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Abstract— Air traffic management research and simulation use de-
lay cost functions that attempt to quantify the cost of delayto air-
lines. Seventeen delay cost functions from previous resedr are
evaluated with airline actions in Airspace Flow Programs. Arline
actions from 34 days in the summer of 2006 were used to compute
four metrics designed to quantify the consistency of the aline ac-
tions with each of the cost functions. Two of these metrics copare
the cost of airline actions to the cost of the default first-seeduled-
first-served actions. The other two metrics compare the cosbf
the airline actions to the minimum costs. Two classes of defacost
functions were most consistent with airline actions. One elss con-
sists of delay cost functions in which costs increase in diste steps
as delay increases. In the other class, costs are proportiahto the
length of delay but with larger proportionality constants for flights
bound for hub airports.

Keywords— Delay; Metrics; Airline Behavior Modeling; Cadbora-
tive Decision Making; Air Traffic Flow Management Slots; Aspace
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NOMENCLATURE

(F,§ M) Set of corresponding sets of flights, sets of slots,
and matchings

Q@ Weighting parameter

B(ty,d) Time-of-Day Delay multiplier

) Length of slot time window in minutes

n(es,d) Monetary Delay multiplier

~v(f) Connection Delay multiplier

v (f,ar) Airline Connection Delay multiplier

L(0?) Approximate log-likelihood when the variance
is 02 and the mean is assumed

p(d) Step delay cost

o Estimate of the additive cost noise variance

Rrsrs Median of FSFS ratios

Runin Median of minimum ratios

€ Additive cost noise

ar Airline operating flightf

c(f,d) Delay cost function for flight andd minutes
of delay

d Delay in minutes

d(f,s) Delay in minutes resulting from assigning flight
f toslots
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ey Aircraft type used for flightf

F Set of flights

f Aflight

I Improvement frequency

J(F,S,M,c) The cost of matching the set of flightsto the
set of slotsS as specified by matchiny/ when
using cost functiom

J*(F,S,c)  Minimum cost for a perfect matching of the
flights I to the slotsS when the cost function
isc

M A matching of flights to slots

n Number of flights and slots

Dy Number of passengers on fligfit

Rrsrs The FSFS ratio

Ruiin The minimum ratio

S Set of slots

s A slot

Ly Scheduled time of arrival for flight

ts Slot time

I. INTRODUCTION

The cost of delaying a flight differs from flight to flight.
This cost can be most accurately estimated by the airlings, b
unfortunately airlines are reluctant to reveal their cbsisause
doing so could be advantageous to their competitors. Haaing
accurate understanding of airline costs is important itraffic
management research. Airline cost functions impact thigdes
of air traffic management concepts, help determine the \aflue
new concepts, and can form the basis of airline behavior mod-
els used in simulations. Without the benefit of knowing alctua
airline delay costs, researchers must infer these costs.

Only one effort has been made to tune and validate delay
cost functions with records of airline actions. In her ditse
tion [1], Xiong used airline flight cancellation and slot gsa
data from Ground Delay Programs to tune parameters in dis-
crete choice models of airline behavior. Discrete choicdef®
assign a probability to every possible choice an airlinedzaed
on the cost of each choice. Xiong’s research revealed many
characteristics of airline delay costs, but there are somieal
tions of her work. Discrete choice models cannot easily leand



cases with many discrete choices, preventing the use of sbme I1l. METHOD
the available data. More importantly, Xiong did not study an
“separable” delay cost models. Separable delay costmosgels 5 ajrline Behavior Model
a flight delay cost function to compute the cost of delayinghea Airlines have tools and procedures that allow them to make
flight and assume that the total airline cost is the sum ofrthe i acceptable decisions during an AFP, but the problem they fac
dividual flight delay costs. While there are exceptions [2-8 ing an AFP is complicated and difficult for researchers to
most research uses a separable delay cost model [9-18]. SOmg,ye| [25]. There are many possible ways for an airline to as-
airline decision support tools are also based on separable d gy, their fiights to their slots. A flight can be canceled arteal
lay cost models [19_2_1]'_ Furthermo_r_e, X|0_ng S use of Groundout of the relevant FCA. The assignment of flights to slot®is n
Delay Pr_ogram data limited her ability to investigate the di st a one-time decision but can be changed repeatedlygiurin
ference in the cost of delay for hub-bound flights and othefy,o AFp, Uncertain factors impact the airline, such as if and
flights. Finally, while Xiong studied linear models with dat how the FAA will alter the AFP parameters and when the AFP
intensive variables related to airline revenues, her wadkndt will end. Cancelations by other airlines can impact an e
‘?0”Side_r some simple variables from previ_ous researchiand a g 15cation of slots. Furthermore, the impact of delayinghea
line decision-support tools, such as those in [20, 22-24]. flight is difficult to compute because passenger, luggagsy,cr
The goal of this research is to determine the degree to whicland aircraft COﬂneCtian mean that (_Jlelaying one f[ight may _im
delay cost functions proposed for separable delay cost moddact several other flights. Mechanical or crew “time-out” is
els are consistent with how airlines assign flights to slots i sues can arise and further complicate matters. Itis noboisvi
Airspace Flow Programs. None of these delay cost functiongo researchers how airlines consider all of these factorsmwh
have been validated with airline actions. The inability a-d making decisions.
crete choice models to handle cases with many choices would 1 oke this problem tractable, a separable delay cost

prevent the use of more than half of the available data fof, e il be assumed. More specifically, it is assumed tiat a
some airlines, so a new a_\pproach for validating cost_funstlo lines attempt to minimize the sum of the delay costs assegtiat
IS needed_. Four new m_etncs are pro.posed fpr e\_/allugtlnglcbhe € with assigning each flight to each slot. This model assunsas th
tent to which cost functions are consistent with airlinéatt in airlines ignore the dynamic nature of the AFP, uncertaintiee
Airspace Flow Programs. Two of the four metrics compare the,ossihility of canceling flights or routing them out of the £C
costs incurred by airlines to the_ c_osts of default actlorh;_]eN and the behavior of other airlines, except when the flighaylel
the qther two compare to the minimum costs. One metric addg ot fynction attempts to include such issues. More sdphist
anoise term to delay cost funct|0ns. to account for UNObSEIVE . oeq models and solution methods have been developed that
aspects of a_lrl_me costs and then estimates the paramétées o . <iqer the possibility of canceling flights, non-septrabst
noise with airline action data. functions, and other issues [3-7, 19]. These techniques may
The remainder of this paper is structured as follows. Secbe more accurate, but the separable delay cost model akows f
tion 1l contains background information about Airspacewlo computationally simple evaluations of delay cost funcsiwith
Programs. The model, metrics, and data used to evaluate coAFP data.

funct_ions are presented_iq Section IIl. Results are disliss If airlines minimize a separable delay cost, then the pmble
Section IV. The paper finishes with proposals for future Workfaced by airlines when assigning flights to slots is wellkno

in Section V and conclusions in Section V1. and referred to as the “minimum cost perfect matching” or “as
signment” problem. Given a set of flights and slots, a “match-
ing” is a set of connections between flights and slots such tha
[I. BACKGROUND flights are matched to only one slot and vice versa. A “perfect

. . matching” is any matching in which no flight or slot is left un-
Airspace Flow Programs (AFPs) are a mechanism used b atched. Several algorithms can solve this problem effigien

the Federal Aviation Administration (FAA) in the United &ia even for cases where there are hundreds or thousands o$ flight

tq assign departure delays t(?, aircraft When demand”for a '€ nd slots. This is not necessarily the case for the more stphi
gion of airspace known as a “Flow Constrained Area” (FCA)

exceeds capacity. This mechanism is based on the concept g?ted problem models.

slots. A slot s the right to fly into the FCA in a specified pe&kio

of time. The FAA enforces slot ownership rights by assigningB. Notation

departure times to ﬂlghtS bound for an FCA so that each ﬂlght Before deﬁning the four metrics used to evaluate the de-
arrives at the FCA approximately at the time of the slot toakihi  gree to which a delay cost function is consistent with histdr
itis assigned. During AFPs, slots are allocated to airlimgs  assignments of flights to slots in AFPs, some notation will be
an algorithm referred to as “ration by schedule” (RBS) tisat i introduced. LetF be the set of flights belonging to an airline
based on a first-scheduled-first-served (FSFS) principlele® i a matching, and le$ be the airline’s slots in the matching.
fault, each airline’s flights are assigned to their allodaets in ~ The number of flights and slotsis Associated with each flight

a FSFS manner, but they can adjust this assignment as they see- £ js a scheduled time of arrival at the constrained resource
fit. Large airlines alter the assignment of their flights teith t; and associated with each sko S is a timet, and a time
slots in AFPs thousands of times each year. window [t,, t, + 4] for somed > 0. A flight f can only be



assigned to a slatif £y < ¢, + . The cost of assigning a flight | igp 1 o Sior1 Flight 1 Slot 1
f to a slots is given by the cost function under consideration,
which is a function off and the delay associated with assigning
f to s. There are historical assignments of flights to slots wherq riight 2 > Slot 2 Flight 2 Slot 2
ty > ts, so delay is computed a& f, s) = max{0,t, — ts}.
This information makes up the data for the minimum cost per{— _
fect matching problem assumed to be solved by the airline. | Flight3 > Slot3 Flight 3 Slot 3
The set of historical matchings of flights and slots by an
airline is denoted by(F,S, M). An element(F,S,M) € Flight 4 > Slot 4 Flight 4 Slot 4
(F,S, M) contains the set of flight&8' and set of slots$' asso- . - .
. . . o . FSFS match b) Airl tch
ciated with a matching/ selected by an airline. The matching @ matchingf ) (b) Airline matching (/)
M is a perfect matching that assigns egtche F' to exactly ‘ A
. . . . Flight 1 Slot 1 Flight 1 Slot 1
ones € S. Itis a square binary matrix with an entry for each
possible assignment of a flight to a slot. Elem&ny is 1 if f;
is assigned to slot; .and_ isO otherwise. For a cost functian, Flight 2 J soo Flight 2 Slo 2
the cost of a matching is
J(F,S,M,cx) = > crlfi,d(fi, 5;)) M. Flight 3 Slot 3 Flight 3 Slot 3
fiEF,Sj es
If a non-separable cost model were used, this equation coul| Flight 4 Slot 4 Flight 4 Slot 4

not be expressed as a sum of individual flight delay costs.

(c) Minimum cost matching for cost (d) Minimum cost matching for cost

function A function B

C. Metrics

The general approach underlying the metrics proposed here
involves computing and comparing the airline cost, FSF$, cos
and minimum cost corresponding to each airline matching Th
computation of these total cost values for a particular fligh
slot-matching triple{ ', S, M) is depicted in Fig. 1. Given this
data and a particulag,, the “airline cost’J (F, S, M, ¢;,) can be
computed. This cost incurred by the airline is compared  tw
other total costs values. The first of these is the “FSFS cost”
produced by a FSFS matching¥S'S: J(F, S, MFSFS ¢p).
The second of these is the “minimum cost” produced by any
optimal matching/* with cost functiorc,: J*(F, S, ci).

Airline cost
M JES,M,C.)

FSFS
F.S >| FSFS ifffgﬁﬁsséq)

Minimum cost
JXFS.c)

Figure 1: Calculation of cost values for a set of flights amdss|

Figure 2: Example matchings of a set of flights to a set of slots

Cost function A Cost function B

6—— FSFS cost
5—— FSFS cost

4—— Airline cost

_| Airline cost,
Minimum cost

1—— Minimum cost

o 0—

Figure 3: Example cost values.

One way to infer whether an airline was using a particular

cost function is to see if the airline cost is lower than thiadk

FSFS cost. In the example, the airline cost is slightly lower
than the FSFS cost for function A, but more significantly lowe
Some example matchings are shown in Fig. 2. Fig. (a) is thdor function B. Two metrics are based on comparing these two

default FSFS matching{ "5F9), Fig. (b) is the airline-selected cost values. A second approach is to compare the airlinda@ost
matching (), Fig. (c) is a minimum cost perfect matching for the minimum cost for each cost function. In the example, the
some cost function A, and Fig. (d) is a minimum cost perfectairline cost equals the minimum cost for cost function B tatt n
matching for some cost function B. Fig. 3 shows example cosfor function A. The last two metrics are based on comparisons
values incurred by these matchings. of the airline cost with the minimum cost for each cost fuoicti



1) First-Scheduled-First-Served Ratio matching. In the example, the minimum ratio fof with cost
The consistency of the matchings selected by airlines witHfunction A is4, but the minimum ratio with cost functiaB is 1,
a given cost function can be evaluated by comparing thenairli again indicating a greater consistencyldfwith cost function
cost to the corresponding FSFS cost for each set of flights anB. The overall consistency will be evaluated by studying the
slots. The “first-scheduled-first-served ratio” metricéoset of  distribution the minimum ratio values in the data for eaah ai
flights and slots is the airline cost divided by the FSFS ocmist f line and for each delay cost function. The more frequenty th

a given cost function: values are close tbfor a particular cost function, the more con-
o sistent the airline matchings are with the separable cosleino
Rpsps = airline cost (1)  assumption and that cost function. Again, the median of the
FSFS cost minimum ratio values for all the matchingB (,;,,) will be used

to rank cost functions, with thes'" and25*" percentiles used

If the FSFS ratio is less thdn then the airline cost is lower than °
as tiebreakers.

the FSFS cost. FSFS ratio values larger tharean that the air-
line could have incurred a lower cost witti¥S¥S| the default
matching. This would not happen if the airline was using
and solving a minimum cost perfect matching problem. There-
fore, the distribution of FSFS ratio values in the data cao bk . . o . ;

matching flights and slots, it is unlikely that their delaysto

used to study consistency. The smaller the FSFS ratios aae fo . . :
function can be computed exactly from publicly available

particular cost function, the more consistent the airlirstah- data [251. O to handle this i is 1o add ise t
ings are with the separable cost model assumption and tkiat co ata [25]. One way 1o hande this issue is 1o add a noise term

function. In the example, the FSFS ratio for the airline rhatc EE tth.e delatythcost fL:nconn to at(;]C(iutEt fortunlobsetrvefddfallctqrs
ing is%forcostfunctionAan(% for cost function B, indicating at impact the cost. Assume that the actual cost ot delaying

that this matching is more consistent with cost function BsiC a flight f by d minutes isc(f,d) + . The deterministic part

functions are ranked according to the median FSFS ratio ove?f the cost that can be computed from available datﬁﬁsd_)
all the matchings]éFSFs) with the 75t and 25 percentiles and the stochastic part that accounts for unobserved faistor

used as tiebreakers. e. Assume that for each assignment of a flight to a sids
identically and independently distributed (iid). In reéyalthis
assumption is unlikely because if a particular flight is ot
2) Improvement Frequency a way that the deterministic part of the cost function does no
A second metric of consistency is also based on a compariaccount for, it will have a positive additive cost noise fack
son with the FSFS cost and is referred to as the “improvemenossible slot assignment. Additionally, assume that nor-
frequency.” The more frequently that the airline costs ass| mally distributed with meap and variance . If € is assumed
than the FSFS costs, the more consistent airline actiongiire 0 be zero-mean, then the assumptions will be referred toeas t
that particular cost function. More precisely, the impnmemt ~ zero-mean iid normal additive noise assumptions.

4) Approximate Log-Likelihood
Even if airlines do minimize a separable delay cost when

frequency for cost functioh is The fourth metric proposed in this research is based on a
1 heuristic for approximating the variance of the zero-medn i
I(ck) = N Z L4 7(F,8, M cr)<J(F,8,MFSFS )}, (2) noise that maximizes the likelihood that an airline was gisin
(F,.8.M) given delay cost function. This heuristic is referred to s~

ear Program Cost Approximate Maximum Likelihood Estima-
tion” (LPCAMLE), and it is based on linear programming sen-
sitivity theory and maximum likelihood estimation [26]. &h
derivation of this heuristic is not included here. The nteisi
the approximate Iog—likelihood(UQ*) that an airline was us-
ing a given cost function with zero-mean normal delay cost
noise and an LPCAMLE-estimated normalized varianée.

where N is the number of flight-slot-matching triplets
(F,S,M)in (F,S, M) and1,, evaluates td if some con-
dition a is true and ta0 if a is false. The closef(cy) is to
1, the more consistent an airline’s actions are withand the
separable cost model assumption.

3) Minimum Ratio The zero-mean normalized variance estimate is

The consistency of the matchings selected by airlines can 1 J(F, S, M — M*, e, /&) 2
also be evaluated by comparing the airline costs to the nuimm o= — Z ( i — R/ ) , 4
costs. The “minimum ratio” for a set of flights and slots and N (F,5,M) 1M = M*|l2

a particular cost function is the ratio of the airline costhe
minimum cost. Giver', S, M, andcy, the minimum ratio is where here| - |2 is the entry-wise matri2-norm andcy, /¢,

o is the cost functiork normalized by the mean flight delay cost
airline cost

Roin = ———— > 3 for this cost function in the operational data. The appraten
minimum cost log-likelihood is then computed as
A_Io_vv Rpmin value |nd|ca_tes that the a|_rI|ne costis closertothe , J(F, S, M — M*, cx /)
minimum cost for a particular set of flights and slots and a par  ,(¢**) = Z log g2« - ,
ticular cost function. A value of is the lowest possible value (F.8,M) [M — M|

and it indicates that the matchirdg is a minimum cost perfect (5)



whereg,2(a) is a probability density function for a normal ran- that need to connect to other flights. The cost is computed as
dom variable with mean zero and varianceevaluated at. the minutes of delay times a multiplis( f) that is2 for flights
bound for high connection rate airports (also known as hubs)
Q.S for flights bound for medium connection rate airports, and
1 for all other flights. The classification of airports into siee
categories is specified in [24]. An airline-specific versimn
this cost function was also developed and is referred toas th
Airline Connection Delay (cost function 7). In this funatidhe
Validation efforts indicate that if a particular delay cost multiplier+/(f,as) is afunction of the airline: the high connec-
function is used to select matchings, then it achieves taage  tion rate and medium connection rate airports vary fronirer!
proximate log-likelihood values than other candidate fioms.  to airline.
The main case in which the approximate log-likelihood does

. . Previous research has attempted to calculate the monetary
not work is when a cost function produces the same total cost ) !
: . . . _..cost of delay in Europe [28]. This work has been adapted for
of a matching for many or all possible matchings. Validation

also suggests that the LPCAMLE estimates may not have stab][—he US market [29]. Cost function 8 is the Monetary Delay,

. . . . . and it is an implementation of the function in [29]. This cost
lized until after200 matching data points, so results for airlines function is also computed by multiplying the minutes of dela
with fewer thar200 matchings will not be presented. unction I bu y muttiplying nu

by a multipliern(ey, d) that is a sum of per-minute fuel, crew,
maintenance, passenger, and other costs.

The standard deviation estimate normalized by the mea
flight delay cost in the airline matchings*) will also be re-
ported. This quantity gives an idea of the relative magrtot
the deterministic and stochastic portions of the delay fuost-
tions.

D. Delay Cost Functions Cost function 9 is referred to as the Step Function because

A set of candidate cost functions are evaluated. The funcit generates costs that increase in discrete “steps” asuri
tions depend on publicly available (or at least approxirapbl delay thresholds are exceeded. The motivation for this fierm
characteristics of the flight and the minutes that the flight is that, for example, a delay of less théa minutes is assumed
delayedi. Characteristics of the flight include the airline op- ~ to provide sufficient time for passengers to make connestion
erating the flight ¢), the scheduled time of arrivat (), the but a delay greater thai) minutes does not. A function of this
number of passengers on the flight), and the aircraft type form has been used in airline decision-support tools [7, 20]

used for the flight4;). . The cost functions that will be evalu- The remaining eight cost functions include two or more of
ated are documented in Table I. these first nine cost functions. Many factors impact airtice

The US Department of Transportation considers a flight delions [25], and these functions involve more factors thanain
|ayed when it arrive$5 or more minutes after its scheduled ar- the first nine functions do on their own. Cost functions 10-15
rival time, and it reports “on-time performance” data thatym involve a product of two or more multipliers and delay. For
impact customer perception of airlines. Airlines attengpte- ~ €xample, the product of the Time-of-Day Delay multipli¢re t
duce the number of flights that are counted as delayed [5].7, 25Monetary Delay multiplier, and the delay is cost function 14

Therefore, the first cost function is equalitdf a flight will be ~ Which has been used in previous research [18,30]. Cost func-
counted as delayed aficbtherwise. tions 16 and 17 are convex combinations of two other costfunc

tions (which means that € [0, 1]). Thea; anday7 parame-

The second cost function is the minutes of delay multiplied,s < in these cost functions were tuned by hand: the bestrperf
by the number of passengers on the flight. This cost function,once was observed when they were both séﬁ to
has been used in an airline decision-support tool [19], &nd i

is related to the number of passengers that will miss a cennec

tion when a flight is delayed by some amount. Cost functionsg  pja
3 and 4 are the squared delay and squared passenger delay, re-
spectively. Functions of this form are proposed in [12];ythe
provide a simple means of capturing increasing marginaydel
costs due to missed connections.

The historical matchings used in this study are recorded in
34 days of Expected Departure Clearance Time (EDCT) log
files from June—August 2006. The files contain information
about airline actions during GDPs and AFPs throughout the
The Time-of-Day Delay (cost function 5) is the minutes of National Airspace System [31, 32]. “Simplified Substituatio
delay multiplied by a multiplier that is a function of the &th ~ messages in these files specify sets of flights, sets of slods,
uled time of arrival and the minutes of delay. This function the corresponding airline-selected matching.
is based on [22], in which an airline schedule was analyzed to
quantify how the magnitude and time of day of a delay impact
airline delay costs. It has also been used in airline detisio

These messages contain enough information to define the
minimum cost perfect matching problems that it is assumad th
support tools [27]. The form of the multiplig#(¢ ¢, d) can be the airline sol\;_ed o select tge _specified r_natct:r?ingbCH_l(_)vl\(ev?_lr
found in [22]. some assumptions were made in processing the T log file
data. For example, the scheduled time of arriyafor a flight

Cost function 6 is referred to as Connection Delay and it waswvas set equal to the EENTRY field in the EDCT log files, but
proposed in [23] and [24]. It attempts to capture the fadtdea =~ EENTRY is not actually the scheduled time of arrival but eath
laying flights bound for hub airports is especially costlgéese  an estimate of the earliest time the flight can arrive at tha.FC
these flights are likely to involve passengers, crews, ancdgsdt Furthermore, airlines may choose to keep the default FSFS as



TABLE |: DELAY COSTFUNCTIONS

Number | Name Function
1 On-time Performance ci(f,d) = 1g4>15)
2 Passenger Delay ca(f,d) = pyd
3 Squared Delay cs(f,d) =&
4 Squared Passenger Delay ca(f,d) = (pyd)?
5 Time-of-Day Delay cs(f,d) = B(ty, d)d
6 Connection Delay ce(f,d) =~(f)d
7 Airline Connection Delay cr(f,d) =~'(f,ay)d
8 Monetary Delay cs(f,d) = nley,d)d
9 Step Function co(f,d) = p(d)
10 Time-of-Day Connection Delay cio(f,d) = B(ty,d)y(f)d
11 Time-of-Day Passenger Delay ci(f,d) =Bty d)psd
12 Connection Passenger Delay cia(f,d) = v(f)psd
13 Time-of-Day Connection Passenger Delay cis(f,d) = B(ty, d)y(f)psd
14 Time-of-Day Monetary Delay cuu(f,d) = B(ty, d)n(es, d)d
15 Connection Monetary Delay cis(f,d) = v(f)nler, d)d
16 Connection and Monetary Combination Delay c16(f,d) = arees(f,d) + (1 — asg)es(f, d)
17 Airline Connection and Monetary Combination Delaye:7(f, d) = airer(f,d) + (1 — aar)es(f, d)

signment of flights to slots and if they do it is not recordethia
EDCT file. EDCT log files give an incomplete picture of how
each airline used slots, which will impact the analysis gnésd
here.

=
N

=
o

Other sources of data that were used in computing the cost
function values were Aircraft Situational Display to Inthys
(ASDI) files, OAG data about the number of seats on various
aircraft types [33], and an average load factor computed by
GRA [34].

At any time during an AFP, airlines can submit Simplified
Substitution messages to the FAA that specify sets of flights
and slots and a matching. Some airlines specify matchimrgs fr
guently while others do so relatively rarely. A histograntloé 0 500 1000 1500
number of matching messages for tigeairlines in the data set Number of Messages
is shown in Fig. 4. Larger numbers of matchings will lead to
more meaningful results. There were Simplified Substitutio rigyre 4: Histogram of the number of matching messages i agline in the
messages specifying matchings férairlines, butl1l of those  data set.
airlines submitted matching messages less tifi@riimes in the
34 days in the data set.

Number of Airlines
SN (@] [00]

N

Each Simplified Substitution message can specify as many
flights and slots as the airline would like to match. Some air-
lines match many flights and slots, but more frequently only a IV. RESULTS
few flights and slots are matched. Histograms of the number
of flights and slots in the matchings submitted by two aidine  The four metrics described in sub-section 111.C were com-
are presented in Fig. 5. Matchings with more flights and slotsputed with the data described in sub-section IIl.E. The cost
reveal more about airline preferences than matchings wéth j  functions that are most consistent with the airline actiartbe
a few flights and slots because airlines only have a few cBoicedata are presented here.
when there are only a few flights and slots. For both airlines,
the majority of matchings involve less thaa flights and slots.
However, airline E has some matchings with more thao
flights and slots. The largest matching for airline G corgain
less tharB0 flights and slots.

Validation efforts suggest that at lea&t0 matchings are
needed for one of the metrics. There are seven airlines with
more than200 matchings for which results will be presented.
The number of matchings and median number of flights and
slots in the matchings for each of these airlines are predent
Table 1.
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Figure 5: Histograms of the number of flights and slots forriegtchings of
two airlines. The bar furthest to the right counts all eistrgth more thar00

flights and slots.

TABLE II: AIRLINE MATCHING CHARACTERISTICS

Median Number of
Airline | Matchings | Flights and Slots
A 834 4
B 410 12.5
C 293 9
D 302 3
E 1368 4
F 618 3
G 473 2

A. FSFS Ratio

TABLE I1I: COSTFUNCTIONS WITHLOWESTMEDIAN FSFSRATIO

Airline | 1% | Rpgps ond Rgsrs 3rd Rpsrs
A 1 1.000 9 1.000 6 1.000
B 9 0.978 1 1.000 2 1.006
C 9 1.000 1 1.000 16 1.013
D 9 1.000 1 1.000 7 1.000
E 1 1.000 9 1.000 12 1.000
F 9 1.000 1* 1.000 | 6* 1.000
G 1* 1.000 2% 1.000 | 9* 1.000

For every airline, cost functions 1 (On-time Performance)
and 9 (Step Function) achieved or tied for the first- and sgcon
lowest Rpsps values (after ties were broken). These cost func-
tions are similar in that they both produce costs that irszéa
discrete steps as delays increase. Other cost functioharéha
among the top three most consistent cost functions withdhe a
tions of some airline according to the FSFS ratio are cost-fun
tions 2 (Passenger Delay), 6 (Connection Delay), 16 (Connec
tion and Monetary Combination Delay), and 12 (Connection
Passenger Delay).

B. Improvement Frequency

The cost functions with the largest improvement frequency
for each airline are shown in Table IV. Asterisks designat ¢
functions with the samé value. Among these cost functions
the improvement frequency ranges fromas8g to 0.522. These
values are low on a scale frointo 1, partially becausé does
not count the many instances in which the airline cost equals
the FSFS cost. Relatively low values fbrdo not necessarily
mean that the separable cost model assumption is invalely Th
could be the result of not using appropriate delay cost fanst
or the many cases where the airline cost equals the FSFS cost.

TABLE IV: COSTFUNCTIONS WITHLARGESTIMPROVEMENTFREQUENCY

Airline | 1% I ond I 3rd I
A 1 [0363] 9 |0.357 12 0.213
B 9 (0522 1 | 0.463 12 0.322
C 9 (0352 1 |0317 |8, 12* | 0.188
D 9 (0457 | 12 | 0.424 16 0.391
E 12 [ 0477 | 2 |0.438 9 0.392
F 9 0354 15 | 0.291 16 0.283
G 9 0241 | 1 |[0.197 8 0.152

As was the case when cost functions were evaluated with

The cost functions with the lowest median FSFS ratio Rrsrs, thel values indicate that cost functions 1 (On-time Per-
(Rrsrs) for each airline are shown in Table Ill. The column formance) and 9 (Step Function) are often most consisteht wi
labeled “1**” contains the number of the cost function from Ta- airline actions. Based oh values, cost function 12 (Connec-
ble I with the lowest median FSFS ratio, etc. Asterisks desig tion Passenger Delay) is among the top three most consistent
nate cost functions that are tied even after using the tiddsre cost functions for all but two of the airlines. Cost functon

ers. TheRpsrs values are often equal tobecause the airline-

2 (Passenger Delay), 8 (Monetary Delay), and 16 (Connection

selected matchings often achieve the same cost as the FSE®d Monetary Combination Delay) also place in the top three
matching, particularly when the matchings are small.

for at least one airline according fovalues.



C. Minimum Ratio bination Delay) are other similar cost functions that ackiene

The cost functions with the smalle,.;, values for each  Of the top three largest(c**) values for most of the airlines.
airline are shown in Table V. Again, ties are broken with the Other cost functions that achieve top-thieie=**) values for at
75th and 25t percentiles. Among these cost functions, it is least one airline are 1 (On-time Performance), 5 (Time-a§+D
common for theRy:n value to bel, indicating that airline-  Delay), 7 (Airline Connection Delay), 8 (Monetary Delayhda
selected matchings frequently achieve minimum costs. 2 (Passenger Delay).

V. FUTURE WORK
TABLE V: COSTFUNCTIONS WITHLOWESTMEDIAN MINIMUM RATIO . . . . .
This work could be immediately improved by using Aggre-

Airline | 1% | Ryin | 2® | Ryin | 3" | Rumin gate Demand List (ADL) files rather than EDCT log files. ADL
A 1 | 1.000 | 7 |1.028] 6 | 1.055 files more accurately capture what actions airlines toolngur
B 7 1108 | 6 | 1.105| 5 | 1.115 AFPs than EDCT log files [35]. Another immediate extension
C 6 | 1.095 | 5 | 1.104 | 16 | 1.110 would be to analyze GDP data as well as AFP data. With a
D 7 | 1000 | 9 | 1.000 | 1 | 1.000 small change to the minimum cost perfect matching problem,
E 6 | 1.000 | 9 | 1.000 | 1 | 1.000 cancellations and route-outs could also be studied witlcie
F 1 ]1.000| 6 | 1.000 | 7 | 1.000 metrics proposed here. Finally, more cost functions coeld b
G 2 11.000 17 [ 1.000 | 7 | 1.000 analyzed, particularly more combinations of existing ¢aat-

tions.

According to the minimum ratio, cost functions 6 (Connec- Some delay cost functions can achie\_/e similgr or identical
tion Delay) or 7 (Airline Connection Delay) are most corsigt ~ total delay costs for many possible matchings while othecfu
with the matchings of more than half of the airlines. At least tions will achieve similar or identical total delay costs few or
one of these two similar cost functions places in the topethre None of the possible matchings. This may bias the results pre
for every airline. Cost functions that are consistent witliree ~ Sented here and should be addressed more explicitly inefutur
actions according to both the minimum ratio and the previoué"’ork-
two metrics are cost functions 1 (On-time Performance)1€dS Even if this work were extended to consider cancellations
Function), 16 (Connection and Monetary Combination Delay) and route-outs, the assumption that airlines minimize arsep
and 2 (Passenger Delay). Like cost functions 6 and 7, cost fun ple cost leads to a simple model of their behavior in AFPs.évior
tions 5 (Time-of-Day Delay) and 17 (Airline Connection and non-separable cost functions should be evaluated witmairl
Monetary Combination Delay) are identified as consistett wi action data. The uncertain dynamics of AFPs also may play an
the actions of some airlines by the minimum ratio, but not byjmportant role in airline decisions, and this should be igtdd
the FSFS ratio of.

VI. CONCLUSIONS

D. Approximate Log-Likelihood Valid models of airline behavior are essential for meaning-
ful air traffic management research. In this paper, airlice a
tions in Airspace Flow Programs were used to evaluate severa
proposed flight delay cost functions used in separablenairli
cost models. Two classes of cost functions were most consis-
tent with airline actions. When the consistency of an a#’fn
matchings with a cost function is evaluated by comparing the

The corresponding estimates of the standard deviatioreof thcosts achieved by the airline matchings with the costs of the
additive cost noise normalized by the average cost permassig default first-scheduled-first-served matchings, costtions 1
ment are also in this table. Thesé& values do not indicate the (On-time Performance) and 9 (Step Function) are most consis
consistency of the airline matchings with a cost functiod an tent with the matchings of most airlines. These functiores pr
the separable cost model and zero-mean additive cost reise aduce costs that increase in discrete steps as delay thdesirel
sumptions. However, they do indicate the relative mageisud exceeded. Furthermore, when the consistency of an agline’
of the observed and unobserved aspects of flight delay costsnatchings with a cost function is evaluated by comparing the
Smallero* values indicate that the the airline matchings arecosts achieved the airline matchings to the minimum coet, ¢
best explained with additive cost noise values that ard¢ivelg functions 6, 7, 16, and 17, all of which are closely related to
small compared to the deterministic part of the cost fumstio Connection Delay, are most consistent with the matchings of
Most are betweef.1 and0.7, but validation work suggests that most airlines. These cost functions produce costs thatrare p
these are likely under-estimates. portional to the length of the delay but with proportionatibn-
&tants that are larger for flights bound to hub airports.

The cost functions with the larges{o2*) for each airline
are shown in Table VI. The approximate log-likelihood vaue
can be used to see the relative performance of the cost funscti
for each airline but cannot be compared across airlinesuseca
each airline has a different number of matchings in the data.

As was suggested by the minimum ratio, the closely-relate
cost functions 6 (Connection Delay) and 7 (Airline Connati Finally, the linear programming cost approximate maxi-
Delay) are most consistent with the matchings of most of themum likelihood method estimates the standard deviation of a
airlines. Cost functions 16 (Connection and Monetary Cembi noise term that was added to cost functions to account fds-uno
nation Delay) and 17 (Airline Connection and Monetary Com- served aspects of airline costs. The standard deviatiaresal



TABLE VI: COSTFUNCTIONS WITHLARGESTAPPROXIMATEL OG-LIKELIHOOD

Airline | 1%t | L(o%) * | ond

L(02*)

* 3rd *

o o L(c*) | o
A 7 —1159 | 0487 | 6 —1252 | 0.539 | 1 —1318 | 1.216
B 7 | =773.5 | 0.454 b) —858.3 | 0.509 | 17 | —873.8 | 0.525
C 6 | —591.3 | 0.587 | 16 | —603.6 | 0.615 | 7 | —612.7 | 0.623
D 7 12.97 | 0.037 | 17 | —150.4 | 0.133 | 16 | —281.6 | 0.246
E 6 —-1627 | 0.369 | 16 | —1715 | 0.336 | 17 | —1785 | 0.351
F 16 | 86.98 | 0.064 | 17 | —9.009 | 0.083 | 6 | —48.54 | 0.050
G 2 | —0.366 | 0.051 | 17 | —239.5 | 0.164 | 8 —268.6 | 0.185

expressed as a fraction of the average assignment costefor th
historical matchings, ranged frof1 to 0.7 for cost functions
with relatively large approximate log-likelihoods.
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