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Abstract—A method to quantify the probabilistic controller
taskload inherent to maintaining aircraft adherence to 4-D
trajectories within flow corridors is presented. An Ornstein-
Uhlenbeck model of the aircraft motion and a Poisson model
of the flow scheduling are introduced along with reasonable
numerical values of the model parameters. Analytic expressions
are derived for the taskload probability density functions for
basic functional elements of the flow structure. Monte Carlo
simulations are performed for these basic functional elements
and the controller taskload probabilities are exhibited.

I. INTRODUCTION

Gridlock is forecast to occur both in the U.S and Europe if
the current air traffic practices are not changed. It is widely
believed that a technological shift is necessary to accommodate
this growth. Along with this technical evolution, a change in
procedures and infrastructure will take place, that will give
more autonomy to aircraft and rely on higher-precision, less
fault-tolerant operations and trajectories.

The NextGen concept of operations [1] envisions flow
corridors, where aircraft follow high-precision 4-D-metered
trajectories, across relatively compact regions of airspace.
These Required Navigation Performance (RNP) trajectories
with increasingly more stringent precision requirements use
equipment that is certified with probabilistic tolerance bounds
[2]. Airspace precision standards in the U.S. differ widely
depending on the phases of flight and airspace blocks, rang-
ing from an accuracy of 0.1 NM (RNP-0.1) for precision
approach-to-landing to 10 NM (RNP-10) in areas of the Pacific
Ocean [3].

Flow corridors rely on self-separation using Automatic
Dependent Surveillance-Broadcast (ADS-B). This equipment
allows the construction of high-density, high-altitude en route
sectors [4], [5]. The role of controllers is to monitor traffic
and intervene in case of extreme - and potentially dangerous
- deviations from planned 4-D trajectories.

A unified and provable theory linking traffic complexity,
airspace block capacity and controller intervention currently
does not exist. This research aims to contribute to the unifica-
tion of these disparate concepts by introducing tools to clarify
the dependency between air traffic flow corridor geometry

and the controller taskload needed to maintain the structure.
Taskload is defined here as the rate at which the controller
must intervene to return aircraft that have reached the tolerance
bounds outside of their 4-D trajectories. After an overview of
the state of the art, in Section III, we introduce fundamental
stochastic models of the aircraft flight (an Ornstein-Uhlenbeck
process) and of the flow scheduling (a Poisson process), along
with reasonable numerical values of the model parameters.

Precisely estimating the parameters of the models is highly
relevant, since overestimating the variability may cause ineffi-
ciency while underestimating it may cause unsafe conditions
and elevated controller taskload. The Ornstein-Uhlenbeck air-
craft model is calibrated to match simulated data, obtained
from a random number generator defined by a Johnson un-
bounded system SU . Using simulated data is required in the
absence of experimental navigation recordings; the random
number generator provides fictitious data consistent with sta-
tistical studies of the aircraft motion. The Poisson flow model
uses intensity parameters given in recently published research.

In Section IV we then derive analytic expressions for
the taskload probability density function for basic functional
elements of the flow structure: a single lane, multiple parallel
lanes, and flow corridor crossings. In Section V, we show
taskload probabilities found by Monte Carlo simulations of
these basic functional elements.

II. BACKGROUND

Probabilistic models of air traffic are not new to the lit-
erature. This is especially true in the case of conflicts and
collisions, where the ICAO has in fact defined the acceptable
levels of fatal accident risk at one mid-air collision (physical
incrossing) per 109 flight hours [6]. The classic model used
to predict risk values for some basic types of air traffic man-
agement, known as the Reich collision model, was developed
in 1964 [7].

Over the last few years, Bakker and Blom generalized the
Reich model and developed collision risk models based on
first hitting times of Markov processes, using hybrid-state
Markov processes with switching coefficients, or Petri nets
[8]. Irvine showed that the minimum relative displacement



between conflicting aircraft can follow a normal distribution,
and that the minimum distance between them has a folded
normal distribution [9].

Much of the conflict detection research invokes position
uncertainty. The classic characterization of position uncer-
tainty was suggested by Paielli and Erzberger and models the
error as normally distributed with an time-wise linear standard
deviation of the along-track error and a constant standard
deviation of the cross-track error [10]. This model has been
expanded by Blin et al. to include a dynamic resulting from
superposed Wiener processes (Brownian motion) affecting
position and velocity, or by switching from a position-based to
a time-based random process: the time of arrival at a trajectory
waypoint becomes the random variable while the position is
deterministic [11].

Stochastic conflict detection research is usually geared at
designing resolution algorithms. Significant work in this field
has been undertaken by Hu, Prandini et al., who have modeled
aircraft oscillations around their prescribed trajectories by
means of a Brownian motion, the relative position between
two aircraft by time-inhomogeneous Markov chains, intro-
duced spatially correlated wind perturbations, and proposed
decentralized algorithms that use potential field methodology
or the reachability analysis of a switching diffusion model
approximated by a Markov chain [12].

Despite all the aforementioned research, not much has been
done in terms of stochastic traffic flow management and route
structure design. Moreau et al. [13], or Wan and Roy [14],
compared management strategies using Poisson flow models.
The Poisson flow model has nevertheless raised some doubts:
Schmidt studied conflicts at route intersections and showed
this to be expressible as a sum of correlated random variables
with a variance larger than that obtained by the Poisson flow
model [15]. Salaün et al. have also shown that the circadian
variations of the aircraft arrival process do not correspond
to a homogeneous Poisson process, but that the arrivals can
nevertheless be modeled as a non-homogeneous process over
that time frame [16].

Finally, little research exists concerning the stochastics of
controller intervention: Dunlay and Horonjeff showed that sub-
jective conflict risk (perceived by controllers) approximately
adheres to a Poisson distribution [17]; Jeddi et al. modeled the
influence of air traffic controllers on the aircraft separation (a
random variable) by a Gaussian noise, and proposed statistical
standards (i.e. bounds on separation, target value, variance) to
improve throughput in approach sequences [18]. Although no
current theory can unify complexity, capacity, and taskload,
Vela et al. have proposed a parametric upper bound on the
minimal resolution rate required at a flow intersection [19].

III. MODEL

A. Aircraft

We model the aircraft flight motion as an Ornstein-
Uhlenbeck mean reverting process oscillating around a de-
terministic trajectory. The Ornstein-Uhlenbeck process is a

stationary Gaussian process with bounded variance and is
governed by the stochastic differential equation (1).

dXt = κ(µ−Xt)dt+ σdWt (1)

Here µ is the mean vector, κ the elasticity matrix, σ the
volatility matrix, and Wt a Wiener process (standard Brownian
motion). This model is more complex than the Brownian
model found elsewhere in the literature for aircraft uncertainty,
and is meant to reproduce the behavior of an imperfect
flight management system (modeled in the volatility of the
Brownian oscillation), and a controlling cockpit (pilot and
guidance equipment). The cockpit attempts to prevent major
deviations (modeled in the elasticity) from the deterministic
trajectory (the mean). To our knowledge, this model has not
been previously used in this context.

The controller taskload due to managing individual aircraft
can be calculated as the number of interventions needed to
prevent an aircraft from trespassing the allowed precision
bounds. The authors recognize that this is only one aspect of
the controller taskload and of the subsequent workload, and
also relies on the assumption that the pilot would not become
aware of the deviation and to react (hence changing the aircraft
dynamics). The probability density function for the first hitting
time of a boundary τ

(k)
1 = inf{t : Xt ≥ k} for an origin at

X0 and a level k by an unidimensional Ornstein-Uhlenbeck
process has the closed-form solution (2) given by Leblanc et
al. [20]

P[τ (k) ∈ dt] = fτ (t) =
k − X0

σ2√
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κ
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)
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× exp
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κ

2σ2
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σ2
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)]
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From this, a measure of the taskload required for controlling
an individual aircraft is obtained as the probability of the
number of interventions over a given period Tmax. Assuming
all realizations of the aircraft trajectory (after each corrective
intervention from the controller) are independent, the (discrete)
probability (3) is obtained from autoconvoluting the hitting
times density:

P[N (T ) ≥ n] = P[τ1 + ...+ τn ≤ Tmax]

· · · =
∫ Tmax

0

{
n−1
?
}
fτ (t)dt (3)

Here fτ (t) is the hitting time density function, N (T ) is
the number of corrections over time Tmax, {τ1 · · · τn} are
the successive hitting times, and

{
n−1
?
}

represents n − 1



(continuous) autoconvolutions of the density function.{
0
?
}
fτ (t) = fτ (t){

1
?
}
fτ (t) =

∫ t

0

fτ (x) · fτ (t− x)dx{
k+1
?

}
fτ (t) =

∫ t

0

{
k
?

}
fτ (x) · fτ (t− x)dx

Therefore, for n ≥ 1 the probability of the number of
interventions is (4).

P[N (T ) = n] =

∫ Tmax

0

{
n−1
?
}
fτ (t)−

{
n
?
}
fτ (t)dt (4)

P[N (T ) = 0] = 1− P[N (T ) ≥ 1]

· · · = 1−
∫ Tmax

0

fτ (t)dt (5)

But these explicit formulations are only true for an unidi-
mensional stochastic process. In the multidimensional case,
no closed-form solution is known for the first hitting time
density function of a correlated Brownian motion with drift
[21]. Such an n-dimensional stochastic process Xt is a solution
to (6). But through a change of variables and by using
the scalability property of the Wiener process, the Ornstein-
Uhlenbeck process given in (1) can be re-written as (7).

dXt = µdt+ σdWt (6)

dX t
σ2

= − κ

σ2
X t

σ2
dt+ dWt (7)

From comparing (7) to (6), for which no closed-form solu-
tion of the first hitting time density is known, it becomes
apparent that attempting to express hitting time density for
a multidimensional correlated Ornstein-Uhlenbeck process is
a daunting task. Therefore, we shall use an uncorrelated three-
dimensional aircraft model, distinguishing longitudinal along-
track motion from lateral and vertical motion (see Figure 1).
By assuming that the along-track and cross-track deviations
are decoupled (an assumption previously used by Paielli and
Erzberger [10]), then implicitly the subjacent unidimesional
Ornstein-Uhlenbeck processes can be considered to be un-
correlated, and thus the expressions in (2) and (3) can be
used. The coupling between vertical and lateral errors will
however be implicit to data used for the calibration of the
model. Nevertheless, there will be no a priori explicit dynamic
correlation. Empirically, statistically uncorrelated vertical and
lateral error data can be obtained from sampling the two
dimensional data at different rates for each dimension.

Longitudinal

Vertical

Lateral

Fig. 1. Aircraft motion dimensions

Some literature exists which can help quantify the various
probability parameters.

The ICAO Performance-based Navigation (PBN) manual [2]
defines Path Definition Error (PDE), Flight Technical Error
(FTE), and Navigation System Error (NSE), for which it
assumes independent, zero-mean Gaussian distributions. PDE
occurs when the path defined in the RNAV system does not
correspond to the path expected to be flown over the ground,
and can be considered to be negligible; FTE relates to the air
crew or autopilot’s ability to follow the defined path or track;
NSE refers to the difference between the aircraft’s estimated
position and actual position. Further ICAO assumptions are
that FTE is an ergodic stochastic process within a given flight
control mode but that nothing can be said of the NSE due
to sensor errors, relative position from navaids, and inertial
errors.

Current ICAO standards for PBN demand that the TSE
remain equal to or less than the required navigation accuracy
(the RNP level) with 95% probability (i.e. 95% of the flight
time), and that the TSE has a probability of less than 10−5 in
exceeding twice the required navigation accuracy. Typically,
the 10−5 requirement provides a greater constraint: for a
normally distributed cross-track TSE, this bounds the standard
deviation to be σ ≤ 0.45·RNP, while the 95% requirement sets
a bound at σ ≤ 0.51·RNP. In addition, onboard equipement
is designed to issue an alert if there is a greater than 10−7

probability per hour that the error exceed the RNP level by
two times.

Numerical and statistical parameters for FTE and FMS
performance can be found in the literature, mostly dealing with
small aircraft and general aviation [22], [23]. But perhaps the
most conclusive statistical analysis was conducted by Levy et
al. [24], who identified a Johnson SU (“unbounded system”
[25]) curve as the best fit probability density function for the
lateral FTE of a Boeing 747, under RNP-0.3 sensitivity. The
fitted curve in (8) is a transformation of the standard normal
distribution, and is adapted to heavy-tailed skewed data. An
estimate of the curve parameters was conducted by Levy et
al. according to a dedicated algorithm developped by Hill et
al. in 1976 [26] which matches the first four moments. For
the lateral FTE data, the first four moments found by Levy
et al. (mean, variance, relative skewness, relative kurtosis) are
shown in Table I. The vertical mean and variance are also
given by Levy et al., and since no performance data exists for
longitudinal data, these were postulated for the purpose of this
research by scaling the distribution. If XSNV is a standard
normal variate then its transformed XSU obeys (8) and its
density function is (9).



TABLE I
FTE STATISTICAL MOMENTS

Moment Lateral Vertical Longitudinal

µ1 -0.028 NM 8 ft -0.1 NM

µ2 = σ2 9 · 10−4 NM2 26 ft2 2.25 · 10−2 NM2

β1 =
µ32

µ22
0.243

β2 =
µ4

µ22
5.107

TABLE II
JOHNSON SU PARAMETERS FOR FTE FIT

Lateral Vertical Longitudinal

γ 0.4566

δ 1.897

λ 0.0443 NM 7.2907 ft 0.2145 NM

ξ -0.01567 NM 10.0362 ft -0.0401 NM

XSU = g(XSNV ) = λ sinh

(
XSNV − γ

δ

)
+ ξ (8)

fXSU (x) =

∣∣∣∣ 1

g′(g−1(x))

∣∣∣∣ fXSNV (g−1(x)) (9)

fXSNV (x) =
1√
2π
e

−x2
2

g′(x) =
λ

δ
cosh(

x− γ
δ

)

g−1(x) = δ sinh−1(
x− ξ
λ

) + γ

Two other reasonable fitting possibilities are the three-
parameter gamma density function (Pearson Type III) and
the normal distribution. Nevertheless, due to the heavy-tailed
data, assuming a normal distribution of the FTE significantly
underestimates the risk of transgressing a containment area:
according to Levy et al., the ICAO regulatory 10−5 probability
extreme value boundary for a normal distribution is a hundred
times more likely to be hit under a Johnson SU distribution
(i.e. with a 10−3 probability).

The distribution parameters γ, δ, λ, ξ can be approxi-
mated from the moments by numerically solving a 24th order
algebraic equation [27]. Without going into further detail,
this method provides the parameter values in Table II. The
transformed standard normal quartile values shown in Table
III can then be deduced from the resulting cumulative density
function.

Due to the practical difficulty in obtaining experimental
FTE recordings, the numerical calibration of the Ornstein-
Uhlenbeck model (1) for the aircraft was performed based on
simulated data. In conformance to the findings of Levy et al.,
the Johnson unbound system SU in (8) was used to generate
fictitious FTE data (see Figures 2 and 3). The random number
generator parametrized by the values in Table II provided data

TABLE III
JOHNSON SU QUARTILES

Lateral (NM) Vertical (ft) Longitudinal (NM)

Q1 −6.98 · 10−2 1.147 -0.302

Q2 −3.89 · 10−2 6.215 -0.152

Q3 −1.46 · 10−2 10.2 −3.52 · 10−2

Q4 9.98 · 10−3 14.27 8.42 · 10−2

adhering to the moments in Table I, and the sampling time step
for this data was assumed to be 1 minute.
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Fig. 2. Simulated FTE data
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Fig. 3. Simulated FTE histograms and theoretical density functions

By applying Itō’s lemma, it can be shown that for any fixed
s and t, 0 ≤ s ≤ t, the random variable Xt conditional
upon Xs of the Ornstein-Uhlenbeck process has the form (10),
where N (0, 1) denotes a standard normal distribution. The
relationship (11) between consecutive observations Xi and
Xi+1 with a timestep δt is therefore affine with an independant
and identically distributed random noise ε.

Xt = Xse
−κ(t−s) + µ(1− e−κ(t−s)) . . .

. . .+ σ

[
1− e−2κ(t−s)

2κ

] 1
2

· N (0, 1) (10)

Xi+1 = aXi + b+ ε (11)



A least squares linear regression is used to identify the
recursion parameters a, b, and the standard deviation of the
noise σε, from which the parameters (12) of the Ornstein-
Uhlenbeck stochastic differential equation (1) can be deduced.

κ = − ln a

δt

µ =
b

1− a

σ = σε

[
−2 ln a

δt(1− a2)

] 1
2

(12)

A maximum likelihood estimate method was also con-
ducted. From (11), {Xi+1−aXi− b = ε} is a normal random
variable, and so the conditional probability density function of
Xi+1 given Xi with a time step δt is shown in (13), while the
log-likelihood function of n+1 observations {X0, · · ·Xn} is
given in (14).

f[Xi+1|Xi](x) =
1√
2πσ̂2

. . .

. . .× exp

[
−
(
x−Xie

−κδt − µ(1− e−κδt)
)2

2σ̂2

]
(13)

σ̂ = σ

[
1− e−2κδt

2κ

] 1
2

L(µ, κ, σ̂) =
n−1∑
i=0

ln f[Xi+1|Xi](Xi+1)

· · · = −n
2
ln 2π − n ln σ̂ . . .

. . .− 1

2σ̂2

n−1∑
i=0

[Xi+1 −Xie
−κδt − µ(1− e−κδt)]2

(14)

The argument of the maximum of L found from the three
partial derivatives ∂L

∂κ , ∂L∂µ , ∂L∂σ̂ gives the system in (15).

κ = − 1

δt
ln

n−1∑
i=0

(Xi+1 − µ)(Xi − µ)

n−1∑
i=0

(Xi+1 − µ)2

µ =

n−1∑
i=0

Xi+1 −Xie
−κδt

n(1− e−κδt)

σ̂2 =
1

n

n−1∑
i=0

[Xi+1 − µe−κδt(Xi − µ)]2 (15)

The resulting parameters κ, µ, σ of the Ornstein-Uhlenbeck
model - for spatial units expressed in nautical miles (lateral and
longitudinal) or feet (vertical) and temporal units expressed
in minutes - are shown in Table IV. These values coincide
for both the maximum likelihood and least squares estimation
methods.

TABLE IV
ORNSTEIN-UHLENBECK AIRCRAFT MODEL PARAMETERS

Lateral Vertical Longitudinal

κ 3.492 min−1 1.841 min−1 2.1662 min−1

µ 2.79 · 10−2 NM 8.034 ft 9.965 · 10−2 NM

σ 7.27 · 10−2 NM 8.683 ft 0.2774 NM

B. Flow

We adopt a widely accepted model of interarrival times
distributed according to an invariant Poisson process; this is
equivalent to modeling passage times along the flow by an
exponential distribution, and is a fair approximation of the
system behavior over a short-time horizon (hourly time frame).
If N(t) is a cumulative count of all aircraft having entered
the sector, then the probability distribution for the number of
aircraft entering a flow between times t and t+ τ is given by
(16) and the probability density for the values of interarrival
times x is given by (17).

P[N(t+ τ)−N(t) = k] =
e−λτ (λτ)k

k!
(16)

fλ(x) = λ exp−λx, x ≥ 0 (17)

Although most rigorously, the distribution of velocities
inside a flow is also a random variable [28], we will assume
the uniformity of velocities at 480 knots. This can be justified
in the context of 4-D trajectories by constraints added to
the along-track performance of the aircraft, which is not the
case in current procedures. For a more realistic case, the flow
would need to be modeled as a birth-death process with two
different Poisson processes, on entry and on exit from the
controlled region. This adds some difficulty to the problem,
without making it prohibitive.

The statistical study of the typical traffic entering Cleveland
center conducted by Salaün et al. [16] provides mean aircraft
spacing between 50 and 200 NM for the ten busiest flows
in the sector, and an hourly Poisson intensity parameter
λcenter between 10 and 100 (aircraft per hour) depending on
time of day, with values averaging 80 for most of the busy
times (6 AM to 8 PM EST). For the ten busiest flows in
the center, the velocity and spacing values provide average
intensity parameters λflow from 10 to 2.5 (aircraft per hour).
A reasonable estimate for the time an aircraft spends in a
sector is 20 minutes.

From a spatial perspective, current en route flows have
wide boundaries, reaching up to 40 NM in width, or even
defying any reasonably defined geographic structure in some
cases; we propose that the newly designed flow corridors
will concentrate traffic to much tighter regions, with corridor
bounds ranging between 3 NM and 10 NM lateral, and 1000-
2000 ft vertical, and also supporting parallel lanes, or stacked
corridors (see Figure 4). The flow model parameters are shown
in Table V.
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Fig. 4. Multilane flow corridors

TABLE V
RNP CORRIDOR MODEL PARAMETERS

Intensity (a.c./h) λinf = 2.5 ‘λsup = 10

Lateral bounds (NM) yinf = 0.6 ysup = 1

Vertical bounds (ft) zinf = 60 zsup = 120

Longitudinal bounds (NM) xinf = 1 xsup = 5

IV. EXPRESSION OF TASKLOAD PROBABILITIES

In this section we consider several basic functional elements
of the flow corridor structure.

A. Single lane

In the case of a single lane of traffic, the overall controller
taskload is a superposition of the individual effects from
each aircraft. From the Poisson process flow model in (16),
the probability of the number of aircraft M simultaneously
controlled (a random variable) can be deduced: if it takes
an aircraft Tcross to cross the airspace, then the probability
that at any given time there are k aircraft present is given
in (18); if there are M = k ≥ 1 aircraft present, and the
aircraft i requires N (T )

i interventions over time T , then the
total taskload the controller is subject to has a probability given
in (19).

P[M = k] =
e−λTcross(λTcross)

k

k!
(18)

P[N (T )
1 + · · ·+N

(T )
k = n] =

[
k−1
?

]
P{N (T )}[n] (19)

Here
[
k−1
?

]
P{N (T )} represents k−1 discrete autoconvolu-

tions of the single aircraft taskload probability P{N (T )} from
(4). Obviously for M = 0, there will be no intervention with
probability 1.

[
0
?
]
P{N (T )}[n] = P[N (T ) = n][

1
?
]
P{N (T )}[n] =

n∑
i=0

P[N (T ) = i] · P[N (T ) = n− i]

[
m+1
?
]
P{N (T )}[n] =

n∑
i=0

[
m
?
]
P{N (T )}[i] · P[N (T ) = n− i]

Since the number of aircraft is a random variable, combining
(18) and (19) gives the probability (20) of the overall taskload
N

(T )
λ for the flow with intensity λ over time T for n ≥ 1;

P[N (T ) = 0] is the probability that no intervention is required
for one aircraft, given by (5).

P[N (T )
λ = n] =

+∞∑
i=1

P[M = i] ·
[
i−1
?
]
P{N (T )}[n] (20)

P[N (T )
λ = 0] =

+∞∑
i=0

P[M = i] ·
(
P[N (T ) = 0]

)i
B. Multiple parallel lanes

Let us consider the case of parallel lanes (see Figure 4), with
either opposing or matching traffic orientation. If the spatial
extents are identical, and assuming independence of the flows,
the whole system is equivalent to a single Poisson process with
cumulative intensities λtot =

∑
λi. Results from Section IV-A

can thus be simply generalized to (21).

P{N (T )
∪λi} = P{N

(T )∑
λi
} (21)

If the spatial extents of the flows are different, the problem is
slightly more complex. The taskload probability (22) for j ≥ 2
different flows with {e1, · · · , ej} spatial extents, {λ1, · · · , λj}
intensities, and {N (T )

λ1,e1
, · · · , N (T )

λj ,ej
} interventions per flow is

P[N (T )
∪λi = n] = P[N (T )

λ1,e1
+ · · ·+N

(T )
λj ,ej

= n]

· · · =
[
j
?
i=1

]
P{N (T )

λi,ei
}[n] (22)

where
[
j
?
i=1

]
designates the successive convolutions of the

P{N (T )
λi,ei
} taskload probabilities given in (20) for flows 1 to j.

This operator is well defined since convolution is associative.

C. Crossings and mergings

In the case of a crossing, an additional source of taskload
comes from possible scheduling conflicts. For two flows {F1}
and {F2} crossing at an angle α (in the plane defined by
the centerlines of these two flows, see Figure 5) with lateral
extents e1 and e2, Poisson intensities λ1 and λ2, a safe-zone
can be defined around the intersection of the centerlines, where
only one aircraft is allowed simultaneously. For a minimum
possible approach distance Dmin (taken to be for example
5 NM, i.e. the conflict separation standard), the symmetrical
safe-zone boundaries x1 and x2 in each of the flows are
defined by (23). Figure 6 shows plots of some of these
boundary values.

(x1 + x2 cosα−
e2
2
cosα) . . .

. . .+ (−e1
2

+ x2 sinα+
e2
2
sinα)2 = D2

min

(x1 + x2 cosα−
e2
2
sinα)2 . . .

. . .+ (−e1
2

+ x2 sinα+
e2
2
cosα)2 = D2

min (23)
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Fig. 6. Possible safe-zone bounds solutions

The safe-zone can then be extended for simplicity so that
its crossing time is equal along both flows. The probability
of scheduling conflicts is once again simply found from
superposing the Poisson processes: if passing the safe-zone
requires a time Tsafe, then the probability that there are A = c
aircraft simultaneously present inside the safe-zone is (24).

P[A = c] =
e−(λ1+λ2)Tsafe [(λ1 + λ2)Tsafe]

c

c!
(24)

This can also be interpreted as a lower bound of the
number of required conflict resolution interventions: c− 1 of
those aircraft will need to be delayed and/or deviated, without
accounting for possible secondary conflicts. This probability
however does account for scheduling conflicts within each
separate flow, as well as the crossing flows combined.

From (20), (21), and (24), a discrete convolution [?] in (25)
gives the total taskload over time T for n ≥ 1 accounting
for A − 1 conflicts at the flow crossing and for N

(T )
λ1∪λ2

interventions to maintain the structure.

P[N (T )
λ1×λ2

= n] = P[A− 1 +N
(T )
λ1∪λ2

= n]

· · · = P{A− 1}[?]P{N (T )
λ1∪λ2

}

· · · =
n∑
i=0

P[A = i+ 1] · P[N (T )
λ1∪λ2

= n− i]

(25)

P[N (T )
λ1×λ2

= 0] = P[A = 0] + P[A = 1] · P[N (T )
λ1∪λ2

= 0]

TABLE VI
TOLERANCE STANDARDS

Lateral (NM) Vertical (ft) Longitudinal (NM)

Stringent 0.1 20 0.5

Severe 0.12 22 0.6

Intermediate 0.15 25 0.8

Lax 0.2 30 1

TABLE VII
MONOLANE MC SIMULATION PARAMETERS

Intensity λ (a.c/h) 2.5 5 7.5 10 60

MC runs 91,658 66,680 58,366 54,147 41,702

Simulated aircraft 250,000

V. MONTE CARLO SIMULATION

Several Monte Carlo simulations were conducted in order
to estimate the resulting taskload. Four control tolerance
standards (stringent, severe, intermediate, lax) were defined,
shown in Table VI. The control bounds are extremely restric-
tive in order to illustrate the low probabilities of oscillation.
The occurance of a lateral FTE of 0.3 NM has a probability
of 5 · 10−6 in the Ornstein-Uhlenbeck model used in the
simulation, which corresponds to a probability of 6 · 10−4 for
one intervention required over 2 hours. For a lateral FTE of
0.4 NM, the probability drops below 2 · 10−7, which is the
resolution limit of the Monte Carlo simulation. For each run,
the taskload calculation horizon was T = 2 hours.

A. Single lane

Several flow intensities were chosen and a varying number
of runs were performed (detailed in Table VII) in order to
simulate 2.5 · 105 aircraft for each flow intensity. The lateral
containment taskload probability for a two hour interval is
shown in Figure 7, and the cumulated lateral, vertical, and
longitudinal taskload (3-D control) appears in Figure 8. As
expected, the plots show increasing taskload with higher den-
sity flows and with stricter tolerance standards. Nevertheless,
the values remain relatively low, with no more than 9 or 10
interventions being expected over a 2 hour time frame in all
cases.
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TABLE VIII
MULTILANE MC SIMULATION PARAMETERS

Intensity λ (a.c/h) 2.5 5 7.5 10 60

MC runs 22,9158 16,670 14,592 13,537 10,426

Simulated aircraft 62,500
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Fig. 8. Effect of flow rate and control tolerance on monolane 3-D (lateral,
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B. Multiple parallel lanes

As noted in Section IV-B, the case of several flows with
identical spatial extents (or control tolerances) and varying
Poisson intensities can be simply reduced to a single flow with
cumulative intensity. The case of lanes with varying precision
requirements poses more interest. In this simulation, the very
high density flow intensity parameter (60 a.c/h) was chosen
for all the lanes, while the control tolerance standards were
stringent for the first flow, severe for the second, intermediate
for the third, and lax for the fourth.

The Monte Carlo simulation parameters of the multilane
flow are shown in Table VIII. The taskload probability for
a two hour interval is shown in Figure 9. The simulation
reveals that although taskload increases with additional lanes,
the stringent flow is the source of most of the taskload. Adding
the severe flow to this has significant impact by increasing the
most probable taskload level from 3 to 4 interventions over a
two hour time frame in the 3-D control case. Additional flows
with more tolerant bounds do not have notable effect, only
increasing taskload probabilities by less than 1%.
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Fig. 9. Effect of number of lanes on multilane 2h taskload probability

TABLE IX
CROSSING MC SIMULATION PARAMETERS

Crossing angle α (deg) 30 90 120

Crossing time (min) 2 1 3

MC runs 5,412 10,463 3,826

Simulated aircraft 25,000 50,000 16,666

C. Crossings and mergings

The Monte Carlo simulation parameters of the crossing
are shown in Table IX. The taskload calculations were per-
formed for two crossing flow intensities of λ = 2.5 a.c/h. It
was assumed that in the enroute domain, the higher density
flow corridors would be designed for the express purpose of
avoiding such crossings. Simulations show that in the higher
density levels, the taskload comes almost exclusively from
resolving scheduling conflicts at the crossing, rather than from
controlling the aircraft deviations.

Figure 10 shows the effect of the crossing angle α on the
controller taskload for a crossing of two flows with stringent
deviation tolerance. Since the α = 90◦ crossing angle imposes
the smallest safe-zone extent, it it intuitive that this also
corresponds to the lowest conflict resolution taskload, and
inversely for the α = 120◦ crossing which causes the largest
safe-zone. The spatial extent also explains the control taskload:
the longer the time an aircraft spends within the the safe-zone,
the higher the probability that it will touch one of the control
bounds. Therefore, the α = 90◦ crossing has the highest
probability that no control intervention will be needed, and
the α = 120◦ crossing has the highest probabilities for any of
the superior taskload values.

Figure 11 shows the angle effect on a crossing between a
stringent and a severe flow. When compared to Figure 10,
the taskload probability decreases slightly (best seen for the
α = 90◦ crossing) because of the higher control tolerance in
the second flow.

Figures 12, 13, and 14 show the effect of the control
tolerance on the taskload at a crossing of α = 30◦, α = 90◦,
and α = 120◦ respectively. As can be expected, for all the
crossing values the control tolerance bounds play a significant
role in the taskload levels. This effect is however least noted
in the α = 90◦ crossing where the aircraft spend the least
amount of time in the safe-zone. For the intermediate and lax
tolerances, the taskload only comes from the conflict resolution
interventions (the probability of no control interventions is
close to 1). Since the control tolerance plays no part in the
flow scheduling, the conflict resolution taskload has not been
shown in plots other than in Figure 10

VI. CONCLUSION

In a context of NextGen flow corridors, this research seeks
to quantify what controller taskload is required to maintain
aircraft adherence to their 4-D trajectories, within certain
tolerance levels.
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Fundamental stochastic models of the aircraft motion (an
Ornstein-Uhlenbeck process) and of the flow scheduling (a
Poisson process) have been introduced, along with reasonable
numerical values of the model parameters. The Ornstein-
Uhlenbeck aircraft model was calibrated - by a least squares
linear regression and by a maximum likelihood estimation
- to match simulated data, obtained from a random number
generator defined by a Johnson unbounded system SU . The

0 1 2
0

0.2

0.4

0.6

0.8

1

3−D control taskload

P
ro

ba
bi

lit
y

 

 
Stringent
Severe
Intermediate
Lax

(a) Deviation control taskload proba-
bility

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

Total taskload

P
ro

ba
bi

lit
y

 

 
Stringent
Severe
Intermediate
Lax

(b) Total taskload probability

Fig. 13. Effect of deviation tolerance on 2h taskload probability; identical
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Fig. 14. Effect of deviation tolerance on 2h taskload probability; identical
flows intersect at α = 120◦

use of simulated data to calibrate the model was imposed
by the absence of experimental Flight Technical Error (FTE)
data; the random number generator provided fictitious data
consistent with statistical studies of the aircraft motion. The
Poisson flow model used intensity parameters given in recently
published research. Analytic expressions have been derived for
the taskload probability density functions for basic functional
elements of the flow structure (a single lane, multiple parallel
lanes, and flow corridor crossings). Monte Carlo simulations
have been performed for these basic functional elements of the
flow structure and the controller taskload probabilities have
been exhibited.

It has been found that the current aircraft performance
de facto supports the flow corridor concept, by providing
high-precision navigation. The controller taskload needed -
assuming no anticipated reaction from the pilot - to prevent the
aircraft from excessive deviation outside of their nominal 4-D
trajectories was moderate, not exceeding ten interventions over
two hours for a single or multiple lane flow with very high
density traffic (a mean of 60 aircraft per hour). The crossing
of flows however poses different concerns, where solving the
occurring scheduling conflicts at the crossing point becomes
the foremost source of controller taskload.

The authors acknowledge that experimental FTE data mea-
surements and a more accurate statistical flow description are
needed to improve the model accuracy and, in turn, to increase
confidence in its predictions. Nevertheless, a coherent deduc-
tive taskload model that only requires simple fundamental
microscopic (aircraft motion) and macroscopic (flow) models



has been demonstrated in this research.
In future work, we plan on using the detailed Ornstein-

Uhlenbeck model of the aircraft developed here to quantify
risk severity in the case of extreme deviations from nominal
operations. Studies of the risk propagation across flow geom-
etry under degraded operations, and its dependency with the
route structure will also be conducted.
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