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Abstract—It is common understanding that weather plays an 

important role in determining the capacity of an airport. Severe 

weather causes capacity reductions, creating a capacity demand 

imbalance, leading to delays. The role of air traffic flow 

management (ATFM) measures is to reduce these delay costs by 

aligning the demand with the capacity. Ground delay program 

(GDP) is one such measure. Though the GDP is initiated in poor 

weather conditions, and weather forecasts are subject to errors, 

present GDP planning procedures are essentially deterministic in 

nature. Forecast weather is translated into deterministic capacity 

predictions on which GDP planning is based. Models which 

employ probabilistic capacity profiles for planning GDPs have 

been developed, but their application has been limited by the 

inability to create such profiles from weather forecasts. This 

paper develops probabilistic profiles for three airports, BOS, 

LAX and SFO using the Terminal Aerodrome Forecast and San 

Francisco Marine Initiative. The profiles are inputs to a static 

stochastic GDP model to simulate ATFM strategies. A design of 

experiments approach has been employed to determine optimal 

profiles which minimize the total average costs. The average cost 

of the methodologies is evaluated against realized capacities to 

determine the benefit of the forecast. It is also shown that 

inclusion of weather forecasts reduces the cost of delays. It is 

shown for SFO that on average TAF offers similar benefit in 

controlling cost of delay when compared to STRATUS. Careful 

use of the TAF indicates that other airports would also benefit 

from using TAF in planning of operations. 

Keywords-ground delay program;terminal aerodrome forcast 

;STRATUS;Design of experiments;Response surface 

methodology;Dynamic time warping 

I.  INTRODUCTION  

Adverse weather conditions in the vicinity of an airport 
often reduce its operational capacity, leading to an imbalance 
between capacity and demand. This capacity-demand 
imbalance may lead to delays, and, in the absence of traffic 
management initiatives, holding in the terminal area, increased 
controller workload, and excessive fuel burn. To mitigate these 
impacts, the Federal Aviation Administration (FAA) often 
implements Ground Delay Programs (GDPs).  GDPs mitigate 
the terminal weather-induced airspace congestion by metering 
the arrival of aircraft to the destination airport.  The metering 

matches the number of flights arriving in a period with the 
arrival capacity forecast or the “airport acceptance rate” (AAR) 
forecast. The metering of flights is achieved by delaying 
inbound flights on ground at the origin airport prior to their 
departure. If the AAR forecast is perfectly accurate, the 
metering from the GDP ensures that the total delay costs are 
minimized.  

It is common understanding that the AAR is primarily 
influenced by the weather in the vicinity of the airport and thus 
AAR forecasting necessitates a terminal weather forecast. The 
weather forecasts are seldom accurate in perfectly predicting 
the conditions and can thus lead to inaccurate predictions of the 
AAR. There has been considerable research on how to plan 
GDPs so as to take into account uncertainty about airport 
capacity. GDP models found in the literature incorporate the 
uncertainty in the AAR and can be classified in two broad 
categories: dynamic models and static models. In dynamic 
models, as information about realized capacity is updated, 
ground holding decisions are revised, incorporating a wait-and-
see strategy. Most dynamic models require scenario trees to 
represent the uncertainty in the AAR. Conversely, in a static 
model, decisions made once are not revised. Static models 
require probabilistic capacity profiles as inputs. Reference [1] 
contains more details on the types of GDP models. Most of the 
literature on these models has taken the capacity profiles or 
scenario trees as given, assuming that in real-world application 
these could somehow be extracted from weather forecasts and 
the expertise of traffic management specialists. There is 
considerably less literature on the development of specific day-
of-operation probabilistic capacity profiles.  Accordingly, this 
paper focuses on the development of probabilistic capacity 
profiles from a day-of-operation weather forecast using a 
design-of-experiments (DOE) methodology. This methodology 
determines the best input parameters which lower the costs in a 
GDP. Such profiles, when used in conjunction with appropriate 
GDP planning models, could lead to better GDPs, with lower 
realized costs as a result of reducing either excessive ground 
delays or airborne delay. 

 This paper develops probabilistic capacity profiles from 
weather forecasts for three United States (US) airports: San 
Francisco International Airport (SFO), Boston Logan 



International Airport (BOS) and Los Angeles International 
Airport (LAX). The weather forecast used for constructing the 
profiles for the three airports is the Terminal Aerodrome 
Forecast (TAF) which is issued for all the major US Airport. 
TAF contains forecast information on visibility, ceiling, winds, 
and other meteorological variables for the entire day. Amongst 
the above airports SFO is unique because it is issued another 
forecast, SFO Marine Stratus Forecast System (STRATUS) 
along with the TAF. STRATUS is a forecast project created 
specifically for SFO, because it experiences a low altitude 
marine stratus cloud layer during the summer which reduces 
the airport capacity. STRATUS forecasts the “burn-off” time of 
these marine clouds i.e. the time when the capacity would 
increase. 

 We construct probabilistic capacity profiles from the TAF 
for all the three airports and also construct profiles for SFO 
using the STRATUS forecast. 

The contribution of this paper is that it provides techniques 
which use several statistical methodologies to convert weather 
forecasts into specific day-of-operation probabilistic capacity 
profiles using a design-of-experiments (DOE) approach. The 
profiles are provided as inputs to a static stochastic GDP model 
that determines the optimal AAR‟s for a GDP.  The DOE 
approach determines the profiles which minimize the total 
realized costs in a GDP. We then compare the costs of the 
simulated operational outcomes of GDPs based on the different 
methods of capacity profile generation, against two other 
reference cases. In the first, the GDP is based on perfect 
information, while in the second profiles are developed from 
historical capacity data without use of the day-of-operation 
weather forecast.  

This paper develops probabilistic capacity profiles based on 
the realized capacity and the weather forecast for the summer 
months (May-September) of 2004 to 2006 for the three 
airports. In total, the data set included 446 days for SFO, 432 
days for BOS and 450 days for LAX for which the TAF 
weather forecast and the realized capacity were both available. 
The STRATUS forecast for SFO was available for only 150 
days because they become available when marine clouds are 
forecast in the in the terminal area. We construct probabilistic 
profiles which represents capacity for every 15 minutes 
(period) from 7am to 10pm as the bulk of the traffic is occurs 
in this time period. The reported results are based on three 
airports but the methods for generating capacity profiles from 
the TAF and their simulated comparison from a GDP, can be 
applied at any other airport for which a TAF is available.  

This paper proceeds as follows. Section 2 provides the 
literature review. Section 3 presents the GDP model Section 4 
describes the weather forecasts and the several techniques for 
generating probabilistic capacity profiles using the design of 
experiment. Section 5 presents a cost comparison of the 
strategies obtained from the profiles developed in Section 4. 
Section 6 offers conclusions. 

II. LITERATURE REVIEW 

The current National Airspace System (NAS) rarely 
incorporates uncertainty of the weather forecasts into strategic 
decisions. Operations planning assume a deterministic 

approach using expected weather conditions [2]. Since it is 
difficult to accurately predict AAR, several researchers have 
formulated GDP models which require probabilistic capacity 
profiles or scenario trees for AAR as inputs [1], [3], [4]. A 
probabilistic capacity profile is a time series of capacity values 
(typically based on a quarter-hour time unit) and an associated 
probability. For a given airport and day there will typically be 
several profiles depicting different possible evolutions of 
capacity. Thus the set of stochastic profiles capture the 
uncertainty in the future capacities. Methods for generating 
these profiles have focused on extracting them from historical 
data without specific reference to a particular day-of-operation 
[5]. Other scenario-generation methods have been developed to 
support the application of stochastic programs in finance [6]. 

 Reference [5] formulates a methodology for developing 
stochastic profiles from historical AAR data for various 
airports in the United States. The profiles are the centroids of 
the clusters obtained after K-means clustering the AAR time 
series. Their approach in profile construction is devoid of any 
weather forecast information. Reference [7] presents a GDP 
model based on the SFO Marine Stratus Initiative (STRATUS) 
forecast. They model the time of fog burn off as a random 
variable with the probability distribution obtained from 
STRATUS. They assume at fog burn-off the landing capacity 
of SFO increases sharply. Refence [8] gauged the imprecision 
of the forecast weather information with the actual weather by 
calculating avoidable delays. First they matched the realized 
historical weather in a period with the capacity of the airport in 
that period. Using this developed relationship, they predicted 
the AAR from the Terminal Aerodrome Forecast (TAF) and 
the Meteorological Aviation Report (METAR) for every 
period. From a queuing model, they determined the delays 
between the scheduled arrivals and AAR predicted from TAF 
and AAR predicted from METAR. This deterministic approach 
does not take into account uncertainty concerning the TAF 
itself or in the relationship between realized weather and 
airport capacity. Reference [9] have used the day-of-operation 
weather forecast to generate probabilistic capacity profiles for 
SFO but have not addressed how to choose the parameters 
which influence the probabilities, number and shape of the 
profiles. Their approach does not produce optimal probabilistic 
profiles which can further reduce the costs in a GDP. 

While there is previous research that addresses the 
development probabilistic capacity profiles from historical 
capacity data and which translates a TAF forecast into a 
deterministic capacity forecast, the problem of developing 
optimal probabilistic capacity scenarios from a TAF forecast 
has yet to be addressed. The research presented here fills that 
gap.  

III. BALL ET AL. STATIC STOCHASTIC GDP MODEL 

This section describes the GDP model used for simulating 
the ground delay decisions in a GDP. The ATFM simulation is 
conducted using the model in [3]. This model minimizes the 
total of cost of delay in a GDP by determining the planned 
arrival rate at the airport and, accordingly, the number of the 
aircraft subjected to ground delays for a given demand profile. 
The model outputs the number of planes which can land, 
termed the Planned Airport Arrival Rate (PAAR), for each time 



period. As mentioned in the introduction, uncertainty of the 
AAR is captured by probabilistic capacity profiles. In the 
model the cost of air delay ca is assumed to be greater than cg 
(otherwise there would not be a need to ground hold the 
aircraft). The model takes the following form: 

𝑴𝒊𝒏   𝒄𝒈 × 𝑮 𝒕 +   𝒄𝒂 × 𝑾 𝑺𝒑, 𝒕 × 𝑷𝒑

𝑻

𝒕=𝟏

𝑵

𝒑=𝟏

𝑻

𝒕=𝟏

  (1)  

Subject to: 

𝑨 𝒕 − 𝑮 𝒕 − 𝟏 + 𝑮 𝒕 = 𝑫 𝒕  

 ∀𝒕 ∈ 𝟏. . 𝑻 + 𝟏, 𝑮 𝟎 = 𝑮 𝑻 + 𝟏 = 𝟎  
(2)  

−𝑾 𝑺𝒑, 𝒕 − 𝟏 + 𝑾 𝑺𝒑, 𝒕 − 𝑨 𝒕 ≥ −𝑴 𝑺𝒑, 𝒕  

 
∀𝒕 ∈ 𝟏. . 𝑻 + 𝟏, −𝑾 𝑺𝒑, 𝟎 = −𝑾 𝑺𝒑, 𝑻 + 𝟏 = 𝟎,

𝒑 ∈ 𝟏. . 𝑵
  

(3)  

𝑨 𝒕 , 𝑾 𝑺𝒑, 𝒕 , 𝑮 𝒕 

∈ 𝒁+  ∀𝒕 ∈ 𝟏. . 𝑻 + 𝟏, 𝒑 ∈ 𝟏. . 𝑵  
(4)  

Where, t is the time period, Sp is the p
th

 capacity profile
 

(length T); 𝑷𝒑  is the probability of profile p; T is the total 

number of time periods or planning horizon; N is the total 
number of profiles; G(t) is the ground holding at time t; 
W(Sp,t) is the air holding under profile Sp at time t; A(t) is the 
planned airport acceptance rate at time t (PAARs); M(Sp,t) is 
the capacity under profile Sp at time t; D(t) is the demand in 
period t; ca is the cost of airborne delay; cg is the cost of ground 

delay; N is the total number of profiles in the model. {𝑺𝒑}𝒑=𝟏
𝑵  is 

the set of profiles; 𝑷𝒑 = 𝟏𝑵
𝒑=𝟏  

The objective function, (1) minimizes the sum of the fixed 
ground delay costs and the (expected) air delay costs. Equation 
(2), is a queuing constraint for flights bound for the destination 
from all the origin airports. It enforces flow conservation. The 
demand at period t, D(t), plus the planes ground held in period 
t-1,G(t-1), should either land, and thus count toward A(t), or be 
put in a queue, contributing to G(t). Equation (3) is a queuing 
constraint at the destination airport. Under capacity profile p, 
all planes can land, A(t), or are delayed from the previous time 
period W(Sp,t-1) either land or are further air delayed to the 
next period, W(Sp,t). The inequality is required as the demand 
might be less than the available capacity. Equation (4) ensures 
that A(t), W(Sp,t) and G(t) are real positive integers. The 
decision variables are the number of aircrafts landing in a 
period t, A(t), the number of aircrafts which are subjected to 
ground holding G(t) and the number of aircrafts subjected to air 
borne holding under profile p, W(Sp,t). The ratio of the cost of 
delays is selected to be ca/cg=3 based on published data. The 
data for demand, D(t) (planes originally scheduled to land in a 
period t) is obtained from the ASPM website.  

The GDP model determines a PAAR for a given demand 
profile and a set of probabilistic capacity profiles. If this PAAR 
was implemented then there might be an additional realized 
airborne delay as the capacity might not have recovered. This 

realized airborne delay is the delay between the PAAR and the 
realized capacity. The PAAR and the realized AAR are used to 
determine the amount of realized airborne holding, while 
quantity the ground holding is obtained directly from the GDP 
model. The total realized cost (TC) of delay for any day-of-
operation is cg  ground delay + ca  airborne delay.  

In the next section, we provide several methodologies to 
generate the profiles (Sp), their probabilities (Pp) and the 
number of profiles (N) required as inputs by the Ball et al 
model.  

IV. PROFILE GENERATION AND WEATHER FORECASTS 

In this section we first discuss the methodology to generate 
profiles devoid of weather forecast information. We discuss the 
Terminal Aerodrome Forecast (TAF) and the methodologies to 
generate probabilistic capacity profiles which require TAF. We 
conclude the section by discussing the STRATUS forecast and 
the associated methodology for generating profiles exclusively 
for SFO from STRATUS. 

A. No Weather Forecast: Naïve Clustering 

This method of profile generation does not incorporate any 
weather forecast and is similar to that described in [5]. The 
methodology generates profiles from realized historical 
capacity and these are used as probabilistic profiles for the day-
of-operation. In [5], the centroids of the clusters obtained after 
K-means clustering on the AAR time series are the profiles. Let 
[A]T×D = [A1, A2, . . , AD]  be the data matrix of the AAR 
profiles for D days where Ak is column vector of the AAR 
profile for day k. K-means clustering splits the data matrix into 
a predefined number of clusters, l, where each cluster ck 
contains dk days. The days which have similar AAR profile 
vectors are grouped together i.e. they are in the same cluster. 
The similarity is defined as the Euclidean norm between the 
AAR profile vectors. A smaller value of the Euclidean norm 
implies greater similarity. After the K-means operation we 
obtain a partition of a set of days. 

 𝑨𝒉
𝟏 

𝒉=𝟏

𝒅𝟏
 ,  𝑨𝒉

𝟐 
𝒉=𝟏

𝒅𝟐
  , ,  𝑨𝒉

𝟑 
𝒉=𝟏

𝒅𝟑
  ,  ,  𝑨𝒉

𝒍  
𝒉=𝟏

𝒅𝒍  

Such that, 

 𝒅𝒋 = 𝑫𝒍
𝒋=𝟏  and   𝑨𝒉

𝒋
 
𝒉=𝟏

𝒅𝒋𝒍
𝒋=𝟏 =  𝑨𝒉 𝒉=𝟏

𝑵  and 

  𝑨𝒉
𝒋
 
𝒉=𝟏

𝒅𝒋𝒍
𝒋=𝟏 =  𝜱 

(5)  

The optimal number of clusters, 𝑙∗, is an open problem and 
there are ad-hoc procedures which assist in determining it. 
More clusters imply more profiles which capture more 
variation in capacity but each profile then has a lower 
probability of occurrence. Reference [5] provides an algorithm 
involving the pseudo- F statistic, combined with a required 
minimum number of days (dk) for each cluster, to determine the 
number of clusters.   

Procedures like the pseudo- F statistic measure the 
compactness of a cluster with respect to other clusters and 
report an average value over all clusters. The pseudo F value is 
implemented in SAS and works well with uncorrelated 
variables [10]. The pseudo-F statistic captures the “tightness” 
of clusters, and is a ratio of the mean sum of squares between 
clusters to the mean sum of squares within a cluster. Higher 



pseudo F-values indicate tight clustering and imply that the 
data is well separated or better clustered. An alternative is the 
Silhouette value, which varies between -1 and 1, measures the 
similarity between an object and the cluster in which it is 
classified. The indicator of a strong clustering is the average 
silhouette value close to 1 [11]. The procedure for silhouette 
value is implemented in MATLAB. Caution should be 
exercised in monitoring the number of data points falling 
within each cluster. If they are too many data points within one 
cluster one might considering breaking it up on the other hand 
if there are too few days one would tend to merge two clusters 
together.  

The profiles are the within cluster means of the AAR time 
series in that cluster. Profile Si is determined by the average of 
the AAR profiles in the cluster ci. 

𝑺𝒊 =  
 𝑨𝒉

𝒊𝒅𝒊
𝒉=𝟏

𝒅𝒊
       𝒊 ∈ 𝟏. . 𝒍∗ (6)  

Where [ ] is the nearest integer roundup operator. 

The probability of the profile Si is the proportion of days in 

ci. 𝑷𝒊 = di / D      𝒊 ∈ 𝟏. . 𝒍∗. The number of clusters was 

determined by the highest average silhouette value. 

 

We call this procedure Naïve Clustering as it clusters the 

AAR without any weather information.  

B. TAF-based Capacity Profiles 

The Terminal Aerodrome Forecast (TAF) is a weather 
forecast issued for every major airport four times a day at 
6hour intervals by the National Oceanic and Atmospheric 
Administration (NOAA). It contains the meteorological 
conditions for seven metrological variables (wind speed and 
direction, visibility, and heights of four cloud types) along with 
a qualitative variable that indicates various conditions (rain, 
fog, mist, etc.) at the airport. The TAF issued between 5am and 
7am was used for developing two methodologies of generating 
probabilistic capacity profiles. The TAF forecasts seven 
metrological variables for each period and therefore the entire 
day-of-operation can be represented by a column vector of 
length 60 (quarter hours) ×7 variables/period = 420. Therefore, 
the entire TAF data set could be represented by a 420 
(variables) × D( total number of days) matrix. 

Let [𝐓]𝐋×𝐃 be a matrix (L=420, D= total number of days), 
where Tk is a column representing the TAF for day k. We 
performed a Principal Component Analysis (PCA) on this 
matrix. PCA is a standard statistical technique which reduces 
the dimensionality of the data by converting correlated 
variables into a smaller number of uncorrelated variables called 
principal components. The principal components are directions, 
representing the variation in the data. Thus the first principal 
component direction represents the maximum variability in the 
data and each succeeding component accounts for as much of 
the remaining variability as possible. PCA removes the 
potential correlation between the forecasted variables for the 
same day [12]. For example, there might be correlation 
between visibility and ceiling and also there might be 
correlation between the forecast weather conditions of adjacent 
time periods. As a standard preprocessing technique, we 

normalize the [T] matrix i.e. the mean and the variance is 0 and 
1 respectively for each variable.  Equations (7) through (11) 
describe the PCA on the data set.  

[𝐂]𝐋×𝐋 =
 𝐓 [𝐓]𝐭

𝐃 − 𝟏
  (7)  

Where [C]  is the empirical correlation matrix. 

𝐂𝑿 = 𝝀𝑿 (8)  
Where lambda is the eigenvalue corresponding to the 

eigenvector X 

Sort the eigenvalues in a descending manner (matrix is full 
rank) i.e. 

𝝀 𝟏 > 𝝀 𝟐 > 𝝀 𝟑 > .  . >  𝝀 𝑳  (9)  
A standard technique is to capture 90% variability, in 

which case the number of eigenvalues required is given by 

Equation 10.  

𝒏 = 𝒂𝒓𝒈𝒎𝒂𝒙𝒌  
 𝝀 𝒑 

𝒌
𝒑=𝟏

 𝝀 𝒑 
𝑳
𝒑=𝟏

≤ 𝟎. 𝟗 (10)  

Let eigenvector X[i] correspond to its eigenvalue λ[i], then 

define the matrix  𝐖 𝒏×𝑳 =  

−𝑿 𝟏 
𝑻 −

⋮
−𝑿 𝒏 

𝑻 −
    

The reduced TAF matrix  

 𝐓  
𝐧×𝐃

=  𝐖 ×  𝐓  (11)  

In this reduced TAF matrix,  T  
n×D

we wanted to classify 

days which had the similar TAF. We proceed to perform a K-

means clustering on the matrix[T ]. It has been proved in [13] 
that performing PCA prior to K-means increases the accuracy 
of the K-means clustering.  

Thus a K-means clustering on [T ] with l predefined clusters 
leads to the following 

 𝑻 𝒉
𝟏 

𝒉=𝟏

𝒅𝟏
 ,  𝑻 𝒉

𝟐 
𝒉=𝟏

𝒅𝟐
  ,  𝑻 𝒉

𝟑 
𝒉=𝟏

𝒅𝟑
  , … ,  𝑻 𝒉

𝒍  
𝒉=𝟏

𝒅𝒍
 (12)  

Such that, 

 𝒅𝒋 = 𝑫𝒍
𝒋=𝟏   (13)  

Where dj is the number of days in the cluster cj 

  𝑻 𝒉
𝒋
 
𝒉=𝟏

𝒅𝒋𝒍
𝒋=𝟏 =  𝑻 𝒉 𝒉=𝟏

𝑫
 and   𝑻 𝒉

𝒋
 
𝒉=𝟏

𝒅𝒋𝒍
𝒋=𝟏 =  𝜱 (14)  

After the PCA operation, the variables are uncorrelated and 
thus the number of clusters was determined using the pseudo-F 
statistic. Let 𝒍∗  be the optimal number of TAF clusters, thus 
from this analysis on the TAF we can classify the day-of-
operation in either one of the 𝒍∗  clusters from 𝒄𝟏  to 𝒄𝒍∗ 
depending on the classification of its TAF. 

Next, we determined a set of representative capacity 
profiles from the realized capacity of the days which were 
classified in the same TAF cluster. We performed another K-
means clustering on the realized AAR time series of the days 

within 𝒄𝟏 to 𝒄𝒍∗. Let  A h
r  

h=1

dr
 be the set of AAR time series for 

the days in cluster 𝒄𝒓  for r ∈ 1. . 𝑙∗ . The K-means operations 
partitioned this data set. The highest average Silhouette value 
determined the number of clusters in the second K-means 
clustering performed on the AAR. Let the optimal number of 



AAR clusters within a TAF cluster 𝒄𝒓  be 𝒌𝒓
∗  (r ∈ 1. . 𝒍∗) . 

Define  A h
r,i 

h=1

dr ,i
to be the set of AAR profiles for days in an 

AAR cluster i which is within a TAF cluster cr  and dr,i are the 

total number of days within AAR cluster i and TAF cluster 𝒄𝒓 
(i ∈ 1. . 𝒌𝒓

∗  , r ∈ 1. . 𝒍∗). 

  A h
𝑟,𝑖 

h=1

dr ,i

𝒌𝒓
∗

𝒊=𝟏

=   A h
𝑟  

h=1

dr
 and  𝒅𝒓,𝒊 = 𝒅𝒓

𝒌𝒓
∗

𝒊=𝟏

  (15)  

The set of capacity profiles are the averages of the AAR 
time series in the AAR cluster. The probability of the profile is 
the proportion of days within the AAR cluster  

The profiles and their probability are determined as below  

𝑺𝒓,𝒊 =  
 𝑨 𝒉

𝒓,𝒊𝒅𝒓,𝒊

𝒉=𝟏
𝒅𝒓,𝒊

    

 𝑷𝒓,𝒊 =
𝒅𝒓,𝒊

 𝒅𝒓,𝒌
𝒌𝒓
∗

𝒌=𝟏

  𝒊 ∈ 𝟏. . 𝒌𝒓
∗  , 𝒓 ∈ 𝟏. . 𝒍∗ 

(16.1)  

(16.2)  

We call this procedure TAF based clustering.  

C. Dynamic Time Warping Profiles 

This is the second method which uses the TAF to determine 
the probabilistic capacity profiles using Dynamic Time 
Warping (DTW). DTW is an established methodology to study 
the similarity between two electrical signals. It has been used in 
the areas of speech recognition to match speech patterns. 
Recent research has demonstrated that DTW can be useful to 
detect similar multidimensional time series [14]. DTW is a 
technique where one sequence is “warped” in time around the 
other. The two time series are aligned to a distance matrix such 
that both of them start from the lower left corner and end at the 
top right corner. Each cell of the distance matrix is a cost 
representing the distance between the corresponding time pairs 
of the two series. Finally, a minimum cost path between the 
lower left corner and the upper right corner of the distance 
matrix is determined using dynamic programming. In this case, 
the multidimensional time series being compared are the day-
of-operation TAF and the historical TAFs. We used the 
Euclidean norm, applied to the standardized weather variables, 
to generate the costs for each cell in the distance matrix.  

Potentially, several minimum cost paths are possible 

through the distance matrix. To restrict the paths, we have 

multiplied the off-diagonal cells by a Weighing Factor (WF≥ 

1). A higher WF restricts the warping of the time series and 

aligns the minimum cost path closer to the diagonal of the 

distance matrix whereas a lower WF allows the shortest path 

to vary through the distance matrix. A higher WF ensures that 

the forecast for a period in the day-of-operation is only 

compared to historical forecasts which are close to the period. 

In other words a high WF compares forecasts locally and not 

for the entire day. Tables I and II, shows the distance matrix 

and shortest path (highlighted) for two artificially generated 

multidimensional time series of length 5 periods. 

TABLE I.  SHORTEST PATH FOR DF=1 

DF = 1, Minimum cost path = 0.962 
Periods 1 2 3 4 5 

5 0.498 0.412 0.620 0.116 0.093 

4 0.815 0.376 0.943 0.184 0.048 

3 0.200 0.688 0.532 0.117 0.648 

2 0.926 0.119 0.448 0.251 0.560 

1 0.136 0.815 0.814 0.062 0.422 

TABLE II.  SHORTEST PATH FOR DF=10 

DF = 10, Minimum cost path =1.07 

Periods 1 2 3 4 5 

5 4.978 4.122 6.197 1.160 0.093 

4 8.149 3.760 9.433 0.184 0.482 

3 1.999 6.879 0.532 1.175 6.481 

2 9.264 0.119 4.483 2.507 5.600 

1 0.136 8.152 8.138 0.618 4.225 

We use the technique of dynamic time warping to compare 
the day-of-operations TAF with historic TAFs. AAR time 
series of the historically similar TAF days are used for the 
capacity profiles. The probabilities of the profiles are inversely 
proportional to the total cost of the minimum cost path raised to 
a Dimension Factor (DF). As the DF increases, the degree of 
similarity decreases because the days which are less similar to 
the day-of-operation are penalized greater by an increase in 
their total cost.  

The mathematical formulation takes the following form. 
Let FD be a time series of the TAF for the day-of-operation. FD 
is thus a 7 dimensional time series of length 60. The 7 
dimensions represent the forecast per quarter period and the 
day-of- operation is divided in 60, 15 minute periods. 

Let {Fj}j=1
N  be a set of N historical TAFs for N historical 

days. DTW evaluates the minimum cost path between FD and 
Fj. FD r  is the TAF for period r for the day-of-operation and 
similarly Fj s  is the historical TAF for period s for day j. A 

distance matrix of size 60 × 60 is first computed for all possible 
pairs i.e. a total of N matrices are computed. Any element (r,s) 

of the distance matrix is D r, s =  FD r − Fj s  
2

2
× WF (r,s 

∈  1. .60 , r ≠ s) and D r, r =  FD r − Fj r  
2

2 
 (r ∈

 1. .60 )  

The DTW path between FD and Fj is given by 

DTW FD(60), Fj(60)  where,  

DTW FD(t), Fj(t)  

= D FD t , Fj t  

+ mi n DTW FD t − 1 , Fj T

− 1  , DTW FD t

− 1 , Fj t  , DTW FD t , Fj t

− 1    

(17)  

Thus if two multidimensional sequences, A and B, are 
identical, the DTW(A,B) is 0. The optimal path would be the 



diagonal of the distance matrix. A smaller value of DTW 
implies a greater similarity between the time series. 

The number of profiles is given by the rule defined by (18). 
It determines the number of profiles by enforcing the minimum 
probability of the least similar profile is greater than the 
minimum probability threshold,𝑃𝑚𝑖𝑛 . A lower 𝑃𝑚𝑖𝑛 value will 
make n large and  a larger 𝑃𝑚𝑖𝑛 value would make n small. 

n = argmax
k

1

DTW FD , {F j } 
DF

 
1

DTW FD , {F j } 
DF  k

j=1

 ≥ Pmin  (18)  

Where {T[j]} is an ordered set such that 

DTW(FD , F[1])  ≤  DTW[FD , F[2])]  
≤   DTW[FD , F[3])]  ≤ . .
≤ DTW (FD , F[N]) 

(19)  

The set of profiles is thus the actual AARs for the „n‟ days. 

S[k] = AAR[k]  (∀k ∈ ( 1 , . . ,  n )  

The profile probabilities are obtained after normalizing the 
least resistant path for the „n‟ days. 

P k =

1

DTW FD , {F k } 
DF

 
1

DTW FD , {F j } 
DF  n

j=1

 (20)  

We refer to capacity profiles obtained from this procedure 
as DTW Profile. 

D. A design-of- experiments approach to DTW Profile 

In DTW Profile, there are three input variables which are 
required to determine the probabilistic capacity profiles and 
ultimately the ground delay decisions. These are Weighing 
Factor (WF), Dimension Factor (DF) and the minimum 
probability threshold 𝑃𝑚𝑖𝑛 . Since these parameters influence 
the total realized cost it becomes critical to determine these 
values for different airports. We have determined the optimal 
input values which minimize the output for each of the three 
airports using a design-of-experiment technique called 
Response Surface Methodology. 

Response Surface Methodology (RSM) is a statistical 
technique to determine input values which produce an optimal 
output by iteratively changing the inputs [15]. Inputs at every 
iteration change by moving in the direction of the optimal 
output. Eventually, as the iterations increase, RSM determines 
the optimal factors or the region of factor space which produces 
the optimal output.  

Initializing the RSM, requires a factorial design and some 
initial starting values for the input variables. We have chosen a 
Face Centered Cube (FCC) factorial design which evaluates the 
output at 15 points (8 corners of the cube+6 center of the faces 
1 centre of the cube) as shown in Fig. 1. The inputs take 
different values depending at the location of the points. Thus 
each of the 15 points presents a unique design to be evaluated. 
Depending on the input values, the output, which is the average 
total realized cost evaluated is using the model in section III.  

 

Figure 1.  Face Centered Cube design 

After determining the average total realized costs at the 15 
points, the cube gets re-centered on the point which gives the 
lowest cost. This process continues till the minimum cost point 
converges at the center of the cube and the cube can‟t be re-
centered furthered. Therefore this centered point is the design 
that minimizes the costs for that airport. We acknowledge that 
this approach is susceptible to a local minimum and we tackle 
this issue by randomly selecting multiple starting points and 
observe their convergence values. It should be noted that the 
purpose of RSM is to determine a good design, which can 
implemented to reduce the realized costs in a GDP. 

E. STRATUS and Fog Clustering 

STRATUS is a program designed by MIT Lincoln Labs 
specifically for SFO to forecast the fog burn-off time and the 
probability that the fog would burn-off before 10am, 11am and 
12 noon. The forecast burn-off time is a proxy for the transition 
time from single landings to dual landings at SFO. This time is 
determined by using an ensemble of statistical regression 
models and atmospheric boundary later physics model. The 
probabilities are determined by empirically comparing the 
forecast time of transition to the actual time the airport 
transitioned into dual landings [16]. STRATUS updates the 
forecast of the burn off time on an hourly basis from 2:00-
11:00am PCT. NASA Ames Research Center maintains a 
repository where the output from STRATUS is stored for the 
dates when marine clouds are forecast in the terminal area. For 
these dates, the data contains the predicted burn off time, actual 
burn off time and the forecast probability that the fog would 
burn-off before 10am, 11am and 12 noon.  

We base our analysis on the STRATUS forecast generated 
at 8:00am Pacific Standard Time (PST) for over 180 days in 
the summer months of 2004 to 2006. We chose the 8:00am 
forecast because it is the first of the day for which predictions 
from the Satellite Statistical Forecast Model (SSFM) become 
available. We concentrated on the days when the fog burned 
off between 9:30am and 11:30am PST as the number of days 
outside this time bracket were very few. These days were 
binned in 15 minute periods according to the actual fog burn-
off time between 9:30 to 11:30 a.m. PST. In total there are 

eight fog burn off bins{𝑩𝒌}𝒌=𝟏
𝟖 . The number of days, di, in bin, 

Bi, is shown in the Table III.  

TABLE III.  BINNING OF ACTUAL FOG BURN OFF TIME 



Bin Number of Days 

9:30-9:45am 15 

9:45-10:00am 16 

10:00-10:15am 16 

10:15-10:30am 11 

10:30-10:45am 24 

10:45-11:00am 22 

11:00-11:15am 18 

11:15-11:30am 15 

 

From each bin we constructed a probabilistic capacity 
profiles as follows: 

{𝑨𝒊
𝑩𝒌}𝒊=𝟏

𝒅𝒌  is the set of AAR profiles for the days in bin Bk 

(k∈1,2,..8). Each profile is a vector specifying the AAR value 
for each 15-minute time period from 7am to 10 pm. The profile 
Si is determined by the average of AAR profiles in Bi 

𝑺𝒊 =  
 𝑨𝒉

𝑩𝒊𝒅𝒊
𝒉=𝟏

𝒅𝒊
   𝒊 ∈ 𝟏. . 𝟖 (21)  

The profiles are shown in the Fig. 2. 

A closer inspection of the periods when the fog burns off 
reveals that there is a transition period lasting approximately 
for 45 minutes when the AAR is 45/hour. There is not an 
immediate increase in the AAR from 8 arrivals per period to 15 
arrivals per period as assumed in [7]. While calculating the 
ideal GDP end time, this transition should be taken into 
account. Ignoring this transition period would lead to an 
increased cost of airborne delays as the capacity would be over 
predicted immediately after burn-off. 



Figure 2.  Profiles from Fog Burn off clustering 

In Fig. 2, we observe an oscillation in the profiles. This is 
because of the way the AAR is reported in the ASPM database. 
The original rates are reported on a per-hour basis, which is 
then decomposed into 15-minute values in a manner that 
preserves integrality. Thus, the AAR of 60/hour reported as 
15,15,15,15/quarter hour, an AAR of 45/hour as 
10,11,12,12/quarter hour  and an AAR of 30/hour as 
8,7,8,7/quarter hour, causing the observed oscillation. 

MIT Lincoln labs, on recommendation by the Traffic 
Management Unit at Oakland center, incorporated “risks” to 
the output of STRATUS. The “risks” output by STRATUS for 
the day-of-operation can determine the probability of the 
profile. The risks are, in effect, cumulative distribution function 
(CDF) values of the form: P(Burn off < T1)=P1, P(Burn off 
<T2)=P2 and P(Burn off <T3)=P3 where T1 < T2< T3 and P1 ≤ 

P2≤ P3. Using the STRATUS-provided Cumulative Distributed 
Function values, we linearly interpolate to obtain CDF values 
for each 15-minute period between 9:30 and 11:30 am. 

 From the CDF the probability of any bin, Bi, can be 
calculated.  

𝑷𝑩𝒊
     = 𝑷𝒓𝒐𝒃 𝑩𝒖𝒓𝒏 𝒐𝒇𝒇 ≤  𝑩𝒊  

− 𝑷𝒓𝒐𝒃 𝑩𝒖𝒓𝒏 𝒐𝒇𝒇 ≤  𝑩𝒊      𝒊 
∈  𝟏. . 𝟖  

(22)  

Where  ·  and  ·  are the lower and upper bin boundaries. 

Equation (22) establishes the probability of the burn off in a 

particular bin. Further, if the burn off probability in a 

particular bin, Bi, is 𝑷𝑩𝒊
     , then the capacity profile, Si, 

depicting burn off in Bi, would have a probability 

𝑷𝒊 =
𝑷𝑩𝒊

 𝑷𝑩𝒊
     𝟖

𝒊=𝟏

           
    ∀𝒊 (23)  

                             
Equation (23) is a simple renormalization of the 

probabilities of the bins. The renormalized probabilities would 
sum to one. 

In conclusion, we have generated 8, 15 minute burn-off 
bins corresponding to the capacity profiles as shown in Fig. 1. 
From the STRATUS predictions of fog burn- off time for the 
day-of-operation we can obtain the probabilities for the bins 
and consequently the probabilities of the profiles.  

This methodology translates the STRATUS forecast to 
build probabilistic capacity profiles. We call this procedure 
Fog burn-off time clustering. 

V. CASE STUDIES AND COST COMPARISONS 

The optimal number of cluster and probabilities for Naïve 

clustering and TAF based Clustering for all the three airports 

is shown in Table IV. The Naïve and TAF profiles are shown 

in Fig. 4 and Fig. 5 respectively.  

TABLE IV.  PROBABILITIES AND NUMBER OF PROFILES 
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t 
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(𝒍∗) 
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(𝑷𝒊 ) 

# of 

TAF 
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(𝒍∗) 
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profil

es in 

𝒄𝟏 

(𝒌𝟏
∗ )  
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s in 𝒌𝟏
∗  
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𝒄𝟐 

(𝒌𝟐
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Proba
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LAX 2 
0.67,

0.33 
2 2 

0.36,0.

64 
2 

0.29,0

.71 

SFO 3 

0.25,

0.37,

0.38 

2 2 
0.46,0.

54 
3 

0.22,0

.41,0.

37 

 
We simulated ATFM strategies for 45 historical days from 

2004 to 2006 for all the three airports. For SFO, we considered 
the days when the low lying marine stratus was observed. We 
generated the probabilistic capacity profiles for each historical 
day using the TAF and STRATUS forecasts. For the Naïve 
case the profiles and probabilities were the same across all the 
days as the profiles are generated without weather forecast 
information. When applying the TAF Clustering method, we 
first determined in which of the TAF clusters a given day 
belonged to and then applied the profiles and probabilities 
under that particular TAF cluster in the GDP model. Thus, e.g. 
a given day in SFO either has two or three probabilistic 
capacity profiles depending on the classification of its TAF.  
For DTW Profiles, Fig 3 show the decrease in costs as the 
iterations increases for different starting points for the three 
airports. As expected the average total realized costs decrease 
with an increase in iterations.  

 

 

 

Figure 3.  Decrease in costs using RSM 

The various total costs of delay are compared to a Perfect 
Information (PI) case where the controllers have perfect 
foresight about the evolution of capacity as if told by an 
“oracle”. For any historical day, we know the actual realized 
capacity and this capacity can be used in a (deterministic) 
ATFM simulation. This is equivalent to having one profile 
which is the actual AAR profile with 100% probability of 
occurrence in the GDP model. With perfect information, we 
can eliminate all airborne holding while keeping ground 
holding to a minimum. The average total realized costs are 
given in the Table V with the standard deviation in the 
brackets. 

TABLE V.  TOTAL AVERAGE COST 

 Airport PI Naïve TAF DTW 
Fog-Burn 

off 

LAX 
20.41 

(24.53) 
41.44 

(58.73) 
41.75 

(58.71) 
38.26 

(60.29) 
- 

BOS 
196.15 

(335.41) 

616.64 

(745.19) 
570.02 

(883.19) 

429.97 

(637.84) 
- 

SFO 
96.5 

(54.93) 

236.23 
 (156.7) 

194.45 

(145.28) 

178.52 

(102.74) 

182.2 

(109.73) 

 

We performed paired t-tests where the null hypothesis 
assumes the difference between the total costs obtained from 
the methodologies using the weather forecast and from naïve 
clustering is zero while the alternative hypothesis is the 
difference is other than zero. The values in bold italics indicate 
the cases where the null hypothesis is rejected i.e. the 
difference non- zero at a significance level of 0.1.  

The above table illuminates the fact that probabilistic 
profiles derived from weather forecasts are better in planning 
of operations as compared to profiles developed devoid of any 
forecast information. For LAX, the average costs for the Naïve, 
TAF and DTW Profile methodologies are statistically similar, 
even though the cost from DTW Profiles is the lowest. For 
SFO, the DTW Profiles gives the minimum average cost of 
delays. This cost is marginally lower than the average delay 
from the STRATUS forecast. The two costs are statistically 
equivalent. The profiles derived from the STRATUS forecast 
yields the roughly the same level of costs TAF-based DTW 
method. This suggests, of the TAF-based methods, the DTW 
method is the most promising for application at other airports, 
where, of course, the STRATUS forecast is unavailable. It can 
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be stated that inclusion of weather forecasts in decision making 
lead to lowering of total delay costs. 

VI. CONCLUSIONS 

In this paper we have demonstrated how to employ weather 
forecasts to generate day-of-operation probabilistic capacity 
profiles. This represents steps towards the incorporation of 
weather forecast information to support probabilistic decision 
making in NEXTGEN, which can be taken without the 
expensive development of specialized weather forecast 
products. The TAF-based methodologies can be applied to any 
airport. It is shown that incorporating day-of-operation weather 
forecast information to plan the day-of-operation arrivals leads 
to a reduced realized cost when compared to profiles that do 
not make used of this information. It is important to note that 
STRATUS is designed specifically for SFO and particularly for 
the days when there is a low lying stratus over the airport thus 
its application is focused. The careful use of the TAF offers a 
similar level benefit in GDP planning as a dedicated tool 
designed at considerable expense specifically for SFO. In 
future research, it is important to determine how DTW Profiles 
along with response surface methodology might be refined to 
achieve optimal performance. 
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Figure 4.  Naive Profiles for BOS,LAX and SFO 

 

 

 

 

 

 

Figure 5.  TAFClustering Profiles for BOS,LAX and SFO 
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