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Abstract— Air traffic management research and simulation use de-
lay cost functions that attempt to quantify the cost of delayto air-
lines. Seventeen delay cost functions from previous research are
evaluated with airline actions in Airspace Flow Programs. Airline
actions from 34 days in the summer of 2006 were used to compute
four metrics designed to quantify the consistency of the airline ac-
tions with each of the cost functions. Two of these metrics compare
the cost of airline actions to the cost of the default first-scheduled-
first-served actions. The other two metrics compare the costof
the airline actions to the minimum costs. Two classes of delay cost
functions were most consistent with airline actions. One class con-
sists of delay cost functions in which costs increase in discrete steps
as delay increases. In the other class, costs are proportional to the
length of delay but with larger proportionality constants for flights
bound for hub airports.

Keywords— Delay; Metrics; Airline Behavior Modeling; Collabora-
tive Decision Making; Air Traffic Flow Management Slots; Airspace
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NOMENCLATURE

(F ,S,M) Set of corresponding sets of flights, sets of slots,
and matchings

α Weighting parameter
β(tf , d) Time-of-Day Delay multiplier
δ Length of slot time window in minutes
η(ef , d) Monetary Delay multiplier
γ(f) Connection Delay multiplier
γ′(f, af ) Airline Connection Delay multiplier
L̂(σ2) Approximate log-likelihood when the variance

is σ2 and the mean is assumed0
ρ(d) Step delay cost
σ2⋆ Estimate of the additive cost noise variance
R̃FSFS Median of FSFS ratios
R̃min Median of minimum ratios
ε Additive cost noise
af Airline operating flightf
c(f, d) Delay cost function for flightf andd minutes

of delay
d Delay in minutes
d(f, s) Delay in minutes resulting from assigning flight

f to slots

ef Aircraft type used for flightf
F Set of flights
f A flight
I Improvement frequency
J(F, S, M, c) The cost of matching the set of flightsF to the

set of slotsS as specified by matchingM when
using cost functionc

J⋆(F, S, c) Minimum cost for a perfect matching of the
flights F to the slotsS when the cost function
is c

M A matching of flights to slots
n Number of flights and slots
pf Number of passengers on flightf
RFSFS The FSFS ratio
Rmin The minimum ratio
S Set of slots
s A slot
tf Scheduled time of arrival for flightf
ts Slot time

I. I NTRODUCTION

The cost of delaying a flight differs from flight to flight.
This cost can be most accurately estimated by the airlines, but
unfortunately airlines are reluctant to reveal their costsbecause
doing so could be advantageous to their competitors. Havingan
accurate understanding of airline costs is important in airtraffic
management research. Airline cost functions impact the design
of air traffic management concepts, help determine the valueof
new concepts, and can form the basis of airline behavior mod-
els used in simulations. Without the benefit of knowing actual
airline delay costs, researchers must infer these costs.

Only one effort has been made to tune and validate delay
cost functions with records of airline actions. In her disserta-
tion [1], Xiong used airline flight cancellation and slot usage
data from Ground Delay Programs to tune parameters in dis-
crete choice models of airline behavior. Discrete choice models
assign a probability to every possible choice an airline hasbased
on the cost of each choice. Xiong’s research revealed many
characteristics of airline delay costs, but there are some limita-
tions of her work. Discrete choice models cannot easily handle



cases with many discrete choices, preventing the use of someof
the available data. More importantly, Xiong did not study any
“separable” delay cost models. Separable delay cost modelsuse
a flight delay cost function to compute the cost of delaying each
flight and assume that the total airline cost is the sum of the in-
dividual flight delay costs. While there are exceptions [2–8],
most research uses a separable delay cost model [9–18]. Some
airline decision support tools are also based on separable de-
lay cost models [19–21]. Furthermore, Xiong’s use of Ground
Delay Program data limited her ability to investigate the dif-
ference in the cost of delay for hub-bound flights and other
flights. Finally, while Xiong studied linear models with data-
intensive variables related to airline revenues, her work did not
consider some simple variables from previous research and air-
line decision-support tools, such as those in [20,22–24].

The goal of this research is to determine the degree to which
delay cost functions proposed for separable delay cost mod-
els are consistent with how airlines assign flights to slots in
Airspace Flow Programs. None of these delay cost functions
have been validated with airline actions. The inability of dis-
crete choice models to handle cases with many choices would
prevent the use of more than half of the available data for
some airlines, so a new approach for validating cost functions
is needed. Four new metrics are proposed for evaluating the ex-
tent to which cost functions are consistent with airline actions in
Airspace Flow Programs. Two of the four metrics compare the
costs incurred by airlines to the costs of default actions, while
the other two compare to the minimum costs. One metric adds
a noise term to delay cost functions to account for unobserved
aspects of airline costs and then estimates the parameters of the
noise with airline action data.

The remainder of this paper is structured as follows. Sec-
tion II contains background information about Airspace Flow
Programs. The model, metrics, and data used to evaluate cost
functions are presented in Section III. Results are discussed in
Section IV. The paper finishes with proposals for future work
in Section V and conclusions in Section VI.

II. BACKGROUND

Airspace Flow Programs (AFPs) are a mechanism used by
the Federal Aviation Administration (FAA) in the United States
to assign departure delays to aircraft when demand for a re-
gion of airspace known as a “Flow Constrained Area” (FCA)
exceeds capacity. This mechanism is based on the concept of
slots. A slot is the right to fly into the FCA in a specified period
of time. The FAA enforces slot ownership rights by assigning
departure times to flights bound for an FCA so that each flight
arrives at the FCA approximately at the time of the slot to which
it is assigned. During AFPs, slots are allocated to airlineswith
an algorithm referred to as “ration by schedule” (RBS) that is
based on a first-scheduled-first-served (FSFS) principle. By de-
fault, each airline’s flights are assigned to their allocated slots in
a FSFS manner, but they can adjust this assignment as they see
fit. Large airlines alter the assignment of their flights to their
slots in AFPs thousands of times each year.

III. M ETHOD

A. Airline Behavior Model
Airlines have tools and procedures that allow them to make

acceptable decisions during an AFP, but the problem they face
during an AFP is complicated and difficult for researchers to
model [25]. There are many possible ways for an airline to as-
sign their flights to their slots. A flight can be canceled or routed
out of the relevant FCA. The assignment of flights to slots is not
just a one-time decision but can be changed repeatedly during
the AFP. Uncertain factors impact the airline, such as if and
how the FAA will alter the AFP parameters and when the AFP
will end. Cancelations by other airlines can impact an airline’s
allocation of slots. Furthermore, the impact of delaying each
flight is difficult to compute because passenger, luggage, crew,
and aircraft connections mean that delaying one flight may im-
pact several other flights. Mechanical or crew “time-out” is-
sues can arise and further complicate matters. It is not obvious
to researchers how airlines consider all of these factors when
making decisions.

To make this problem tractable, a separable delay cost
model will be assumed. More specifically, it is assumed that air-
lines attempt to minimize the sum of the delay costs associated
with assigning each flight to each slot. This model assumes that
airlines ignore the dynamic nature of the AFP, uncertainties, the
possibility of canceling flights or routing them out of the FCA,
and the behavior of other airlines, except when the flight delay
cost function attempts to include such issues. More sophisti-
cated models and solution methods have been developed that
consider the possibility of canceling flights, non-separable cost
functions, and other issues [3–7, 19]. These techniques may
be more accurate, but the separable delay cost model allows for
computationally simple evaluations of delay cost functions with
AFP data.

If airlines minimize a separable delay cost, then the problem
faced by airlines when assigning flights to slots is well-known
and referred to as the “minimum cost perfect matching” or “as-
signment” problem. Given a set of flights and slots, a “match-
ing” is a set of connections between flights and slots such that
flights are matched to only one slot and vice versa. A “perfect
matching” is any matching in which no flight or slot is left un-
matched. Several algorithms can solve this problem efficiently,
even for cases where there are hundreds or thousands of flights
and slots. This is not necessarily the case for the more sophisti-
cated problem models.

B. Notation
Before defining the four metrics used to evaluate the de-

gree to which a delay cost function is consistent with historical
assignments of flights to slots in AFPs, some notation will be
introduced. LetF be the set of flights belonging to an airline
in a matching, and letS be the airline’s slots in the matching.
The number of flights and slots isn. Associated with each flight
f ∈ F is a scheduled time of arrival at the constrained resource
tf and associated with each slots ∈ S is a timets and a time
window [ts, ts + δ] for someδ ≥ 0. A flight f can only be



assigned to a slots if tf ≤ ts + δ. The cost of assigning a flight
f to a slots is given by the cost function under consideration,
which is a function off and the delay associated with assigning
f to s. There are historical assignments of flights to slots where
tf > ts, so delay is computed asd(f, s) = max{0, ts − tf}.
This information makes up the data for the minimum cost per-
fect matching problem assumed to be solved by the airline.

The set of historical matchings of flights and slots by an
airline is denoted by(F ,S,M). An element(F, S, M) ∈
(F ,S,M) contains the set of flightsF and set of slotsS asso-
ciated with a matchingM selected by an airline. The matching
M is a perfect matching that assigns eachf ∈ F to exactly
ones ∈ S. It is a square binary matrix with an entry for each
possible assignment of a flight to a slot. ElementMij is 1 if fi

is assigned to slotsj and is0 otherwise. For a cost functionck,
the cost of a matching is

J(F, S, M, ck) =
∑

fi∈F,sj∈S

ck(fi, d(fi, sj))Mij .

If a non-separable cost model were used, this equation could
not be expressed as a sum of individual flight delay costs.

C. Metrics
The general approach underlying the metrics proposed here

involves computing and comparing the airline cost, FSFS cost,
and minimum cost corresponding to each airline matching. The
computation of these total cost values for a particular flight-
slot-matching triplet(F, S, M) is depicted in Fig. 1. Given this
data and a particularck, the “airline cost”J(F, S, M, ck) can be
computed. This cost incurred by the airline is compared to two
other total costs values. The first of these is the “FSFS cost”
produced by a FSFS matchingMFSFS: J(F, S, MFSFS, ck).
The second of these is the “minimum cost” produced by any
optimal matchingM⋆ with cost functionck: J⋆(F, S, ck).
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Optimal

ck

ck

ck

ck

M

MFSFS

M

F,S

J(F,S,M,c )k

Airline cost

J(F,S,M   ,c )k
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J (F,S,c )k
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Figure 1: Calculation of cost values for a set of flights and slots.

Some example matchings are shown in Fig. 2. Fig. (a) is the
default FSFS matching (MFSFS), Fig. (b) is the airline-selected
matching (M ), Fig. (c) is a minimum cost perfect matching for
some cost function A, and Fig. (d) is a minimum cost perfect
matching for some cost function B. Fig. 3 shows example cost
values incurred by these matchings.

(a) FSFS matching (MFSFS) (b) Airline matching (M )

(c) Minimum cost matching for cost
function A

(d) Minimum cost matching for cost
function B

Figure 2: Example matchings of a set of flights to a set of slots.
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Figure 3: Example cost values.

One way to infer whether an airline was using a particular
cost function is to see if the airline cost is lower than the default
FSFS cost. In the example, the airline cost is slightly lower
than the FSFS cost for function A, but more significantly lower
for function B. Two metrics are based on comparing these two
cost values. A second approach is to compare the airline costto
the minimum cost for each cost function. In the example, the
airline cost equals the minimum cost for cost function B but not
for function A. The last two metrics are based on comparisons
of the airline cost with the minimum cost for each cost function.



1) First-Scheduled-First-Served Ratio
The consistency of the matchings selected by airlines with

a given cost function can be evaluated by comparing the airline
cost to the corresponding FSFS cost for each set of flights and
slots. The “first-scheduled-first-served ratio” metric fora set of
flights and slots is the airline cost divided by the FSFS cost for
a given cost function:

RFSFS =
airline cost
FSFS cost

. (1)

If the FSFS ratio is less than1, then the airline cost is lower than
the FSFS cost. FSFS ratio values larger than1 mean that the air-
line could have incurred a lower cost withMFSFS, the default
matching. This would not happen if the airline was usingck

and solving a minimum cost perfect matching problem. There-
fore, the distribution of FSFS ratio values in the data can also be
used to study consistency. The smaller the FSFS ratios are for a
particular cost function, the more consistent the airline match-
ings are with the separable cost model assumption and that cost
function. In the example, the FSFS ratio for the airline match-
ing is 4

5 for cost function A and13 for cost function B, indicating
that this matching is more consistent with cost function B. Cost
functions are ranked according to the median FSFS ratio over
all the matchings (̃RFSFS), with the75th and25th percentiles
used as tiebreakers.

2) Improvement Frequency
A second metric of consistency is also based on a compari-

son with the FSFS cost and is referred to as the “improvement
frequency.” The more frequently that the airline costs are less
than the FSFS costs, the more consistent airline actions arewith
that particular cost function. More precisely, the improvement
frequency for cost functionk is

I(ck) =
1

N

∑

(F ,S,M)

1{J(F,S,M,ck)<J(F,S,MFSFS,ck)}, (2)

where N is the number of flight-slot-matching triplets
(F, S, M) in (F ,S,M) and1{a} evaluates to1 if some con-
dition a is true and to0 if a is false. The closerI(ck) is to
1, the more consistent an airline’s actions are withck and the
separable cost model assumption.

3) Minimum Ratio
The consistency of the matchings selected by airlines can

also be evaluated by comparing the airline costs to the minimum
costs. The “minimum ratio” for a set of flights and slots and
a particular cost function is the ratio of the airline cost tothe
minimum cost. GivenF , S, M , andck, the minimum ratio is

Rmin =
airline cost

minimum cost
. (3)

A low Rmin value indicates that the airline cost is closer to the
minimum cost for a particular set of flights and slots and a par-
ticular cost function. A value of1 is the lowest possible value
and it indicates that the matchingM is a minimum cost perfect

matching. In the example, the minimum ratio forM with cost
function A is4, but the minimum ratio with cost functionB is1,
again indicating a greater consistency ofM with cost function
B. The overall consistency will be evaluated by studying the
distribution the minimum ratio values in the data for each air-
line and for each delay cost function. The more frequently the
values are close to1 for a particular cost function, the more con-
sistent the airline matchings are with the separable cost model
assumption and that cost function. Again, the median of the
minimum ratio values for all the matchings (R̃min) will be used
to rank cost functions, with the75th and25th percentiles used
as tiebreakers.

4) Approximate Log-Likelihood
Even if airlines do minimize a separable delay cost when

matching flights and slots, it is unlikely that their delay cost
function can be computed exactly from publicly available
data [25]. One way to handle this issue is to add a noise term
to the delay cost function to account for unobserved factors
that impact the cost. Assume that the actual cost of delaying
a flight f by d minutes isc(f, d) + ε. The deterministic part
of the cost that can be computed from available data isc(f, d)
and the stochastic part that accounts for unobserved factors is
ε. Assume that for each assignment of a flight to a slot,ε is
identically and independently distributed (iid). In reality this
assumption is unlikely because if a particular flight is costly in
a way that the deterministic part of the cost function does not
account for, it will have a positive additive cost noise for each
possible slot assignment. Additionally, assume thatε is nor-
mally distributed with meanµ and varianceσ2. If ε is assumed
to be zero-mean, then the assumptions will be referred to as the
zero-mean iid normal additive noise assumptions.

The fourth metric proposed in this research is based on a
heuristic for approximating the variance of the zero-mean iid
noise that maximizes the likelihood that an airline was using a
given delay cost function. This heuristic is referred to as “Lin-
ear Program Cost Approximate Maximum Likelihood Estima-
tion” (LPCAMLE), and it is based on linear programming sen-
sitivity theory and maximum likelihood estimation [26]. The
derivation of this heuristic is not included here. The metric is
the approximate log-likelihood̂L(σ2⋆) that an airline was us-
ing a given cost function with zero-mean normal delay cost
noise and an LPCAMLE-estimated normalized varianceσ2⋆.
The zero-mean normalized variance estimate is

σ2⋆ =
1

N

∑

(F ,S,M)

(

J(F, S, M − M⋆, ck/c̄k)

‖M − M⋆‖2

)2

, (4)

where here‖ · ‖2 is the entry-wise matrix2-norm andck/c̄k

is the cost functionk normalized by the mean flight delay cost
for this cost function in the operational data. The approximate
log-likelihood is then computed as

L̂(σ2⋆) =
∑

(F ,S,M)

log gσ2⋆

(

J(F, S, M − M⋆, ck/c̄k)

‖M − M⋆‖2

)

,

(5)



wheregσ2(a) is a probability density function for a normal ran-
dom variable with mean zero and varianceσ2 evaluated ata.

The standard deviation estimate normalized by the mean
flight delay cost in the airline matchings (σ⋆) will also be re-
ported. This quantity gives an idea of the relative magnitude of
the deterministic and stochastic portions of the delay costfunc-
tions.

Validation efforts indicate that if a particular delay cost
function is used to select matchings, then it achieves larger ap-
proximate log-likelihood values than other candidate functions.
The main case in which the approximate log-likelihood does
not work is when a cost function produces the same total cost
of a matching for many or all possible matchings. Validation
also suggests that the LPCAMLE estimates may not have stabi-
lized until after200 matching data points, so results for airlines
with fewer than200 matchings will not be presented.

D. Delay Cost Functions
A set of candidate cost functions are evaluated. The func-

tions depend on publicly available (or at least approximable)
characteristics of the flightf and the minutes that the flight is
delayedd. Characteristics of the flightf include the airline op-
erating the flight (af ), the scheduled time of arrival (tf ), the
number of passengers on the flight (pf ), and the aircraft type
used for the flight (ef ). The cost functions that will be evalu-
ated are documented in Table I.

The US Department of Transportation considers a flight de-
layed when it arrives15 or more minutes after its scheduled ar-
rival time, and it reports “on-time performance” data that may
impact customer perception of airlines. Airlines attempt to re-
duce the number of flights that are counted as delayed [5,7,25].
Therefore, the first cost function is equal to1 if a flight will be
counted as delayed and0 otherwise.

The second cost function is the minutes of delay multiplied
by the number of passengers on the flight. This cost function
has been used in an airline decision-support tool [19], and it
is related to the number of passengers that will miss a connec-
tion when a flight is delayed by some amount. Cost functions
3 and 4 are the squared delay and squared passenger delay, re-
spectively. Functions of this form are proposed in [12]; they
provide a simple means of capturing increasing marginal delay
costs due to missed connections.

The Time-of-Day Delay (cost function 5) is the minutes of
delay multiplied by a multiplier that is a function of the sched-
uled time of arrival and the minutes of delay. This function
is based on [22], in which an airline schedule was analyzed to
quantify how the magnitude and time of day of a delay impact
airline delay costs. It has also been used in airline decision-
support tools [27]. The form of the multiplierβ(tf , d) can be
found in [22].

Cost function 6 is referred to as Connection Delay and it was
proposed in [23] and [24]. It attempts to capture the fact that de-
laying flights bound for hub airports is especially costly because
these flights are likely to involve passengers, crews, and aircraft

that need to connect to other flights. The cost is computed as
the minutes of delay times a multiplierγ(f) that is2 for flights
bound for high connection rate airports (also known as hubs),
1.5 for flights bound for medium connection rate airports, and
1 for all other flights. The classification of airports into these
categories is specified in [24]. An airline-specific versionof
this cost function was also developed and is referred to as the
Airline Connection Delay (cost function 7). In this function, the
multiplierγ′(f, af ) is a function of the airline: the high connec-
tion rate and medium connection rate airports vary from airline
to airline.

Previous research has attempted to calculate the monetary
cost of delay in Europe [28]. This work has been adapted for
the US market [29]. Cost function 8 is the Monetary Delay,
and it is an implementation of the function in [29]. This cost
function is also computed by multiplying the minutes of delay
by a multiplierη(ef , d) that is a sum of per-minute fuel, crew,
maintenance, passenger, and other costs.

Cost function 9 is referred to as the Step Function because
it generates costs that increase in discrete “steps” as various
delay thresholds are exceeded. The motivation for this formis
that, for example, a delay of less than60 minutes is assumed
to provide sufficient time for passengers to make connections
but a delay greater than60 minutes does not. A function of this
form has been used in airline decision-support tools [7,20].

The remaining eight cost functions include two or more of
these first nine cost functions. Many factors impact airlineac-
tions [25], and these functions involve more factors than any of
the first nine functions do on their own. Cost functions 10–15
involve a product of two or more multipliers and delay. For
example, the product of the Time-of-Day Delay multiplier, the
Monetary Delay multiplier, and the delay is cost function 14,
which has been used in previous research [18, 30]. Cost func-
tions 16 and 17 are convex combinations of two other cost func-
tions (which means thatα ∈ [0, 1]). Theα16 andα17 parame-
ters in these cost functions were tuned by hand; the best perfor-
mance was observed when they were both set to13

14 .

E. Data
The historical matchings used in this study are recorded in

34 days of Expected Departure Clearance Time (EDCT) log
files from June–August 2006. The files contain information
about airline actions during GDPs and AFPs throughout the
National Airspace System [31, 32]. “Simplified Substitution”
messages in these files specify sets of flights, sets of slots,and
the corresponding airline-selected matching.

These messages contain enough information to define the
minimum cost perfect matching problems that it is assumed that
the airline solved to select the specified matching. However,
some assumptions were made in processing the EDCT log file
data. For example, the scheduled time of arrivaltf for a flight
was set equal to the EENTRY field in the EDCT log files, but
EENTRY is not actually the scheduled time of arrival but rather
an estimate of the earliest time the flight can arrive at the FCA.
Furthermore, airlines may choose to keep the default FSFS as-



TABLE I: DELAY COST FUNCTIONS

Number Name Function
1 On-time Performance c1(f, d) = 1{d>15}

2 Passenger Delay c2(f, d) = pfd
3 Squared Delay c3(f, d) = d2

4 Squared Passenger Delay c4(f, d) = (pfd)2

5 Time-of-Day Delay c5(f, d) = β(tf , d)d
6 Connection Delay c6(f, d) = γ(f)d
7 Airline Connection Delay c7(f, d) = γ′(f, af )d
8 Monetary Delay c8(f, d) = η(ef , d)d
9 Step Function c9(f, d) = ρ(d)
10 Time-of-Day Connection Delay c10(f, d) = β(tf , d)γ(f)d
11 Time-of-Day Passenger Delay c11(f, d) = β(tf , d)pfd
12 Connection Passenger Delay c12(f, d) = γ(f)pfd
13 Time-of-Day Connection Passenger Delay c13(f, d) = β(tf , d)γ(f)pfd
14 Time-of-Day Monetary Delay c14(f, d) = β(tf , d)η(ef , d)d
15 Connection Monetary Delay c15(f, d) = γ(f)η(ef , d)d
16 Connection and Monetary Combination Delay c16(f, d) = α16c6(f, d) + (1 − α16)c8(f, d)
17 Airline Connection and Monetary Combination Delayc17(f, d) = α17c7(f, d) + (1 − α17)c8(f, d)

signment of flights to slots and if they do it is not recorded inthe
EDCT file. EDCT log files give an incomplete picture of how
each airline used slots, which will impact the analysis presented
here.

Other sources of data that were used in computing the cost
function values were Aircraft Situational Display to Industry
(ASDI) files, OAG data about the number of seats on various
aircraft types [33], and an average load factor computed by
GRA [34].

At any time during an AFP, airlines can submit Simplified
Substitution messages to the FAA that specify sets of flights
and slots and a matching. Some airlines specify matchings fre-
quently while others do so relatively rarely. A histogram ofthe
number of matching messages for the18 airlines in the data set
is shown in Fig. 4. Larger numbers of matchings will lead to
more meaningful results. There were Simplified Substitution
messages specifying matchings for18 airlines, but11 of those
airlines submitted matching messages less than100 times in the
34 days in the data set.

Each Simplified Substitution message can specify as many
flights and slots as the airline would like to match. Some air-
lines match many flights and slots, but more frequently only a
few flights and slots are matched. Histograms of the number
of flights and slots in the matchings submitted by two airlines
are presented in Fig. 5. Matchings with more flights and slots
reveal more about airline preferences than matchings with just
a few flights and slots because airlines only have a few choices
when there are only a few flights and slots. For both airlines,
the majority of matchings involve less than10 flights and slots.
However, airline E has some matchings with more than100
flights and slots. The largest matching for airline G contains
less than30 flights and slots.
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Figure 4: Histogram of the number of matching messages for each airline in the
data set.

IV. RESULTS

The four metrics described in sub-section III.C were com-
puted with the data described in sub-section III.E. The cost
functions that are most consistent with the airline actionsin the
data are presented here.

Validation efforts suggest that at least200 matchings are
needed for one of the metrics. There are seven airlines with
more than200 matchings for which results will be presented.
The number of matchings and median number of flights and
slots in the matchings for each of these airlines are presented in
Table II.
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Figure 5: Histograms of the number of flights and slots for thematchings of
two airlines. The bar furthest to the right counts all entries with more than100
flights and slots.

TABLE II: A IRLINE MATCHING CHARACTERISTICS

Median Number of
Airline Matchings Flights and Slots

A 834 4
B 410 12.5
C 293 9
D 302 3
E 1368 4
F 618 3
G 473 2

A. FSFS Ratio
The cost functions with the lowest median FSFS ratio

(R̃FSFS) for each airline are shown in Table III. The column
labeled “1st” contains the number of the cost function from Ta-
ble I with the lowest median FSFS ratio, etc. Asterisks desig-
nate cost functions that are tied even after using the tiebreak-
ers. TheR̃FSFS values are often equal to1 because the airline-
selected matchings often achieve the same cost as the FSFS
matching, particularly when the matchings are small.

TABLE III: C OST FUNCTIONS WITH LOWESTMEDIAN FSFSRATIO

Airline 1st1st1st R̃FSFSR̃FSFSR̃FSFS 2nd2nd2nd R̃FSFSR̃FSFSR̃FSFS 3rd3rd3rd R̃FSFSR̃FSFSR̃FSFS

A 1 1.000 9 1.000 6 1.000
B 9 0.978 1 1.000 2 1.006
C 9 1.000 1 1.000 16 1.013
D 9 1.000 1 1.000 7 1.000
E 1 1.000 9 1.000 12 1.000
F 9 1.000 1∗ 1.000 6∗ 1.000
G 1∗ 1.000 2∗ 1.000 9∗ 1.000

For every airline, cost functions 1 (On-time Performance)
and 9 (Step Function) achieved or tied for the first- and second-
lowestR̃FSFS values (after ties were broken). These cost func-
tions are similar in that they both produce costs that increase in
discrete steps as delays increase. Other cost functions that are
among the top three most consistent cost functions with the ac-
tions of some airline according to the FSFS ratio are cost func-
tions 2 (Passenger Delay), 6 (Connection Delay), 16 (Connec-
tion and Monetary Combination Delay), and 12 (Connection
Passenger Delay).

B. Improvement Frequency

The cost functions with the largest improvement frequency
for each airline are shown in Table IV. Asterisks designate cost
functions with the sameI value. Among these cost functions
the improvement frequency ranges from0.188 to 0.522. These
values are low on a scale from0 to 1, partially becauseI does
not count the many instances in which the airline cost equals
the FSFS cost. Relatively low values forI do not necessarily
mean that the separable cost model assumption is invalid. They
could be the result of not using appropriate delay cost functions
or the many cases where the airline cost equals the FSFS cost.

TABLE IV: COST FUNCTIONS WITH LARGESTIMPROVEMENTFREQUENCY

Airline 1st1st1st III 2nd2nd2nd III 3rd3rd3rd III
A 1 0.363 9 0.357 12 0.213
B 9 0.522 1 0.463 12 0.322
C 9 0.352 1 0.317 8∗, 12∗ 0.188
D 9 0.457 12 0.424 16 0.391
E 12 0.477 2 0.438 9 0.392
F 9 0.354 15 0.291 16 0.283
G 9 0.241 1 0.197 8 0.152

As was the case when cost functions were evaluated with
R̃FSFS, theI values indicate that cost functions 1 (On-time Per-
formance) and 9 (Step Function) are often most consistent with
airline actions. Based onI values, cost function 12 (Connec-
tion Passenger Delay) is among the top three most consistent
cost functions for all but two of the airlines. Cost functions
2 (Passenger Delay), 8 (Monetary Delay), and 16 (Connection
and Monetary Combination Delay) also place in the top three
for at least one airline according toI values.



C. Minimum Ratio

The cost functions with the smallest̃Rmin values for each
airline are shown in Table V. Again, ties are broken with the
75th and25th percentiles. Among these cost functions, it is
common for theR̃min value to be1, indicating that airline-
selected matchings frequently achieve minimum costs.

TABLE V: COST FUNCTIONS WITH LOWESTMEDIAN M INIMUM RATIO

Airline 1st1st1st R̃minR̃minR̃min 2nd2nd2nd R̃minR̃minR̃min 3rd3rd3rd R̃minR̃minR̃min

A 1 1.000 7 1.028 6 1.055
B 7 1.085 6 1.105 5 1.115
C 6 1.095 5 1.104 16 1.110
D 7 1.000 9 1.000 1 1.000
E 6 1.000 9 1.000 1 1.000
F 1 1.000 6 1.000 7 1.000
G 2 1.000 17 1.000 7 1.000

According to the minimum ratio, cost functions 6 (Connec-
tion Delay) or 7 (Airline Connection Delay) are most consistent
with the matchings of more than half of the airlines. At least
one of these two similar cost functions places in the top three
for every airline. Cost functions that are consistent with airline
actions according to both the minimum ratio and the previous
two metrics are cost functions 1 (On-time Performance), 9 (Step
Function), 16 (Connection and Monetary Combination Delay),
and 2 (Passenger Delay). Like cost functions 6 and 7, cost func-
tions 5 (Time-of-Day Delay) and 17 (Airline Connection and
Monetary Combination Delay) are identified as consistent with
the actions of some airlines by the minimum ratio, but not by
the FSFS ratio orI.

D. Approximate Log-Likelihood

The cost functions with the largestL̂(σ2⋆) for each airline
are shown in Table VI. The approximate log-likelihood values
can be used to see the relative performance of the cost functions
for each airline but cannot be compared across airlines because
each airline has a different number of matchings in the data.

The corresponding estimates of the standard deviation of the
additive cost noise normalized by the average cost per assign-
ment are also in this table. Theseσ⋆ values do not indicate the
consistency of the airline matchings with a cost function and
the separable cost model and zero-mean additive cost noise as-
sumptions. However, they do indicate the relative magnitudes
of the observed and unobserved aspects of flight delay costs.
Smallerσ⋆ values indicate that the the airline matchings are
best explained with additive cost noise values that are relatively
small compared to the deterministic part of the cost functions.
Most are between0.1 and0.7, but validation work suggests that
these are likely under-estimates.

As was suggested by the minimum ratio, the closely-related
cost functions 6 (Connection Delay) and 7 (Airline Connection
Delay) are most consistent with the matchings of most of the
airlines. Cost functions 16 (Connection and Monetary Combi-
nation Delay) and 17 (Airline Connection and Monetary Com-

bination Delay) are other similar cost functions that achieve one
of the top three largest̂L(σ2⋆) values for most of the airlines.
Other cost functions that achieve top-threeL̂(σ2⋆) values for at
least one airline are 1 (On-time Performance), 5 (Time-of-Day
Delay), 7 (Airline Connection Delay), 8 (Monetary Delay), and
2 (Passenger Delay).

V. FUTURE WORK

This work could be immediately improved by using Aggre-
gate Demand List (ADL) files rather than EDCT log files. ADL
files more accurately capture what actions airlines took during
AFPs than EDCT log files [35]. Another immediate extension
would be to analyze GDP data as well as AFP data. With a
small change to the minimum cost perfect matching problem,
cancellations and route-outs could also be studied with thefour
metrics proposed here. Finally, more cost functions could be
analyzed, particularly more combinations of existing costfunc-
tions.

Some delay cost functions can achieve similar or identical
total delay costs for many possible matchings while other func-
tions will achieve similar or identical total delay costs for few or
none of the possible matchings. This may bias the results pre-
sented here and should be addressed more explicitly in future
work.

Even if this work were extended to consider cancellations
and route-outs, the assumption that airlines minimize a separa-
ble cost leads to a simple model of their behavior in AFPs. More
non-separable cost functions should be evaluated with airline
action data. The uncertain dynamics of AFPs also may play an
important role in airline decisions, and this should be studied.

VI. CONCLUSIONS

Valid models of airline behavior are essential for meaning-
ful air traffic management research. In this paper, airline ac-
tions in Airspace Flow Programs were used to evaluate several
proposed flight delay cost functions used in separable airline
cost models. Two classes of cost functions were most consis-
tent with airline actions. When the consistency of an airline’s
matchings with a cost function is evaluated by comparing the
costs achieved by the airline matchings with the costs of the
default first-scheduled-first-served matchings, cost functions 1
(On-time Performance) and 9 (Step Function) are most consis-
tent with the matchings of most airlines. These functions pro-
duce costs that increase in discrete steps as delay thresholds are
exceeded. Furthermore, when the consistency of an airline’s
matchings with a cost function is evaluated by comparing the
costs achieved the airline matchings to the minimum costs, cost
functions 6, 7, 16, and 17, all of which are closely related to
Connection Delay, are most consistent with the matchings of
most airlines. These cost functions produce costs that are pro-
portional to the length of the delay but with proportionality con-
stants that are larger for flights bound to hub airports.

Finally, the linear programming cost approximate maxi-
mum likelihood method estimates the standard deviation of a
noise term that was added to cost functions to account for unob-
served aspects of airline costs. The standard deviation values,



TABLE VI: COST FUNCTIONS WITH LARGESTAPPROXIMATELOG-L IKELIHOOD

Airline 1st1st1st L̂(σ2⋆)L̂(σ2⋆)L̂(σ2⋆) σ⋆σ⋆σ⋆ 2nd2nd2nd L̂(σ2⋆)L̂(σ2⋆)L̂(σ2⋆) σ⋆σ⋆σ⋆ 3rd3rd3rd L̂(σ2⋆)L̂(σ2⋆)L̂(σ2⋆) σ⋆σ⋆σ⋆

A 7 −1159 0.487 6 −1252 0.539 1 −1318 1.216
B 7 −773.5 0.454 5 −858.3 0.509 17 −873.8 0.525
C 6 −591.3 0.587 16 −603.6 0.615 7 −612.7 0.623
D 7 12.97 0.037 17 −150.4 0.133 16 −281.6 0.246
E 6 −1627 0.369 16 −1715 0.336 17 −1785 0.351
F 16 86.98 0.064 17 −9.009 0.083 6 −48.54 0.050
G 2 −0.366 0.051 17 −239.5 0.164 8 −268.6 0.185

expressed as a fraction of the average assignment cost for the
historical matchings, ranged from0.1 to 0.7 for cost functions
with relatively large approximate log-likelihoods.
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“Airline schedule recovery in collaborative flow manage-
ment with airport and airspace capacity constraints,” in
Proc. of USA/Europe Air Traffic Management Research &
Development Seminar, (Budapest, Hungary), June 2003.

[10] T. Vossen and M. Ball, “Optimization and mediated bar-
tering models for Ground Delay Programs,”Naval Re-
search Logistics, vol. 53, pp. 75–90, 2006.

[11] T. W. M. Vossen and M. O. Ball, “Slot trading opportu-
nities in collaborative Ground Delay Programs,”Trans-
portation Science, 2005.

[12] M. Ball, G. Dahl, and T. Vossen, “Matchings in connec-
tion with Ground Delay Program planning,”Networks,
vol. 53, no. 3, pp. 293–306, 2009.

[13] A. Ranieri and L. Castelli, “A market mechanism to assign
air traffic flow management slots,” inProc. of USA/Europe
Air Traffic Management Research & Development Semi-
nar, (Napa, CA), June 2009.

[14] Y. Zhang and M. Hansen, “Regional GDP – extending
Ground Delay Programs to regional airport systems,” in
Proc. of USA/Europe Air Traffic Management Research &
Development Seminar, (Napa, CA), June 2009.

[15] J. Henderson, H. Idris, S. Ferguson, J. Krozel, and
R. Kicinger, “User and service provider collaboration on
flight route and delay under uncertainty,” inProc. of AIAA
Guidance, Navigation, and Control Conference, (Toronto,
Canada), August 2010.



[16] J. Rios, K. Sheth, and S. Gutierrez-Nolasco, “Incorporat-
ing user preferences within an optimal traffic flow man-
agement framework,” inProc. of AIAA Guidance, Naviga-
tion, and Control Conference, (Toronto, Canada), August
2010.

[17] S. Gutierrez-Nolasco and K. S. Sheth, “Analysis of fac-
tors for incorporating users preferences in air traffic man-
agement: A users’ perspective,” inProc. of AIAA Avia-
tion Technology, Integration, and Operations Conference,
(Fort Worth, TX), September 2010.

[18] H. Gao, G. Hunter, F. Berardino, and K. Hoffman, “Devel-
opment and evaluation of market-based traffic flow man-
agement concepts,” inProc. of AIAA Aviation Technol-
ogy, Integration, and Operations Conference, (Fort Worth,
TX), September 2010.

[19] A. Vasquez-Marquez, “American Airlines Arrival Slot Al-
location System (ASAS),”Interfaces, vol. 21, January-
February 1991.

[20] M. Brennan, “Simplified Substitutions – enhancements to
substitution rules and procedures during Ground Delay
Programs,” inProc. of Airline Group of the International
Federation of Operational Research Societies (AGIFORS)
Airline Operations Meeting, (Ocho Rios, Jamaica), May
2001.

[21] T. J. Niznik, “Optimizing the airline response to Ground
Delay Programs,” inProc. of Airline Group of the In-
ternational Federation of Operational Research Societies
(AGIFORS) Airline Operations Meeting, (Ocho Rios, Ja-
maica), May 2001.

[22] R. Beatty, R. Hsu, L. Berry, and J. Rome, “Preliminary
evaluation of flight delay propagation through an airline
schedule,” inProc. of USA/Europe Air Traffic Manage-
ment Research & Development Seminar, (Orlando, FL),
October 1998.

[23] H. D. Sherali, R. W. Staats, and A. A. Trani, “An airspace-
planning and collaborative decision-making model: Part
II – cost model, data considerations, and computations,”
Transportation Science, vol. 40, pp. 147–164, May 2006.

[24] R. W. Staats,An Airspace Planning and Collaborative De-
cision Making Model Under Safety, Workload, and Equity
Considerations. PhD thesis, Virginia Polytechnic Institute
and State University, April 2003.

[25] H. Idris, A. Evans, R. Vivona, J. Krozel, and K. Bilimoria,
“Field observations of interactions between traffic flow
management and airline operations,” inProc. of AIAA Avi-
ation Technology, Integration and Operations Conference,
(Wichita, KS), September 2006.

[26] S. Boyd and L. Vandenberghe,Convex Optimization.
Cambridge, UK: Cambridge University Press, 2004.

[27] D. Hoitomt, D. Kraay, and B. Tang, “Flight sequencing
under the FAA’s Simplified Substitution rules,” inProc.

of Airline Group of the International Federation of Oper-
ational Research Societies (AGIFORS) Airline Operations
Meeting, (Istanbul, Turkey), April 1999.

[28] A. Cook, G. Tanner, and S. Anderson, “Evaluating the
true cost to airlines of one minute of airborne or ground
delay,” Final Report, Performance Review Commission,
Eurocontrol, April 2004.

[29] A. Q. Kara, J. Ferguson, K. Hoffman, and L. Sherry, “Es-
timating domestic US airline cost of delay based on Euro-
pean model,” inProc. of International Conference on Re-
search in Air Transportation, (Budapest, Hungary), June
2010.

[30] H. Gao and G. Hunter, “Evaluation of user gaming strate-
gies in the future National Airspace System,” inProc. of
AIAA Aviation Technology, Integration, and Operations
Conference, (Fort Worth, TX), September 2010.

[31] K. Howard and B. Sharick, ATMS/ETMS re-
quirements, Federal Aviation Administration,
http://cdm.fly.faa.gov/ad/CDM-GDP specs
.htm, March 2003.

[32] “Interface control document for substitutions dur-
ing Ground Delay Programs, Ground Stops,
and Airspace Flow Programs,” interface con-
trol document, Federal Aviation Administration,
http://www.fly.faa.gov/Products/NASDOCS
/nasdocs.jsp, November 2006.

[33] OAG, “Aircraft information.”
http://www.oag.com/NorthAmerica/airline
andairport/aircraftstatistics.asp, 2010.

[34] GRA, Incorporated, “Economic values for FAA invest-
ment and regulatory decisions, a guide,” Tech. Rep. Con-
tract No. DTFA 01-02-C00200, FAA Office of Aviation
Policy and Plans, Washington, DC, October 2007.

[35] K. Howard and M. Lehky, “Aggregate Demand
List (ADL)/FSM broadcast data formats - ver-
sion 10 revision 4.” John A. Volpe National
Transportation Systems Center Memorandum,
http://www.fly.faa.gov/Products/NASDOCS
/ADL Ver10 Rev4.pdf, November 2005.

AUTHOR BIOGRAPHIES

Michael Bloem earned a B.S.E. degree with majors in electrical and computer
engineering and economics from Calvin College in 2004 and anM.S. degree in
electrical and computer engineering from the University ofIllinois at Urbana-
Champaign in 2007. He researches dynamic airspace configuration and traf-
fic flow management in the Systems Modeling and Optimization branch of the
Aviation Systems Division at NASA Ames Research Center, Moffett Field, CA.
Mr. Bloem is a member of the AIAA.

Haiyun Huang is currently studying at the faculty of Aerospace Engineering
at Delft University of Technology in the Netherlands, with afocus on Main-
tenance, Repair and Overhaul, Flight Path Operations and Air Traffic Manage-
ment. He will receive his B.Sc. degree in Aerospace Engineering in the summer
of 2011 and his M.Sc. degree in Aerospace Engineering will follow at the end
of 2011.


