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Abstract—As air traffic demand increases, air traffic con-
trollers will most likely come to rely on decision-support tools
and increased levels of automation to help manage and separate
aircraft. Trajectory prediction and conflict resolution are exam-
ples of two key areas where increased automation and improved
accuracy are considered imperatives to the future efficiency of
the airspace system. Within the en route environment, increased
accuracy of aircraft trajectory predictions improves controller-
workload forecasts and conflict-detection. Furthermore, more
accurate trajectory prediction allows for conflict-resolution algo-
rithms to reduce aircraft costs by providing greater optimality in
resolution commands with decreased uncertainty. The inclusion
of decision-support tools for conflict-resolution is expected to
reduce controller workload by decreasing the mental stress
associated with maintaining aircraft separation. Despite the
benefits of such systems, there has been little study into the
best methods to implement conflict-detection and resolution
algorithms in practice, and what the resulting controller taskload
is as related to the conflict-resolution process. In this paper, we
explore the bounds on the controller effort required to manage
a volume of airspace when a conflict-detection and resolution
decision-support tool is in place. In particular, we examine the
value of trajectory prediction for reducing controller taskload,
and additionally, study the effects of a common implementation
strategy for conflict-resolution (e.g. first-come first-serve vs.
optimal) on controller taskload. Our goal is to understand
controller taskload in relation to the conflict-resolution process,
and furthermore to understand how conflict-resolution decision-
support tools can best be designed and implemented to support
human-based control of aircraft.

I. INTRODUCTION

THE projected growth in air transportation demand is
likely to result in traffic levels that exceed the capacity of

the unaided air traffic controller. Consequently, air navigation
service providers are making several efforts to improve the
capacity and throughput of existing airspaces through airspace
redesign, trajectory based operations, incorporation of new
traffic flow management tools, and introduction of automated
communication and navigation systems [1], [2].

In addition to the above mentioned efforts, there have been
significant investment into the study and development of air-
craft conflict-resolution algorithms over the past two decades.
Early examples include, [3]–[5], with a more comprehensive
survey of the proposed models presented in [6]. Recently,
research and development has focused on the design of auto-
mated conflict-resolution algorithms that provide provably safe
solutions with realistic aircraft trajectories that satisfy aircraft
dynamics [7], [8]. As a whole, the automated algorithms
neglect the human controller; researchers inherently assume
that these algorithms will form the basis for a fully automated
air traffic control system. There are key exceptions that provide
‘human-centric’ algorithms for conflict resolution [9]–[13].

Ideally, conflict-resolution algorithms are designed to enable
the required levels of service and safety for the predicted
increase in air traffic demand.

In light of such conflict-resolution algorithms, many air
traffic operators and researchers believe that the tactical role
of radar air traffic controllers will eventually transition into
a more strategic traffic flow management role, an example
discussion is provided in [14]. However, there still exist limi-
tations and problems associated with both sets of algorithms,
both human-centric and automated, as they are considered to
be part of a completely autonomous system, require advanced
communication and navigation sub-systems, or fail to state
how they can be implemented in practice with a human
controller. In particular, they do not address a series of funda-
mental questions: How far ahead in time should conflicts be
considered? How often should trajectory and conflict informa-
tion be updated? What are the required levels of certainty for
best performance? Furthermore, for many automated systems,
there remain concerns about the safety and realizability of
automated tactical conflict-resolution algorithms in governing
traffic. Even the human-centric approaches found in [9]–[11]
are hindered by the slow uptake of the advanced avionics
required to fully support semi-automated tactical air traffic
control.

Thus, before the conversion to an automated air traffic
control system, there will be a need for systems to aid air
traffic controllers without replacing them. Such a human-
in-the-loop framework makes use of an integrated conflict-
detection and resolution to identify conflicts and propose
resolution commands for the air traffic controller to verify and
issue to aircraft. The inclusion of human-in-the-loop decision-
support tools in human-based air traffic control operations
requires a fundamentally different approach to the design and
implementation of conflict-detection and conflict-resolution
algorithms. The algorithms must explicitly acknowledge the
role of the controller and accommodate their abilities.

The research presented here seeks to understand how the
formulation and implementation of semi-automated conflict-
detection and conflict-resolution decision-support tools affect
controller taskload for conflict resolution. This task is ac-
complished by means of modeling aircraft and aircraft con-
flicts through graph-based relationships, similar to that found
in [15]. Instead of focusing on the nature of a maneuver
applied to an aircraft (i.e. heading, altitude, or speeds changes),
the proposed research approach only tracks the number of
resolution commands required to resolve potential air traffic
conflicts. The graph-based representation of conflicts enables
this approach, and thereby provides a lower-bound on the



amount of effort required to deconflict aircraft. The lower-
bound on controller effort thereby defines a performance
reference model by which future air traffic conflict-resolution
algorithms may be compared against.

In this study, we develop an airspace model to generate
uncontrolled aircraft trajectories for a variety of traffic inten-
sities up to 3X currently observed levels. Graph-based conflict-
resolution algorithms are then applied to each traffic sample
to determine the number of resolution commands required to
separate aircraft. Each graph-based conflict-resolution model
is parameterized to consider multiple policies (e.g. first-come
first-serve, optimal), a range of trajectory prediction accuracy
and horizons (e.g. 5, 10, 20 min look-ahead), and implemen-
tations (event-based vs. discrete time). An analysis of the
algorithms is presented, focusing on the number of resolution
commands required to manage traffic, defined in this paper as
taskload.

The research questions addressed in this paper are as
follows:

1) What is the value of information towards reducing
controller taskload?

2) How often should information be updated?
3) How does the quality of information affect controller

taskload?
The questions listed above are fundamental to the design

of decision-support tools for conflict-detection and resolution
algorithms for air traffic controllers. Ultimately, the major
contribution in this paper is the introduction and demonstration
of methodologies for determining performance reference mod-
els for conflict-detection and conflict-resolution algorithms.
These models provide knowledge into the best practices for
the design and implementation of decision-support tools to
aid air traffic controllers in limiting taskload, even under high
traffic volumes.

In the next section, we present a brief review of previ-
ous research on the conflict-resolution process and controller
workload. In Section III, we describe how graphs are used
to model conflict relationships and the conflict-resolution
process. Next in Section IV, we present various conflict-
resolution implementation policies, and in Section V, we
introduce the traffic model used for studying the conflict
resolution-process. An initial study of conflicts within a sec-
tor is provided in Section VI. Afterwards, the graph-based
conflict-resolution policies are applied, and analysis results are
given in Section VII. Finally, our conclusions are presented in
Section VIII.

II. BACKGROUND

In practice, airspace capacity is limited by the ability of
air traffic controllers to manage and separate traffic [16].
The stresses associated with air traffic control correspond
to controller workload, “the amount of effort, both physical
and psychological, expended in response to system demands
(task load) and also in accordance with the operators internal
standard of performance [17].” Therefore, if human-in-the-
loop conflict-detection and resolution tools are to be used to
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reduce controller workload, and thereby increase the effective
capacity of an airspace, then they must account for the factors
that lead to high controller workload in the conflict-resolution
decision-making process.

In the review by Mogford et al [18], the authors identify
four sets of factors that influence controller workload: air
traffic control complexity, quality of equipment, individual
differences, and controller cognitive strategies. The relation-
ship between these four factors and controller workload are
highlighted in Figure 1. Air traffic control complexity refers
to the set of source factors describing the air traffic and
airspace configuration characteristics. The next three factors
(equipment, individual differences, and strategies) are referred
to as mediating factors.

The dichotomy between mediating and source factors man-
ifests as result of competing techniques in each field: human
factors engineering and psychological studies on one side,
and mathematical and technical approaches on the other.
In each case, both approaches make approximations on the
behavior of the other, and lack completeness. In the work
presented here, we attempt to unify aspects of both areas
by concurrently considering source and mediating factors in
the management of the airspace. Such a concurrent approach
to studying air traffic control is logical considering that the
policies used to manage the airspace act on the air traffic. Thus,
they introduce a feedback loop that allows the airspace and
controller interaction to best be characterized as a dynamical
control system. We hypothesize that by considering both
source and mediating factors, a better understanding of the
relationship between controller workload and the conflict-
resolution process is possible. And in doing so, engineers will
best be able to design decision-support tools that are both
technologically sound and consistent with modes of human
work-practice.

Specifically, we account for both source and mediating fac-
tors by studying the number of potential conflicts (source) that
are resolved according to set controller policies (Controller
Cognitive Strategy) and the ability to identify conflicts (quality
of equipment).

The concept that controllers operate within a feedback loop
is not a new one. In human-factors research there is a recogni-
tion that “workload is not something imposed upon a passive



[air traffic controller] but, rather, is something the [air traffic
controller] actively manages [19].” More so, when resolving
potential conflicts, air traffic controllers consider a number of
factors in determining if, what, and when resolution commands
are issued in an effort to manage workload. Noted in [20],
during periods of low workload, controllers wait for potential
conflicts to develop before deciding to take action. Conversely,
during times of high workload, controllers take action imme-
diately, instead of waiting to establish if an actual conflict will
be realized or not. Through such a strategy, preventative action
reduces the amount mental resources required to continuously
monitor potential conflicts. The drawback of such a strategy is
that there is an increased likelihood that superfluous resolution
commands are issued. The economy of air traffic controller
resources also extends to the type of resolution commands
selected to deconflict aircraft. In [21], the authors provide a
literature review of controller strategies in conflict-detection
and resolution in an effort to design a conflict-resolution tool
consistent with human strategies. The authors note that while
diverse in conflict-resolution strategies, during periods of high
workload, typically, air traffic controllers attempt to economize
their time and effort by issuing resolution commands that are
clear, simple, safe, and require limited follow-up.

If human-in-the-loop conflict-detection and resolution tools
are to replace some of the mental functions of the air traffic
controller, then they will be required to complete the same set
tasks: identifying potential conflicts; determining if action is
needed; and establishing what and when resolution commands
are issued. How to go about implementing such tasks is
remains a relatively unanswered question. And despite the
plethora of knowledge concerning human factors in air traffic
control, there has been limited integration of these ideas into
strong mathematically-based conflict-detection and resolution
tools that are consistent with human work-practice.

That is not to say that advancements and consideration into
the mathematical formation of conflict-detection and conflict-
resolution tools does not exist. Many studies have considered
the accuracy of trajectory prediction in identifying potential
conflicts, an example of which includes [22]. Also, it has been
identified that rule-based policies in the conflict-resolution
process always have short-comings [23]; there are no simple
winning strategies.

Historically, human-factors issues and technical approaches
to air traffic control are often studied independent of each
other. By separating these areas into distinct fields a virtual
barrier has been created that limits the creation of practical
tools that are both technologically sound and consistent with
human work-practice. We believe that the human controller
will continue to play an important role in tactical air traffic
control well into the future. Accordingly, the development of
conflict-detection and conflict-resolution algorithms will need
to be designed to support, not replace, human controllers.
In this paper, we strive to understand how the design and
implementation of conflict-detection and conflict-resolution al-
gorithms affect controller taskload associated with the conflict-
resolution process. By answer the three fundamental question

in regards to the amount, the update rate, and the quality of
information, insights into this relationship will hopefully lead
to the creation of well designed decision-support tools.

III. PROBLEM MODELING

Addressing lower bounds on controller taskload is fun-
damental to establishing the amount of effort required by
air traffic controllers to manage and separate aircraft within
an airspace. The required effort to resolve conflicts remains
relatively unanswered and ill-defined according to the three
questions surround the nature of information. Through a
graph-based approach, controller taskload associated with the
conflict-resolution process is addressed. Modeling air traffic
and the conflict-resolution process through graphs provides a
methodology to better understand the bounds on controller
taskload, and to better understand of how implementation
parameters, and the availability and quality of information
in the conflict-detection and conflict-resolution process affects
controller taskload.

Consider a set of M aircraft, A = {A1 . . . AM}, traveling
through an airspace, as illustrated in Figure 2a. Aircraft trajec-
tories are assumed to occur in 3D space. According to aircraft
trajectories and intents, the aircraft have the potential to be
in multiple conflicts if no control action is taken. For the en
route environment, aircraft are declared to be in conflict if they
come within 5NM laterally or 1,000ft vertically of each other.
The aircraft and aircraft conflict relationships are represented
by a graph. A possible representation of the conflicts for
the example in Figure 2a is given by the undirected graph,
G = (V,E), depicted in Figure 2b. Aircraft are represented
by nodes in the vertex set V = {n1, . . . , nM}, where node ni

corresponds to aircraft Ai. Any pair of aircraft, (Ai, Aj), that
are in potential conflict requires resolution by an air traffic
controller. Potential conflicts are indicated by an undirected
edge in the edge set E. That is, (ni, nj) ∈ E. In this
framework, the conflict-resolution process acts on the graph
by removing edges between any two nodes. A conflict-free
airspace implies a completely disconnected graph, and vis-
versa.

Determining the minimum number of resolution commands
required to separate and deconflict aircraft is equivalent to
applying the minimum vertex cover problem for graphs. The
minimum vertex cover problem asks: ‘What is the minimum
number of nodes to remove such that the graph is completely
disconnected?’ The corresponding act of removing a node
ni from the graph, is to issue the aircraft Ai a resolution
command. At this stage, no assumptions are made concerning
the nature of the resolution command. In fact, the command
may consist of an arbitrary number of maneuvers (heading,
speed, or altitude changes), each of arbitrary magnitude. An
example application of the minimum vertex cover problem
is shown in Figure 2c; following removal of the nodes, the
remaining graph is completely disconnected, as illustrated in
Figure 2d. Note, the minimum vertex cover problem may have
multiple solutions. For the remainder of the paper, application
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Fig. 2: Represent and solve air traffic conflicts through a graph representation G = (V,E).

of the minimum vertex cover problem to the conflict-resolution
process is referred to as the minimum taskload problem.

The application of the minimum taskload problem does have
some drawbacks. Given that it is independent of any conflict-
resolution program, the solutions provide no information on
the nature of the resolution commands required to decon-
flict aircraft (heading, speed, altitude changes). Furthermore,
there exists an underlying assumption that the aircraft remain
conflict-free after being issued resolution commands. These
approximations lead the minimum taskload problem to repre-
sent a lower bound on the total number of required maneuvers
to deconflict aircraft.

The minimum taskload problem can be expressed as a
Mixed Integer Linear Program (MILP). For a set of M aircraft
with conflict graph, G = (V,E), let Ri be a binary variable
indicating if aircraft Ai is to be issued a resolution command.
If any two aircraft have nodes within the edge set E, then
at least one of the corresponding binary variable must be 1.
To minimize the total number of maneuvers, the sum of the
binary variables, Ri, is minimized. The correspond MILP is
given below.

min
∑N

i=1Ri

s.t. Ri +Rj ≥ 1 ∀ (ni, nj) ∈ E
Ri ∈ {0, 1} ∀ i = 1 . . .M

(1)

The minimum taskload problem, or any other algorithm
used for conflict resolution, can also be applied in the dynamic
case. That is, as aircraft appear in the airspace the minimum
taskload problem is solved, resulting in an updated graph for
the system. Let G(k) = (V (k), E(k)) be the conflict graph
representing the visible/identifiable potential conflicts, and the
aircraft controllable by the air traffic controller at time-step
k. The visibility of potential conflicts (edges) are determined
by the certainty associated with trajectory prediction. For
example, if a conflict between the aircraft pair (Ai, Aj) occurs
in 20 minutes, however, limitations in trajectory prediction
only allow forecasting of conflicts over the next 10 minutes,
then the conflict edge (ni, nj) 6∈ E(k). Aircraft are visible
if they enter the airspace within the next H minutes. Also,
aircraft (nodes) are controllable if the aircraft is handed-off

to the controller or located within the airspace. Visibility
of the potential conflict between an arbitrary aircraft pair
(Ai, Aj) at time-step k, implies that the edge (ni, nj) ∈ E(k).
Visibility and controllability of aircraft Ai is interpreted to
mean that the node ni ∈ V (k). Thus, if an aircraft Ai is
visible and controllable, and also part of a visible conflict,
then application of the minimum taskload problem can issue
a resolution command to aircraft Ai; otherwise, no command
is issued to aircraft Ai.

In the dynamic case, the conflict graph grows/shrinks
incrementally with the appearance/exit of aircraft and the
resolution of potential conflicts. Beginning with the conflict
graph G(k) = (V (k), E(k)), V +(k) is defined to be the
set of aircraft arriving into the airspace at time-step k. Any
new conflicts within the same time-step are described by
the edge set E+(k). Note, E+(k) consists of new conflicts
generated by the arrival of new aircraft, and also any potential
conflicts that have just became visible within the airspace.
Thus, E+(k) may contain aircraft (nodes) that were already
in the airspace (graph) prior to time-step k. Let V −(k) be the
set of nodes corresponding to the aircraft exiting the airspace.
If resolution commands are not yet issued at time-step k, then
the temporary graph at k, just prior to time-step k+1, is given
by GT (k) = (V T (k), ET (k)), such that

V T (k) = (V (k) ∪ V +(k)) \ V −(k)

ET (k) = (E(k) ∪ E+(k)) \ E−(k)
(2)

where,

E−(k) = {(ni, nj)|ni 6∈ V T (k) or nj 6∈ V T (k)} (3)

Assume that conflict-resolution control actions act on the
temporary graph established by GT (k). Let CRP represent
an arbitrary conflict-resolution policy (CRP) function. The
function takes as an input GT (k) and returns G(k + 1).
That is, G(k + 1) = CRP (GT (k)). The conflict-resolution
policy issues resolution commands to aircraft, and in doing
so removes edges from the graph. Let Er(k) correspond to
the edges removed through the conflict-resolution process. For
example, if the potential conflict between aircraft Ai and Aj

is resolved by CRP at time-step k, then (ni, nj) ∈ Er(k).



The updated edge set, E(k + 1) at time-step k + 1 is

E(k + 1) = ET (k) \ Er(k). (4)

For the remainder of the paper, it is assumed aircraft pairs
only have the possibility of conflicting once within a sector.
If the conflict between Ai and Aj is resolved at time-step k,
then there is no potential for future conflicts between the same
aircraft. As such, if (ni, nj) ∈ Er(K), then for all K > k,
(ni, nj) 6∈ E(K).

If aircraft Ai is issued a resolution command at time-step k,
then the aircraft is guaranteed to be conflict-free for length of
the look-ahead time of the trajectory predictor. For example, if
the controller and computer systems are capable of predicting
aircraft trajectories for the next H minutes, then the generated
resolution command for aircraft Ai should ensure conflict-free
travel over the same time period. After H minutes, aircraft Ai

may be be involved in other new conflicts.
In future sections, the minimum taskload problem is applied

as a control policy under a variety of implementation parame-
ters to discern the value of look-ahead times, increased infor-
mation update rates, improved accuracy of conflict-detection,
and resolution strategies. Hence forth, application of the min-
imum taskload problem is referred to as the MTP policy.

IV. IMPLEMENTATION AND STRATEGY MODELS

As stated, the goal of our research is to understand how
controller taskload relates to a number of implementation and
strategy models that are employed in the conflict-detection and
conflict-resolution process. In doing so, we address questions
concerning the value of information. Study and comparison of
the implementations provides reference models to assess con-
troller taskload. Specifically, a first-come first-serve rule-based
policy that consider issuing resolution commands to newer
aircraft is compared to the MTP policy implemented under
receding-horizon control. Both functional conflict-resolution
policies act on the dynamic graph representation of the traffic
as described in Section III.

Considering that conflict-resolution algorithms can only
function under the guidance of a conflict-detection algorithm,
the application of both must be considered in parallel. The
manner in which conflicts are identified is critical; a conflict-
resolution algorithm takes as its input a set of identified
potential conflicts. Each conflict is typically characterized by
its time of occurrence and the estimated minimum separation
between the aircraft. Which conflicts are passed as constraints
is also important. Potential conflicts that are too far into the
future, or that have too much uncertainty are temporarily
ignored or go unresolved until more accurate information is
present. Thus, in addressing the three fundamental questions
about information, three key parameters are considered: H ,
refers to time range over which conflicts can be identified;
δt refers to how often new conflicts are identified and how
often the conflict-resolution problem is solved; and finally,
Dsep is defined to be the minimum distance between aircraft
at which a potential conflict is identified to require resolution.
Aircraft trajectories that come within Dsep of each other

require resolution commands. Typically, air traffic controllers
resolve conflicts to ensure approximately 8NM separation [13],
however, it has been noted that aircraft controllers take action
(or are concerned) about aircraft pairs that come within 15NM
of each other [9].

As part of the study, the receding-horizon control process
used by the conflict-resolution process is first discussed, along
with the pertinent implementation parameters. Next, the two
controller policies (first-come first-serve and MTP) are dis-
cussed.

A. Receding-Horizon Control

Receding-horizon control provides an implementation
framework in which to resolve conflicts. When conflict-
detection and conflict-resolution occur by means of a decision-
support tool, it can only handle limited amounts of infor-
mation, both certain and uncertain. To overcome information
overload decision-support tools are required to parse infor-
mation. As such, receding-horizon control is a reasonable
representation for computer assisted conflict-resolution.

Implementation of a conflict-resolution policy under
receding-horizon control is depicted in Figure 3. Every δt, the
conflict-resolution problem is solved while looking H time
into the future. All potential conflicts between an arbitrary
aircraft pair, (Ai, Aj), are assigned a time of conflict given by
tci,j . The potential conflict times tci,j within H time are visible
and of concern to the controller. Those potential conflicts
that occur within δt of the current time must be resolved or
else they will be come realized. Therefore, the solution of
the conflict-resolution problem only needs to be applied to
conflicts occurring within the next δt minutes.

The receding-horizon control process for conflict resolution
as it operates on the conflict graph is illustrated in Figure 4.
First, as shown in Figure 4a, some of the aircraft in the airspace
are in potential conflict, of which a fraction become realized at
the end of the δt time period if no action is taken. Additionally,
aircraft soon entering the sector within H time are visible to
the controller. However, the aircraft has yet to be handed-
off to the controller, and hence it is not yet controllable.
Within the δt time window, new aircraft become visible to the
controller. These aircraft approaching the boundary may be in
conflict within H time, as depicted in Figure 4b. New potential
conflicts within the airspace may be identified. Note though,
that all newly identified potential conflicts do not occur within
the next δt. As a requirement δt < H , otherwise, conflicts are
not identified in sufficient time to resolve them. In Figure 4c,
the conflict-resolution problem is solved for the current graph,
however, only the aircraft corresponding to conflicts occurring
within the next δt are issued resolution commands. Figure 4d
depicts the resulting graph following the arrival of aircraft, and
the identification and resolution of conflicts within the δt time
window. At this point, new initial conditions are present for
the next δt time period, and the process is repeated. Given the
availability of information on the trajectory of other aircraft
for the H minutes, any aircraft issued a resolution command
is guaranteed to be conflict-free for a least H minute.
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Fig. 3: Conflict-resolution problem solved at δt time-steps,
looking ahead H .

Adjusting the parameters H , δt and Dsep provides vary-
ing implementation conditions for the conflict-detection and
conflict-resolution process. For example, as δt→∞, H →∞
and Dsep → 5NM, simultaneously, the solution to the
receding-horizon control implementation is similar to as if
complete knowledge of all conflicts existed with complete
certainty. And when the minimum taskload problem is applied
as the conflict-resolution algorithm, the solution corresponds
to the globally optimal solution with the minimum number
of total resolution commands required. When the conflict-
resolution problem is implemented in practice as a decision-
support tool, then every δt, the air traffic controller may receive
a new set of resolution commands.

Converse to the previous example, when δt → 0 and
H → 0, the implementation approaches an event-based
implementation. Because as δt → 0 and H → 0, at each
time step, only a single event can occur at any instant in
time. In this case, the event corresponds to identification of an
upcoming conflict or a future aircraft arrival into the airspace.
In the event-based case, the implementation degenerates into
a simplified case where conflicts are resolved as they appear.
Such an implementation is the worst possible implementation,
as information is not collected in an effort to reduce controller
taskload.

In summary, the parameter H directly corresponds to a
measure of the amount of available information to the conflict-
resolution algorithm, while Dsep is a measure of the certainty
or quality in the prediction of future aircraft trajectories
and potential conflicts. Adjusting δt, varies how often new
potential conflicts are identified and resolution solutions are
provided.

B. MTP Policy

The MTP policy provides a framework in which to resolve
conflicts. As part of the receding-horizon control framework,
the MTP is solved at each time-step to resolve any conflicts.
By minimizing the number of resolution commands over any
particular time period, conflict-resolution taskload is implicitly
minimized over longer periods of time. Again, the MTP policy
is based on the minimum taskload formulation described in
Section III.

C. Rule-Based Policies

As a basis of comparison, a first-come first-serve (FCFS)
rule-based policy is introduced. The FCFS policy represents

a simple strategies commonly found in conflict-resolution
implementations. The policy issues resolution commands to
aircraft in accordance to their arrival into the airspace. Similar
to the MTP policy, the rule-based policy makes use of δt,
H , and Dsep, to describe its implementation and information
availability, as well as the identification and inclusion of
potential conflicts. The rule-based policy FCFS requires the
use of T̃ a, the set of aircraft arrival times into the sector.(Note
the arrival and conflict time, tai and tci,j are in absolute terms.)

When implementing the FCFS policy, aircraft already in
the airspace have priority over new aircraft. As such, if a
potential conflict is identified between an existing aircraft and
a newer aircraft, then the newer aircraft is issued a resolution
command. While not described in detail mathematically (due
to space limitations), an example application of the FCFS
policy is provided in Figure 5.

V. SIMULATION DATA

Based on the implementation models described in Sec-
tion IV, simulations are completed in accordance with mock
flight plans generated through selective sampling of 28 days
of historical high-altitude (>FL200) air traffic passing through
Minneapolis Center (ZMP)1. Historical flight radar data cannot
be used directly to generate potential conflicts, as the asso-
ciated aircraft are under the control of air traffic controllers,
and hence should be conflict-free throughout their trajectories.
Therefore, a new traffic model is required in which flight
trajectories are not yet deconflicted with each other.

To generate potential conflicts based on realistic air traffic,
radar data for the busiest traffic day in the 28 day set2 is
utilized as a seed to create new mock flight plans. Matching
the origin-destination pairs found in the seed day, all days are
sampled accordingly to create 50 new sets of mock flight plans.
From the 50 sets of mock flight plans, the traffic intensity
is increased by reducing the timespan over which the flights
occur.

The first step in generating the traffic model is to record
all origin-destination pairs for the 107,671 high-altitude flights
over the 28 days of traffic. A visual representation of the traffic
routes is provided in Figure 6; the densest traffic regions are
located in the southern half of the center, which correspond to
the darker regions in the figure. The origins and destinations
are described according to fixes (e.g. NASAL), airports (e.g.
KATL), and latitude-longitude data (e.g. 4510N/10354W).
Origin and destination pairs that are described by fixes and
airports are indexed directly. For approximately 4% of the data
(4329 trajectories), the origin data is described by latitude and
longitude. In these cases, the origins are spatial clustered by
hand, and indexed accordingly. Any latitude-longitude origins
that are not clustered, form an ‘outlier’ cluster.

Following clustering and categorization, a total of 11,014
origin-destination pairs are identified. Ranking the origin-
destination pairs according to the number of occurrences,

1PDARS data consists of radar tracks for the following days: May 21, 2007 -
June 17, 2007

2Busiest traffic day corresponds to June 14, 2007
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Fig. 5: Example application of the FCFS rule-based policy.

Fig. 6: Traffic density in ZMP.

the most common origin-destination pair, ROBBY to KMSP,
occurs 2442 times. The fix ROBBY is located outside and to
the south of ZMP, near the border with Chicago Center; KMSP
corresponds to Minneapolis St.Paul International Airport. Ac-
cording to the distribution, 82% of all flights correspond to
approximately 1300 origin-destination pairs that repeat at least
10 times over the 28 days.

The original seed day contains 4,654 flights, and is de-
scribed by the aircraft arrival times into the center (i.e. 0-
24hr)3 by Ta = [T a

1 , . . . , T
a
4654], and the corresponding origin-

destination pairs, Pod = [P od
1 , . . . , P od

4654], where each origin-
destination pair is a couple, e.g. P od

18 = (KMSP, KDFW).
To mimic the traffic pattern of the seed day, for each origin-

destination pair P od
i , a new aircraft trajectory is selected from

all other flights with the same origin-destination pair over the
28 days. An origin-destination pair is defined to be rare if over
the 28 days there are less than 10 flights with the same origin
and destination. In the case when P od

i from the seed day is
rare, a new mock flight-plan is selected from the set of all rare
origin-destination pairs within 15 minutes of the arrival time
of the seed aircraft, T a

i . By matching the arrival times within a
30 minute window (±15 min), the overall traffic pattern during
the time of day is approximately preserved.

The new aircraft arrivals times into the center, T̃ a
i , for the

new mock flight plans are given by

T̃ a
i = (T a

i + 5N )/I,

where N is a standard normal random variable, and I is a
scaling factor based on the traffic intensity. Adding the random
normal variable perturbs the initial aircraft arrivals to minimize
the likelihood of replicating overly similar traffic cases. The
value I scales the timespan over which the simulation occurs.
When I = 1, the new mock flight plans and traffic arrivals
have the same traffic intensity of the original seed data over
the center. When I = 3, the traffic intensity is declared to be
3.0X.

Once the 50 sets of mock flight plans (each with multiple
intensity levels) are generated for the complete center (each
set containing 4654 mock flight plans), they are further parsed

3Some flights appear in the 24th hour.



down to the sector level. The center definition, along with
sector boundaries, used for ZMP are illustrated in Figure 6.
Based on the mock flight plans, the arrival times into each
sector are recalculated to provide tai , which are used by the
MTP and the rule-based policy FCFS.

For each sector, conflict graphs are generated by checking
which pairs of mock flight plans pass within 5NM and 1000
vertical feet of each other, according to standard en route
separation requirements. Interpolating each mock flight plan,
conflicts are checked at every second. Additionally, because
this study focuses on en route aircraft, only potential conflicts
that occur at or above FL200 are considered. The pair of
aircraft and time corresponding to each conflict is documented.
The conflict-time, tci,j , for aircraft Ai and Aj , is assigned
the value of the first time at which minimum separation is
violated. The same process is repeated to determine the aircraft
pairs that come within 6, 7, 8, 10, 12, and 15 NM of each
other (according to the parameter value of Dsep) for all traffic
intensities.

VI. SECTOR CONFLICT ANALYSIS

To gain a better understanding of traffic and the conflict
event-process within a sector, an initial analysis of the mock
flight plans is provided.

For the purpose of this paper, a key measure is the total
number of potential conflicts within a sector. Here, a potential
conflict is defined to occur between two planes when the flight
plans break the minimum separation requirements, according
to the parameter Dsep. Sets of aircraft that have potential
conflicts with one another are considered to form a conflict
cluster. In relation to the graph formulation, the number of
conflicts is given by the total number of edges in the edge
set, i.e Number of Conflicts = card(E). The number of
conflict clusters is defined by the total number of disconnected
subgraphs within the graph G, which is given by the number
of 0 valued eigenvalues of the Laplacian of the the graph G.

According to the generated model, the center ZMP exhibits
approximately three levels of conflict intensity across all
sectors. For the 1X traffic intensity level, Sectors 42 and
43 have the greatest number of conflicts over the nominal
day. The least number of conflicts are found in Sectors 23,
24, and 25. The remaining sectors have a similar number of
conflicts. As the traffic intensity is increased from 1X to 3X,
these groupings remain the same. The relative ranking of the
number of conflicts in each sector is expected given the traffic
distribution illustrated in Figure 6; Sector 42 and 43, the most
busy sectors, are located in the southern portion of the center,
while Sectors 23, 24, and 25 are located in the less busy
northern portion of the center.

As the traffic intensity increases, the number of potential
conflicts in the sectors increases super-linearly. Figure 7 illus-
trates the cumulative potential conflict totals for Sectors 15,
23, and 42 over multiple traffic intensities (1.0X, 1.5X, 2.0X,
2.5X, 3.0X) with Dsep = 5NM. Over a 1 day time period,
at 1X traffic intensity, Sector 42 averages 70 uncontrolled
potential conflicts; at 3X intensity, there are approximately
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Fig. 7: Cumulative number of potential conflicts for 1-3X
traffic intensity.

220 conflicts over 8 hours. The growth rate in the cumulative
number of conflicts grows fastest for Sector 42, in comparison
to Sector 15 and 23. Interesting to note, that even at 3X traffic
intensity, the number of conflicts in Sector 15 is less than that
for Sector 42 at 1X traffic intensity.

The conflict complexity can also be measured by the
fraction of conflicts that are pairwise. Conflict resolution
of pairwise conflicts, excluding the possibility of generating
secondary conflicts, requires that only a single aircraft be is-
sued resolution commands. However, for multi-aircraft conflict
clusters, the resolution process becomes more difficult as more
aircraft require maneuvers. Thus, more advanced algorithms
are required for sectors with greater conflict complexity. For
all the sectors in ZMP, as the traffic intensity increases from
1X to 3X, the fraction of pairwise conflicts decreases linearly.
Sector 42 has the greatest conflict complexity: approximately
88% of all conflicts are pairwise at 1X traffic intensity; at
3X intensity, 66% of all potential conflicts are pairwise when
Dsep = 5NM. Sectors 23, 24, and 25, show low levels of
complexity. Even at 3X traffic intensity, more than 90% of all
conflicts are pairwise.

Because most potential conflicts are pairwise in Sectors 23,
24, and 25, over all traffic intensities, the differences in total
taskload between the FCFS policy and the MTP policy will
be relatively negligible. Near equal performance of the two
policies is also hypothesized for Sectors 42 and 43 at low
traffic intensities.

For purposes of interest, due to its high conflict totals
and large percentage of multi-aircraft conflicts, Sector 42 is
isolated for further study.

VII. SIMULATION RESULTS

According to the two policies described in Section IV (MTP
and FCFS), simulations are run based on the traffic model for
Sector 42 of ZMP over a range of traffic intensities (1.0X,
1.5X, 2.0X, 2.5X, 3.0X). By adjusting the parameters H ,
δt, and Dsep, the three questions posed in the introduction
are addressed. The value of the look-ahead time is tested by



Fig. 8: Total average number of maneuver commands for FCFS
policy when Dsep = 8NM.

Fig. 9: Total average number of maneuver commands for MTP
policy when Dsep = 8NM.

increasing the magnitude of H , and studying the number of
resolution commands required to deconflict traffic. Decreas-
ing the value of δt, represents increasing the update rate
of information provided to the conflict-resolution algorithm
and how often the controller issues resolution commands.
And finally, to study the affect of the quality of information
on controller taskload, the required separation distance is
adjusted. Larger values of Dsep represent increased uncertainty
in radar systems; this often leads to resolution commands that
promote safely conservative actions by air traffic controllers.
As a reference standard, the policy MTP is compared against
the FCFS policy. Additionally, because air traffic controllers
traditionally separate aircraft at distance greater than 5NM, the
basis of comparison assumes that aircraft are spaced at 8NM.

Applying the two policies with Dsep = 8NM, the total
average taskload counts for the 5 traffic intensities are depicted
in Figure 8, and Figure 9 for FCFS and MTP, respectively.
As expected for the policies, as the traffic intensity increases,
so does the total average taskload counts across all values
of H and δt. The value of the look-ahead time, H , is vital
to reducing controller taskload for both policies. However,
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Fig. 10: Histogram of aircraft transit times through the sector.

the benefit of increasing H , to reduce controller taskload,
has diminished returns for H > 20 minutes. Considering the
distribution of aircraft transit times within the sector, such a
result should be of no surprise. For Sector 42, 65% of all
aircraft take 20 minutes or less to pass through the airspace,
and as shown in Figure 10, virtually all take less than 25
minutes.

While H has a meaningful effect on the total taskload of
the controller, the update rate δt, is less influential under
more realistic operating conditions. For both the MTP and
FCFS policies, given sufficiently large values of H ≥ 20,
the update rate, has little effect on the the total taskload. But,
when H < 20, larger differences in total taskload are expected
when varying the update rate. For the case when δt/H → 1,
the influence becomes large. Therefore, for the purposes of
minimizing controller taskload, if the range of the look-ahead
time is limited to 10 minutes, then efforts should focus on
generating rapid updates to both the trajectory prediction and
conflict-resolution process. It should be noted that this analysis
is based on a lower-bound. Actual implementation of conflict-
resolution algorithms may demonstrate that δt has greater
importance in practice.

The comparison between the MTP policy and the FCFS
policy demonstrate that the MTP policy is better able to
manage the number of resolution commands. As illustrated
in Figure 11, except at H ∼ 0 and δt ∼ 0, the MTP policy
requires less resolution commands over a range of traffic levels
and implementations. The reduction in the average expected
taskload reaches 10% for many cases when H = 15 minutes.
While not large, such a reduction is without doubt beneficial
for reducing the workload of a controller. As hypothesized
earlier, the benefit of the MTP policy over the FCFS policy is
more pronounced as the traffic intensity increases. Again, this
results is most likely related to the fraction of pairwise clusters.
When cluster size increases, a greater optimality gap between
the MTP and FCFS policy exists for controller taskload.

Given that the update rate has limited effect on the total
taskload, even with limited look-ahead, a more pertinent study
considers the amount of information available to the quality
of the information. Figure 12 illustrates the total number of
resolution commands for the MTP policy as a function of
H and Dsep. Extracting results for the 2X traffic intensity, a
contour plot of the same information is provided in Figure 13.
The results demonstrate that when quality of information is
poor, ie Dsep is large, then the most effective measure to
reduce controller taskload is to increase the range of the look-
ahead time. However, as previously demonstrated, such actions



Fig. 11: Percent difference in taskload between the FCFS and
MTP policies when Dsep = 8NM.

have diminishing returns. Once trajectory prediction is able to
provide information up to 20 minutes, additional information
is not as useful as increasing the accuracy of the information.
Figure 12 and Figure 13 highlight the trade-off between
information versus quality. When designing conflict-detection
and conflict-resolution decision system tools, a balance must
be struck. Instead of providing large amounts of information
with poor quality into conflict-resolution algorithm, less infor-
mation is sometimes preferred if the quality can be guaranteed.
Except at smaller values of H < 10, the relationship between
controller taskload and Dsep is virtually linear. Such a result
is best explained by the distribution of minimum miss dis-
tances between aircraft, depicted in Figure 14. Even as traffic
intensity increases, the distribution of miss distances between
uncontrolled aircraft increases linearly.

VIII. CONCLUSION

Engineers, researchers, and designers of conflict resolution
algorithms for air traffic systems have largely and implicitly
ignored human factors issues by designing their algorithms to
replace rather than support air traffic controllers. And while
human factors and cognitive engineering researchers have
highlighted key aspects and requirements for the successful
design decision support tools, there has been little actualiza-
tion of these concepts into mathematically rigorous models.
Along these lines, we have demonstrated that the design
and the implementation of conflict-detection and resolution
algorithms has an effect on controller taskload. Therefore, in
order to best design human-in-the-loop conflict-detection and
resolution decision-support tools, the amount of information
(H), the update rate of information (δt), and the quality of
information (Dsep), as well as the implementation strategy
must be considered.

Future research will consider how controller taskload is
temporally distributed according to the implementation param-
eters. Furthermore, greater fidelity is required in distinguishing
between the horizon time for conflict detection and conflict
resolution. Therefore, we suggest that similar experiments

Fig. 12: Total average number of maneuver commands for
MTP for δt = 1 minute.
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controlled aircraft trajectories.

introduce additional terms to parameterize the algorithms; HD

and HR to replace H . HD considers how far into the future
conflicts can be identified, while HR is a measure of how
long resolution commands can insure conflict-free travel for
an aircraft.

It goes without saying that many of the parameters discussed
here bare close resemblance to parameters that describe the
accuracy of trajectory prediction algorithms. In fact, in many
ways, the results presented here can be recast to demonstrate
the importance of trajectory prediction to reducing controller



taskload. However, ultimately, it will be a conflict-detection
and resolution tool that determines which aircraft to issue
resolution commands to. And to do so, the conflict-resolution
algorithm must consider a fixed set of information concerning
the conflicts. By resolving conflicts too far in advance, the
quality of information cannot be guaranteed, and therefore re-
sults in issuing superfluous resolutions commands. Conversely,
waiting for improved accuracy in trajectory information may
limit options in reducing controller taskload. Fundamentally,
the amount and quality of information must be balanced to
ensure manageable levels of controller taskload.

The major advancement of this work is to introduce a
framework in which to study the design and implementation
of conflict-detection and resolution algorithms in relationship
to controller taskload. And ultimately, we have established
a performance reference model by which all future conflict-
detection and resolution algorithms can be compared against.
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