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Abstract—The air traffic forecast method for future schedules 

used by the United States Federal Aviation Administration (FAA) 

assumes a static route network operated by airlines; that is, new 

routes will not be added nor existing ones removed. However, the 

competitive nature of the airline industry is such that routes are 

routinely added or dropped between cities depending on 

passenger demand and airline business choices. This represents a 

significant gap between the forecasted and likely actual state of 

the US National Airspace System (NAS) in the long term, thus 

hampering stakeholders and decision-makers in their 

consideration of major policy, technology and infrastructure 

changes. To address this gap, a series of algorithms which 

forecast restructuring of the US commercial airline network were 

developed and tested. One restructuring algorithm produces 

discernible differences in the NAS of 2020 as compared to the 

FAA’s primary forecast. The impact of these network structure 

differences on NAS-wide delay are assessed via the National 

Airspace Performance Analysis Capability (NASPAC) 

simulation. Both average flight delay and total delay is reduced in 

the modified schedule versus the FAA’s original. 

Keywords-forecasts; network; air traffic; simulation. 

I.  INTRODUCTION  

To synthesize long term plans for new technology, 
infrastructure improvements, policy enhancements, and 
regulations for the Air Transportation System (ATS), an 
understanding of air traffic dynamics―how, when, and where 
air traffic arises or shifts in the future―is needed. The official 
forecast of aviation activity at Federal Aviation Administration 
(FAA) facilities is the Terminal Area Forecast (TAF).  FAA’s 
Air Traffic Organization (ATO) Office of Performance 
Analysis and Strategy (AJG-6) uses the TAF to produce 
forecasted air traffic schedules.   These future daily schedules 
help to project future performance, identify operational 
shortfalls, determine workforce requirements, and estimate the 
benefits of future investments [1]. The current forecast 
algorithm applies a boot-strapping technique to the current air 
traffic schedule to meet the projected growth in the TAF. 
Therefore the future service route network structure remains 
static for all forecasted years, precluding the establishment of 
new routes and limiting the ability to forecast hub formation 
and deletion [2].  

In fact, the service route network structure substantially 
changes over time [3]. The competitive nature of the airline 
industry is such that new direct routes are routinely added 
between cities with significant passenger demand and routes 
are also removed when demand diminishes. In addition, the 
location and number of airline hubs are not fixed; within the 
past several years, two major hubs have been eliminated (St. 
Louis and Pittsburgh), one airline hub opened and subsequently 
closed (Washington Dulles), and several other hubs were 
substantially restructured [4,5]. In order to enhance the NAS 
network forecast precision, a better understanding of 
restructuring dynamics is required. An earlier approach to this 
problem employed and compared artificial neural networks, 
logistic regression, and a network fitness function approach to 
forecast restructuring based on topological properties of 
constituent airports and associated population levels [6].  While 
each of the three techniques exhibited quality in some portion 
of forecasting (e.g., correctly identifying new network links, 
minimizing the number of false positives, etc.), none performed 
well in the overall task of correctly forecasting network 
restructuring terms of correct route additions and deletions and 
the number of new routes.  In addition, the changes in network 
structure developed by the algorithms were not compared to a 
nominal forecast in the same future year. Motivated by the goal 
of improved comprehensive forecasts and assessment of their 
impact, the objective of research presented in this paper is to 
construct restructuring algorithms that better capture the 
mechanisms of service network evolution and assess the 
impacts of resulting changes on NAS performance. The 
improved algorithm still operates on the same network 
topology data [6], but proceeds in two serial steps employing a 
support vector machine algorithm followed by a logistic 
regression for link addition and logistic regression alone for 
link removal. NASPAC, the FAA-ATO standard system-wide 
model used for technology and procedure cost-benefit analysis, 
is employed at the end of the paper to assess the impact of the 
restructured network on NAS-wide delay. 

 

 



TABLE I.  KEY NETWORK METRICS 

 

II. TECHNICAL APPROACH 

A. Network Charecterization and Definition of Topology 

Parameters 

The service network consists of airports (nodes) connected 
by service routes (links) operated by the airlines. The weight on 
a link represents the number of annual operations that are 
carried out between the two airports connected by the link. 
Table I summarizes key metrics used to characterize network 
nodes. These metrics are employed in the forecast algorithms 
presented later in this paper. The general implications in Table 

I indicate how these various measures imply important roles in 
a network. We attempt to utilize nodal metrics as predictor 
variables to estimate the likeliness of airport pairs to connect or 
disconnect based on historical data. In other words, the forecast 
algorithms seek to “learn” patterns in the types of nodes that 
were involved in new links (or removed ones) and use this 
information as a basis to predict future network restructuring. 

In particular, the network restructuring forecast algorithm 
operates on an input topology in two regimes: link addition and 
link removal. These two activities are performed year-to-year, 



predicting where new links will occur (and with what weight), 
where links will be removed, and adjusting operations that 
occur in other existing links due to the change in topology. The 
resulting network structure contributes to the Future Schedule 
Generator which produces flight segment schedules for future 
years in conjunction with the TAF and the Enhanced Traffic 
Management System (ETMS). The details on how the forecast 
algorithm, TAF and ETMS integrate to produce a future flight 
segment schedule is described in Section III. 

B. Data Source and Assumptions 

The data used for this study is obtained from the Air Carrier 
Statistics database family maintained by the U.S. Bureau of 
Transportation Statistics, or BTS.  In particular, the Form 41 T-
100 Domestic segment (All US Carriers) database was used to 
construct the network studied [7]. This dataset only includes 
commercial IFR flights. The BTS monitors 2,627 US airports 
but we reduced the network size by eliminating relatively 
inactive nodes in the network evolution. This reduction serves 
two purposes: it reduces the level of complexity in accurately 
predicting restructuring and focuses the analysis on the primary 
mechanisms driving the NAS network evolution. Airports were 
required to be located in the CONUS, have an average of at 
least one operation per day and one connection with another 
airport every year between 1990 and 2008. Application of these 
criteria reduced the final network size to 304 nodes. The 
historical data involving these 304 airports from 1990-2008 
served as the training data for the forecast algorithms.  

C. Link Addition Algorithm 

Forecasting particular new links in the NAS network is 
much like looking for a needle in a haystack. On average over 
the past 20 years, 140 new city-pair links are introduced to the 
NAS network. The network is composed of 304 nodes and 
approximately 1,600 existing links, so there are 46,000 possible 
candidates that the link addition portion algorithm must 
consider to find the roughly 140 new links. Further, the over-
forecasting nature of the algorithms makes this problem even 
more challenging. The current NAS network is mainly a hub-
and-spoke structure with many small, spoke airports and very 
few large, hub airports. With abundant spoke airports that show 
similar network characteristics [6], all link addition algorithms 
tend to predict connections for too many hub-spoke and/or 
spoke-spoke type links. To overcome this difficulty, we take a 
layered approach which combines two algorithms. The first 
algorithm aims to narrow the search space by correctly filtering 
out node-pair candidates that are most unlikely to connect. A 
second forecast algorithm is then used to evaluate and assign a 
fitness value to the candidates that make it through the first 
algorithm. New link candidates with the top-ranking fitness 
values are then connected at the end of each timestep.  

The two algorithms chosen for the final link addition 
process is based on its Type I and II error performance. In the 
link addition scheme, Type I error refers to the algorithm’s rate 
of not connecting new links that should actually be connected. 
On the other hand, Type II error is the rate at which the 
algorithm constructs new links between nodes that should 
remain disconnected. For the first filter where we want to 
correctly eliminate as many non-connecting node pair 
candidates as possible; an algorithm with low Type II error is 

preferred. A forecast algorithm with low Type I error is favored 
for the second process in which we are searching for the node 
pairs to actually connect. 

For the first filter in the link addition process, a support 
vector machine (SVM) algorithm is chosen due to its superb 
performance in maintaining low Type II error. SVM is a type 
of supervised machine learning which recognizes and analyzes 
patterns by constructing an n-dimensional hyperplane that 
optimally separates data into multiple categories [8]. In the link 
addition context, the two categories for classification of the 
unconnected node pairs were: 1) connect or 2) remain 
disconnected (based on their network characteristics). The 
SVM model showed spectacular performance in keeping Type 
II error low for any combination of network metric utilized but 
the best performance is seen when only eigenvector centrality 
is used. The results are summarized in Table II. Here, Type II 
error is calculated by  
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When the SVM is trained through eigenvector centrality 
and a linear kernel hyperplane, Type II error ranges between 
14-16% while for other algorithms we tried this value is no less 
than 50% (and hence, are excluded from this paper). However, 
even with such low Type II error, more than 6,000 incorrect 
candidates still pass through the SVM filter. Thus, an 
additional step, or filter is needed to produce a final number of 
new links of the same order as the historical average of 140. 
This is provided by a logistic regression algorithm, for which 
we are well-experienced from our prior models for network 
restructure forecasting. 

 

TABLE II.  REPRESENTATIVE STATISTICS FOR SVM ALGORITHM 

 
Year 

1990-1991 1998-1999 2007-2008 
Average 

(1990-2008) 

Total number 

of new link 
candidates  

44,455 44,369 43,661 44,202 

Number of 
acutal new 

links 

92 106 134 140 

New link 

candidates 
after SVM 

filter 

6,381 6,303 7,145 6,635 

Correct new 
links that pass 

SVM filter 

79 82 182 117 

SVM filter 
Type II error 

14.2% 14.1% 15.9% 14.7% 



The logistic regression mode ranks the fitness of each new 

link candidate based on historical data. Logistic regression is a 

statistical technique that is used to calculate the probability of 

a certain even occurring based on historical data. For 

application in new route addition, the probability of a new link 

occurring between nodes based on its network characteristics 

is computed. This probability of node i and j forming a link is:  
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The design matrix B in (5) contains the network metrics for 

the node pair (i,j) in the following fashion: 
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Xconnect in (5) is a vector which contains the regression 

coefficients obtained through the iteratively-reweighted least 

squares (IRLS) algorithm, a training scheme for the logistic 

regression [9]. Values for Xconnect that were used in the final 

algorithm are  
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The 140 new link candidates with the highest Pconnect are 
selected as new links for that year period. Table III shows the 
accuracy of the SVM results both with and without the second, 
logistic regression filter.  

 

TABLE III.  NEW LINK ADDITION RESULTS 

Algorithm Type 
Year 

1990-1991 1998-1999 2007-2008 
Average 

(1990-2008) 

Accuracy for 
SVM followed 

by logistic 

regression 

5.7% 7.9% 15.0% 10.2% 

Accuracy for 

SVM followed 

by a random 
draw 

1.2% 1.3% 1.9% 1.7% 

Accuracy for 
random draw 

0.2% 0.2% 0.4% 0.3% 

The accuracy shown in Table III as well as the remainder of the 
Tables in this paper is equivalent to 1-Type I error, or 
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The accuracy is clearly superior with the SVM and logistic 
regression used in series. The average accuracy for the training 
period is 10.2%. Though this value seems low, it actually 
represents a tremendous improvement over a random selection 
(last row of Table III) and is a significant capability in light of 
the “needle in haystack” problem. 

D. Link Removal Algorithm 

Compared to link addition, forecasting which links will 
disconnect is somewhat easier since the number of candidates 
is limited to the total degree of the network: approximately 
2,000 compared to 46,000 for link addition. In addition to 
nodal, the link weights can also be employed to differentiate 
links that disconnect from those that do not. Various algorithms 
and parameter combinations were constructed and tested for 
the link removal process; not all will be described in detail here 
but a portion of the final accuracy results for those algorithms 
tested are displayed in Table IV.  

After investigating the several approaches, an approach 
similar to the link addition algorithm demonstrated the best 
results; the only major difference being the initial filtering 
process is not necessary since the number of candidates is 
already relatively small. Equation (5) is used again but the 
predictor variable is now just the link weight.  Thus, the 
probability for an existing link to be disconnected is: 
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The coefficient on the link weight is derived by training the 
logistic regression via IRLS with historical data. After Pdisconnect 

has been calculated, the top 93 node pair candidates’ links are 
removed, which is based on the historical average. Table V 

TABLE IV.  RESULTS OF OTHER LINK REMOVAL ALGORITHMS  

Algorithm Type 
Year 

1990-1991 1998-1999 2007-2008 
Average 

(1990-2008) 

Node (airport) 
distance filter 

7.4% 6.8% 11.5% 9.7% 

SVM using 

eigenvector 
centrality 

9.1% 17.5% 13.2% 14.17% 

Logistic 
regression using 

link weights 

15.8% 26.4% 19.8% 20.38% 

 



TABLE V.  FINAL LINK REMOVAL ALGORITHM RESULTS 

 
Year 

1990-1991 1998-1999 2007-2008 
Average 

(1990-2008) 

Number of 
link removal 

candidates 

1,601 1,687 2,395 1,761 

Number of 

acutal links 

removed 

119 55 126 94 

Accuracy for 
logistic 

regression 

41.2% 61.8% 34.9% 42.3% 

Accuracy for 
random draw 

7.4% 3.3% 5.3% 5.3% 

 

summarizes the link removal results, indicating a much higher 
accuracy compared to randomly removing the same number of 
links as were removed historically in an annual period.  

E. Link Weight Adjustment 

After links are added and removed using the procedure 
described in the previous sections, the link weights are adjusted 
using the following process. First, the projected terminal 
operations for each airport are calculated from the number of 
operations in the previous timestep using the TAF.  Once this is 
done, the newly established links are assigned weights using a 
historical distribution based on the distance between the 
airports. The Fratar algorithm [10] is then employed to adjust 
the weights on the links (both new and the ones that remained 
from the previous time step) so that the projected terminal 
operations matches the sum of their weights within a certain 
tolerance level. This network evolution procedure is iterated 
year by year until the target year for the forecast is reached. 
The final product of this algorithm is a NAS network in which 
the link weights represent the amount of annual operations 
between the corresponding nodes (airports). 

III. PREPARING MODIFIED NETWORK FORECASTS FOR 

NASPAC 

The system-wide analysis tool used to assess performance 
impacts of the modified network is the FAA’s modernized 
National Airspace Performance Analysis Capability 
(NASPAC) model. As primary input, NASPAC requires a 
daily schedule. However, the network restructuring algorithms 
described above operate on an annual scale. Therefore several 
steps are required to transform the modified network into a 
daily schedule. First, the links weights of the annual NAS 
network are normalized by the total link weight. The 
normalized network is then scaled to the day level by 
multiplying the total number of operations that take place in the 
particular day we want to analyze.  The FAA’s office that 
produces the original future daily schedules, AJG-6, 
recommends March 19, 2009 as a uniformly busy, 
representative day for fiscal year 2009.  . The final product is a 
“network day” corresponding to the modified network 

structure. Each of the operations in the day-level NAS network 
requires a flight schedule in order to be processed by 
NASPAC. The same technique used by AJG-6 is used where 
the flight segment schedules for future years are produced by 
bootstrapping historical flight plan data from ETMS [11]. For 
newly created links with no historical flight plans, we simply 
copy the flight schedules and other details (such as equipment, 
waypoints, etc.) from airport pairs with similar distance and 
have historical ETMS schedules. Lastly, since the forecast 
algorithm only works with commercial flights, other user 
classes must be added such as VFR, cargo, general aviation etc. 
The current approach for this issue is to use the original AJG-6 
forecasted schedules for non-commercial operations and 
combine it with the commercial schedules generated under the 
new, restructured network topology from the forecast 
algorithm. 

IV. RESULTS 

A. Comparison of Network Structure in the Original and 

Restructured (modified) 2020 schedules 

In the presentation of results, “original” refers to the FAA 
AJG-6’s forecasted network/schedule on 3/19/2020 and 
“modified” refers to the network/schedule for that same day 
generated as a result of the network restructuring algorithm 
(and associated corrections) described in the prior sections. 
Overall, the network restructuring algorithm significantly 
increased the total degree (size) of the commercial airline 
network, from 2274 to 3442. The majority of these new links 
were granted towards the small to medium size airports which 
originally had degrees ranging among 20 to 60, as it can be 
seen in Fig.1. This phenomenon is more apparent when 
comparing the degree distribution between the two schedules, 
shown in Fig. 2. The original schedule shows the traits of a 
typical hub-and-spoke type network but the modified schedule 
displays a significant rise in number of medium-size airports 
with degree ranging from between 20 and 80. Meanwhile, the 
distribution in strength of nodes (number of operations) is very 
similar between the original and modified schedule, depicted in 
Fig.3. 

 

Figure 1. Change in airport degree between original and modified schedule. 
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Figure 2. Cumulative degree distribution for the original and modified schedule 
network. 

 

 

Figure 3. Weighted degree distribution for the original and modified schedule. 
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Figure 4.   Percent change in operations (weighted degree) at OEP 35 airports. 

 

 

  



B.  Traffic at Key Airports 

The network restructuring algorithm reduced the number of 
operations at some of the largest Operational Evolution 
Partnership (OEP) 35 airports while increasing at others (Fig. 
4). Large hubs like ATL and DFW saw reduced traffic 
compared to the original while significant increases occurred at 
STL and CVG. While the restructuring algorithm did not have 
any direct features that addressed metroplexes, modest, but not 
dramatic, changes in overall traffic at the two major east coast 
metroplexes (NY/NJ and Washington, DC) are generated 
versus the original network. IAD and DCA grow around 7% 
while BWI is reduced by about 7%. LGA (-2%) and EWR (-
4%) are reduced while JFK is nearly unchanged.  

A more detailed analysis regarding the change in operations 
at ATL and CVG was done. The network restructuring 
algorithm added 139 links to ATL compared to the original 
2020 schedule. However, the flight frequency on many existing 
links was reduced (Fig. 5). Overall, since the total operations at 
ATL in 2020 were reduced in the modified network by about 
13%, the reduction in frequency on common links was reduced 
enough to overcome the new operations added by via new city 
pairs. The ATL city-pairs in the modified schedule had an 
average of only 8.9 operations per city-pair where as in the 
original it had 16.4 operations per city-pair. CVG was showed 
similar trends. CVG started out with 104 city-pairs which was 
increased to 131 in the modified schedule. Terminal operations 
were also increased from 728 to 1106, resulting in a slight 
increase from 7 to 8.4 for the average operations per city-pair; 
this change is also reflected in its weighted degree distribution 
shown in Fig. 6. 

It is interesting to observe that many airports in the 
modified schedule experienced higher degree but with similar 
or less amount of traffic on each degree.  It is hypothesized that 
the cause of this stems to the ratio between the degree and 
operations increase rate within the forecast algorithm. The 
NAS network degree increases about 2% annually according to 
the data obtained from the BTS. On the other hand, the average 
TAF across all airports shows a net increase of 1%. The cause 
of many airports having high degree with lower operations on 
each degree may be due to the degree increase rate being larger 
than the operations increase rate. Further analysis is required to 
better understand the cause of this phenomenon. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Change in weighted degree distribution at Hartsfield-Jackson 

Atlanta International Airport (ATL). 

 

Figure 6. Change in weighted degree distribution at Cincinnati/Northern 

Kentucky International Airport (CVG). 
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C. Changes in NAS Performance 

Inputs to NASPAC include aircraft itineraries, flight plans, 
miles-in-trail restrictions, wind/weather data, time-varying 
airport arrival and departure capacities, and airspace sector 
geometries and capacities (also time-varying). Model results 
are typically summarized by the following metrics: delay per 
flight segment (gate, surface, and airborne) and flights 
accommodated. The above figures summarize the differences 
in delay minutes between the original and modified forecasts 
computed by NASPAC. Total delay is calculated as the sum of 
gate delay, surface delay and airborne delay.  Airborne delay is 
comprised of departure fix delay, en-route sector delay, arrival 
fix delay, and arrival queuing delay.  Both the average delay 
per flight and the daily total of delay were lower for the 
modified network than the original (see Figs 7 and 8). 
However, when the delay is broken down by flight phase, the 
modified schedule is seen to exhibit greater delay (both on 
average and in-total) in the enroute sectors. This result follows 
from the “spreading of traffic” away from the largest hubs and 
towards medium to minor hubs after the restructuring 

algorithm is run. The typical outcomes from overcrowded large 
hubs (gate, departure, and arrival delays) are reduced at the 
expense of more traffic in the sectors. However, in aggregate, 
the total and average delay minutes are slightly lower in the 
restructured network.  

This outcome has direct implications for FAA resource 
planning. If airlines shift their operations from hubs towards 
the small to medium size airports (as the network forecast 
suggest), the source of delays will also shift accordingly. 
Besides increasing the capacity at hub airports to relieve 
congestion we see in the NAS today, the FAA will also need to 
allocate resources towards expanding the airspace sector 
capacity in order to be one step ahead of the game and prevent 
high delays from occurring in the future.  

While the network forecast algorithm cannot give the exact 
answer on how the NAS network will look like in the future, it 
can be used to capture the general direction of its evolution. 
Simulation tools such as NASPAC can then be incorporated to 
project the change in performance due to the network evolution 
and therefore identify upcoming operational shortfalls, 
workforce requirements and most importantly estimate some of 
the benefits of future investments.  

V. CONCLUSION  

This paper presented the latest network restructuring 
algorithm aimed to capture the evolutionary behavior of the 
U.S. NAS network. The algorithm is capable of estimating 
where, when and how much air traffic will likely to occur in 
the future. Compared to some of the previously developed 
forecasts, the current algorithm shows much better 
performance.  

Traffic forecasts are critical for strategic planning, but 
many state of the art forecasting techniques assume a static 
NAS network structure. In reality the NAS network is quite 
dynamic, changing its characteristics at significant speed. 
Discernible differences were observed in the 2020 network 
produced by the restructuring algorithm compared to the 
FAA’s primary forecasts.  

By implementing a system-wide analysis capability to the 
forecast algorithm through NASPAC, operational performance 
of the future NAS network can now be estimated. Further 
development of this tool will enable analysts to better point out 
potential future pitfalls in the system, as well as carry out more 
accurate benefits analysis for various long term investments. 
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Figure 7.   Average delay minutes per flight categorized by source. 

 

 

Figure 8.   Total delay minutes categorized by source. 
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