. false alert rate data from an operational tool to augment the modelling data) would be the first improvement to make.

The top 4 variables listed in the tornado diagram are all used to calculate how many fewer false alerts there would be if the proposed concept to use AOC data in computing trajectory prediction was implemented. The top axis shows the impact that changes in these values would have on the NPV; so a reduction in the 'Percentage of baseline false alerts' (False_Alerts_BL_pc) from 40% to 36% would reduce the NPV from 5.51 million Euros to just under 2.4 million Euros.

Percentage of baseline false alerts (False Alerts BL pc)	B/C	NPV
36%	3.5	2,397,805
40%	6.7	5,509,545
44%	9.9	8,621,285

Table 27: Sensitivity Changes - % baseline false alerts

Table 27 shows the results for different percentages of false alerts that could occur without the AOC data concept being implemented. The values show that a higher percentage of false alerts in the baseline will result in higher benefits once the concept is implemented, hence the increased benefits for the higher percentage value.

Percentage of improved false alerts (False_Alerts_SC_pc)	B/C	NPV
33%	4.1	3,046,084
30%	6.7	5,509,545
27%	9.2	7,973,006

Table 28: Sensitivity Changes - % improved false alerts

1679

1681 1682

1683

1684

1685

1686

1687 1688

1689

1690

1691

1692

1693

1694 1695 1696

1697

1698

1699

1700

Table 28 refers to the percentage of false alerts that occur when the use of AOC data concept is implemented. Here a lower percentage of false alerts will result in fewer level-offs and more benefits for the airlines.

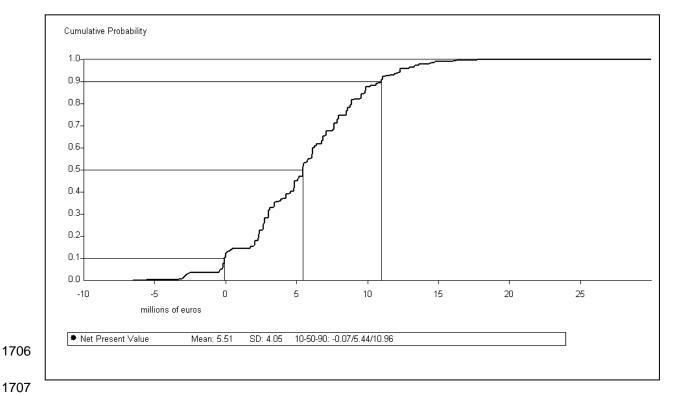


Figure 13: Cumulative Probability Curve for the concept of using AOC

The risk of the project is evaluated by means of cumulative probability curve⁸, see Figure 13. It should be read as follows: the Y axis value gives the probability to get up to the X outcome value (in million Euros); or in an equivalent way, the (1-Y) probability to get the X outcome value or more.

Under the assumptions of the model the cumulative probability curve reveals that there is a 50% probability of obtaining a result of 5.5 M Euros or more (at ECAC level). There is only a 10% probability that this project (at ECAC level) would lose money.

See Appendix A for further explanation of the Probabilistic Analysis.

8.4.2 Airlines Model: Sensitivity Analysis – Participation Rate (% of flight data sharing)

During the second workshop the question was raised over the impact of lower data sharing participation rates. A draw back of a lower participation rate is that the cost for the ground and the data communication's infrastructure are not reduced proportionally. Also it may be necessary to have a "critical participation mass" to avoid that the accurate predictions are of low use if used against lower accuracy ones in the conflict detection process.

The approach taken to model this in the Airlines model involved introducing a Participation Rate. This rate directly impacts the number of level-off avoided (i.e. a participation rate of 10% reduces the level-offs avoided from 225 to 22.5).

The following assumptions were also made:

⁸ The probabilistic approach used in this review is based on the construction of a decision tree where every possible outcome of the project is weighted with its associated probability; the sum of every possible outcome given the probabilities is used to build the cumulative probability curve

- > Software costs are assumed to be paid by all flights via the cost recovery aspect of the route charging mechanism
- Flight Plan transmission costs are only paid by the participating airlines
- > There are fewer benefits but they only go to the participating airlines (as it is their climbing aircraft that would be levelled-off)
- > The distribution of all participants is similar to the ECAC traffic distribution meaning that the conflict distribution (and associated false alerts) is similar.

The following table shows an example of how the benefit and cost ratios and the NPV values differ with different participation rates. The ECAC data set shows that with a participation rate of over 11.5% the benefits exceed the costs. This includes the impact of the software development costs that are paid by all airlines (data sharing/participating and non-data sharing/non-participating).

The Data Sharing Airlines columns show how the overall benefits increase as more airlines share data, however the benefit and cost ratio remains constant because while the benefits are increasing so are the costs linked to data communication. The Data Sharing Airlines represent the percentage of airline participation which has the same flight category distribution as the ECAC traffic, i.e. 50% participation = 50% of ECAC traffic.

	Data Shari	ng Airlines	ECAC data		
Participation Rate	B/C	NPV	B/C	NPV	
11.5%	6.7	633,598	1	23,001	
30%	6.7	1,652,864	2.5	1,169,905	
50%	6.7	2,754,773	3.9	2,409,802	
75%	6.7	4,132,159	5.4	3,959,674	
100%	6.7	5,509,545	6.7	5,509,545	

Changing the participation rate does not change the different airline 'type' results in section 8.2, Table 22 and Table 23 because those results are already presuming that each airline is sharing their data.

8.4.3 CBA Conclusions and Recommendations

8.4.3.1 Conclusions

The overall magnitude of the Net Present Value (NPV) is small whether at the ECAC level or a (fictitious but plausible) airline level; the proposed use of AOC data is a low cost/low benefit change to current operations. However, there is clearly a good business argument for implementation for single-and twin-aisle aircraft, which the analysis suggests would produce a Benefit/Cost ratio of between 6 and 8.

For Regional types of aircraft, the business case is less compelling; the CBA suggests that for every € invested, the return would only be € 0.4. This is primarily because Regional aircraft types burn low amounts of fuel and tend to fly close to their Requested Flight Level (RFL) so the scope for realising benefits is restricted significantly.

The results from this study carry an important caveat, namely that the scenarios considered assume that 100% of aircraft will be participating in the provision of the additional flight information. This assumption is extremely optimistic and should be treated with caution; it gives a 'best-case' result for the realisation of benefits. It should also be noted that a lack of commitment to participate on the part of some airlines will reduce the scope for overall benefits and in turn this can create unwillingness among other airlines to pay the costs of providing the additional data when the full benefits cannot be realised due to less-than-universal participation. The 100% assumption is not a requirement to implement the system; however it would be needed to realise the benefits mentioned above

Nevertheless, the B/C ratio (for single- and twin-aisle) is sufficiently high at 6-8 for 100% data sharing that reduced participation should still produce a positive B/C ratio, even if it is lower. The impact of

different participation rates (% of flight data sharing) show that airlines that share their AOC data get benefits.

1775

1781

1782

1783

1784 1785

1786

17871788

1789

17901791

1792

- To get benefits at ECAC level the participation rate has to be above 11.5% of traffic otherwise there are not enough benefits to outweigh the software development costs that are paid by all airlines (both data sharing and non-data-sharing).
- Further analysis on lower levels of participation is needed to demonstrate how far the benefits are likely to be reduced.
 - A further point to note is that it is entirely feasible for airlines to provide additional data beyond the mass and speed data considered here, to the point where they share all information about a given flight and thereby reduce uncertainty. However, the cost of obtaining this additional data is likely to be prohibitive while adding little to the ANSPs ability to improve the flight profile. The 'value of perfect information' (VOPI) is likely to be exceeded by its cost due to the 'laws of diminishing returns'. Mass and speed data can be considered to represent the most cost beneficial data that can be utilised by the ANSP to realise benefits for the airlines.

Other caveats:

- The Airline Model is based on a fixed fuel price and variances can be expected. Should the price exceed a certain amount airlines may decide to reduce the number of flights?
- > The model is based on fuel consumption for existing fleets and does not take into account replacement with more fuel efficient aircraft.

8.4.3.2 Recommendations

At the end of the CBA study the following points are recommended:

1794 1795 1796

1797

1798

- There is a positive business argument for implementing the AOC data in computing ground trajectory prediction for single- and twin-aisle aircraft, which the analysis suggests would produce a Benefit/Cost ratio of between 6 and 8 in the case of 100% participation.
- From the level of participation analysis in section 8.4.2 it is save to conclude that for participation rates above 12% the benefits cover the costs.

1801 9 Safety Assessment

9.1 Introduction

This section considers the results of the various validation activities to the concept of using AOC data in computing ground Trajectory Prediction with the safety implications in mind. It determines what conclusions can be drawn from a safety perspective, raising recommendations for further work where appropriate.

1806 appropriate.

1802

1810

1807 It should be acknowledged that P 05.05.02 is not fully compliant with the methodologies outlined in 1808 the SESAR Safety Reference Material, [17]. This project was initiated well in advance of the 1809 publication of this material.

9.2 Safety Assessment Analysis

This safety assessment activity is based on the results of the validation activities took place during V2 and V3 of this project. For more details of these validation activities and their results see chapters 3 and Error! Reference source not found. From these results it is likely that the use of AOC data would reduce the risk of a mid-air collision. It has been demonstrated that the use of AOC projected aircraft mass and speed along the aircraft route in the computation of ground-based Trajectory Prediction increases the accuracy of the predicted aircraft trajectories. The exact manifestations of the effects have not been fully established and are subject to further work.

It is expected, however, that there will be a reduction in the number of aircraft deviation alerts and a corresponding reduction in the number of false separation monitor alerts and other knock-on benefits which have not yet been established. These improvements are expected to improve both the performance of tactical conflict management and traffic planning and synchronisation barriers of the SESAR Mid Air Collision Accident Incident Model (MAC-AIM).

The following safety criteria are therefore considered applicable to the concept of using AOC data in computing Trajectory Prediction:

1824 1825 1826

1827

1832

1834

1835

1836 1837

1838

1839

1840

1841

1842 1843

1844

1845

1846

1823

- > <u>SC 1:</u> There shall be a reduction in the number of imminent infringements despite increasing traffic levels.
- 1828 > <u>SC 2:</u> There shall be a reduction in the number of tactical conflicts despite increasing traffic levels.
- 1830 > <u>SC 3:</u> There shall be a reduction in the number of ATC induced tactical conflicts despite increasing traffic levels.

9.2.1 Safety Related Validation Activities

1833 Throughout the safety study the following validation activities were considered relevant:

9.2.1.1 Sensitivity Analysis

Exercise EXE-05.05.02-VALP-0069.0200 covers the sensitivity of the ground-based TP to the accuracy of the AOC data provided and used in the computation of the ground-based TP, for more details see [13], section 6.2. The sensitivity analysis introduced a range of perturbation errors to the provided values of the AOC data for aircraft mass and speed. It established that ±10% error in the mass and speed values had no appreciable effect on the trajectory predictions. The analysis concluded that when setting up MOUs with the AOCs an acceptable ±10% error tolerance should be established. There was, however, no assessment as to the whether the AOCs would be capable of achieving this degree of accuracy, see recommendation 1. Additionally, the analysis did not consider the effects of failure to comply with the MOU, which are also addressed through recommendation 1.

9.2.1.2 Objective Analysis

Exercise EXE-05.05.02-VALP-0069.0100 and its results cover the objective analysis of the introduction of AOC data to the computation of ground-based Trajectory Prediction; for more details

see [13], section 6.1. The exercise identified the extent of the improvement in trajectory prediction (TP) when the trajectories are computed using AOC data. This was achieved by establishing the delta between revised trajectories calculated using AOC data and the actual radar data and comparing it to the delta between the trajectories when calculated with the default BARDA value. It was demonstrated that the inputting of AOC projected aircraft mass and speed along the aircraft route into the iFACTs trajectory prediction models significantly increases the accuracy of the predicted aircraft trajectories. It is likely that this will result in improvements to the operation of the tactical and planner controller toolset which largely employs the trajectory prediction data. The exact manifestations of the effects on the toolset have not been fully established and are subject to further work, see recommendation 2. The analysis aggregated the AOC data from a number of airlines including: BA, Lufthansa, American airlines and Flybe. It is therefore quite possible that this will result errors from individuals operators being shielded, see recommendation 3. Additionally the analysis was specific to the climb phase of flight only, see recommendation 4.

9.2.1.3 Subjective analysis

Exercise EXE-05.05.02-VALP-0300.0100 and Exercise EXE-05.05.02-VALP-0301.0100 were investigating the impact of each parameter provided from AOC data on the accuracy and stability of the computed Trajectory Prediction and the overall performance of the system, for more details see [13], section 6.4 and section 4 of this document. The subjective analysis explored the impact of this TP improvement on the controller task. Controllers where presented with two instances of the same data; one using AOC data in computing Trajectory Prediction and the other using the default BADA values. Controllers were asked to compare the differences in performance of the iFACTS toolset. Over the 12 day simulation, 12 % of cases an improvement was reported and in all cases no degradation was reported. These results need to be supplemented by objective data, see recommendation 2.

9.3 Safety Assessment Recommendations

These recommendations should be carried forward and addressed in the industrialisation phase of the project (V4) prior to implementation.

- 1. For each AOC data parameter, the mass and speed data that is being provided should be compared to the actual aircraft data to establish whether each AOC data value provided can achieve the ±10% tolerance specified in the MOU over a statistically significant timeframe. Furthermore, there has been no failure case analysis, this analysis should also be extended to establish the effects on the TP and subsequently the controller toolset when AOC data is provided outside the error tolerances and whether the effects are acceptable or need to be appropriated mitigated.
- 2. It is necessary to establish how the improvements in TP accuracy manifest themselves in the controller toolset. All the tools that to employ TP data need to be identified. For each tool real life scenarios should be extracted and the improvement in the TP accuracy directly compared to use of the default values. The direct effect on the controller role needs to be established objectively. Note: it is possible that the effects could be detrimental to safety if, for example, the improvements were to move rather than remove false interactions.
- 3. There is likely to be a variation between the accuracy and quality of the AOC data being provided by each operator. It is therefore recommended that the quality of the AOC data be examined from operator to operator to confirm that each AOC is able to provide data within the required tolerance.
- 4. The scope of the analysis should be increased to cover the effects of the AOC data for all phases of flight.

10 Conclusions and Recommendations

1899 **10.1 Conclusions**

1898

1909

1910 1911

1912

1917

1923

- 1900 This is the final technical report for P 05.05.02. The report covers a number of activities.
- This document provides the final set of Operational Requirements for ground ATC systems that facilitate the use of Airline Operational Control (AOC) data in the computation of ground-based trajectory prediction. The prime objective of these requirements is to improve the accuracy of the computed trajectory prediction (TP). These operational requirements are derived from the proposed
- 1905 concept for use of AOC data to improve Trajectory Prediction, Ref. [11].
- The proposed set of Operational Requirements will be included in the consolidated set of operational requirements for the TMA Trajectory Management Framework.
- 1908 The proposed concept included recommendations for the security of provided AOC data:
 - 1. The ground ATC-system shall observe various data access restrictions as agreed with airspace user.
 - 2. The ground ATC-system shall comply with any time restrictions that have been agreed with airspace users not to keep the AOC supplied data after the completion of flight.
- The document also reports all validation activities took place to validate the use of mass and speed AOC data in computing TP. Both V2 and V3 validation activities are covered in this project.
- 1915 The V2 validation covered the following aspects:
- 1916 Validate that the accuracy of the TP improves when AOC data is used as input.
 - Validate that the selected AOC data can be used in current or near-term TP.
- 1918 > Validate that TP stability is not adversely affected by the introduction of AOC data.
- 1919 Validate that CDnR tool performance improves when the underlying TP is supported by AOC data.
- 1921 > Validate that improved TP that used AOC data as input leads to improved operational performance when used in CDnR for departure.
 - Demonstrate the possibility of using AOC data in current or near-term ATC tools.
- Demonstrate the possibility of using AOC data for a subset of flights in operational system (mix-mode operation).
 - Validate that AOC data can be used in current or near-term ATC tools.
- 1927 > Validate that current or near-term ATC tool is able to receive and handle AOC data.
- AT the end of this validation stage the project is able to report on the accuracy of the improved TP that uses AOC data and ability of the current or near-term ATC tools to use a modified TP as well as baseline TP. Full details of these activities can be found in Ref. [13] and chapter 4 of this document.
- Based on the results from V2 validation, V3 validation activities took place through the validation of ATC tools and the performance of Cost Benefit Analysis. We used the iFACTS model to perform this validation with the contribution of operational controllers. Analysis of controller's feedback, comments
- received and the comparisons are detailed in Appendix E Table 34, Table 35 and Table 36.
- 1935 During V3 activities the project validated that CDnR tool performance improves when the underling TP
- 1936 is supported by AOC data. By performing this activity the project completes the loop starting from the
- input AOC data considering the computation of TP that uses AOC data then the introduction of such
- 1938 TP into current ATC tools and the validation of the concept in various combinations. Finally the real-
- 1939 time ATC tool performance analysis concluded the validation while the cost benefit analysis
- 1940 addresses the business case.
- 1941 The introduction of AOC mass and speed data into TP does produce noticeable differences in the
- 1942 information displayed in the TP/MTCD tools. These differences were most noticeable for aircraft in the
- climb phase of flight, but some differences were also noted for aircraft in the descent.

- The most noticeable differences is when AOC mass and speed data are used together while the least noticeable difference when AOC speed data is used alone.
- 1946 It should be noted that in the majority of cases the introduction of AOC data did produce a noticeable difference in the display of interactions and trajectories. However, during this exercise, the conditions
- 1948 under which the differences were sufficient for the controllers to express a preference were limited to
- 1948 under which the differences were sufficient for the controllers to express a preference were limited to 1949 interactions involving climbing aircraft along with the application of both Mass and Speed data
- 1950 combined with reduced uncertainty. Under these circumstances, preferences were expressed for up
- 1951 to 30% of cases.

1960

19611962

1963

1964

1965

19661967

1968

1969 1970

- In the case of descent the results were much less conclusive this is due to the small size of data and the lack of enough scenarios to allow us to draw significant conclusions.
- The system was robust to the application of incorrect AOC mass data. No preferences or inconsistencies were reported by the controllers under these conditions.
- 1956 The document addressed the safety assessment of the use of AOC data in computing ground TP:
- 1957 1. The safety assessment concluded that the use of AOC data would reduce the risk of mid-air collision.
 - 2. The use of AOC data in the computation of TP increases the accuracy of TP that will reduce the number of aircraft deviation alerts and a corresponding reduction in the number of false separation monitor alerts and other known benefits.

In conclusion to the Cost Benefit Analysis study the overall magnitude of the Net Present Value (NPV) is small whether at the ECAC level or a (fictitious but plausible) airline level; the proposed use of AOC data is a low cost/low benefit change to current operations. However, there is clearly a good business argument for implementation for single- and twin-aisle aircraft, which the analysis suggests would produce a Benefit/Cost ratio of between 6 and 8.

- For Regional types of aircraft, the business case is less compelling; the CBA suggests that for every € invested, the return would only be € 0.4. This is primarily because Regional aircraft types burn low amounts of fuel and tend to fly close to their Requested Flight Level (RFL) so the scope for realising benefits is restricted significantly.
- 1971 The results from this study carry an important caveat, namely that the scenarios considered assume 1972 that 100% of aircraft will be participating in the provision of the additional flight information. This 1973 assumption is optimistic and should be treated with caution; it gives a 'best-case' result for the realisation of benefits. It should also be noted that a lack of commitment to participate on the part of 1974 1975 some airlines will reduce the scope for benefits and in turn this can create unwillingness among other 1976 airlines to pay the costs of providing the additional data when the benefits cannot be realised due to less-than-universal participation. The 100% assumption is not a requirement to implement the system; 1977 however it would be needed to realise the benefits mentioned above. 1978
- Nevertheless, the B/C ratio (for single- and twin-aisle) is sufficiently high at 6-8 for 100% data provision that reduced participation should still produce a positive B/C ratio, even if it is lower. From the level of participation analysis it is concluded that for participation rates above 12% the benefits cover the costs.
- 1983 It is also important to note that the positive CBA conclusions in this report are based on the London TMA data (e.g. the current false alerts or current conflicts detected used in the CBA scenarios come from the London TMA and are extrapolated for ECAC). For other TMA in Europe these scenarios and CBA could be different.
- A further point to note is that it is entirely feasible for airlines to provide additional data beyond the mass and speed data considered here, to the point where they share all information about a given flight and thereby reduce uncertainty. However, the cost of obtaining this additional data is likely to be prohibitive while adding little to the ANSPs ability to improve the flight profile. The 'value of perfect information' (VOPI) is likely to be exceeded by its cost due to the 'laws of diminishing returns'. Mass and speed data can be considered to represent the most cost beneficial that can be utilised by the ANSP to realise benefits for the airlines.

1994 10.2 Recommendations

2005

2006

2007

2008

2009

2010 2011

2012

2013 2014

2015

2018

1995 It is recommended to share AOC data for improving the performance of conflict detection tools. The 1996 performance improvement in conflict detection tools could lead to an increase in capacity or 1997 productivity for the same team of controllers.

A range of levels of uncertainty were applied during the V3 activities along with Mass & Speed AOC data and the results varied accordingly. Varied levels of uncertainty should be applied to non-AOC runs in order to prove that the differences noted were due to the application of AOC data.

There is a relationship between this work and P 07.06.02. Both projects require and use similar set of AOC data. Collaboration between the two projects would help to consolidate the AOC data requirements and its use in improving the accuracy of computed TP. It is recommended to share all results in this report with P 07.06.02.

It was observed that the controllers would take considerably less notice of an interaction predicted to be more than 10 miles apart and more than 10 minutes in the future, compared to a prediction around or below the 8 mile line. It is recommended that traffic samples for future activities during V4-V5 should be engineered to include a high proportion of interactions within the range of 5-8 miles and 5-10 minutes. These would be interactions to which the controllers would need to take action and would also potentially show more critical differences between systems supported with AOC data and unsupported ones.

At the end of the Cost Benefit study for the use of AOC data in computing ground trajectory prediction the following is recommended: There is a positive business argument for implementing the AOC data in computing ground trajectory prediction for single- and twin-aisle aircraft, which the analysis suggests would produce a Benefit/Cost ratio of between 6 and 8 in the case of 100% participation.

2016 It is recommended to disseminate the Excel Airline CBA model to various interesting airlines so that they can enter their own data and make their own CBA conclusions.

2019 11 References

2033

2034 2035

2036

2039

2040

2020 11.1 Applicable Documents

- 2021 [1] V&V Plan Latest version
- 2022 [2] SESAR Validation Report Latest version
- 2023 [3] SESAR Requirements and V&V Guidelines 02.00.00
- 2024 [4] SESAR V&V Strategy Latest version
- 2025 [5] SESAR Template Toolbox User Manual Latest version
- 2026 [6] Requirements and V&V Guidelines 02.00.00
- 2027 [7] European Operational Concept Validation Methodology (E-OCVM) 3.0 [Feb 2010]

2028 11.2 Reference Documents

- 2029 [8] SESAR B.04.02: SESAR Trajectory Management Document, Edition 00.02.90, Sep 2010
- 2030 [9] **SESAR 05.05.02**: PIR Part 1, Edition 00.04.00, May 2010
- 2031 [10] **SESAR 05.05.02:** Preliminary Operational Requirements for use of AOC data, 05.05.02-2032 D06, 00.01.00, 17 Dec 2010
 - [11] SESAR 05.05.02: Concept for use of AOC data to improve Trajectory Prediction, 05.05.02-D01, 00.01.01, 03 December 2010
 - [12] **SESAR 05.05.02**: Validation Plan for Enhanced TP using AOC data, 05.05.02-D02, 00.01.01 21 January 2011
- 2037 [13] **SESAR 05.05.02**: Validation Results for Enhanced TP using AOC data, 05.05.02-D03, 00.01.01, 21 December 2011
 - [14] http://www.eurocontrol.int/ecosoc/gallery/content/public/documents/General/EMOSIA-User-Guide1-1.pdf
- 2041 [15] **SESAR**, D06-01_05, ATM CBA for Beginners, V 01.00.00, 17/12/2010
- 2042 [16]http://www.eurocontrol.int/ecosoc/gallery/content/public/documents/CBA%20examples/Standa 2043 rd Inputs fin.pdf
- 2044 [17] SESAR, Safety Reference Material, 00.02.00, 15 December 2011
- 2045 [18] CAA REPORT: Warning time and look-ahead time requirements for conflict Alert
- 2046 [19] SESAR P4.2: Detailed Operational Description (DOD) Step 1, Edition 00.03.00, Dec 2011

2047 Appendix A Coverage Matrix

2048

2049

2050

2051

In this appendix two coverage matrices are provided:

- One to relate to the high level performance requirements which cannot be directly translated to operational requirements. These have been described in D02 Ref. [12].
- One to relate to the operational requirements specified in [10].

Requirement ID	Requirement Text	Req V&V Status	V&V Objective ID	V&V Objective Text	V&V Objective Analysis Status	V&V Objective Analysis Status per Exercise	Exercise ID	Exercise Title
OBJ-05.05.02- VALP-0000.0100	TP accuracy improvement	OK	OBJ-05.05.02- VALP-0010.0010	Trajectory accuracy improvement	ОК	OK	EXE-05.05.02- VALP-0069.0100	TP Accuracy analysis
OBJ-05.05.02- VALP-0000.0200	ATM system performance improvement	OK	OBJ-05.05.02- VALP-0020.0010	CDnR tool performance improvement	ок	ок	EXE-05.05.02- VALP-0301.0100	Real-time ATC tool performance analysis
			OBJ-05.05.02- VALP-0030.0010	ATM system performance improvement through AMAN	NOK	NOK	EXE-05.05.02- VALP-00069.0300	Fast-time AMAN effects analysis
			OBJ-05.05.02- VALP-0030.0110	ATM system performance improvement through CDnR	ОК	ОК	EXE-05.05.02- VALP-00069.0400	Fast-time CDNR effects analysis
OBJ-05.05.02- VALP-0000.0300	No adverse effects on safety	OK	OBJ-05.05.02- VALP-0010.0110	Sensitivity to AOC data accuracy	ОК	ОК	EXE-05.05.02- VALP-0069.0200	TP Sensitivity analysis
			OBJ-05.05.02- VALP-0040.0010	Rejection of invalid data	OK	ОК	EXE-05.05.02- VALP-0300.0100	Real-time ATC tool concept demonstration
OBJ-05.05.02- VALP-0000.0400	Early benefit option	ОК	OBJ-05.05.02- VALP-0050.0010	Ability to apply concept to current TP systems	ОК	ОК	EXE-05.05.02- VALP-0069.0100	TP Accuracy analysis
			OBJ-05.05.02-	Ability to apply	OK	OK	EXE-05.05.02-	Real-time ATC tool

			VALP-0050.0110	concept to ATC tools that use TP systems			VALP-0300.0100	concept demonstration
			OBJ-05.05.02- VALP-0060.0010	Some benefit achieved without full AOC data support	NOK	NOK	EXE-05.05.02- VALP-0069.0300	Fast-time AMAN effects analysis
OBJ-05.05.02- VALP-0020.0010	ATM system performance improvement	ОК	OBJ-05.05.02- VALP-0020.0010	CDnR tool performance for Area Control improves when the underlying TP is supported by AOC data when compared to performance without the use of AOC data.	ок	ок	EXE-05.05.02- VALP-0301.0100	Validate that CDnR tool performance in high density Area Control airspace improves when the underling TP is supported by AOC data.

Table 29: Preliminary high level performance requirements Coverage Matrix

Requirement ID	Requirement Text	Req V&V Status	V&V Objective ID	V&V Objective Text	V&V Objective Analysis Status	V&V Objective Analysis Status per Exercise	Exercise ID	Exercise Title
REQ-05.05.02- OSED-0200.0000	ATC-system able to receive and handle Flight Plan Data	ок	OBJ-05.05.02- VALP-0070.0010	Prototype concept demonstration	ок	ОК	EXE-05.05.02-VALP- 0300.0100	Real-time ATC tool concept demonstration
REQ-05.05.02- OSED-0300.0000	ATC-system uses Flight Plan Data in Trajectory Prediction calculation	OK	OBJ-05.05.02- VALP-0010.0010	Trajectory accuracy improvement	ок	ОК	EXE-05.05.02-VALP- 0300.0100	Real-time ATC tool concept demonstration
REQ-05.05.02- OSED-0400.0100	AOC data not available	ок	OBJ-05.05.02- VALP-0040.0020	Baseline operation without AOC data	ОК	ОК	EXE-05.05.02-VALP- 0300.0100	Real-time ATC tool concept demonstration

REQ-05.05.02- OSED-0400.0200	AOC data available	ОК	OBJ-05.05.02- VALP-0060.0010	Demonstrate use of AOC data in TP in operational system.	ОК	OK	EXE-05.05.02-VALP- 0300.0100	Real-time ATC tool concept demonstration
REQ-05.05.02- OSED-0400.0300	ATC-system ability to switch between two options.	OK	OBJ-05.05.02- VALP-0070.0010	Demonstrate use of AOC data in mixed mode	ОК	OK	EXE-05.05.02-VALP- 0300.0100	Real-time ATC tool concept demonstration
REQ-05.05.02- OSED-0100.0200	SWIM Processing	NOK		Refer to SWIM ⁹	NOK	NOK		
REQ-05.05.02- OSED-0100.0100	Airspace user data input.	OK	OBJ-05.05.02- VALP-0010.0110	Sensitivity to AOC data accuracy	OK	OK	EXE-05.05.02-VALP- 0069.0200	TP Sensitivity analysis
REQ-05.05.02- OSED-0200.0100	AOC Data Acceptance	ОК	OBJ-05.05.02- VALP-0040.0210	Unconditional data acceptance	ОК	OK	EXE-05.05.02-VALP- 0300.0100	Real-time ATC tool concept demonstration
REQ-05.05.02- OSED-0200.0200	AOC Data Verification	ОК	OBJ-05.05.02- VALP-0040.0010	Rejection of invalid data	ОК	OK	EXE-05.05.02-VALP- 0300.0100	Real-time ATC tool concept demonstration
REQ-05.05.02- OSED-0300.0100	Gross-Error data handling	OK	OBJ-05.05.02- VALP-0040.0310	Correct fall back to baseline operation	ОК	OK	EXE-05.05.02-VALP- 0300.0100	Real-time ATC tool concept demonstration
REQ-05.05.02- OSED-0100.0100	Airspace user data input.	OK	OBJ-05.05.02- VALP-0010.0110	Sensitivity to AOC data accuracy	ОК	OK	EXE-05.05.02-VALP- 0301.0100	Real-time ATC tool performance analysis
REQ-05.05.02- OSED-0100.0200	SWIM Processing			Refer to SWIM			EXE-05.05.02-VALP- 0301.0100	Real-time ATC tool performance analysis
REQ-05.05.02- OSED-0200.0100	AOC Data Acceptance	ОК	OBJ-05.05.02- VALP-0040.0210	Unconditional data acceptance	ОК	ОК	EXE-05.05.02-VALP- 0301.0100	Real-time ATC tool performance analysis
REQ-05.05.02- OSED-0200.0200	AOC Data Verification	ОК	OBJ-05.05.02- VALP-0040.0010	Rejection of invalid data	OK	OK	EXE-05.05.02-VALP- 0301.0100	Real-time ATC tool performance analysis
REQ-05.05.02- OSED-0300.0100	Gross-Error data handling	OK	OBJ-05.05.02- VALP-0040.0310	Correct fall back to baseline operation	OK	OK	EXE-05.05.02-VALP- 0301.0100	Real-time ATC tool performance analysis
REQ-05.05.02- OSED-0300.0200	ATC-system Internal Reporting	ОК	OBJ-05.05.02- VALP-0040.0310	Correct fall back to baseline	ОК	OK	EXE-05.05.02-VALP- 0301.0100	Real-time ATC tool performance analysis

⁹ These operational requirements will feed the design and implementation of SWIM and will be verified and validated within those projects.

				operation				
REQ-05.05.02- OSED-0400.0000	Mixed Mode Functionality	ОК	OBJ-05.05.02- VALP-0070.0010	Demonstrate use of AOC data in mixed mode	ОК	OK	EXE-05.05.02-VALP- 0301.0100	Real-time ATC tool performance analysis
REQ-05.05.02- OSED-0400.0100	AOC data not available	ОК	OBJ-05.05.02- VALP-0040.0020	Baseline operation without AOC data	OK	OK	EXE-05.05.02-VALP- 0301.0100	Real-time ATC tool performance analysis
REQ-05.05.02- OSED-0400.0200	AOC data available	OK	OBJ-05.05.02- VALP-0060.0010	Demonstrate use of AOC data in TP in operational system.	ОК	OK	EXE-05.05.02-VALP- 0301.0100	Real-time ATC tool performance analysis
REQ-05.05.02- OSED-0400.0300	ATC-system ability to switch between two options.	ОК	OBJ-05.05.02- VALP-0070.0010	Demonstrate use of AOC data in mixed mode	ОК	OK	EXE-05.05.02-VALP- 0301.0100	Real-time ATC tool performance analysis
REQ-05.05.02- OSED-0500.0100	Data access time restriction mechanism			Refer to SWIM			EXE-05.05.02-VALP- 0301.0100	Real-time ATC tool performance analysis
REQ-05.05.02- OSED-0500.0200	Data access authorisation mechanism			Refer to SWIM			EXE-05.05.02-VALP- 0301.0100	Real-time ATC tool performance analysis

2059

Table 30: Preliminary requirements Coverage Matrix

2057 <u>Details of the fields of the coverage matrix:</u>

2058 Req Validation Status: synthesis of analysis status of associated Validation objectives

Validation Objective Analysis Status: Final analysis status of the Validation Objective: synthesis of its Analysis Status in all Exercises it is embedded in.

2060 Validation Objective Analysis Status per Exercise: analysis status of the Validation Objective in the considered exercise

2061 Appendix B Sectors Selection

- NATS iFACTS system is only being tested/used in LACC sectors. A trial based in London TC would test both the tool in its current form as well as the effects of trajectory prediction on TC controllers.
- A number of LACC sectors have a significant vertical component and indeed climb and descend aircraft from their cruise level until low levels in TC.
- The above two statements suggest that validation of the tools in the SESAR definition of the TMA may be achieved by application of the concept to LACC sectors.

2068 **B.1 Brecon**

- 2069 > Sectors: LAC 5, 23
- 2070 Feeders: 6, 36, 8, 3, 7, 9, TC Ockham, PC Wallasey, PC S29, Ireland FIR (via OLDI)

B.1.1 Arguments

- 2072 + These sectors have a significant amount of vertical change (in/out of LTMA to West, in/out of Manchester to South).
- 2074

 + The crossing at Brecon provides significant opportunity for interactions.
- 2075 + Mixed fleet present (trans-Atlantic), see Figure 14.
- 2076 > Sector has lowest amount of SJU-supported traffic.
- 2077 > 0 Vertical changes achieved by stepped procedures instead of continuous climb/descent.
 2078 However, many aircraft do get further clearances before reaching level flight.
- 2079 + With cooperation of BA and SJU traffic has a broad fleet mix, see Figure 14.
- 2080 > + Relatively large arrival and departure peaks for heavy aircraft.
- 2081 > Heavy aircraft arrival and departure peak not within the same interval.

2082 B.1.2 Time interval

- To capture the departing heavies (for which weight variance strongly depends on sector length), the interval between 15:00 and 18:00 is selected, see Figure 14.
- 2085 If cooperation of BA is not possible this is not the most optimal slot. However, slots in optimal period (09:00-15:00) would not benefit from potential BA cooperation.

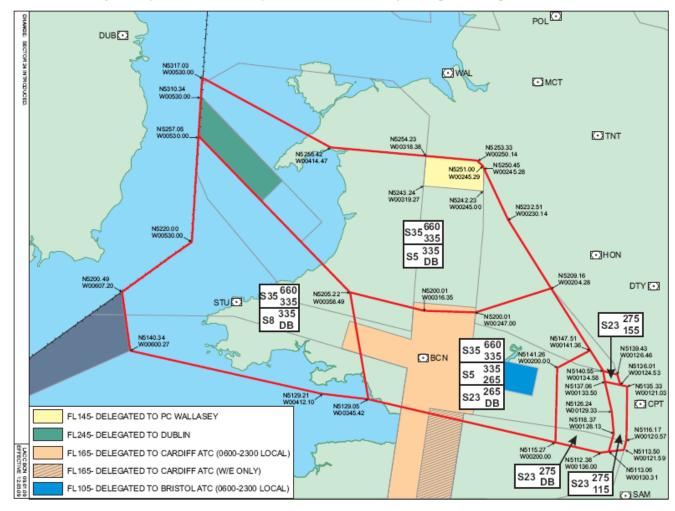


Figure 14: LAC Brecon Sector

2090 **B.2 Dover**

2087 2088

2089

2092

2093 2094

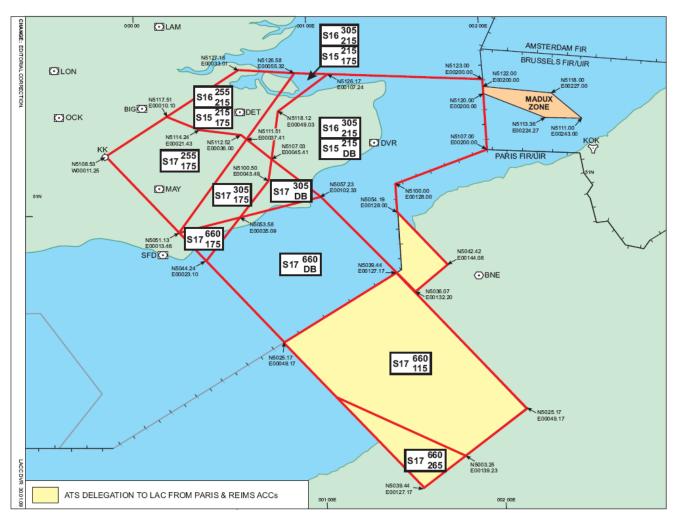
2096

2099

2102

2091 > Sectors: LAC 15, 16, 17

Feeders: TC BIG, TIMBA, 25, Paris/Reims FIR (via OLDI)


B.2.1 Arguments

- + Sector 17 has long descents (delegated from France FIR) often 'when ready'.
- 2095 + Lowest amount of sectors (3 + 3 feeders).
 - + Largest amount of SJU supported traffic into LTMA.
- 2097 > + NetJets (business jets) most likely to be represented
- 2098 + Regional aircraft best represented
 - + With BA broadest variety of types/ranges in arrivals and departures at the same time
- 2100 > Traffic is more unidirectional, arrivals and departures separated.
- 2101 > + Strong variety of heavy use (by BA) ranging from 200 to 6000 nm

B.2.2 Time interval

- 2103 09:00 12:00 provides a good mix of supported types both inbound outbound.
- 2104 Even without BA cooperation, this interval provides a good mix of traffic.

Figure 15: LAC Dover Sectors

Appendix C Collected Data

C.1 Overview

2107

2108 2109

2110

2111 2112

2113 2114

2115 2116

2117

The table below provides the high level properties of the recorded data.

	21 January 2011	28 March 2011
Number of AC sectors (including bandboxes sectors)	27	29
Number of TC sectors (including bandboxes sectors)	17	17
Hours of R/T transcribed	134	120
Number of tactical instructions	27681	27711
Number of flights on day in UK FIR	5370	6074
Number of suitable flights for TP testing	2588	2792
Number of suitable flights for which AOC data is available	730	655
General weather	Calm, high pressure area over UK, CAVU	Calm, cold, CAVU
Approximate location of NAT Eastbound	Landfall above Northern Ireland	Landfall South of Ireland
Approximate location of NAT Westbound	Oceanic entry west of Ireland	Oceanic entry west of Ireland

Table 31: High level properties of recorded data

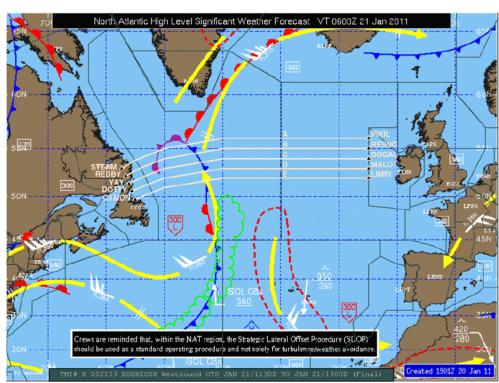


Figure 16: The westbound NAT tracks on the 21st of January.

Note to Figure 16: While not available, the tracks on the 28th of March were very similar, providing a westbound Atlantic departure stream through the Brecon sector (source: Jeppessen).

C.2 Operator flight planning data

Data is collected with the help of the following airlines:

- British Airways (all flights operating under call signs SPEEDBIRD, FLYER and SHUTTLE)
- Flybe

2118

2119 2120

2121

2122 2123

2124

2125

2126 2127

2128

2129

2130 2131

2132

2133

2134 2135

2136

2137 2138

2139

- NetJets Europe
- Swiss
- United Airlines
- Virgin Atlantic

In total, these airlines supplied data for 2677 flights. As the study requires the associated other inputs to the TP research system, this provides 1385 flights for analysis.

Figures (Figure 17 to Figure 20) provide an overview of the different routes included in the analysis. From the map, it is clear that Latin American and Asian flights are not included. This is mainly due to the choice of recorded sectors and the selection of supporting airlines.

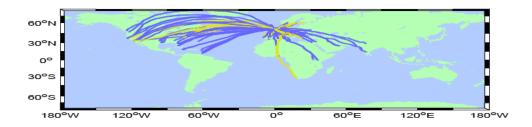


Figure 17: Overview of flights on the 21st of January included in the analysis; blue tracks represent outbound flights, yellow tracks represent inbound flights.

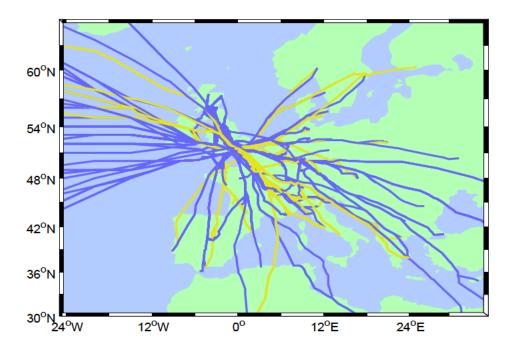


Figure 18: European detail overview of flights on the 21st of January included in the analysis; blue tracks represent outbound flights, yellow tracks represent inbound flights.

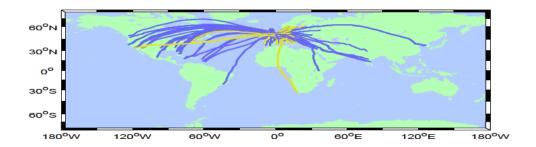


Figure 19: Overview of flights on the 28th of March included in the analysis; blue tracks represent outbound flights, yellow tracks represent inbound flights.

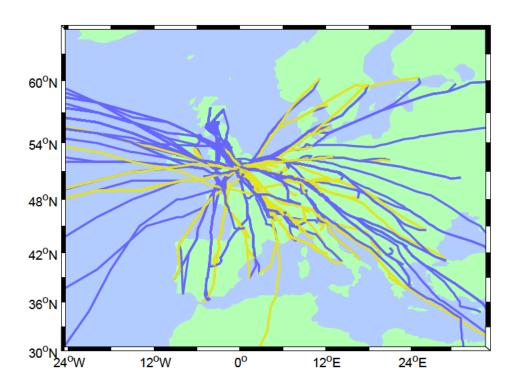


Figure 20: European detail overview of flights on the 28th of March included in the analysis; blue tracks represent outbound flights, yellow tracks represent inbound flights.

Туре	Range category	Number of useable flights
A318	2	6
A319	2	167
A320	2	206
A321	2	54
A333	3	2
A343	4	6
A346	4	17

2142

2145

B734	2	97
B744	4	66
B763	3	46
B772	3	80
B77W	4	8
BE40	5	6
C550	5	7
C56X	5	11
DH8D	1	339
E170	1	42
E190	1	134
E195	1	1
F2TH	5	2
FA7X	5	3
GLF5	5	2
H25B	5	15
RJ1H	1	34

Table 32: Number of flights / aircraft types with associated flight planning data

Range Category	Take-off mass with en-route fuel burn estimate	Climb CAS	Climb Mach	Cruise Mach*	Descent CAS	Descent Mach				
		1	Number of sui	table flights						
1	550	428	89	548	89	89				
2	530	389	389	503	0	0				
3	128	41	41	127	0	0				
4	97	37	37	95	0	0				
5	46	45	38	46	27	27				
(*) Or TAS a	nd forecast temp	(*) Or TAS and forecast temperature								

Table 33: Parameters Analysis by range category

2149 2150 2151

2152 2153

Appendix D Validation Environments

This appendix covers NATS iFACTS system as well as different tools and systems that this project 2157 2158 has used to perform various phases of analysis.

D.1 iFACTS System

- 2160 NATS iFACTS system provides the controller with an advanced set of support tools in order to reduce 2161 workload and so increase the amount of traffic he/she can comfortably handle. These tools are based 2162 on Trajectory Prediction (TP), iFACTS systems provide decision making support and facilitate the
- early detection of conflicts in and around the sector. 2163
- The first stage of iFACTS introduced operationally in spring 2009 delivered 85% of the system's 2164
- 2165 functionality. In June 2011, iFACTS entered live service in the AC operations room at NATS.
- The main iFACTS Tools are: 2166

2156

2159

2183

2191

2195

D.1.1 Trajectory Prediction (TP) 2167

- Trajectory Prediction (TP) is one of the key underlying features of iFACTS and is used to support the 2168
- 2169 conflict detection and resolution process. TP takes an aircraft's current position and calculates where
- 2170 it will be up to 18 minutes into the future, based on its current level, heading and speed. If any tactical
- 2171 clearances are entered into the system, the trajectory is updated.

D.1.2 Medium Term Conflict Detection (MTCD) 2172

- 2173 Trajectory Prediction enables the system to predict with reasonable confidence where all aircraft will
- be at some point in the future. This enables the system to detect any potential conflicts which may 2174
- 2175 arise. Medium Term Conflict Detection (MTCD) compares trajectories for each pair of aircraft in order
- 2176 to determine the separation that is likely to exist. Any Interactions are then classified according to the
- 2177 geometry and category of the interaction, using a combination of colour and symbols. The interaction
- symbol indicates whether the aircraft are head-on, crossing or catch-up, whilst the colour of the 2178
- interaction denotes the degree of separation which is expected to exist. A traffic light system of 2179
- 2180 colours is used i.e. red, orange, yellow, and green. They all indicate a potential conflict, but green
- indicates that the controller has taken an action to actively ensure separation. Severity is then Red 2181
- 2182 (most severe), Orange then Yellow.

D.1.3 Level Assessment Display (LAD)

- 2184 The Level Assessment Display is used to answer the question "What level can I climb/descend to
- 2185 now?" It is made up of two elements - one area in which tactical clearances are entered or a Tactical
- 2186 What-if initiated, and a graphical display called the Level Assessment Display. The Level Assessment
- 2187 Display shows the hooked aircraft's predicted climb and descent profiles, along with the level
- 2188 achievable at significant points along the route. Interactions with other aircraft along the route are
- 2189 displayed, enabling the controller to make an informed decision as the whether or not the aircraft can
- 2190 be cleared to climb or descend through a level.

D.1.4 Separation Monitor (SM)

- The Separation Monitor is the primary iFACTS tool to be used by the tactical controller to aid the 2192
- 2193 monitoring of traffic in and around the sector. The Separation Monitor detects, classifies and displays
- all interactions predicted to occur over the next 10-15 minutes, based on current clearances. 2194

D.1.5 Tactical What-if

- 2196 The iFACTS system allows the user to perform a type of "what-if" style query as a way of checking
- 2197 what the results of a clearance would be before it is issued to an aircraft. The results of the query are
- 2198 shown in the Level Assessment Display and Separation Monitor with the border of both windows
- 2199 being Orange to indicate that it is in clearance probe mode.

D.2 Trajectory Prediction Research Tool (TPRT)

NATS Trajectory Prediction Research Tool (TPRT) is a Trajectory Prediction tool which allows TP performance to be assessed directly, without needing higher-level interfaces and system components. This is based on NATS iFACTS Trajectory Predictor (TP).

D.3 Replay-Aided Validation Environment (RAVE)

NATS RAVE is based on a modified version of the current implementation of iFACTS Real Time Simulator (LSS).

The main characteristics of NATS RAVE System can be summarized as follows:

2200

2201 2202

2203

2204

2205 2206

2207

2208

2209

2210

2211

2212

2213 2214

2215 2216

2217 2218

2219 2220

2221

2222

2223 2224

2225 2226

- RAVE system, as shown in Figure 21 below, contains all Core Engine components (TP, MTCD, and FPM).
- RAVE system has an HMI component that allows subjective analysis of MTCD output to be performed.
- RAVE system will be used to conduct subjective analysis of the MTCD and FPM performance, allowing the effects of changing Core Engine parameter values to be studied.
- The logged output from RAVE system will also be used for objective analysis of the TP and MTCD.
- RAVE system accepts recorded data from real operational scenarios as input for various data
- RAVE system reads radar data, tactical instructions, recorded MET data, and uses UK NAS output for Flight Plans.
- RAVE system includes all the logging facilities that allow the analysis to the output from this phase of the validation using appropriate analysis tools.

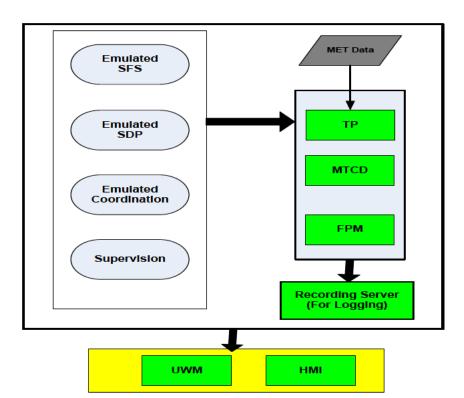


Figure 21: Overview of Replay-Aided Validation Environment (RAVE)

- * **UWM**Unit Workstation Manager
- * SDP: Surveillance Data Processing

Appendix E Subjective Validation Results (EXE 2228 0301.0100) 2229 E.1 Validation Scenario and system Preparation 2230 2231 The scenario was based in London TC and tested both the tool in its current form as well as the 2232 effects of trajectory prediction on TC controllers. 2233 There were two scenarios based on: LAC Brecon (SCN-05.05.02-VALP-0020.0210) and 2234 2235 LAC Dover (SCN-05.05.02-VALP-0020.0110). E.1.1 LAC Brecon Scenario 2236 2237 The LAC Brecon scenario included the following characteristics: 2238 A significant vertical component with climbing and descending aircraft from their cruise level 2239 up from, or down to, low levels in TC. A significant amount of vertical change (in/out of LTMA to West, in/out of Manchester to 2240 2241 South). The crossing point at Brecon provides significant opportunity for interactions. 2242 2243 Vertical changes achieved by stepped procedures instead of continuous climb/descent. 2244 Relatively large arrival and departure peaks for heavy aircraft 2245 Heavy aircraft arrival and departure peak occur at different times. E.1.2 LAC Dover Scenario 2246 2247 The LAC Dover scenario included the following characteristics: Sector 17 has long descents. 2248 2249 Traffic is more unidirectional, arrivals and departures separated. 2250 Wide variety of heavy category aircraft ranging from 200 to 6000 nm. **E.1.3 Airspace Information** 2251 2252 The validation of the tools in the SESAR definition of the TMA was achieved by application of the 2253 concept to LACC sectors. The following sectors were proposed for this validation: 2254 LAC Brecon: 2255 Measured Sectors: LAC 5, 23 Feed sectors: 6, 36, 8, 3, 7, 9, TC Ockham, PC Wallasey, PC S29, Ireland FIR (via OLDI) 2256 LAC Dover: 2257 2258 Measured Sectors: LAC 15, 16, 17 2259 Feed sectors: TC BIG, TIMBA, 25, Paris/Reims FIR (via OLDI)

2260 E.1.4 Additional Information

2261 Traffic Information

- 2262 Assuming Continuous Climb Departures and Continuous Descent Arrivals profiles, flight vertical paths
- 2263 were adapted where needed to remove interim level clearances. These adaptations were
- 2264 documented.

2265 Additional Data

- 2266 In addition to the AOC data that formed major part of the information required for the validation
- 2267 activities there were a number of additional pieces of information required for the NATS RAVE system
- 2268 to compute a ground-based trajectory including:

2269 Flight Plan Data

- 2270 The flight plan data included:
- 2271 > ICAO aircraft type designator.
- 2272 > Start time.
- 2273 ➤ Start Fix.
- 2274 Cleared route including origin and destination ICAO codes.
- 2275 Frue Air Speed (TAS).

2276 Airspace data

- 2277 The TP component of the NATS RAVE system required access to the airspace data. This included:
- 2278 A list of all fixes (including relevant fixes outside the UKFIR).
- 2279 > Definition of sector volumes.

2280 Radar data

- 2281 Radar data was available at 6-second sample rate. The Radar plot data provided:
- 2282 ➤ Time
- 2283 ➤ Aircraft position system x, y coordinates.
- 2284 > Smoothed Radar Data.
- 2285 The following Radar track parameters was also available for each Radar plot:
- 2286 o Ground velocity ground speed and track
- 2287 o Altitude (climb/descent) rate derived from Mode C

2288 Tactical Instruction Data

- 2289 Tactical data was entered into the NATS RAVE system directly.
- Each tactical instruction was time-stamped. The time-stamp corresponded to the time the tactical data was entered through the HMI.

2292 Aircraft Performance Data

- The NATS RAVE system uses the BADA Aircraft Performance Model. The following data was provided by the aircraft performance model:
- 2295 Frue Air Speed
- 2296 > Rate of Climb/Descent
- 2297 ➤ Bank angle

- 2298 For the aircraft performance model to provide the above data, it required:
- 2299 ➤ ICAO type
- 2300 > Sea Level Temperature (From MET data)
- 2301 ➤ Mass Model
- 2302 > Lateral / Vertical Manoeuvring State (Derived from Radar data)

2303 Meteorological Data

- The NATS RAVE system used forecast wind vector and temperature data. The wind and temperature data was obtained from forecast data in GRIB format from UK MET office.
- The forecast data covered the entire UK FIR formatted as a configurable grid. The wind vector and temperature components were defined at each grid point.
- All MET reports covered the day of recording and the previous day: 8 reports at 6 hour intervals starting at 00:00 on d-1 were available.
- 2310 Coordination Data

2315

2321 2322

2323

2324

- 2311 Coordination data was input into the coordination server within the NATS RAVE system.
- 2312 Exercise Assumptions
- 2313 The exercise used sectors of the UK airspace that were consistent with the definition of SESAR TMA.

2314 E.2 Validation Results

E.2.1 Vertical Profile

- In response to OBJ-05.05.02-VALP-0040.0020, differences were only apparent during either the climb or descent phase.
- Table 34 (below) shows that from 279 responses to interactions involving climbing aircraft with AOC data, 42 instances showed a preference (15%). Whilst from 141 responses to interactions involving descending aircraft with AOC data, 10 instances showed a preference (7%).

	Climb		Level		Descend	d			
<u>Summary</u>	Interactions with AOC data	Pref. A B	Interactions with AOC data	Pref A B	Interactions with AOC data	Pref A B	Total Ints.	No. of Prefs.	%
Mass Only	109	7 4	12	0 0	41	3 5	162	19	11.73
Speed Only	70	5 5	8	0 0	34	0 0	112	10	8.93
Mass & Speed	100	15 6	14	0 0	66	0 2	180	23	12.78
Totals	279	27 15	34	0 0	141	3 7	454	52	11.45
No Uncertainty Change	59	3 5	8	0 0	41	3 2	108	13	12.04
Reduced Uncertainty	220	24 10	26	0 0	100	0 5	346	39	11.27
Totals	279	27 15	34	0 0	141	3 7	454	52	11.45
% Pref.	15.05	42	0.0	0	7.09	10			

Table 34: Summary table of controller responses sorted by AOC data type and uncertainty (non-AOC interactions excluded)

There was already a great deal of manipulation, in iFACTS, of the uncertainty during the descent phase to model the wide variations in descent profiles and to meet the airspace restrictions. This manipulation tended to overwhelm any influence that the introduction of AOC will have had.

In no cases were any differences noted for interactions involving AOC supported aircraft in level flight.
As used in this exercise, the standard configuration of the system under test (SUT) uses radar derived ground speed to calculate the trajectory during this phase of flight. AOC data was therefore not expected to have an influence. Other near-term TP/MTCD systems could exhibit different behaviour in this regard.

E.2.2 Modification of Uncertainty

2333 2334

2335

2336

2337

2338 2339

2340

2349

2350

2351

Subjectively the controllers reported that they noticed more difference between the 2 displays when the uncertainty was reduced. However, in practise, this made little difference to their overall choice of preference (see Table 35)

Summary	Climb % Pref.	Level % Pref.	Descend % Pref.
No Uncertainty Change	13.56	0	12.20
Reduced Uncertainty	15.45	0	5.00

Table 35: Proportions of controller responses to uncertainty settings

E.2.3 Differences between types of AOC data

With AOC mass data applied controllers expressed a preference in 12% of cases (including both standard and reduced uncertainty cases).

The assumption had been made prior to the exercise that it was unlikely that the participants would notice any difference with the application of speed-only data with standard uncertainty. Because of this, no runs were conducted with this configuration.

With the application of AOC speed data along with reduced uncertainty, 9% of cases observed elicited a choice from the controllers, and all of these were from climbing aircraft.

With the application of mass and speed data together, the participants subjectively appeared to notice the most difference in the display of interactions, but that observation is not substantially borne out by the results with 11.5% (standard uncertainty) and 13% (reduced uncertainty) rates of preference.

	Climb	Climb Level Descend							
<u>Summary</u>	Interactions with AOC data	Pref. A B	Interactions with AOC data	Pref A B	Interactions with AOC data	Pref A B	Total Ints.	No. of Prefs.	%
Mass AOC data + Std. Uncert.	55	3 2	6	0 0	21	3 2	82	10	12.20
Mass AOC data + Red. Uncert.	54	4 2	6	0 0	20	0 3	80	9	11.25
Speed AOC data + Std. Uncert.		Not Run No Data							
Speed AOC data + Red. Uncert.	70	5 5	8	0 0	34	0 0	112	10	8.93
Mass & Speed AOC Std. + Uncert. data	4	0 3	2	0 0	20	0 0	26	3	11.54
Mass & Speed AOC data + Red. Uncert.	96	15 3	12	0 0	46	0 2	154	20	12.99

Table 36: Summary table of controller responses sorted by AOC data as applied by run (non-AOC interactions excluded)

2352 Notes:

2356 2357

2358

2359

2362

2363

2366

23672368

- 2353 1. There were no runs with speed data only with standard uncertainty.
- 2. Of 112 interactions examined using speed data with reduced uncertainty there were 10 preferences, equating to 8.93%.
 - 3. 82 interactions were viewed with mass data and standard uncertainty, which produced 10 preferences, equating to 12.20%.
 - 4. 80 interactions with mass data with reduced uncertainty were viewed with 9 preferences, 11.25%.
- 5. 26 interactions with mass and speed data with standard uncertainty elicited 3 preferences, equating to 11.54%.
 - 154 interactions using mass and speed data with reduced uncertainty revealed 20 preferences, equalling 12.99%.
- 7. A total of 279 interactions involving at least one climbing aircraft showed 42 preferences, equating to 15.05%.
 - 8. 141 interactions involving at least one descending aircraft were viewed and showed 10 preferences, 7.09%.
 - 9. 34 interactions where the AOC supported aircraft was level were assessed and no preferences were recorded.
- 2370 10. As expected, no preferences were recorded for any of the non-AOC interactions.

Appendix F Airlines Cost Benefit Analysis Model

F.1 Excel Airline CBA Model File

2371

2372

2373

2374

2375

2376

23772378

2379

2380

2381 2382

2383 2384

23852386

To have a copy of the Excel Airline CBA Model file please contact any member of the Cost Benefit Analysis team contributed in this study. Names can be found at the front of this document. Please contact any member of the CBA team at firstname.lastname@eurocontrol.int (e.g. Kirsteen.purves@eurocontrol.int). They will be able to provide the file and support, if necessary.

F.2 Airline Model File Overview

This is a copy of table from the 'Table of Content' worksheet of Excel file; it describes the content of the different worksheets.

Table of content Tab in this file **Description Description** Description of the model Area where users can enter inputs on the number of flights by type of **Model Inputs** aircraft: regional, single and twin aisle Presentation of the results of the calculation: benefit, costs, Net Present **Model Outputs** Value, environmental impact List of assumptions used in the model. For the benefits: Baseline, Base case and Scenario **Model Assumptions** For the cost: communication, software development, and environment List of assumption used for the aircrafts: flights per aircraft type and **Aircraft Assumptions** additional fuel burn due to a level-off. Trial Proposed set of input figures to test the model

Figure 22: Table of content for the Airline Model Tool

F.2.1 "Description" worksheet

The worksheet 'Description' contains the logic for defining the number of Level-offs Avoided and the Level-offs Segmentation, included in this report as Figure 10 and Figure 11.

F.2.2 "Model Input" worksheet

The worksheet' Model Inputs' is shown in

2387

2388

2389 2390

2391 2392 2393

2394

23952396

2397

2398

Figure 23, it allows an airline to enter the specifics of their fleet as well as update parameters such as fuel cost and discount rate.

Aircraft category	Yearly number of flights by category	in %	Input Names
Regional:	91,250	24%	Regional_Flts_Num_ln
Single Aisle:	210,240	55%	Single_Aisle_Flts_Num_ln
Twin Aisle:	80,300	21%	Twin_Aisle_Flts_Num_In
Total flights	381,790	100%	Total_flights_In
Cost of fuel in € per kg *:	0.776		Fuel_Cost
* EUROCONTROL Recommended Value: 0.776	€ per kg (date: 15.02.2012)	
Environmental inputs			Input Names
European Emission Allowance permits	0		Airline_EUA_permits
Financial inputs			Input Names
Discount rate in %	8%		Discount_rate
Number of years	5		Number_of_years

Figure 23: Airline Model - Model Inputs Sheet

F.2.3 "Model Output" worksheet

The worksheet 'Model Outputs' is shown in Figure 24. It shows the results at ECAC level and also for the specific airline inputs entered in the 'Model Inputs' sheet (assuming the airline is sharing their AOC data). It also shows the results from the Environmental impact calculations.

ECAC-wide results

Level-offs avoided below FL 300 per year	447,129 € per year
Level-offs avoided @ FL 300 & above per year	1,056,257 € per year
Total Benefit	1,503,386 € per year
Total Cost	225,700 € per year
Benefit to cost ratio	6.7
Net present value	5,509,545 € after 5 y

Your airline results

Assuming your airline is **sharing data** (for all flights in the 'Model Inputs' sheet)

Level-offs avoided below FL 300 per year	21,765.92 € per year
Level-offs avoided @ FL 300 & above per year	54,798.73 € per year
Total Benefit	76,564.65 € per year
Total Cost	9,836.76 € per year
Benefit to cost ratio	7.8
Net present value	287,739 € after 5 y

Environmental impact

Avoided total cost of CO ₂	11,642 € per year
Total unused EUA ⁽¹⁾ permits	311 per year
Total unused EUA in €	2,486 € per year

⁽¹⁾ European Emission Allowance

Figure 24: Airline Model - Model Outputs Sheet

Note: In Figure 23 and Figure 24 the airline data and results are those for the Mainline Airline type.

2399 2400

2401 2402

F.2.4 "Model Assumptions" worksheet

2405 2406 The 'Model Assumptions' sheet contains Table 37, Table 38, Table 39 and Table 40. These 4 tables detail the parameters used in the Airline Model.

2406 2407 2408

Table 37 lists the baseline constants; these are general inputs to the model.

Model Parameters	Short Name	Value	Unit	Source	Comment
Baseline constants					
Traffic volume ECAC, 24h day	Traffic_Sample_Size	24000	Number	Validation Report	Approximate number of flights considered in the traffic used for the modelling linked to conflict detection in the validation report.
Participation percentage	Participation_Rate	100%	Proportion	User setting	Value can be modified to correspond to the supposed level of airlines participation in sharing AOC data (i.e. take-off mass and speed). For example, a 50% participation level could be considered for few years, then a greater participation level The model assumes ECAC like traffic distribution (aircraft types) among the participants.
Percentage of conficts solved using a level-off Level_off_conflicts_solved_pc		75%	%	Fast Time Simulation (ECAC wide) results, NATS ATC questionnaire answers	This is the percentage of climb/cruise conflicts (true or false) solved using level-off. Value has been chosen using operational input.
Number of days in a year	Days_in_Year_Num	365	Number		
ercentage of MTCD false alerts, leading to a conflict solution Ealse_alert_conflict_resolution_pc		100% %		NATS ATC questionnaire answers	This was set to 100%: for every alert (including false alerts, detected by comparing conflicts in a reference list (based on "perfect" trajectories) vs. conflicts detected using "TP noised" trajectories)), ATC will always (100%) inititates conflict resolution action. This might not be always the case: the ATC will always assess the alert (ATCO questionnaire answer), and might discard or postpone the resolution waiting for a more certain/accurate information.

Table 37: Baseline constants used in the Airlines Model

Table 38 lists the base case assumptions; these are the values reflecting the business as usual situation with the sharing of the AOC data.

Model Parameters	Short Name	Value	Unit	Source	Comment
Base case assumptions					
Number of baseline computed alerts	Computed_Alerts_Num_BL	3,600	Number	Validation Report	Number of alerts (model) for climb/cruise conflicts based on trajectories with typical errors of a ground TP without AOC data. Climb/cruise conflicts only are considered as these are often solved using level-off. This is not the case for climb/climb conflicts.
Proportion of baseline computed alerts (per flight)	Computed_Alerts_Proportion_BL	0.15	Proportion	Validation Report	Previous number of baseline computed alerts divided by the traffic volume ECAC 24h.
Percentage of baseline false alerts	False_Alerts_BL_pc	40%	%	Validation Report	A false alert is detected when an alert is raised using the ground TP with typical errors without AOC data, and this alert does not exist using the reference known trajectories (no noise). The percentage of baseline false alerts is the number of baseline false alerts divided by the traffic volume ECAC 24h. These are modelled false alert rates, not operational ones.
Number of baseline false alerts	False_Alerts_BL_Num	1,440	Number	Validation Report	Number of alerts multiplied by the percentage of false alerts.
Level-off fuel burn	See Table Level-off fuel burn			Airlines partners	A table providing excess fuel burn (in kg) for 3 broad aircraft categories (regional, single aisle, double aisle), at different altitudes.

Table 38: Base Case Assumptions used in the Airlines Model

2411 2412

2413 2414 2415

2420 2421 2422

2423

Table 39 lists the scenario assumptions; these are the values reflecting the situation with the sharing of the AOC data.

Model Parameters	Short Name	Value	Unit	Source	Comment
Scenario assumptions					
Number of improved computed alerts	Computed_Alerts_Num_SC	3,800	Number	Validation Report	Number of alerts (model) for climb/cruise conflicts based on trajectories with typical errors of a ground TP with AOC data. Comparing to the baseline case, there are less false conflict alerts and less missed conflict alerts
Proportion of improved computed alerts	Computed Alerts Proportion SC	0.16	Proportion	Validation Report	Similar definition to base case
Percentage of improved false alerts	False Alerts SC pc	30%	%	Validation Report	Similar definition to base case
Number of improved false alerts	False Alerts SC Num	1,140	Number	Validation Report	Similar definition to base case
Number of false alerts avoided	False_Alerts_Improved_Num	300	Number	Validation Report	Difference between the numbers of false alerts with AOC data vs. Base case. A
Number of level-offs avoided	Level_Off_Avoided_Num	225	Number	Validation Report	This is the number of false alerts avoided multiplied by the percentage of conflicts solved using a level-off multiplied by the percentage of false alerts leading to conflict resolution. Then, this number is corrected
Percentage of level-offs avoided	Level offs avoided pc	0.938%		Calculation	Number of level-offs avoided divided by the
Proportion of climb/cruise conflict alerts @ FL300 & above (ECAC traffic)	Level_offs_FL_300plus_pc	79%	%	Validation Report	This information is extrapolated from the validation report. All avoided level-off do not have the same benefit associated: it depends on the altitude (and associated fuel burn) where it happens. A separation at FL300 has been
Proportion of climb/cruise conflict alerts below FL300 (ECAC traffic)	Level_offs_FL_300less_pc	21%	%	Validation Report	This information is extrapolated from the validation report
Number of level-offs avoided @FL300 & above	Level_offs_avoided_FL_300plus_Num	178	Number	Calculation	Number of level-off avoided multiplied by the proportion of climb/cruise alerts at FL300 &
Number of level-offs avoided below FL300	Level_offs_avoided_FL_300less_Num	47	Number	Calculation	Number of level-off avoided multiplied by the proportion of climb/cruise alerts below
Daily percentage of level-offs avoided @FL300 & above	Level_offs_avoided_FL_300plus_pc	0.741%	%	Calculation	Number of level-offs avoided at FL300 & above divided by the ECAC traffic volume;
Daily percentage of level-offs avoided below FL300	Level_offs_avoided_FL_300less_pc	0.197%	%	Calculation	Number of level-offs avoided below FL300 divided by the ECAC traffic volume;

Table 39: Scenario assumptions used in the Airlines Model

Table 40 lists the cost assumptions used in the Airline model.

2426

Cost assumptions					
Model Parameters	Short Name	Value	Unit	Source	Comment
Comms costs					
Cost in € for the increase of SITA Type B messages for one ATC flight plan.	Cost_per_flight_transmission	0.0075	€	SITA (Type B messages)	Cost based on an increase of 10% of a typical FPL SITA message size to provide mass & speed information from about 250 characters to about 275; i.e. 0.075*10% = €0.0075 per flight plan.
Software costs					
Cost in € for software development	Cost_software	800,000	€		Estimation per ANSP based on 1 FTE (200 w.d.) @400€/day. Cost calculated for 10 ANSP
Number of year of depreciation	Depreciation_years	5	Number	2011 ECTL Standard Inputs	
Cost in € for software development for one flight (1 year traffic sample)	Cost_software_per_flight	0.0183	€		Cost_software divided by the number of years of depreciation divided by the number of annual flights
Environmental costs					
Amount of CO ₂ released per tonne fuel	CO2_released_ton	3.149	tonne	2011 ECTL Standard Inputs	
Cost of CO ₂ in € per tonne fuel	CO2_cost_ton_euro	37.47	€	2011 ECTL Standard Inputs	
EUA (European Emission Allowance) in € per tonne of CO ₂	EUA_benefit_euro	8	€	2011 ECTL Standard Inputs	One permit is emitted for 1 metric tonne of CO ²

2427 2428 2429

Table 40: Cost Data used in the Airlines Model

F.2.5 "Aircraft Assumptions" worksheet

2433 2434

The 'Aircraft Assumptions' sheet contains Table 41.

2435 2436 Table 41 lists the aircraft assumptions; these are the values associated with the fuel burn savings from avoiding level-offs.

Level-Off fuel burn constants	Short Name	Value Unit		Source	Comment
Proportion of flights per aircraft type					
Single Aisle B733 or similar	Single_B3_pc	35%	%	2011 Standard Inputs for EUROCONTROL CBA	
Single Aisle B73X or similar	Single_BX_pc	34%	%	2011 Standard Inputs for EUROCONTROL CBA	
Twin Aisle	Twin_pc	6%	%	2011 Standard Inputs for EUROCONTROL CBA	
Regional	Regional_pc	25%	%	2011 Standard Inputs for EUROCONTROL CBA	
ECAC number of flights 2010	ECAC_Flts_2010_Num	9,500,000	Number	2011 Standard Inputs for EUROCONTROL CBA	
Additional Fuel burn due to level-off					
Typical single aisle @ FL 300+ fuel savings	Typical_Single_300plus_fuel_svgs	19.5	kg per 4'	5.5.2. airspace users participants	
Typical single aisle @ FL 300- fuel savings	Typical_Single_300less_fuel_svgs	40.5	kg per 4'	5.5.2. airspace users participants	Average duration based on
Typical twin aisle @ FL 300+ fuel savings	Typical_Twin_300plus_fuel_svgs	38.0	kg per 4'	5.5.2. airspace users participants	answers received from NATS ATC (about 5-6 minutes) and a
Typical twin aisle @ FL 300- fuel savings	Typical_Twin_300less_fuel_svgs	64.0	kg per 4'	5.5.2. airspace users participants	ECTL Ops (about 2-3 minutes)
Typical regional @ FL240 fuel savings	Typical_Regional_fuel_svgs	6.5	kg per 4'	5.5.2. airspace users participants	

Table 41: Aircraft Assumptions used in the Airlines Model

2437

2438

2439 2440

2441

F.2.6 "Trial" worksheet 2442

The 'Trial' sheet contains the results tables shown in section 8.2. 2443

Appendix G Sensitivity Analysis for CBA Model

Sensitivity analysis examines the sensitivity of the project's economic performance - its costs and benefits - to the variation of individual parameters in order to identify the most critical issues and the degree of their impact.

The most significant parameters to be considered in the conduct of a sensitivity analysis will vary from case to case and cannot be identified in advance.

The results of a sensitivity analysis are usually presented graphically. Tornado diagrams are the standard tool for this purpose.

A Tornado diagram compares the results of multiple analyses. The X-axis is drawn in the units of the expected value (typically NPV), and then for each variable (listed on the Y-axis), a bar is drawn between the extreme values of the expected value calculated from the lower and upper bound values (which requires data to be provided in ranges). Figure 25 shows the AOC concept Tornado diagram. The variable with the greatest range is plotted on the top of the graph, and the remaining variables proceed down the Y-axis with decreasing range. The longest bar in the graph is associated with the variable that has the largest potential impact on expected value, and thus needs careful attention.

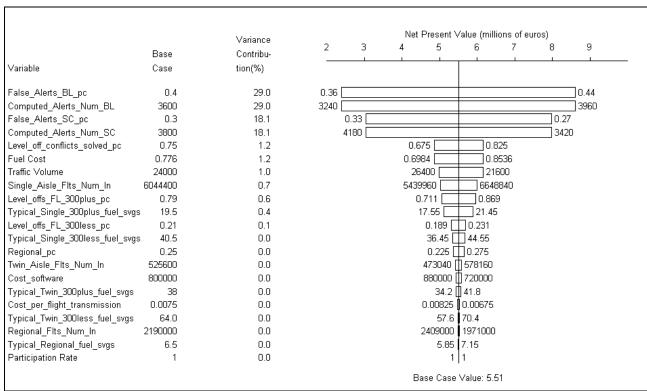


Figure 25: AOC concept Tornado diagram

(Details of the variables can be found in Appendix F.1. The name shown in the tornado diagram can be found in the 'short name' column of the tables.)

The Tornado graph brings attention to the variables that require further attention and should be the focus of any further work. In most real projects, the Pareto rule will happen, as 20% of the variables will typically account for 80% of possible expected value excursion.

2444

2445 2446

2447

2448 2449

2450

2451 2452

2453

2454 2455

2456

2457 2458

2459

2460

2461 2462

2463 2464

2465 2466

2467

2468

2469

Appendix H Probabilistic Analysis for CBA Model

Probabilistic Risk Analysis provides the probability distributions of output magnitudes. The decision-maker can then have a complete picture of all the possible outcomes.

2474 These probability distributions can then be used to perform different assessments:

- Determine a correct range for the results
- > Identify probability of occurrence for each possible outcome

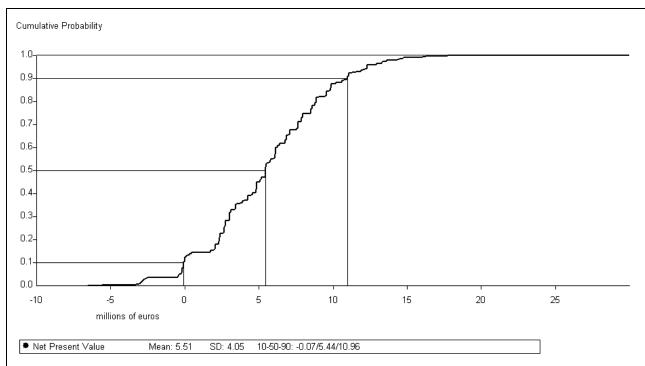
2477 2478 2479

2471

2472

2473

2475


2476

As a result, it is easy to get an overview of the risks involved and a feeling for how they should be addressed.

2480 2481 2482 The probabilistic risk analysis is based on Monte Carlo simulation, and that is the reason why the confidence intervals associated with the inputs of the model have to be carefully assessed in order to get the results as reliable as they can be.

2483 Figure 26 shows the AOC concept (ECAC level) cumulative probabilistic distribution:

2484

2485 2486 2487

2488

2489

Figure 26: AOC Concept Cumulative Probability Curve

The diagram shows the probability of having a result equal or higher to a defined value. SD is the standard variation and measures the spread of the data about the mean value.

Appendix I Overview of Validation Objectives Status for P 05.05.02

Validation Objective ID	Validation Objective Title	Exercise ID & Title	Success Criteria	Exercise Results	Validation Objective Analysis Status per exercise	Validation Objective Analysis Status
OBJ-05.05.02- VALP- 0010.0010	Validate that the accuracy of the TP improves considerably when AOC data is used as an information source.	EXE- 05.05.02- VALP- 0069.0100 [TP Accuracy Analysis]	The accuracy of a predicted trajectory is improved considerably when AOC data is used in the prediction when compared to the accuracy without the use of AOC data.	There are a number of cases where accuracy improved: > AOC mass for climbed aircraft. > AOC speed for climbed aircraft. > AOC mass and speed for climbed aircraft. > AOC mass for decent aircraft.	ОК	ОК
		EXE- 05.05.02- VALP- 0069.0200 [TP Sensitivity Analysis]	The accuracy of a predicted trajectory is improved considerably when AOC data is used in the prediction when compared to the accuracy without the use of AOC data.	The accuracy improvement gained in EXE 0069.0100 maintained.	ОК	ОК
OBJ-05.05.02- VALP-	Validate that the selected	EXE- 05.05.02-	The TP algorithm used in the test is	Minor modification introduced to iFACTS TP	ОК	ок

Validation Objective ID	Validation Objective Title	Exercise ID & Title	Success Criteria	Exercise Results	Validation Objective Analysis Status per exercise	Validation Objective Analysis Status
0050.0010	AOC data can be used in current or near- term TP algorithms.	VALP- 0069.0100 [TP Accuracy Analysis]	representative of current or near term TP systems.	algorithms that allowed the use of AOC data in the iFACTS system.		
OBJ-05.05.02- VALP- 0050.0110	Validate that AOC data can be used in current or near- term ATC tools that use trajectory prediction.	EXE- 05.05.02- VALP- 0069.0100 [TP Accuracy Analysis]	AOC data is used in a demonstration using current or near-term operational ATC tools.	The sample data used is a mixed of AOC supported and non-supported aircraft.	ок	ок
		EXE- 05.05.02- VALP- 0300.0100 [Real-time ATC tool concept demonstratio n]	AOC data is used in a demonstration using current or near-term operational ATC tools.	AOC data successfully demonstrated in a near-term operational ATC toolset (iFACTS).	ок	ок
OBJ-05.05.02- VALP- 0010.0110	Validate that TP stability is not adversely affected by the introduction of	EXE- 05.05.02- VALP- 0069.0200 [TP	A variation limit on the AOC parameters can be established that ensures accuracy equal or greater than the	The effect of modification introduced to reported AOC data investigated and stability of the ATC system using TP with AOC data	ок	ок

Validation Objective ID	Validation Objective Title	Exercise ID & Title	Success Criteria	Exercise Results	Validation Objective Analysis Status per exercise	Validation Objective Analysis Status
	AOC data.	Sensitivity Analysis]	stability without AOC data.	validated.		
OBJ-05.05.02- VALP- 0020.0010	Validate that CDnR tool performance in a high density Area Control airspace improves when the underlying TP is supported by AOC data.	EXE- 05.05.02- VALP- 0069.0400 [Fast-time <i>CDnR</i> effects analysis]	CDnR tool performance for Area Control improves when the underlying TP is supported by AOC data when compared to performance without the use of AOC data.	There is a benefit in using AOC data for CDnR tool performance. Highest benefit is obtained by using AOC mass and speed data combined.	ок	ок
		EXE- 05.05.02- VALP- 0301.0100 [Real-time ATC tool performance analysis]	CDnR tool performance for Area Control improves when the underlying TP is supported by AOC data when compared to performance without the use of AOC data.	The use of AOC data in computing TP improved the accuracy of TP and that helped the improvement of CDnR tool performance in a noticeable number of flights. No degradation in CDnR performance noticed.	ОК	ОК
OBJ-05.05.02- VALP- 0030.0110	Validate that improved TP accuracy achieved through the use of AOC data	EXE- 05.05.02- VALP- 0069.0400 [Fast-time	The rates of false and missed alerts of CDNR tool are reduced. (CRT-05.05.02- VALP-0030.0110)	Core area results Compared to performance without the use of AOC Data. A missed conflicts alert rate due to TP errors reduces by 10% (look-ahead 8:18 minutes)	ок	ок

Validation Objective ID	Validation Objective Title	Exercise ID & Title	Success Criteria	Exercise Results	Validation Objective Analysis Status per exercise	Validation Objective Analysis Status
	leads to improved operational performance when used in a CDnR system in for a Departure Controller	CDnR effects analysis]	The number of continuous climbs available through the CDnR tool is increased. (CRT-05.05.02-VALP-0030.0120)	using Mass and Speed AOC data combined, for conflicts with at least one aircraft in climb. The reduction is about 12% for look-ahead 5:8 minutes. False conflicts alert rates due to TP errors, reduces from 5% (cruise/cruise) to 10%(cruise/climb) (look-ahead 8:18 minutes) using Mass and Speed AOC data combined, depending in conflict type. The reduction numbers are similar for look-ahead times 5-8 minutes. The increase in continuous climb is related to the false alert rate reduction for conflicts(involving at least on aircraft in climb): The false alert rates decreasing by 10%, the rate of continuous climb stopped unnecessary due to a false alert will reduce at most by 10%.		
OBJ-05.05.02- VALP- 0040.0010	Validate that AOC parameter values outside their expected scope can be	EXE- 05.05.02- VALP- 0300.0100 [Real-time	Demonstrated that grossly incorrect values for AOC data parameters can be detected.	Investigated during system test prior to simulation activity.	ок	ок

Validation Objective ID	Validation Objective Title	Exercise ID & Title	Success Criteria	Exercise Results	Validation Objective Analysis Status per exercise	Validation Objective Analysis Status
	detected and data can be rejected on that basis.	ATC tool concept demonstratio n]				
OBJ-05.05.02- VALP- 0040.0020	Demonstrate possibility of using AOC data for a subset of flights in an operational system.	EXE- 05.05.02- VALP- 0300.0100 [Real-time ATC tool concept demonstratio n]	An operational system is demonstrated to use AOC data in a subset of the flights it handles	AOC data successfully applied for a subset of flights.	ок	ок
OBJ-05.05.02- VALP- 0040.0210	Validate that TP system can be developed to accept all incoming data regardless of the presence of grossly incorrect values.	EXE- 05.05.02- VALP- 0300.0100 [Real-time ATC tool concept demonstratio n]	AOC data with grossly incorrect values is taken into the system. (Note that OBJ-05.05.02-VALP-0040.0010 prevents this data from subsequently being used)	Investigated during system test prior to simulation activity.	ок	ок
OBJ-05.05.02- VALP- 0040.0310	Validate that a TP system can be developed that uses baseline	EXE- 05.05.02- VALP- 0300.0100 [Real-time	TP system generates usable trajectory based on the baseline algorithm for aircraft	Investigated during system test prior to simulation activity.	ок	ок

Validation Objective ID	Validation Objective Title	Exercise ID & Title	Success Criteria	Exercise Results	Validation Objective Analysis Status per exercise	Validation Objective Analysis Status
	functionality without use of AOC data when grossly incorrect AOC data is provided.	ATC tool concept demonstratio n]	for which grossly incorrect AOC data is supplied.			
OBJ-05.05.02- VALP- 0070.0010	Validate that ATC-system (iFACTS) able to receive and handle AOC data.	EXE- 05.05.02- VALP- 0300.0100 [Real-time ATC tool concept demonstratio n]	AOC data provided to iFACTS system that received it and demonstrated the ability to handle it.	AOC data successfully provided, received and handled by a near-term operational ATC toolset (iFACTS).	ок	ок

Table 42: Overview: Validation Objectives, Exercises Results and Validation Objectives Analysis Status for P 05.05.02

- END OF DCUMENT -