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Abstract — Reducing fuel consumption is a major goal for the 

aviation community due to environmental concern and fuel price 

uncertainty. The Federal Aviation Administration (FAA) is 

currently developing and implementing Air Traffic Management 

(ATM) technologies to ensure reliable operational performance 

that is robust to delays caused by congestion and weather. These 

technologies will reduce planned and unexpected airborne delays; 

as such they will reduce the airline practice of schedule padding, 

or contingency planning for excess fuel and time consumption on 

a give route, as well as airborne and departure delay. In this 

study, we seek to quantify the fuel consumption impact of these 

technologies on the three operational performance measures: 

schedule padding, airborne delay, and departure delay. We do so 

by modeling airline fuel consumption using econometric 

techniques to isolate the contribution of operational performance. 

We use fuel consumption reported by a major US-based airline to 

capture revealed, and not simulated, airspace inefficiencies. For 

two aircraft types we find that a minute spent in airborne delay 

burns 50-60 lbs of fuel, compared with 4.5-12 lbs for a minute of 

schedule padding and 2.3-4.6 lbs for a minute of departure delay. 

We find additionally that fixed fuel consumed due to congested 

and complicated airport terminal areas is can be up to 16% 

greater. When considering specific origin-destination pairs, we 

find the elimination of the three delay metrics due to technology 

could reduce airborne fuel consumption up to 10% percent per 

operation.   

Keywords- Aviation, Fuel Consumption, Air Traffic 

Management, Environmental Impacts  

I. INTRODUCTION 

Reducing fuel consumption is a major goal for the aviation 
community. Airlines wish to reduce costs while aviation 
organizations both national and international in scope seek to 
assist airlines in managing costs and reducing the 
environmental impact of aviation. While there are many 
avenues through which fuel can be reduced, we focus on the 
impact of airline operational performance on fuel consumption. 
This perspective is motivated by the introduction of Next 
Generational Air Transportation (NextGen) technologies which 
will improve operational performance by reducing flight time 
variations and enabling more precise operations in the terminal 
area.  

Reducing fuel consumption is a way to manage the risk 
related to fuel price fluctuations and uncertainty surrounding a 
future environmental  policy.  In 2008,  jet  fuel  prices  reached  
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levels more than three times those of 2004. While 2009-2010 
fuel prices fell from their 2007-2008 highs, the spike 
demonstrated uncertainty in the magnitude of future fuel prices. 
Furthermore, the scope and timeline of a future climate change 
policy threatens the stability of fuel prices because of the 
relationship between Greenhouse Gases (GHG) and fuel 
consumption. The production of most abundant GHG, Carbon 
Dioxide (CO2) is directly correlated with fuel consumption. To 
this end, we consider savings in fuel to be a direct savings of 
CO2 emissions. Policies to curtail aviation-related GHG 
emissions are being considered at many levels, from local 
airport authorities to the International Civil Aviation 
Organization (ICAO). While Europe is preparing for the 
inclusion of aviation in their GHG emissions trading scheme 
(EU-ETS), the timeline for policy in the US is less clear. 
Despite the lack of regulation, a desire to protect the 
environment along with reducing fuel consumption is 
encouraging aviation organizations to take steps toward 
reducing fuel. 

Much research has focused on fuel reduction possibilities 
from altering airline business practices. Jamin et al. [1] test the 
substitution of all connecting flights in the US National 
Airspace System (NAS) with direct, non-stop flights. Without 
changing fleet structure, this results in a ten percent decline in 
fuel burn and CO2 emissions per year: four percent from 
decreased travel distances and six percent from fewer landing 
and take-off cycles. Ryerson and Hansen [2] find that the 
substitution of turboprops for narrow bodies can reduce fuel 
consumption by up to 50%, yet this fuel savings would 
decrease passenger level of service. On the ground, many 
airlines encourage pilots to taxi on one engine when possible to 
reduce fuel consumption; however, the percentage of 
operations in which this procedure is used is limited as a result 
of safety concerns.  

In addition, research on the potential of operational 
procedures on the ground and in the air show fuel reduction 
benefits. On the ground, Ohsfeldt et al. [3] find eliminating 
time spent in taxi beyond an unimpeded taxi time could reduce 
taxi fuel consumption significantly. In the air, Clarke et al. [4] 
find that Continuous Descent Approaches (CDA) can reduce 
fuel consumption on approach by 20%, a finding confirmed by 
a related study by the Federal Aviation Administration (FAA) 
Air Traffic Organization [5]. Additionally, harmonizing ground 
and air operations through Airspace Flow Programs (AFP) 
could reduce fuel consumption by 10% compared with Ground 
Delay Programs (GDP) [3]. 



Improved operational procedures under investigation are in 
part enabled by advanced technology in the aviation system. 
The development and implementation NextGen technologies 
will and continue to bring improved operational procedures as 
well as more reliable and improved operational performance. 
Operational performance as defined by Zou and Hansen [6] 
includes delay metrics, such that they characterize how closely 
the air transportation system is adhering to a schedule; they 
further incorporate how the existing schedule incorporates 
expected delays. NextGen technologies will improve 
operational performance by equipping the airspace to handle 
higher levels of traffic and adverse weather, both of which 
cause operational inefficiencies in the airspace and variability 
in travel time.  

In this study we investigate the contribution of operational 
performance on airborne fuel consumption, with the goal of 
identifying the potential of NextGen technologies to reduce 
airborne fuel consumption. We identify three areas of 
operational performance to be improved through NextGen 
technologies. The first is departure and airborne delay. 
NextGen capabilities allow for closely spaced parallel 
approaches and reduced spacing, as well as a reduction of the 
capacity gap between Visual and Instrument Meteorological 
Conditions; the result will be a reduction in airborne and 
departure delays [7]. Furthermore, these technologies should 
reduce the variance in airborne time, reducing the need for 
airline schedule padding. The impact of improved operational 
performance on airline costs is great and measurable. One 
minute of airborne delay and minute of schedule padding are 
both found to increase operating costs by 0.6-0.7% at the 
sample mean level [6]. The extent to which cost savings from 
improved operational performance is attributed to fuel is the 
focus of our study.  

To evaluate the potential of improved operational 
performance to reduce fuel, we develop a statistical model 
based on historical data to estimate fuel consumption and 
isolate the contribution of operational performance. We merge 
data from a major US air carrier reporting on airborne fuel 
consumption and scheduled and actual airborne and departure 
time with airborne fuel consumption estimated by the FAA‟s 
National Airspace System Performance Analysis Capability 
(NASPAC) [8]. NASPAC uses a flight plan trajectory 
interpolator based on Eurocontrol‟s Base of Aircraft Data 
(BADA) to estimate fuel consumption [9].  

Section II introduces the methodology and modeling 
approach, and discusses the data collected. Coefficient 
estimates are presented and interpreted based on the objective 
of the study (Section III). Numerical examples are presented in 
Section IV with a discussion of how operational procedures can 
impact fuel consumption. Conclusions and future research are 
discussed in Section V.  

II. METHODOLOGY AND MODELING  

In this section, we present an overview of the fuel 
consumption model from which we will isolate the impact of 
operational performance on fuel consumption. We then 
explore the definition of the operational performance variables 
in depth, as well as the additional variables for analysis. Upon 

defining the variables for analysis, we explore the data sources 
for the research.  

A. Fuel consumption model overview 

We consider the “realized” fuel per operation (f), or the 
fuel reportedly consumed by a major US airline, for a 
particular aircraft type to have the following form:  

 f = g( ,       ,        ) (1)  

where   is a baseline (simulated) airborne fuel consumption 

value;    is a vector of operational performance variables;    is 
the vector of take-off weights;      is a vector of airport weather 
variables; and    is the vector dummy variables indicating 
origin and destination airports of the flight. The key vectors of 

interest include   ,     , and   , as they capture the impact of 
operational performance. The additional values and vectors 
influence fuel consumption and are therefore included in order 

to isolate the impact of   ,     , and   .  

The vector    captures the three operational performance 

variables: airborne delay (ℓr
), which is the difference between 

planned and actual airborne time; departure delay (ℓd
), the 

difference between scheduled and actual departure time; and 

schedule padding (ℓp
), the additional scheduled airborne time 

beyond an unimpeded airborne time. Consider Fig. 1, in which 
we depict the regions of time possibly incurred on a single 

operation related to the values in vector   .  

 

Figure 1.  Decomposing delay effects. 

Each time region possibly plays a unique role in 
contributing to aircraft fuel burn, described below.  

Good operational performance begins with an on-time 
departure from the gate; congestion, weather, and other events 
could cause a delayed departure. While departure delay may 
not directly impact airborne fuel consumption, we hypothesize 
that departure delays and airborne fuel consumption are 
correlated. For example, it is possible that a departure delay 
could lead to an airline trying to fly at a faster rate to “make-
up” time. It is also possible that departure delay is a proxy for 
airspace congestion which could lead to an aircraft 
experiencing inefficient climb-out procedures due to controller 
workload. If a controller is not under a heavy workload, they 
may be able to provide constant communication with an 
aircraft during climb leading to an efficient climb absent level-
offs. Reynolds [10] states that while standardized departure 
procedures have system efficiency benefits they may increase 
flight distance and fuel consumption. The use of the 



“departure delay” variable does not isolate the impact of, for 
example, controller workload, but it does shed light on the 
possibility of improved operational performance through 
departure delay reduction to reduce fuel. While the value of 
departure delay could be positive or negative in practice, we 
limit our scope to positive departure delays. Therefore, this 
variable is truncated at zero. 

Airborne delay is the difference between planned airborne 
time and actual airborne time. This quantity represents the 
time beyond that expected incurred in the air. If this value if 
positive, it represents any unexpected change in routing, due 
to holding, vectoring, or a change in speed. Depending on the 
circumstance, this could increase or decrease fuel burn. If 
airborne delay is absorbed by slowing down, a minute in 
airborne delay could have a lower fuel consumption rate than a 
minute in unimpeded cruise. If the delay takes the form of a 
more circuitous route, more fuel would be used. If this value is 
negative, it reflects a shorter than anticipated airborne time, 
possibly from obtaining a direct routing or an efficient 
altitude. 

Airborne schedule padding is the practice of increasing the 
scheduled airborne time such that it is greater than the 
unimpeded airborne time. This practice reflects expected 
declines in operational performance, caused by weather or 
congestion, which are so prevalent on a given route that it is 
more efficient from the airline perspective to operate as if the 
delay is certain to occur. It would be expected that airborne 
schedule padding will have an impact on fuel consumption as 
padding the schedule is a signal of a large variance in airborne 
time. This leads to contingency planning and higher fuel loads 
to minimize the need to divert; higher fuel loads lead to 
greater fuel consumption rates. As schedule padding is a 
planned-for operational performance issue, it may have a 
smaller impact on fuel compared with airborne and departure 
delay.  

In addition to the operational performance vector   , the 
key vectors of interest include     , the vector of airport weather, 
and   , the vector of airport origins and destinations. While not 
a delay by definition, the impact of airport arrival and 
departure procedures can impact fuel consumption such that 
some airports are inherently more fuel efficient than others. As 
discussed in Reynolds [10], airports may require aircraft to 
meet certain arrival fixes which may be at non-optimal 
altitudes or require non-optimal speed profiles. This is in 
additional to the discussion related to departure delay. To 
isolate the impact of airport-specific procedures, we include 
the vector   ; to capture airport procedures that are specifically 
inefficient because of poor weather, we include vector     .  

To isolate the impact of operational performance and 
airport specific procedures, we include additional variables in 
the fuel consumption model. We begin with the variable  , the 
baseline fuel consumed based on the filed flight plan. By 
restricting the baseline fuel consumption to cruise, the airport 
fixed effects are able to better isolate the contribution of 
airport-specific departure and arrival operations and fuel 
consumption, and the operational performance variables can 
capture any deviation from the wind-optimal planned 
trajectory. We further eliminate concerns related to the ability 

of a BADA-based model to capture terminal area fuel 
consumption [11]. Additionally, we include the vector    
(departure weights) to capture the influence of aircraft weight 
over fuel consumption.  

Table I describes the variables in the fuel consumption 
model and the vector to which they belong. In section 2B we 
explore the data source of each variable as well as their 
derivation.  

TABLE I.  VARIABLES OF THE FUEL CONSUMPTION MODEL.  

Variable Name 

(Value/Vector) 

Variable Details  

Var. 

label   
Var. Units   Variable description 

Fuel consumed  f 
lbs/ 

operation 

Fuel consumed from wheels-off 

to wheels-on 

Departure delay 

      
ℓ

d
 

minutes/ 

operation 

Difference between scheduled 
departure time and actual 

departure time (ℓd ≥0) 

Airborne delay 

     
ℓ

r
 

minutes/ 

operation 

Difference between scheduled 

and actual airborne time 

Padding      ℓ
p
 

minutes/ 

operation 

Difference between scheduled 

airborne time and 20th percentile 
of actual airborne time  (ℓp ≥0) 

Take-off weight 

difference      
   

lbs/ 

operation 

Difference between actual take-

off weight (TOW) and a 
nominal TOW 

Actual take-off 

weight      
   

lbs/ 

operation 
Actual take-off weight  

Flight-plan cruise 
fuel consumed (c) 

c 
lbs/ 

operation 
Fuel consumed in cruise 
estimated by NASPAC  

Origin airport 

      
    binary  Origin airport fixed effects 

Destination 

airport       
    binary Destination airport fixed effects 

Origin weather 

        
    binary  

Origin airport weather (0 if 

VMC, 1 if IMC)  

Destination 

weather        
    binary 

Destination airport weather (0 if 

VMC, 1 if IMC)  

B. Fuel Consumption Model Data Sources  

The data on which the fuel consumption model in (1) is 
estimated is collected from three sources: A major United 
States-based air carrier; the FAA National Airspace System 
Performance Analysis Capability (NASPAC); and weather data 
from the FAA‟s Aviation System Performance Metrics 
(ASPM) database.  

1) Data from Major US Air Carrier: The data provided by 

the US carrier included all domestic operations between the 

US Operational Evolution Partnership 35 (OEP) airports, 

between the dates of 11/12/10 and 11/29/10 inclusive. While 

the data spans all aircraft types operated by this US carrier, we 

focus on two aircraft types commonly operated by this carrier 

between the US OEP 35: Boeing 757-200 (B752) and Boeing 

737-800 (B738). These aircraft types are commonly used for 

short, medium, and long haul routes across the world.  

The data collected from the airline includes reported data 
on airborne fuel consumption, take-off weight, airport origin 
and destination, scheduled and actual airborne time, and 
scheduled and actual departure time. Airborne fuel 
consumption reported by the airline is directly translated to the 



dependent variable (f) in (1). This includes the climb-out, 
cruise, and descent phases of flight. The actual take-off weight 
(TOW) is reported by the airline     ; this value also factors 
into the calculation of the difference between the actual and 

nominal take-off weights     . Also reported by the airline are 
the origin     and destination      airports which are 
represented as fixed effects:    = 1 if the observation 
originates at airport   and 0 otherwise; the same holds for   .  

The three operational performance variables are derived 
from the collected airline data. This includes departure delay 
(ℓ

d
); airborne delay (ℓ

r
); and padding (ℓ

p
). We define departure 

time as dt; airborne time at at; and the three possible 
subscripts s, a, and i to represent scheduled, actual, and 
unimpeded time. Each of the three defined operational 
performance variables are a function of the following reported 
values for every flight: scheduled departure time (dts); actual 
departure time (dta); schedule airborne time (ats); and actual 
airborne time (ata).  

Departure delay      is the difference between scheduled 
departure time and actual departure time.  

                      (2)  
For airborne delay, we consider the difference between 

schedule airborne time and actual airborne time, allowing for a 
negative or positive value:   

 ℓ
r 
= ats - ata   (3)  

Following Zou and Hansen [6], we consider padding to be 
the difference between the schedule airborne time and the 
unimpeded airborne time (ati) for a specific origin-destination 
pair. To calculate an unimpeded time, we find the 20

th
 

percentile of actual flying time; we seek a value such that for 
all actual airborne times ata, P(ata > ati) = 0.2.  

 ℓ
p                     (4)  

2) Data from FAA NASPAC Model: We use the FAA‟s 

NASPAC modeling tool to estimate the nominal fuel 

consumption during the cruise phase of flight. While 

NASPAC is a system wide modeling tool, it contains a flight 

by flight trajectory interpolator and fuel burn estimator that is 

based on the BADA model issued by Eurocontrol [9]. The 

BADA model consists of flight performance characteristics 

data for over 100 different aircraft types. A preprocessing step 

of the NASPAC platform uses the BADA data to calculate a 

four dimensional trajectory assuming the standard BADA 

model operating at the aircraft‟s nominal mass throughout the 

flight. The assumption of using the nominal mass is 

necessitated by the lack of actual or estimated TOW on a 

flight by flight basis. The TOW provided by the US carrier for 

this study was not available to the FAA for use in estimating 

the cruise fuel consumption. NASPAC bases the ground track 

for its interpolated, four dimensional trajectory on the 

waypoints that come from the flight‟s last filed flight plan as 

reported by the Enhanced Traffic Management System 

(ETMS) [12]. Also, NASPAC uses the filed altitude and filed 

airspeed at cruise altitude as reported by ETMS. NASPAC 

uses a world wide, three dimensional wind product in its 

simulation of flight times and fuel burn. NASPAC can 

simulate the fuel burn during the entire flight, however, 

because of the challenges related to the BADA-based model to 

capture terminal area fuel consumption, we collect data only 

from the cruise portion in the FAA NASPAC model [11]. We 

term this variable c.  

3) Data from FAA ASPM Database: Data on airport 

weather were gathered from the FAA‟s ASPM database. The 

“Airport Efficiency” portion of this database provides 

variables on hourly meteorological condition (MC). From this 

information, we develop two variables: MC at the origin 

airport at schedule departure time (   ) and MC at the 

destination airport at the scheduled arrival time (  ). These 

variables are binary, such that the value is 1 if the MC is 

instrumental meteorological conditions (IMC) and 0 if the 

conditions are visual meteorological conditions (VMC).  

4) Data Exploration: Before proceeding with model 

estimation, we explore the data to understand the relationships 

between the dependent and operational performance variables.  

737-800 757-200 

Fuel Consumption (lbs)  vs Airborne Delay (Min) 

  

Fuel Consumption (lbs) vs. Departure Delay (Min) 

  

 Fuel Consumption (lbs) vs. Padding (Min) 

  

Figure 2.  Fuel consumption vs. airborne delay, departure delay and padding 

for both aircrft types. 
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Fig. 2 shows the range of fuel consumption values for both 
vehicle types and the relationship between fuel consumption 
and the three operational performance variables. There appears 
to be an upward trend in fuel consumption related to airborne 
delay for both aircraft, as there is a density of observations in 
lower left and upper right quadrants of the graph. There 
appears to be a strong correlation between fuel consumption 
due and schedule padding for both aircraft types, with the 
highest values of fuel consumption falling in the region of 
greatest schedule padding. Related to departure delay, there 
seems to be a correlation between fuel consumption and 
departure delay, especially with the 737-800. To formalize 
these relationships, we define and estimate the fuel 
consumption model.  

III. FUEL CONSUMPTION MODEL ESTIMATION 

A. Model Estimation 

For each aircraft type, an observation is uniquely defined 
by an origin, destination, and a date-hour (t).

1
 We then identify 

a new index,  , which represents an origin-destination pair.  
The data we have is a panel, as in each data set we have   
origin-destination pairs with observations over time t; the data 
is furthermore an unbalanced panel as not every origin-
destination pair has an observation in every time period t.  

The model to estimate is:  

       
  

   
        

        
 

      
        

         
                   

           
 

               

(5)   

Where    
  

                          
    

    
 are 

coefficients to be estimated 

To properly estimate the model in equation (5), we must 
take into account the data form an unbalanced panel. The data 
is a panel of origin-destination pairs, and it is possible that 
different origin-destination pairs have different error 
variances. We test for the presence of heteroskedasticity using 
the Breusch-Pagan Cook-Weisberg test for and find that 
heteroskedasticity is indeed present. Furthermore, we expect 
to see autocorrelation; because the data is in a time series, we 
expect the error terms of a particular origin-destination pair to 
be correlated over time. Using the Wooldridge test for 
autocorrelation, we reject the null hypothesis that it is not 
present and therefore must include a correction in the model 
for autocorrelation. To estimate the model, we use ordinary 
least squares with panel-corrected standard error estimates and 
assuming first-order autocorrelation within panels.  

The coefficient values are in units of fuel per minute; to 
help interpret their magnitudes we use the airline data to 
estimate the B738 and B752 fuel. Fig. 3 presents a box plot of 
the average fuel consumed on a flight per minute for both 
aircraft types. Note that the tops and bottoms of the box are 
the 25th and 75th percentiles of the samples, respectively and 
the middle line of each box is the sample median. The 
whiskers extending above and below each box extend the 
length of 1.5 times the interquartile range (IQR) (the distance 
between the 25

th
 and 75

th
 percentile). Any observations 

                                                           
1 The time identifier is date-hour-quarter for the Boeing 757-200.  

beyond the whiskers are more extreme cases, representing the 
variability of fuel consumption. Along with the box plots we 
can consider the BADA cruise numbers for these two aircraft 
types. According to the BADA tables, a nominal cruise fuel 
consumption rate is 133.6 lbs/minute for the B752 and 93.9 
lbs/minute for the B738 [9]; these values are very close to the 
median fuel consumption per minute.  

 

Figure 3.  Airborne delay, departure delay and padding vs. fuel consumption 

for both aircrft types. 

B. Coefficient Analysis  

Table II contains select estimation results (because of the 
large number of fixed effects, we present the main variables of 
interest and discuss key fixed effects in this section). We first 
notice that across aircraft types all coefficient estimates are 
statistically significant. We also notice all coefficient estimates 
have the expected sign (positive), such that all variables 
influence fuel consumption in the positive direction.  

TABLE II.  VARIABLES OF THE FUEL CONSUMPTION MODEL.  

Coeff. estimate 

(Std. error) 
B757-200 B737-800 

   
7898.955 

(123.362) 

5442.603 

(78.378) 

     
4.565  

(1.036) 
2.332 

(0.857) 

     
60.085  

(3.318) 

50.080 

(3.017) 

     
11.900  

(3.085) 

4.508** 

(2.059) 

     
0.007** 

(0.003) 

0.032 

(0.004) 

    
0.133 

(0.047) 

0.483 

(0.054) 

     
3.58*10-6 

(2.19*10-7) 
3.060*10-6 

(3.40*10-7) 

R2   0.9898 0.9930 

N (Number of observations)  4000 1827 

All coefficients are significant at the 1% level unless noted 

**Variables are significant at the 5% level  

*Variables are significant at the 10% level  

 



1) Operational Performance Variables: Table II shows 

the coefficient estimates for departure delay      , airborne 

delay      , and schedule padding      .  

We find that a minute of airborne delay leads to about 60 
lbs of fuel consumption for the B752 and 50 lbs for the B738. 
These values are about 50% of the median fuel per minute for 
both aircraft types, and of a similar magnitude to the lower 
whisker seen in the box plot. These coefficients should be seen 
as averages since the fuel burn impact of an airborne delay 
varies according to how and where the delay is absorbed. The 
fact that the coefficients are well below median average fuel 
burn and the BADA cruise value suggests that in many cases 
the aircraft are burning less fuel to absorb delay than they do 
in nominal cruise mode.  

A minute of schedule padding added to the schedule leads 
to 11.9 lbs of fuel consumed for the B752 and 4.5 lbs for the 
B738. The contribution of a minute of schedule padding is 
significantly less than a minute of airborne delay, leading to an 
interesting trade-off between planned and un-planned delays. 
A minute of padding adding to the schedule is incurred 
regardless of airspace conditions – said another way, if an 
airline adds 10 minutes of padding to the schedule, they are 
increasing their per-trip fuel consumption by 119 lbs of fuel on 
a B752. If the actual trip time is less than the scheduled, this 
fuel is expended in vain; it was unnecessary because the 
planned-for delays did not materialize. However, if the 10 
minutes of padding were not added and 10 minutes of delay 
were incurred, the fuel consumed in airborne delay would be 
601 lbs instead of 119.  

We additionally find that departure delay does add to fuel 
consumption at a very small scale: 4.6 lbs for a minute of 
departure delay on a B752 and 2.3 lbs for a minute of 
departure delay on a B738. This is consistent with our 
expectation that departure delay is a proxy for congestion in 
the terminal area: as the time spent in the terminal airspace is 
limited compared with the time spent in cruise, it follows that 
these coefficients are significantly smaller than those for 
airborne delay. Furthermore, if departure delay impacts are 
persistent they may be captured by airport fixed effects.  

2)  Airport and Weather Fixed Effects: For model 

estimation purposes, we must choose a base origin and a base 

destination airport; for this airport, we eliminate their fixed 

effect from the model. The base airport chosen in this study is 

Hartsfield-Jackson Atlanta International Airport (ATL). We 

choose ATL as the base origin and destination airport because 

it is a hub airport with a diverse fleet mix, and in 2009, it had 

the largest number of operations worldwide [13]. Furthermore, 

ATL is dominated by a single carrier. Because of the nature of 

hub airports, departures and arrivals occur in banks, such that 

aircraft arrive, passenger deplane and board their connecting 

flights, and aircraft depart. This practice of peaking causes 

inefficient terminal area operations – vectoring, holding at 

inefficient altitudes, and long arrival paths. As such, we would 

imagine ATL as a base airport would be relativity inefficient, 

especially as a destination airport compared with other 

airports. However, even compared to ATL, some airports may 

have greater inefficiencies; we examine the fixed effects to 

shed light on this possibility. 

For origin airports, we examine Salt Lake 
City International Airport (SLC), LaGuardia Airport (LGA), 
and Ronald Reagan Washington National Airport (DCA). For 
destination airports, we examine DCA, LGA, Dallas Fort 
Worth International Airport (DFW), John F. 
Kennedy International Airport (JFK). Experts consulted by the 
research team shared that these airports have unique terminal 
areas compared with ATL and could illustrate the terminal 
area impact on fuel.  

As an origin airport, SLC is reported as an airport that 
often grants an unrestricted climb. We see this reflected in the 
airport fixed effects: -549.1 for the 737-800 and -954.7 for the 
757-200 (both significant at the 1% level). Two airports 
known for their conflicted airspace, LGA and DCA, are shown 
to have positive fixed effects as origin airports for the B738: 
520.1 and 546.4 (both significant at the 1% level). These two 
airports are known for consistently being congested, which 
leads to the same inefficiency as discussed related to the 
departure delay. Both are in regions with congested and 
conflicted airspace.  

As a destination airport, ATL is known for a long arrival 
path at low altitudes, and a practice called “tromboning” – 
such that aircraft make a large U-shape around the airport at 
low altitude before landing – which is highly inefficient. The 
purpose is to handle a high level of demand; when controllers 
must deal with many arrivals at the same time, they must 
space out the flights and sequence them so they get as many 
arrivals on the ground as possible, and not necessarily 
maximize fuel consumption [10]. This practice is reflected in 
the fixed effects, as many destination airport fixed effects are 
negative and statistically significant (including Fort 
Lauderdale – Hollywood International Airport (FLL) -1078.8 
and Louis Armstrong New Orleans International Airport 
(MSY) -423.0 for the B752 and Boston Logan International 
Airport (BOS) -571.0 and Seattle-Tacoma International 
Airport (SEA) -523.9 for the B738) or statistically 
insignificant.  

However, despite Atlanta‟s noted inefficiency as a 
destination airport, there are a few airports that the model 
shows have even greater inefficiency at the terminal area. 
Focusing on the B738, these include DCA (567.0); DFW 
(777.4); JFK (724.1); and LGA (820.5) (all significant at the 
1% level). The New York airports along with DCA are well 
known for their conflicted and complicated airspace, which 
leads to a great deal of inefficiency as confirmed by [14]. 
DFW is also a large hub airport, and the results are showing 
that their approach procedures can lead to greater 
inefficiencies than those experienced in ATL.  

We find most weather-airport interaction fixed effects to 
be statistically insignificant, as the airport did either not 
experience IMC or the fuel consumption was not impacted in a 
statistically significant manner. We do see some statistically 
significant effects, of the expected sign, including an increase 
in fuel consumption in IMC of 959.4 lbs for a B752 destined 
for DFW and an increased in fuel consumption in IMC of 

http://www.dfwairport.com/
http://www.dfwairport.com/
http://maps.google.com/maps?hl=en&sugexp=ldymls&xhr=t&q=seattle+tacoma+airport&cp=13&qe=c2VhdHRsZSB0YWNvbSBhaXJwb3J0&qesig=6AAAnm_xW_kOawQ3pobL2Q&pkc=AFgZ2tmPIjNEFvX__uwPrpCqble1aboKzH8zWjKZhbWAG2b1Dz3fcotHLxKpo9ONPBqN2O_nwhr57uMR-VR-Gs0zlwqNHVrpxw&client=firefox-a&rlz=1R1GGLL_en___US375&um=1&ie=UTF-8&hq=&hnear=Seattle-Tacoma+International+Airport+%28SEA%29,+17801+Pacific+Hwy+S,+Seattle,+WA+98158&gl=us&ei=fyo1TcGaEo-ssAPU_PHhBQ&sa=X&oi=geocode_result&ct=title&resnum=1&sqi=2&ved=0CB4Q8gEwAA
http://maps.google.com/maps?hl=en&sugexp=ldymls&xhr=t&q=seattle+tacoma+airport&cp=13&qe=c2VhdHRsZSB0YWNvbSBhaXJwb3J0&qesig=6AAAnm_xW_kOawQ3pobL2Q&pkc=AFgZ2tmPIjNEFvX__uwPrpCqble1aboKzH8zWjKZhbWAG2b1Dz3fcotHLxKpo9ONPBqN2O_nwhr57uMR-VR-Gs0zlwqNHVrpxw&client=firefox-a&rlz=1R1GGLL_en___US375&um=1&ie=UTF-8&hq=&hnear=Seattle-Tacoma+International+Airport+%28SEA%29,+17801+Pacific+Hwy+S,+Seattle,+WA+98158&gl=us&ei=fyo1TcGaEo-ssAPU_PHhBQ&sa=X&oi=geocode_result&ct=title&resnum=1&sqi=2&ved=0CB4Q8gEwAA


353.7 for a B738 destined for Minneapolis St. Paul 
International Airport (MSP).  

IV. NUMERICAL EXAMPLES  

In this section, we utilize the coefficient estimates to 
determine fuel consumption under different scenarios of 
operational performance. Using the realized airline data, we 
generate scenarios of operational performance and predict fuel 
consumption due padding, departure delay, and airborne delay, 
along with a baseline fuel consumption assuming zero delays.  

We begin by identifying specific origin-destination pairs 
for each aircraft type, and examine the specific observations. 
We choose the observation with the maximum sum of 
padding, departure delay, and airborne delay across all 
observations, and term this the “Maximum overall flight.” We 
also identify the maximum value of padding, the maximum 
value of departure delay, and the maximum value of airborne 
delay; these values are not necessarily incurred in the same 
flight observation. We consider the set of these three values to 
be the “Maximum flight.” We finally, over all observations for 
a specific origin-destination pair and aircraft type, determine 
the average padding, departure delay, and airborne delay. The 
set of these three values is termed the “Average flight.” We 
then develop four datasets: a baseline (zero padding and 
airborne and departure delay); an overall maximum flight 
dataset (with the three delay variables equal to those of the 
overall maximum flight); a maximum flight dataset (with the 
three delay variables equal to those of the maximum flight); 
and an average flight (with the three delay variables equal to 
the averages). These data sets are based on the original airline 
data. In developing these datasets, we include all observations 
between a given airport pair on a particular aircraft type, and 
simply replace the values of padding, airborne delay and 
departure delay with either zero; the averages; the maximum 
overall flights; or the maximum flight. We then predict fuel 
consumption for each observation using the coefficient 
estimates, and then finally average the fuel across all 
observations. 

We present the results in Figs. 4 and 5 for the B752 and 
Figs. 6 and 7 for the B738; both present two chosen airport 
pairs. The figures show baseline, departure delay, padding, 
and airborne delay as a percentage of total fuel consumption. 

A. Numerical Examples for the Boeing 757-200 

We evaluate a medium-haul and a long-haul airport origin-
destination pair for the B752: the 1345 mile route of Los 
Angeles International Airport (LAX) to MSP and 2300 mile 
route of JFK to San Francisco International Airport (SFO). 
LAX and JFK are interesting airports because they are 
certainly congested with a very diverse fleet mix yet neither is 
dominated by a single carrier. This is reflected in the airport 
fixed effects: as an origin the fixed effects are negative and 
statistically significant, yet as a destination the fixed effects 
are statistically insignificant meaning that the impact of the 
terminal area is not statistically different from that of 
congested ATL. While MSP and SFO are both hubs for a 
major US carrier like ATL, they have fewer operations and 
may be less prone to the peaks present at ATL; this is reflected 
in the origin and destination fixed effects for both airports, 

which are both negative and statistically significant at the 1% 
level. Additionally, both routes experienced large peaks in 
departure delay and padding, and as such present a strong 
opportunity to evaluate the impact of these two operational 
performance variables. Table III presents values for the three 
operational performance variables for the maximum overall, 
maximum, and average flight.  

TABLE III.  BOEING 757-200 FLIGHT SCENARIOS.  

Variable name 

Flight scenario  

Maximum 

overall flight 
Maximum flight Average flight 

JFK-
SFO 

LAX-
MSP 

JFK-
SFO 

LAX-
MSP 

JFK-
SFO 

LAX-
MSP 

Departure delay 79 14 79 147 3.7 10.1 

Airborne delay 23 18 43 29 7.5 4.2 

Padding  24.6 24 51.6 37 17.7 10.5 

 
Using these values and the coefficients presented in Table 

II, we predict fuel consumption and quantify the percentage 
attributed to each operational performance variable. Fig. 4 
presents the results for LAX-MSP and Fig. 5 presents the 
results for JFK-SFO (note that the x-axis begins with 85% for 
the purposes of zooming in on the operational performance 
variables). 

We see for the long-haul route the overwhelming percent 
(95% or higher) of fuel consumed during the flight is not 
related to operational performance. The medium route is more 
significantly impacted by operational performance metrics; as 
it is a shorter flight, the operational performance variables 
account for a larger percentage of the fuel consumed. We also 
note the relative impact of the operational performance 
variables. Table III shows that the departure delay incurred on 
the maximum flight for both routes is significantly higher than 
the airborne delay, however the percentage of fuel attributed to 
departure delay is minimal compared with airborne delay. Both 
flights experience larger levels of padding for all scenarios, yet 
Figs. 4 and 5 show that the magnitude of the fuel consumed in 
airborne is significantly greater than that consumed in padding.  

 

 

Figure 4.  Fuel consumption on a 757-200, LAX-MSP. 
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Figure 5.  Fuel consumption on a 757-200, JFK-SFO. 

B. Numerical Examples for the Boeing 737-800 

We evaluate a short-haul and a medium-haul airport 
origin-destination pair for the B738: the 569 mile route of 
BOS to Detroit Metro Airport (DTW) and 1700 mile route of 
ATL to John Wayne Airport (SNA). Unlike the airports 
chosen for the B752 numerical example, these airports are not 
statistically different from ATL; as such the fixed fuel 
consumption may play a larger role in the overall fuel 
consumption. Additionally, both routes experienced consistent 
levels of operational delay, except in the maximum overall 
flight. The maximum overall flight allows us to investigate a n 
operation with high departure delay and schedule padding 
(ATL-SNA) with a flight with high airborne delay (BOS-
DTW). Table IV presents values for the three operational 
performance variables for the maximum overall, maximum, 
and average flight.  

TABLE IV.  BOEING 737-800 FLIGHT SCENARIOS.  

Variable name 

 Flight scenario 

Maximum 

overall flight 
Maximum flight Average flight 

ATL-
SNA 

BOS-
DTW 

ATL-
SNA 

BOS-
DTW 

ATL-
SNA 

BOS-
DTW 

Departure delay 28 0 28 21 1.4 1.3 

Airborne delay 2 23 21 29 2.0 8.4 

Padding 22 6.6 35 14.6 9.7 3.2 

 
Using the values presented in Table IV and the coefficients 

presented in Table II, we predict fuel consumption and quantify 
the percentage attributed to each operational performance 
variable. Fig. 6 presents the results for ATL-SNA and Fig. 7 
presents the results for BOS-DTW.  

We first see that for a short-haul flight, BOS-DTW, 
reduced operational performance greatly impacts the overall 
fuel consumption of a flight. For this route, we see that for the 
maximum overall flight, 10% of the fuel consumption is 
attributed to operational performance variables. If the 
maximum observable padding, departure delay, and airborne 
delay are experienced on the same flight, about 13% of the 
fuel consumed is attributed to operational performance.  

We also see that a flight with high airborne delay (BOS-
DTW, Maximum overall flight) attributes a much higher 
percentage of the overall fuel consumption to operational 

performance variables compared with a flight with high 
padding and departure delay (ATL-SNA, Maximum overall 
flight). 

 
Figure 6.  Fuel consumption on a B738, ATL-SNA. 

 

Figure 7.  Fuel consumption on a B738, BOS-DTW. 

These findings support the literature related to the potential 
of ATM to reduce fuel consumption and related CO2 
emissions. Reducing airspace delay through the use of AFPs 
was found to reduce delay by 10% by Ohsfeldt et al.; in this 
study we find airborne delay can contribute up to 10% of 
overall fuel consumption [3]. Furthermore, Clarke et al. [4] find 
that fuel consumption can be reduced by about 20% on 
approach using CDAs. Our findings support this work: we find 
that the sum of airport destination fixed effects and the 
intercept to be up to 13% less than the intercept alone, 
suggesting that efficient terminal areas, potentially granting 
unrestricted decent, can reduce fuel consumption by a 
significant amount.  

These findings also shed light on the importance of 
focusing fuel reduction efforts on airborne operational 
performance, as the magnitude of the potential savings is much 
larger than potential savings from taxi fuel reduction. For 
example, the average B738 flight from BOS-DTW expends 
421 lbs of fuel in airborne delay (which translates into about 
3.5% of total airborne fuel consumption in Fig. 7); this is 
compared to the average 118 lbs of fuel consumed in taxi-out 
and 271 lbs of fuel consumed in taxi-in reported in the data. 
Cutting the average airborne delay by 35% is equivalent to 
eliminating taxi-out fuel consumption completely. While much 
focus is on reducing fuel consumption from surface operations, 
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the potential of fuel reduction is significantly less than that 
from airborne operational performance.  

V. CONCLUSION  

This analysis shows the possibility to reduce fuel 
consumption through an improvement in operational 
performance. We find that operational performance is 
responsible for up to 10% of airborne fuel consumption; these 
findings are supported by related literature on the potential of 
ATM to reduce fuel consumption. We further put the 
magnitude of fuel savings into context by comparing it to taxi 
fuel reduction potential. We confirm that planning for 
operational performance degradation incurs a fuel cost; 
however, this fuel cost is significantly less than the fuel 
consumed if the delay were not anticipated. The findings of this 
study help further our understanding of the relationship 
between schedule padding and airborne delay from a fuel 
consumption perspective. The findings of this work could be 
coupled with additional research to determine the likelihood of 
experiencing delays of a certain length; from these findings an 
optimal level of schedule padding from a fuel perspective could 
be encouraged.  
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