
Ninth USA/Europe Air Traffic Management Research and Development Seminar (ATM2011) 

Safety Monitoring in the Age of Big Data 
From Description to Intervention 

 

Simone Pozzi, Carlo Valbonesi, 
Valentina Beato 

Deep Blue Research and Consulting 
Rome, Italy 

[simone.pozzi , carlo.valbonesi , 
valentina.beato] 

@dblue.it 

Rodolfo Volpini 
Francesco Maria Giustizieri 

ENAV 
Rome, Italy 

[rodolfo.volpini , 
francescom.giustizieri]@enav.it 

 

Frederic Lieutaud, Antonio Licu 
EUROCONTROL HQ 

Brussels, Belgium 
[frederic.lieutaud , antonio.licu] 

@eurocontrol.int 
 
 
 

 
Abstract— The paper discusses how the increasing availability of 
large amount of digital data in ATM addresses the need for an 
approach that combines operational expertise, data analysis skills 
and information design.  Big data pose both opportunities and 
challenges: by describing the big picture, they can provide 
fruitful insights into the ATM system that would be otherwise 
impossible to get, but they may as well remain opaque and 
merely overwhelming if a proper sense-making process is not put 
in place. Other industries have been taking advantage of big data 
for a long time with results that are hardly questionable.  ATM is 
still exploring the methods and tools for the best exploitation of 
large data sets; the case of ASMT (Automatic Safety Monitoring 
Tool) well exemplifies the efforts in progress. The results from 
three previous studies based on ASMT are discussed in order to 
highlight the gap that exists when trying to transform ASMT-
informed analysis into operationally relevant recommendations. 
A tentative solution proposed in the conclusive section focuses on 
the role of information design.  

Keywords- ASDG; ASMT; Safety Monitoring; Big Data; Data 
Analysis  

I.  INTRODUCTION 
The structure of Air Traffic Management (ATM) as it is 

known today will undergo major changes both in Europe (the 
SESAR program) and in the USA (the NextGen programs). 
These initiatives aim to radically change the exiting 
transportation system, by intervening on technologies, 
procedures, role of human actors and organizational aspects.  

One of the key innovation drivers of both SESAR and 
NextGen is the shift from a structured route network to a 
trajectory-based network, where users (i.e. single flights) will 
be able to fly their selected trajectory, instead of following a 
predetermined route grid (made of airways and crossing points) 
across the sky [1, 2]. Trajectory-based operations will increase 
the flexible use of the airspace, but they will not result in a 
totally unstructured airspace. It is reasonable to expect that 
most characteristics of the current situation (e.g. bottlenecks, 
main traffic flows and crossing points, boundary points, etc.) 
will also emerge in the future scenario, resulting in a different 
structure, probably a highly flexible and changing one. 

The increase of the complexity degree will cause changes 
that will be hardly understood by relying on the analysis of 
single elements and will instead require the understanding of 
how all the new elements will interact together. Just few years 
ago, this challenge would have been impossible and baffled 
any attempt to address it. Today these changes happen in 
parallel to a scenario of radical technological innovation, where 
data have gone from scarce to super-abundant in nearly all 
fields of human activity. There are many reasons for such data 
explosion, the most obvious one being the introduction of new 
technologies and sensors, that can digitise information that was 
previously hard to capture and process. All these data give us 
unprecedented possibilities of understanding the system. 

ATM makes no difference, as nowadays there is easy 
access to a vast amount of digital data, like radar data, FDP, 
controllers’ input, system logs, etc. This makes it possible to do 
things that just few years ago could not be done: spot trends 
and patterns, prevent them from worsening, monitoring with 
the uttermost precision the performance of technical ATM 
systems, monitor Key Performance Indicators (KPI) of the 
whole system. Managed well, the data can unlock new 
opportunities and provide fresh insights into complex dynamic 
problems. But the overabundance of data also creates a host of 
new issues. ATM needs to develop new methods, techniques 
and tools for the analysis of these noisy data sets, if it is to 
succeed in extracting knowledge from these data. 

At the present moment, the aviation community lacks 
disciplined methods to monitor the future airspace structure in 
quasi real time, especially as far as system-level emerging 
properties are concerned. The scenario envisioned by SESAR 
and NextGen entails a system with a bottom-up organisation 
(the flight structure emerges out of the single trajectories) and 
increased interconnections (less predefined boundary zones, 
information being shared by all the actors). Compared to the 
fixed route scenario, the structure and properties of the future 
aviation network system will emerge from the interactions 
among many elements, among which we may quote: users’ 
decisions and actions (i.e. pilots and air traffic controllers), 
trajectory-based operations, organizational changes, and the 
temporary deployment of different arrays of resources/tools to 



manage specific situations, weather and other environmental 
factors. 

Two main issues can be identified in this scenario: 

• The monitoring in quasi real-time of the system status, 
in particular by detecting and analyzing system level 
emerging properties, in order to inform tactical and 
planning adjustments. 

• The analysis of the propagation of disturbances (i.e. 
delays, or technical malfunctions, or safety issues), to 
understand and predict the dynamics by which 
disturbances move across the airspace, and are 
absorbed or amplified. 

Both issues will require the monitoring and understanding 
of system level phenomena, with the goal of understanding 
whether the emerging configuration is a “good order”. While 
the proposed changes will most likely deliver a more flexible 
use of the airspace driven by users’ requests, it cannot be 
assumed that the resulting order is going to be a “good” one 
under all the different performance criteria (e.g. efficiency, 
predictability and safety among the main ones).  

Structured methods of monitoring the system status under 
all (or at least most of) these criteria need to be developed, to 
be able to intervene and possibly change in real time the 
relative priority of the above criteria. These methods should be 
able to cope with a large quantity of safety data and make sense 
of them from a systemic perspective. 

II. BACKGROUND 

A. The Need for Large Data Sets: the ICT and Retail 
Industry 
Data have become super-abundant thanks to the explosion 

of digital technology. Organizations in every industry, in every 
part of the world, invest an increasing amount of money on 
systems for data collection and analysis. This huge amount of 
information enables organizations to do things that previously 
could have not been done like spot business trends, objectively 
monitor performance levels, anticipate market demands and so 
on.  

Not all the industries are at the same maturity level when it 
comes to the ability to manage what is now called “big data”. 
Information Communication Technologies (ICT) and retail 
industries, among the others, are at the forefront of the 
exploitation of big data, the first being centrally involved as 
producer in the digital data “explosion”, the second valuing 
sales data as an asset of paramount importance since its very 
beginning [3]. Every significant Internet application to date has 
been backed by a specialized database like Google's web crawl 
and Amazon's database of products. For companies like these, 
data are “the next Intel inside”, i.e. the real key-enabler of their 
business, as the software infrastructure needed to exploit them 
is largely commoditized [4]. Wal-Mart, one of the worldwide 
leading retailers, systematically studies its massive sales 
database (around 267 million transactions a day) to understand 
how to devise better pricing strategies, inventory control and 
advertising campaigns [5]. Companies using analytics achieve 

a competitive advantage by informing their decision-making 
with insights based on the understanding of the market big 
picture and its dynamics. For example, analytics can unravel 
hidden correlations between variables, which can then be used 
to predict future behaviour [6]. A survey promoted by the MIT 
Sloan Management Review found out that: “[…] top 
performing organizations use analytics five times more than 
lower performers […] and twice as likely to use insights to 
guide day-to-day operations” [7].  

Other industries have been starting a shift of focus on big 
data only in recent times. For example, User Experience (UX) 
practitioners have been relying for a long time on qualitative 
lab tests when assessing the usability of a website or any other 
digital tool. Only recently the UX industry has started a move 
to the integration of qualitative assessment with quantitative 
techniques like A/B testing, analysis of live website data and 
online usability studies which are based on the collection in 
quasi-real time of large sets of digital data [8]. In this case the 
driver behind this change is the opportunity to validate (or 
question) interface design on the base of insights derived by 
large sets of objective data gathered in a more natural context 
of use.  

Similarly to the UX industry, ATM has just recently started 
to dedicate more attention to opportunities offered by analytics, 
especially when it comes to safety management. Whatever the 
industry – and ATM makes no difference - the biggest 
challenge in the age of analytics resides in not being 
overwhelmed by data and finding the best ways to obtain 
actable knowledge from them, a process that requires a 
combination of analytical and information design skills. Such a 
challenge is well reflected in the flourishing field of info-
graphics and of information visualisation software like 
Tableau, Gapminder, or Google Public Data Explorer (the 
latter two based on the same technology). 

B. Large Data Sets for ATM Safety Management: ASMT 
The Commission Regulation (EC) No. 2096/2005 

transposing ESARR3 into Common Requirements [9] defines 
the “Safety Monitoring principle”: methods should be in place 
to detect changes in systems or operations which may suggest 
any element is approaching a point at which acceptable 
standards of safety can no longer be met and corrective action 
should be taken. To pursue these opportunities and comply 
with the regulatory requirements, EUROCONTROL has been 
actively investing in the development of Automatic Safety Data 
Gathering (ASDG) tools for more than ten years, and in 
particular it has developed and constantly upgraded the 
Automatic Safety Monitoring Tool (ASMT). ASMT has been 
designed to assist users in the collection and analysis of safety 
data, by constantly monitoring in quasi-real time radar tracks, 
flight plans and system alerts.  

The Automatic Safety Monitoring Tool (ASMT) has been 
developed by the EUROCONTROL Experimental Centre, in 
co-operation with and on the basis of the requirements of the 
Maastricht Upper Area Control Centre (MUAC). The design 
was initiated in the 1996 and the first ASMT version was 
installed in MUAC in the 1999. More than 10 years of 
successive development and successful validation have led to 



the current version of ASMT that EUROCONTROL HQ is 
currently supervising to reflect the requests and needs of a 
growing group of users. ASMT can now be considered as the 
most advanced tool for Automatic Safety Data Gathering 
(ASDG). 

ASMT can be connected to the operational ATM system in 
an on line or off-line mode (it can be also connected to a 
simulation platform in the context of Real Time Simulation) to 
elaborate in quasi real-time data on radar tracks, flight plans 
and system alerts. It automatically detects operational and 
technical occurrences according to user-defined parameters. 
ASMT detects events through the computation of the current 
air traffic situation, continuously updated from the track and 
flight plan inputs.  

Currently ASMT gathers data on seven types of safety 
events. ASMT own modules detect four of these types: 
Proximity (e.g. separation minima infringements), Airspace 
Penetration, Altitude Deviation (e.g. level busts) and Rate of 
Closure. The recording of the three other types is triggered by 
system alerts, coming from the ATC system, e.g. the case of 
Safety Nets (Short Term Conflict Alert or Area Proximity 
Warning), or down-linked from aircraft, e.g. the case of ACAS-
RA alert. For each detected occurrence, it stores the relevant 
data (shortly before, during and shortly after the event) into a 
database that can be later queried to extract the data or to 
review the occurrence in a dedicated replay window. More 
information on ASMT and on Automatic Safety Data 
Gathering can be found in [10-13]. 

The current major limitation of ASMT is certainly the 
sensitivity of the data being collected, especially as far as legal 
recording and human reporting are concerned. ASMT can be 
easily considered as a “big brother” tool, spying over the 
controller’s shoulder and supporting a blame culture of 
punishment. Therefore, before starting implementing ASMT, 
fundamentals principles shall be put in place. These are, as a 
minimum, the policy to use ASMT, to analyze Safety Events 
with principles for Operational & Technical usage.   

III. CASE STUDY: MAKING SENSE OF DATA COLLECTED BY 
ASMT 

ASMT use should be mainly aimed to support safety 
management, through the provision of large data sets collected 
using objective criteria (as compared to subjective sources, like 
voluntary reporting). These data, when properly analyzed and 
interpreted, can inform decision-making processes. Provided 
that ASMT has been correctly set for data collection, the 
analysis and visualization are the most critical phases, because 
they are the interpretative activities that actually produce 
results and deliver them to the intended audience. 

On the basis of our experience with ASMT [14-16], we 
maintain that ASMT requires its users to adopt a data analyst 
perspective, i.e. the ability to shift the attention focus from the 
dynamics of single events to the emerging statistical 
characteristics (e.g. distribution, trend etc.) of large data sets. 
This perspective is not part yet of the core operational 
competencies of the ATM community (being more the 
province of the research world) and should be developed to 

complement the operational perspective (i.e. detailed 
knowledge of a specific airspace, procedures, technical 
equipment being used, etc.), which currently plays a major role 
in safety analysis. More in detail: 

• The Data Analysis Perspective is driven by analysis 
methods and techniques. It aims at a statistical 
characterization of the data set under analysis. 
Compared to current investigation processes, the 
attention focus shifts from the causes and dynamics of 
single events to the emerging statistical characteristics 
(e.g. distribution, trend etc.) of whole data set. Data 
analysis proceeds through iterative processing, till a 
clear characterization of the data set has been achieved. 

• The Operational Perspective requires Safety and 
Operational expertise. This perspective currently plays 
a pivotal role in the investigation activities, but would 
require a change of paradigm to effectively contribute 
to safety monitoring activities carried out through 
Automatic Safety Data Gathering. Operational and 
Safety experts are currently performing case-based 
analyses, based on their domain knowledge and 
experience, with the aim of understanding specific 
events, and not abstract high-level properties. This is 
done by applying subjective knowledge of the work 
context on a (generally small) set of data. Their 
contribution to ASDG-informed activities should 
instead focus on the interpretation of large data sets, in 
order to “attach to the data an operational meaning”, 
i.e. to read the data set and identify relevant ATM 
aspects therein. For instance, ATM experts should be 
able to interpret the clustering of events in some areas 
and describe a set of causes behind them, like the 
geometry of encounters in that area, or the Short Term 
Conflict Alert (STCA) parameterization, or maybe a 
technical issue. Likewise the expert should be able to 
superimpose her/his knowledge of the airspace 
structure to the event geographical distribution, e.g. see 
the event hotspot as stretched along a busy airway.  

In brief terms, the data analyst perspective should focus on 
numbers and their emerging correlations and dependencies, 
while the operational perspective should focus on the meaning 
of events into a context. 

The two perspectives can often push in divergent directions. 
The analysis perspective can churn out values and figures 
totally detached from the operational reality and make it 
impossible for experts to help with their interpretation. Very 
complex analysis techniques may too radically transform the 
data, often putting them in formats not familiar to operational 
experts. On the other hand, a too strong emphasis on 
operational knowledge may remain only at the surface level of 
what the data might tell, constraining the analysis only to some 
macro features and failing to extract additional results, often 
hard to appreciate at a first glance. The separation between the 
two perspectives often happens because they are mastered by 
different persons, who should find a shared working process in 
order to complement each other. The situation is even worse 
when the analysis and operational expertise reside in two 
different departments (or even organizations). Organizational 



separation often engenders secrecy and blocks any coordination 
process. 

For the operational knowledge to effectively inform the 
safety monitoring process, actions should be taken to simplify 
the presentation of analysis results. For instance, visual design 
principles should be applied to geographical representations, in 
order to avoid the visual clutter that may be engendered by the 
display of a large number of events. When the data set 
dimension scales up, the “opacity” of the big picture increases. 
Operational perspective can easily make sense of a single 
occurrence but, if not supported by proper visualization, it 
struggles when interpreting large sets of data, as events 
superimpose in time, mask each other and get mixed with 
background noise. For this reason, to build a bridge between 
the two perspectives, in previous projects we successfully 
introduced a third perspective:  

• The Information Design Perspective, i.e. the ability to 
conceive, prepare and present information in ways 
people can use it with efficiency and effectiveness. 
This third strand builds on the understanding of the 
most relevant features of a data set, in order to devise a 
graphical representation that eases the comparison 
among them, be it a geographical comparison or a time 
comparison. As well posed by Edward Tufte: “At the 
heart of quantitative reasoning is a single question: 
Compared to what? [Graphical representations] answer 
directly by visually enforcing comparisons of changes, 
of the differences among objects, of the scope of 
alternatives.” [17] 

Two examples of ASMT usage can better exemplify the 
process of turning the information into knowledge. In the first 
example the operational perspective took a leading role in 
framing the results, whilst in the second one the accent was 
more on the capability of the data analysis to make significant 
relationships emerge. 

A. The Operational Perspective 
The first example is the use of ASMT at the ENAV (the 

Italian Air Navigation Service Provider) Experimental Centre 
to support the Multi Radar Tracking (MRT) tuning and the 
STCA performance monitoring [14]. In both cases, the 
approach consisted in: 

• Data gathering: collection of a significant amount of 
event (i.e. double tracks and STCA alerts) by properly 
setting ASMT for recording. 

• Validation: validation of the collected data by finding 
and eliminating false positives. 

• Data analysis: descriptive statistics was applied to the 
data collected, to analyze the distribution in relation to 
geography (latitude, longitude and Flight Level bands), 
time, horizontal and vertical separation and other 
relevant criteria (e.g. for STCA events conflict 
geometry, rate of closure etc.). 

• Information visualization: intuitive graphs and charts 
were designed and draw to visualize the results, in 

order to support the interpretation by operational 
experts. 

• Discussion with operational experts: the analysis 
results were presented to experts and discussed with 
them to identify relevant patterns and regularities in the 
data and construct hypotheses on the underlying 
causes.  

• Analysis refinement: further data analyses were often 
required to verify hypotheses or to collect a richer data 
set on specific geographical areas or in specific hours. 

In this case the process was mainly driven by operational 
experts who were giving sense to the data collected.   

The analysis and information design were quite simple. 
Basically the results consisted in calculating different 
distributions of STCA and double tracks events with respect to 
characteristics like geography, Flight Level (FL) bands, 
duration, horizontal and vertical separation, time to 
infringement, horizontal and vertical rate of closure and so on. 
The representations used were mostly maps, tables and bar 
charts. Figure 1 is the geographical distribution of double 
tracks events recorded in the Italian airspace in a period of 3 
weeks, while Figure 2 shows the distribution of STCA events 
recorded in 2 weeks.   

  

Figure 1. Geographical distribution of double tracks events in the Rome Flight 
Information Region (FIR), color coded for FL bands (three weeks of 

recording). 

 

 

Figure 2. Geographical distribution of STCA events in the Rome FIR, colour 
coded for FL bands (two weeks of recording). 



Operational experts were able, by looking at Figure 1, to 
detect a possible problematic area over Elba Island (circled in 
the figure). The array of double tracks was first attributed to a 
nearby military area, thus to military traffic. But this hypothesis 
was discarded by closely inspecting each event, as involved 
aircraft were civil ones. A second hypothesis pointed to 
maintenance work to an Eastern radar site. The operational 
experts indicated the area as a good candidate for a follow-up 
recording period, in order to monitor these events and verify 
the maintenance hypothesis.  

Operational experts were also able to make sense of the 
results shown in Figure 2. At first, a different FL bands 
distribution was expected. The STCA algorithm in use was 
known to over-react to vertical movements, so the large 
majority of alerts was expected to go off in FL with high 
density of climbs/descents. Instead the data set was showing a 
clear peak in high FL (see Figure 3). 

 
Figure 3. STCA events distribution (percentage by FL bands). 

During the discussion, an hypothesis to account for the FL 
bands distribution was outlined. These STCA alerts might be 
engendered by the interaction among small movements on the 
Mode C, high horizontal speed and head-on trajectory 
geometry (which results in an even higher relative speed). In 
other words, the high horizontal speed might combine with 
small vertical movements (e.g. Mode C jumps) to trigger 
STCA alerts. This hypothesis was later confirmed by drilling a 
subset of data and producing a bar chart in which the number of 
STCA events per vertical distance for STCA with vertical rate 
of closure equal to zero is shown (Figure 4). 

 

Figure 4. Number of STCA events per vertical distance (hundreds of feet), for 
STCA with zero vertical rate of closure. Difference above 2.200 feet not 

shown. 

Again, the process of addressing the right question, i.e. 
understanding what to look for, was driven by operational 
expertise. As a consequence of the analysis presented above, an 
improvement action was defined as to enlarge the Mode C 
tolerability buffer, so that small Mode C jumps would not 
activate STCA alerts.  

B. The Data Analysis Perspective 
The second example is about using ASMT to understand 

the properties of STCA alerts at a system level, either by 
network analysis [15] or by analysis of hotspots areas dynamics 
[16].  

In this case the approach consisted of the following steps: 

• Data gathering: acquisition of 3 different sample sets 
delivered by the Italian service provider ENAV and the 
British one, NATS. 

• Validation: events were systematically searched to find 
potential false positives and to verify that parameters 
and filters already in place had been working as 
expected. 

• Data analysis: the data were plotted on the map 
corresponding to the area in which the events were 
collected, in order to outline hotspots. 

• Analysis refinement: follow-up analyses were 
performed to analyze some of the interesting features 
emerging from the first round of analyses. 

• Results visualization: data were graphically 
represented on a map, using scatter plots [15] or 
density lines [16]. 

In this case, the process was driven by the application of 
advanced analysis techniques and methods (network analysis in 
the first case, density calculation in the second case), in order to 
identify patterns, regularities and outliers in the data set. The 
key operation here was the processing of the data set by means 
of quantitative calculations, to identify properties that could not 
be seen at a first glance by operational and safety experts. 
While in the first case the patterns were identified by the “eye 
of the expert”, here they emerged because of quantitative 
processing.  



In the first study, analysis methods derived from complex 
systems theory (i.e. network analysis) were used to assist in the 
understanding, monitoring and management of the performance 
of ATM systems. Network analysis applied to STCA events 
showed that they were more coupled than ATM experts 
expected. More specifically it was found that 808 aircraft of the 
1513 of the sample (53%) were involved in an STCA that 
involved only two aircraft, while 705 aircraft (47%) were 
involved in sub-networks of STCAs with more than only 
another aircraft. This result was quite unexpected because it 
indicates that in roughly half of the cases STCAs do not occur 
in isolation but rather they are clustered. This also indicates 
that the resolution of an STCA very often triggers another 
STCA. A more rigorous account of STCA network distribution 
by nodes (i.e. aircraft involved) is given in Table I. 

TABLE I.  DISTRIBUTION OF STCA NETWORKS  BY NUMBER OF 
AIRCRAFT INVOLVED 

STCA network distribution by size 
Size 3 4 5 6 7 8 9 10 11 13 15 17 

Frequency 94 32 17 8 4 4 4 1 1 1 1 1 
 

Further analysis on the range of FL of STCA networks, 
revealed other system properties: for example, bigger networks 
span across many different FL, thus indicating that STCA can 
propagate through different flight phases (Figure 5).  

 
Figure 5. Delta FL for each subnetwork of aircraft. The red line shows the 

average Delta FL (smoother LOWESS) as a function of the number of nodes. 
The green line is the median Delta FL value for the whole data set, the 

blueone is the 75th percentile, the light blue one the 95th percentile. 
 

The results of this study were almost exclusively driven by 
statistical analysis. The focus was more on the interpretation of 
abstract concepts like the mean number of network nodes and 
edges, in order to describe the STCA network configurations. 
For instance, the time threshold after which a network was 
terminated (i.e. two STCA were considered as being not 
related) was set to 50 minutes on the basis of purely statistical 
reasons (the distribution of the time distance between two 
alerts), while operational considerations indicating different 
thresholds (shorter ones) were not used to inform the analysis. 

The second study aimed to identify the potential 
relationships between STCA high-density areas. As already 
mentioned, the first step was the localization of the STCA 
events (Figure 6). However, the intrinsic inhomogeneity 
displayed by the map of safety events hindered the detection of 

high-density areas, i.e. hotspots. In other words, the visual 
layout did not easily allowed any interpretative process. To 
overcome this problem, density estimation was proposed as an 
intuitive, powerful solution to the problem of hotspot detection 
and definition. This required the use of an analysis technique, 
i.e. kernel density estimation, and of a more elaborated 
information design (Figure 7). The transformation from Figure 
6 to Figure 7 is not merely visual but, most importantly, of an 
informative nature.   

 

Figure 6. STCA events plotted on X-Y map. 

 

Figure 7. STCA density map (hotspot “1” identified as merging point, and “2” 
as a crossing point). 

The use of density estimation and the related representation 
allowed to achieved two different kinds of results: 

• The detection of isolines of constant density, which are 
the key ingredient for the definition of hotspots. The 
possibility to appreciate the different densities of 
STCA could be taken as a starting point to define the 
hotspot boundaries in a quantitative manner.       

• A visualization with a higher degree of intelligibility 
for the ATM experts, who were then enabled to match 



the information with their operational expertise. For 
example a first interpretation of the density map 
consisted in the recognition of hotspots 1 and 2 (in 
Figure 7) as a “merging” and “crossing” point 
respectively.  

It is worth noting, that the statistics used to process the data 
produced results that the operational knowledge alone would 
have never been capable of. Most noticeably, these results 
often opened up unexpected research directions, by showing 
data from a totally different perspective. For instance, the 
movement of density isolines in time pointed at the 
characterization of safety hotspots not only in terms of 
topology or other geographical characteristics, but also for their 
temporal evolution. Such an analysis could potentially identify 
the main axes of propagation of safety events clusters, to render 
a description of the anisotropy of the aviation system and 
outline the main directions in which safety events clusters 
selectively move. 

The two works just cited were targeting long-term research 
goals, so the operational interpretation was not actively sought. 
This is especially true for the first case study, while in the 
second case some resources were devoted to drawing a more 
user-friendly representation, in order to gather a first light 
feedback (not elaborated further). However, in both cases most 
of the efforts was on finding the “right statistics” or calculation 
method. A full session with safety and operational experts 
would be required at this stage to get their feedback, interpret 
the results and define additional analyses. The goal would be to 
close the loop between analysis and operational needs and 
eventually define improvement actions. For this to happen, the 
current visualization should be made more user-friendly and 
easy to interpret by operational experts.   

IV.  DISCUSSION: THE GAP BETWEEN DESCRIPTION AND 
APPLICATION 

The cases presented above provide a good example of the 
insights that can be acquired by analyzing data collected by 
ASDG tools. The key issue to be addressed is the same faced 
by the other domains: avoid being overwhelmed by data and 
find the best ways to obtain actable knowledge from them. If 
only the operational perspective is applied, the risk is to remain 
at a superficial level, by appreciating only macro-features that 
may be more apparent than of real operational relevance. If 
only data analysis is pursued, the risk is to obtain a very 
detailed numerical characterisation of the data set without any 
clue on how to operationally interpret these figures. 

These two risks are both related to the challenge of 
obtaining actable knowledge out of the data, which is how to 
provide a good description that can inform the definition of 
improvement actions. As far as ASDG is concerned, currently 
the ATM community seems to be mostly concerned with the 
description pole. There are quite a few quantitative methods to 
process safety and performance data, such as the Aerospace 
Performance Factor [18], or the Risk Analysis Tool [19]. Other 
methods exist to calculate the complexity of a given airspace 
area [20, 21]. However, structured methods are still to be 
developed to address both purposes: description and 
intervention. This knowledge gap can be represented as in 

Figure 8, where the operational and the data analysis 
perspectives are mapped with their descriptive and applicative 
power. 

 

Figure 8. The knowledge gap in the data analysis perspective, with the 
application part of the graph still to be filled in. 

The operational perspective has found disciplined ways of 
passing from description to application, by effectively 
delivering improvement recommendations as an outcome of 
investigations. The same movement is still to be designed in 
the data analysis perspective. A gap currently exists in how to 
translate ASDG-informed analysis into operationally relevant 
recommendations. 

The tentative solution we explored in our previous works is 
to work on data visualisation to make sure operational and 
safety knowledge can be brought into play. In other words, we 
have been trying to increase the knowledge exchange between 
the data analysis and operational domains. The two domains 
should remain separate to ensure the benefits of both 
perspectives, but methods are needed to ensure that they 
complement each other in the analysis of big data. As discussed 
in the previous sections, this has been done mostly by 
introducing an information design perspective. As a side note, 
we should also mention how the operational domain may also 
profit from ASDG data, for instance by prioritising 
investigations with the use of automatic indexes, or even to 
stop some of them. The ESARR2 Risk of Collision may be one 
of these indexes [22] . 

To better outline the process and the different contributions 
by data analysts and by operational experts, we may rely on the 
concepts of data, information and knowledge. 

• Data are what is collected by ASDG tools like ASMT. 
They are factual events and raw numbers that 
quantitatively describe the different characteristics of 
the events. Examples of them are the number of STCA 
collected last month, or the horizontal rates of closure 
for all the losses of separation.  

• Data are turned into information by undergoing 
statistical and mathematical transformations (e.g. 
sorting, distribution, correlation etc.). The aim is to 
create a structured description of what has been 
collected from the environment. This is the descriptive 
part of the process. 
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• Last, information has to be translated into knowledge, 
i.e. into a full-fledged understanding of the system 
dynamics and of the underlying causes. With the term 
knowledge, we mean information that makes sense to 
the people who will use it, i.e. operational and safety 
experts, because it can be used to derive improvement 
actions, to control the system, to predict future events. 

In the case of investigations, our claim is that ATM experts 
can move from the data stage directly to the knowledge stage. 
This is due to the small amount of data to be processed and to 
the use of tools like narratives, which can efficiently 
summarize the event in a coherent manner. ASDG brings a 
drastic change of paradigm, for the main reason that the 
amount of collected data is so extensive that it cannot be 
understood by direct analysis, thus requiring dedicated effort to 
summarize it. This brings into play the data analysis 
perspective required to turn data into information. 

Once at the information stage, the operational knowledge is 
needed to interpret the data and reach the knowledge stage. The 
contribution of information designers is required at this stage, 
to make information accessible to operational experts. The 
complexity of the information design can vary; nevertheless a 
visual elaboration to enable an understanding of the 
information is always performed. For example, a distribution 
table is a very simple way to elaborate data by sorting them, 
while a density map requires more transformations.  

The above process of ASDG data analysis is mapped with 
the three perspectives’ contribution in the following table. 

TABLE II.  THE ANALYSIS PROCESS OF ASDG DATA AND THE 
CONTRIBUTION OF THREE PERSPECTIVES. 

 Operational 
expert Data analyst Information 

designer 
Data  X  

Information   X 

Knowledge X   

 

Although the process is likely to be iterative (e.g. 
operational experts may request additional analyses, or a 
refinement of the visualisation), the above table well captures 
the main aspects in the sense-making process of large sets of 
data, at least as from our experience, showing the different 
competences that should be involved. 

V. CONCLUDING REMARKS 
The use of ASDG for safety monitoring represents a change 

of paradigm in ATM, and not only a mere refinement of 
current practices. In order to profit from the insights that these 
data may provide, it does not appear to be either viable, or 
methodologically correct, to solely return to the single-event 
level and analyze the data case by case. Such an approach 
might fail to appreciate emergent system properties or to 
highlight macro-level patterns, overly concentrating on single 
specific cases. Worse than that, the application of the 
investigation methods and tools to ASDG data might end up 
reinforcing the Big Brother concept, thus failing to acquire the 

support of Air Traffic Controllers for the implementation of 
such tools.  

In order to exploit the full potentialities of ASDG for safety 
monitoring, a change of paradigm in the current analysis 
approach would be instead required, to develop methods and 
techniques for the assessment of the overall ATM system 
performance that are appropriate for the amount of data. As we 
have discussed in this paper, such a new paradigm is highly 
interdisciplinary and requires the contribution of competencies 
that have been traditionally outside of the ATM community. 
Furthermore, these new methods should also consider existing 
regulatory requirements [23], to feed input to current Key 
Performance Indicators (KPI) and proceed in the direction of 
an harmonised KPI set for Air Traffic Service Providers, thus 
adding a further layer (i.e. policy making and standardization) 
to an already complex issue.  
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