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Abstract—In this paper we study the en-route strategic flight
planning of a commercial aircraft constrained to pass throwgh a
set of waypoints whose sequence is not predefined. This preih
has been solved as an hybrid optimal control problem in which
given the dynamic model of the aircraft, the initial and final
states, the path constraints constituting the envelope ofight,
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aircraft must fly, giving expected overfly times and, gergral
performing a steady flight, i.e., at constant altitude anldare

ity, in some defined airways connecting waypoints. Defining,
thus, the most efficient flight plan is not easy since there are
thousands of waypoints, flight regions with different asstad

and a set of waypoints in the European air space, one has overfly costs, and wind influence to be considered. Moreover

to find the control inputs, the switching times, the optimal
sequence of waypoints and the corresponding trajectory ofhte
aircraft that minimize the direct operating cost during the flight.
The complete layout of waypoints in the European airspace
is reduced and waypoints are gathered into a small number
of clusters. The aircraft is constrained to pass through one
waypoint inside every cluster of waypoints. The presence ahulti
point constraints makes the optimal control problem particularly
difficult to solve. The hybrid optimal control problem is converted
into a mixed integer non linear programming problem first
making the unknown switching times part of the state, then
introducing binary variable to enforce the constraint of passing
through one waypoint inside every cluster, and finally applyng a
direct collocation method. The resulting mixed integer norlinear
programming problem has been solved using a branch and bound
algorithm. The cases studied and the numerical results shothe
effectiveness, efficiency and applicability of this methodor en-
route strategic flight plans definition.

Index Terms—Air Traffic Management, 4D Trajectory Plan-
ning, Hybrid Optimal Control, MINLP.

I. INTRODUCTION

it has also been shown that cruising in steady flight is famfro
an efficient performance [5].

Consequently, with the aim of defining more efficient (en-
route) flight plans, this paper presents a MINLP approach for
commercial aircrafts strategic horizontal trajectorynpiemg
towards TBO.

Some prior research works on aircraft trajectory optimiza-
tion using optimal control have been presented in [6], [5],
and [7]. Other works on trajectory optimization were based
on hybrid optimal control in which the sequence of phases
was predefined. Problems with known phase sequence have
been frequently solved in aerospace engineering as nhdise
problems [8], [9], [10] [11] [12], the last two considering a
fixed sequence of waypoints. Another approach to solve multi
phase problems applied to aircraft trajectory optimizatias
presented in [13], [14], [15], in which a method to generate
optimal vertical and 3D flights plans have been presented
for commercial aircrafts with a fixed sequence of phases
consisting in different operational procedures and aaradyc

The SESAR concept of operations requires a paradigronfigurations.

shift [1], [2] from a highly structured and fragmented syste

However, to the best knowledge of the author, the problem

heavily reliant on tactical decision and with few strategiof considering multiple waypoints without specifying the- s
planning functions, to an integrated one based on colldivera quence has not been studied yet. Thus, the main contriboftion
strategic management of trajectories. In the future Ewmopethis paper is to present an approach based on MINLP to solve
ATM system to be built under SESAR, the trajectory becomashybrid optimal control problem with non-defined sequence
the masterpiece of a new set of operating procedures rdferof phases and to apply it to the problem of strategic flightipla
to as Trajectory-Based Operations (TBO) [3]. Therefore, thdefinition.

strategic-level implementation of optimal 4D trajectsrimust

MINLP is the mathematical problem of minimizing a func-

be done within a framework of increasing complexity [4]tion in a feasible region described as the intersection aifra n
Thus, 4D trajectory planning and optimization plays a alicilinear set and integrity requirements. In the aircraft moti

role in the new ATM concept.

problem herein presented, the MINLP arises from minimizing

Current flight plans are defined according to rigid corthe objective function of the system subject to the physical
straints; in particular, the en-route flight plan portion shu constraints. These physical constraints combines n@aiin
specify a certain number of waypoints through which theonstraints expressing the dynamics of the trajectory ef th



aircraft and integer requirements to model the choice of tire Section Ill, and it is reformulated in Section IV as a
optimal sequence of points. In all generality MINLP is atMINLP problem. The approach to its resolution is described
undecidable problem [16] but if one assumes that the feasilih Section V and in Section VI numerical results are reparted
region is bounded, which is the case here, it is NP-HarHinally, Section VIl contains the conclusions and a desionip
Although bounded MINLPs can be solved in theory, thegf future work.
remain one of the most challenging problems in computationa
optimization. This is true in particular, when the non-kne
set is not convex as it is the case here. Several computefor finding aircraft trajectory purposes, it is commonly
programs have been developed to solve such MINLPs. Amoagsumed to consider a 3 Degree Of Freedom (DOF) dynamic
the most efficient codes are the commercial code Baron [17pdel that describes the point variable-mass motion of the
and the open-source solver Couenne [18]. Unfortunately, &i§craft over a flat earth model.
problems size grows above a few hundred variables, thesé 3D flight plan can be subdivided into a sequence of flight
solvers rapidly become impractical. Therefore, we revert Phases that can be regarded as symmetric flights either in a
a heuristic approach (one that does not guarantee that Ye&tical or horizontal plane. The hypothesis of symmetightl
solution found is the best possible). Our approach is baséc vertical or a horizontal plane allows the dynamic ecprati
on a nonlinear solver which is able to find locally optimaf motion of the aircraft to be simplified. Since this paper
solution to the problem where the integrity requirementshen focuses on cruise phase, the equations for Symmetric firght i
variables is removed and a branch-and-bound scheme aime@@itzontal plane are presented.
finding feasible value for the integer variables. This applo A
is more commonly followed for problems where the nonlinear . ) , )
region is convex (in such cases it is an exact algorithm) byt "€ Vertical component of windy,..,, and the first deriva-
it has also been found useful for finding good solutions €S+ Vwa, and V., , are not considered due to its low
problems with non-convex nonlinear regions [19]. mfluenc_e. We consider a spherlcal_ earth moc%j. << 1! _
In the problem formulation, the coupling of the discret&© th_e mﬂuen_ce of all terms regarding n_ormal accelera’mo_n i
waypoints with the continuous aircraft dynamics results ffismissed. Wind terms are expressed in terms of the fixed
a hybrid system, i.e., systems that combine a discrete anag(tjerence and projected into th? reference attached to the
continuous dynamics. Some works that model aircraft flighﬂrcraﬂ' A standard atmosphere 'S, defined Mm_SA =0,
as hybrid systems are [20], [21] and [22]. For a more detail@&fd & par621b0I|c drag polar farp is assumed, i.eC’p =
insight into hybrid systems, the reader is referred to [23]. Cpo + K Cj.. The airplane is a conventional jet airplane and

i+ .
The problem is solved as an hybrid optimal control probleffADA 3.6” is used as aircraft performance models.
in which, given the dynamic model of the aircraft (continuos The 3DOF equations governing the translational Horizontal

dynamic), the initial and final states, a set of path constsai 2D motion of an airplane are the following:
and a sgt of Waypoint§ (di_screjte dynamic), one has to find the mV = T —D,
control inputs, the switching times, the optimal sequente o

Il. AIRCRAFT DYNAMICS

. Horizontal flight dynamics

waypoints and the corresponding trajectory of the airdfadt mVxcosy = Lsp,

minimize a certain objective function during the flight, e.g Leosp = my,

minimize fuel cost and overfly costs. N o= Veos X + Vi, 1)
The complete layout of waypoints in the European airspace R cos

is reduced and the waypoints are gathered into a small number 0 — Visin x + Vi,

of clusters. The aircraft is constrained to pass through one R, '

waypoint inside every cluster of waypoints. The presence of m = —nT,

the point constraints together with the fact that the seceeh

| [, th ine thrug§t and bank I th
waypoints is undefined makes the optimal control problem p pgeneral, he engine trush and bank angiqu are the

ontrol variables of the aircraft, that is= (T, ). The thrust
is commanded by the engine throttle and the bank angle is
L ) . . OWR 5 mmanded combining rudder and ailerons trims. The state
switching times part of the state, then introducing binar ctor,z, will be: z = (A, 6, V, x, m), where is de longitude,

variable to enforce the constraint of passing once throug he latitude,V’ the True Air Speedy the heading angle and

each cluster of waypoints and finally applying a collocatlopn the mass of the aircraft.

method based on Gauss-Lobatto quadrature rules [24], §25] U The path constraints of the problem are those that define

convert dynamic equation of the system into constrainte Tgi craft’s flight envelope and can also be consulted in BADA
resulting MINLP problem has been solved using a branch aﬂgtabase manual [27]

bound algorithm, Bonmin [26]. Three cases are studied an
the numerical results are reported.
The paper is organized as follows: first, in Section II, we
present aircraft dynamics, wind dynamics, waypoint dai an
overfly costs. The hybrid optimal control problem is stated !http://www.eurocontrol.int



0 <CL < CLpaa,

OS hgmin[hMO?hu]a TS Tmaza
CV"”" Vitan <V < Vo, ) 7S Mmazx,civy (2)
M < Mo, V' S @i maa(eiv)
a )
Mmin < M < Mmag, ")/S %z(cw),

Wherehu = hmaw+Gt(ATISA_CTC,4)+GW(mmaw_m)v
andCy,,, =1.2.

B. Wind data

In order to include wind dynamics in the aircraft dyna
ical model (1) and solve the resulting MIOCP, an analyticgly. 2. European waypoints: Airport, Navaid and en-routeypaints of
function for wind dynamics is needed. Portugal (blue), Spain (red), France (green), Italy (pirkhigland (violet),

Therefore, we represent the wind function as a nonlinedgrmany (blue), Switzerland (yellow) and Benelux (orange)
regression of GRIB data provided by the National Oceanic and
Atmospheric Administration (NOAX) wind forecasts. GRIB
data are given in spherical coordinates, i.e., longituatiiude which can be selected by ICAO (International Civil Aviation
and altitude. In particular, we adjust these GRIB tabulaadaOrganization) identifier.
to analytical functions, so that both west-east component,Figure 2 illustrates all Airport, Navaid and en-route way-
Vwx = f(A,6), and south-noth componerit,s = f(X,0), points in western Europe. It gives a qualitative measur&ef t
are functions ofA and#. As the component perpendicular tacomplexity of defining an efficient flight plan.
earth,V,,,, is negligible, we have set it to zero.

The wind forecast of october the 20th, 2010 in the Europekh EN-Route Overfly Charges
region has been considered. We convert those tabular data in The en-route charge of a flight shall be calculated in
analytical functions by means of nonlinear regression. i 4accordance withR = UR x N, in which R is the charge,
degree polynomial is fitted to the data. The goodness of fif,) is the unit rate andV = d x p is the number of service
measured in terms of R-Squared parameter, yielded 0.76 €its corresponding to each flight, whetes the flight distance
Vi, and 0.88 forV,,,. Real data and analytical functions ardactor accomplished, and the weight factor of the aircraft.
presented in Figure 1 at 250 [Hpa] (h=10393 [m]). The distance factor shall be obtained obtained by diving
by 100 the number of kilometers in the great circle distance
between: the aerodrome of departure within, or the entry
point into, the defined airspace, and; the aerodrome of first
destination within, of the exit point of that airspace. Tdes
entry and exit points are those where the route described in
the flight plan crosses the lateral limits of the differenREl
The weight factor shall be = \/ MTOW [ton]/50.

The basic unit rates, from January 1st 2010, for some
european countries are: Spain, 84€l; France, 65.1€;
Germany, 68.9%€; Italy, 68.64 €; Switzerland, 75.0%€(1.51
CHF =1 €exchange rate); Belgium and Luxemburg, 7659
Netherlands, 65.&.

(€) Vo regression (d) Vawp regression [Il. DESCRIPTION OF THEPROBLEM AND FORMULATION
Fig. 1. Wind data at 250 [HPa] -h=10395 [m]- We study the problem of finding the control inpuf¥t)
and u(t) that steer the state of an aircraft whose dynamic
C. Waypoints data model is given by (1) from the initial state; to the final

statex, passing through a set of waypoints and minimizing

As defined above, a flight plan must be defined specifyi . : T .
a certain number of waypoints through which the aircra%éﬂe direct operating cost (in this case, fuel consumpticsh an

is going to fly. AUGURS?, a tool developed by Eurocontrol, verfly costs) during the hc_)rlzontal fl]ght.
. ’ . ! Letwp; andwpg be the aircraft positions that correspond to
provides a list of current en-route waypoints and navaids

: - - andx p, respectively. We define a number of clusters,
in the ECAC (European Civil Aviation Conference) area . o " F 'eSPECIVEly : B

€ach cluster containing some determined number of waygoint
Zhttp:/lwww.noaa.gov/ nyp, SO that the aircraft must pass through one waypoint out

3http://augur.ecacnav.com of n,, inside clusteri, i =1...nq.



Let P = {wpi1,...,wpn,n,,} b€ the set of possi- the navigation fees due to overflying certain regions of the
ble waypoints that correspond to the set of possible stasEsspace.
{Z11,...,%nm,,}- Thus, we can say that the aircraft is 1) General formulation of the optimal control problem:
constrained to pass through; waypoints of P when moving The aircraft flight planning problem stated above is a paldic
betweenwp; and wpr. The order in which the waypointscase of a multiphase mixed integer optimal control problem
of P are overflown is specified by the cluster index, i.ewhich can be stated in a more general form as follows [28,
i = 1...n., but the waypoints inside every cluster, i.e.Chapter 1], [29]
wpi i, J---Nwp Must be determined.

If ne is the number of clusters of the st ny =nq +1

. g . . . nyg—1 7

phases can be identified during the motion of the aircrafteMo % ket
precisely, a phase starts when the aircraft position coesi ' ; [ i Lifar(t), ur(t), 0r(t), v, 2, t]dt+
with wp; or when it passes through one of the points of the =0 > ; @
set P and ends when the aircraft passes through another point wler(tre1), v, 2] |
of the setP or when it reaches the final pointpr. Let subject to

fr=to <h <o Sty Siny =tr 23(t) = filan (1), e (1), 8k (), v, 2, 1],
be the switching times between phases. Thus ot ;1] t € [tr,testl], (8)
the system is in phask, £ = 0,...,ny — 1. The duration of Grelmr (), ur (1), 0k (), v, 2,8 = 0,t € [t trpa],  (9)

each phase must also be determined.

Let §(¢) the binary control function that indicates which celz(t), un(t), (), v, 2,1 < 0,1 € b, thyal, - (10)

point of the setP is visited by the aircraft at time, "z, (to), @k, (t1), - -+ Tk, (), 0,2) <0, (11)
i.e. at the beginning of phask. It is a vector function 9z, (to), Tr, (1), - - -y @k, (o), 0,2l =0, (12)
whose components are piecewise constant with jumps at t_imes Tt (brg1) = tr[we (brgr), un (Erg), v, 2], (13)
ty,k = 1,...,ny — 1, with a single nonzero component in

each phase. The functiaift) during phasé: will be denoted for & =0,...,ny —1.

by 65 (t). Component, j of oy, ; (tx), 6k, , (tx) = 1 means that a) Continuous variablest € [tr,tp] C R is the time,

the aircraft flies through waypointp, ; at time#,. Abusing k() € R" is the state variable in phagde whose time
notation,d, , () will be simply denoted by, ;. Letxz;(t) be derivative isxz;/(t) € R"x anduy(t) € R™« is the control
the state variables of the optimal control problem duringgeh function in phasek, which is assumed to be measurable.
k. Thus, the point constraints can be expressed as follows Variable z € R"= represents a vector of parameters.

_— b) Discrete (integer and binary) variablestet §(¢) :

wr(fy) = Z(Si,j(fk) v k=i=1,...n;—1 (3) [tj,_tp] — R’fﬁ be a mea.lsurable fulnctlon. A time dependent
= variabled(t) is called an integer variable or an integer control
) _ B o function if it takes values irZ,"s. If takes values in{0,1}"s

which means that, ifi; ;(t,) = 1 at the beginning of phasejt s called a binary variable or binary control function.
k, it will be xy(ty) = ;;, that is, the aircraft will be in | et , ¢ R™ a vector. A time independent variabte is
configurationz; ; and the associated waypoint positiop; ;. called integer variable if takes values #', and binary

Additional constraints are variable if takes values if0,1}"*. We assume that integer
nwp . variables can take values in a finite set. We suppose that
D i) =1, i=1...ng (4)  5(t) is piecewise constant ifit;,tx] with jumps only at
=1 times ¢ € {f1,...,%,,—1} which are the instants when a
Gij(tr) <1, i=1...n4. (5) discontinuity in the binary control functiof(t) may occur. If

Condition (4) means that the aircraft must pass only throu time there s a ol_lscgntmuny in at least one (.)f |ts.com|msme
e say that a switching occurred and this time is called the

a single pointuwp; ;, in clusteri at timet,, whereas condition ™ - >°Y "¢ ne : . .
(5) means that the aircraft may pass or not through every Oﬁv%:itchlng time.dy(t) € Z™ is the value of variablé() in

of the waypointswp; .. phasek.
The objyerz:tive fupngtiona| to be minimized is c) Objective functional: The terms of the objective

functional (7) are in Bolza form and contains a Lagrange

b et el Twp term ft’““ Ly |xp(t),ur(t), 0k (t), v, 2, t]dt and a Mayer term
. th ’ ’ A Nl
J= Z / e (t) dt "‘ZZ‘SMOCwmw (6) Ex[zk(tks+1),v,z]. Both L and E are assumed to be twice
k=0 "'k i=1j=1 differentiable.
wherermy(t) is the fuel flow of the aircraft during phade d) Constraints:Equation (8) and Equation (9) witf), €

and OC,,, ; is the Overfly Cost (OC) associated to eacR™/» and g, € R"s are the equations of the differential-
of the waypoints. This cost functional represents a measwlgebraic model of the system in phase

of the direct operating cost during the flight of an aircraft, Equations (10) withe, € R+ are the path constraints in
which among others counts with the cost of the burnt fuel afpdhasek.



Equations (11) withri"¢¢ ¢ R™inea and Equations (12) switching times part of the state and introducing a new
with r¢¢ € R"? are the inequality and equality multiindependent variable with respect to which the switchinmges
point constraints, respectively, which are assumed to leetware fixed [30], [31].
differentiable. In these equatiorts denotes the index of the Without loss of generality, we can assume that= t, =
phase that containg, that is,t; € [ty,,tx,,,]. In our case ¢; =0 andi,, =tp = 1.
the number of interior point constraints coincides with the  Since the number of switches; is known, we introduce the

number of clusters.,;. new state variables;,, 1,...,%n, 1n,, Such thate, ., =
The dimensionsi.., , 1w, ; Ng; Ny, Nyineas Npea, Mgy Mg, A€ f1 with af, =0,k =1,2,...,nq. Let

not necessarily identical for each phase. '
Equations (13) are the transition conditions between ghase B= [Ty Ty T i1y oy Ty )

which are usually of the formy, 1 (fp11) = 2 (tre1).
The solution of this problem is given by the sebe the extended state vector.

{z(t),u(t),d(t),v, 2|t € [t1,tr]}. We introduce the new independent varialslend choose an

e) Hybrid dynamical systemsThe set of dynamic sys- increasing sequence of, values on the intervaD, 1] setting
tems (8) is called hybrid dynamical system and the probles = k/(n.,+1),k = 1,...,n.. However, any monotonically
(7)-(13) is actually a hybrid optimal control problem formuincreasing sequence f; values on the intervaD, 1] could
lated as a multiphase Mixed Integer Optimal Control Problefe used forsy,.
(MIOCP). We then establish a piecewise linear correspondence be-

The binary control functioni(¢) in [t;,tr] defines both tween timet, and the new independent variabdeso that for
the untimed sequence of phas@s, k1,...,kn,—1) and the every chosen fixed pointy, k = 1, ..., ne, t equalst,. The
sequence of switching timé$, , ..., £, 1). Switches can be relation betweerns and¢ changes on each intervill, f111].
either autonomous or controlled. For instance, autonomousas a result we obtain the following expressions for the
switches may occur when the system reaches a prescripgénge of variable
set of the state space expressed by Equations (13). On the
contrary, controlled switches take place in response tdrobn (et + 1) T, 41 5, 0<s< 1L
inputs which in our case are determined by the solution of the
optimal control problem (7)-(13).

In this work we assume that the number of phases is known, (et + 1) (@n, k1 = Tngt) S+
both the untimed sequence of phases and the sequencé of (k+1) Tng4k — K Tng i1, madT <SS o
switching times are not known, and the dynamic equation of | ...
the system does not change across different phases, ee., th (net + 1)(1 = T, 4m,) 5+
aircraft flies in all phases with clean configuration and ia th ' Nt
horizontal plane. (et 1) Tnney = Pt bt <81

(16)

f) Relaxed optimal control problemin the following  After introducing the new independent variable, in the rive
sections the concept of relaxed optimal control problent wilk_1 <s< -EtL kL —0,..., ny the dynamic constraint (15)

be used. The relaxation of a MIOCP is the optimal contr@ggomes = net+l

problem obtained replacing integrality assumption #(t)

and v with the conditionsy,(t) € [0,1]"+ andv € [0,1]™", 2'(s) = (et + 1) (@nghsr — Tngr) felz(s), uls), s, (17)
respectively.

IV. PROBLEM REFORMULATION Wherefk[x(s),u(s), s] = filz(t), u(®), H(s)], and

A. Incorporating Switching Times Li(#(s),u(s), 8) = (nei+1) (Tnars1—Tnir) Lz (t), u(t), t(s)],

For the sake of simplicity of exposition of the method )
consider the following simplified version of the optimal ¢t " this way the problem (14)-(15) can be rewritten as

problem (7)-(13) nei kbl E+1
minz [/ . Li[2(s),u(s), slds + Ex [i <n0l m 1>}

ng—1 (o = [sEa
min Z [ﬁ Li[z(t), u(t), t]dt + Ex [a: (f;H_l)}] (14) -k 0 (18)
=0 L/t subject to
M = At @s) = 0t D =) fule(s)uls), o (29)

wherety < t; < --- < i, < {,, are the switching times The new equivalent problem is a conventional optimal
between phases which must be determined. control problem. The last. components of the optimal

This hybrid optimal control problem is converted into aolutionz* of this problem will be the optimal switching times
conventional optimal control problem making the unknowf,,k =1,..., n..



B. Optimal control resolution using collocation called the Hermite-Simpson system constraint in which the

In this section the numerical method employed to solve ti@Proximation ofx(t) at; ¢ is given by
optimal control problem (18)-(19) derived from the refollaru T+ Tip1 ha
tion will be described. For the sake of simplicity of expisit vic = ———— + o lf(zi) - flzir)].  (24)

consider the following simplified version of this problem . . . : .
Constraint (23) is obtained imposingzi.c) = z; .

min /tF L[z(t),u(t), t}dt + E(tg) (20 For numerical calculations, we will use a Hermite-Simson
tr 7 ’ collocation method [24].
subject to 2(t) = fla(t), u(t), 1] 1) V. MINLP SOLUTION APPROACH

Applying all the transformations described in the previous

A collocation approach has been used in which imegrfm%@ctions we obtain a MINLP problem, whose form is omitted
rules are based on a particular family of Jacobi interpgs. o s:’;lke of brevity '

:_atlggtt polyngm|tals th?t gll\/ett:!se Ito thi S0 ca_llecli G‘gﬁss- In this problem, fixing the variables ; i = 1,...,nq, j =
obatto quadrature rules. In this class of numerical mesho .., My 1S €quivalent to fixing the sequence of waypoints

the optimal control problem is converted into a NonLinea&(’n'd if this is done the MINLP problem becomes a regular

Pr_lo_gr;]rarpmmg gNLP?tpr(zblem. bdivided int it | flight planning problem. A simple algorithmic approach abul
h € |m(ej m_etrva [ I’t_Fg_ IS sut_ i e.thlnt_Ond_ |nterva§ therefore be to enumerate all possible valuesdfor, solve
whose endpoints ardfo, t1, ... tn,} With to = 1y and " qoqciated motion planning problems and pick the best
t,, = tp and a numerical integration scheme is used for

L . . . . ne. A rapid calculation of the number of problems if one
the_object|v§ functional in (20) and Equation (21) in eac llows this approach shows that it is impractical for more
subintervallt;, t;11].

Consider a simplified form of differential equation (21)than a handful of waypoints. A common approach to try (o

; L . address bigger problems is to do an implicit enumeration via
dx/dt = f(t). Basic numerical integration methods to SOIV?he branch-and-bound algorithm [32], [33]. Branch and labun
this differential equation rely on the trapezoidal rule ’

B has now become a standard algorithm for integer programming

_ _ tit1 hi . — _ (see for example [34] and reference therein). We give below a
o(tiv1) —a(ti) = /t FO)dt = [f(t:) + f(tira)], brief sketch of it in our context, in particular we try to stse
with h; = (f21 — £,), where the integrand is approximatec?Ut the particularities that arise in trying to solve the N

with a linear function, and on the Simpson’s rule problem. . -
Branch and bound is a divide-and-conquer method. The

_ _ tit1 hip o : - dividing (branching) is done by partitioning the set of fibées

o(tiv1)—a(ts) = /t fydt = E[f(ti)+4f(ti70)+f(ti“>]’ solutions into smaller and smaller subsets. The conquering
(22) (fathoming) is done by bounding the value of the best feasibl

in which the integrand is approximated using a quadrat®lution in the subset and discarding the subset if its bound
polynomial which depends on the values of the integrand iaticates that it cannot contain an optimal solution. Branc
the endpoints of the interval;,?;11] and at the midpoint and bound is an exact algorithm when the bound used in the
tic = (tiy1 — t;)/2 of this interval. These points arefathoming phase is a valid lower bound. Our case is particula
called collocation points. Both the trapezoid rule and tha that, obtaining a valid lower bound of the MINLP problem
Simpson’s rule belong to the so called Gauss-Lobatto famityusually a daunting task. Therefore, we don’t use a truetow
of integration rules in which the degree of the integrateisbund but just a lower approximation of the MINLP problem.
polynomial coincides with the number of discrete value & thin that case the procedure is heuristic (i.e. does not return
integrand used to generate the interpolating polynomialisT the exact optimal solution). Of course, the quality of thelffin
the trapezoid rule is the second-degree rule and Simpsale’s rsolution found depends on the quality of the approximation
is the third-degree Gauss-Lobatto integration rule. of the bound. We don’t have a theoretical guarantee on the

Both the trapezoid rule and the Simpson’s rule can be usgdality of the approximation but we will try to assess it irth
to derive iterative schemes to numerically solve diffei@nt computational section of this paper.
equations of the formdz/dt = f(x) which can be expressed The major question to apply the branch-and-bound al-
in the form of constraints. If; = x(#;) andx;y1 = z(ti+1), gorithm is which method to use to bound or approximate

from the trapezoid rule we obtain the constraint the value of the problem in a subset. In our case, we use
h; NonLinear Programming (NLP). This variant of branch-and-
Or (@i, zi1) = 20 = zivr + S [f (@) + f(@iea)] = 0, bound is usually naturally called NLP based branch-anchbou
called the trapezoid system constraint, and from the Simipso®" NLP BB for short (for more details, see for example [35]
rule the constraint and references therein).

hi Several solvers such as MINLP-BB [36] and SBB [37]
Os (i, wi1) = wimwim+p [ () +4f (2i.0)+f(2ir1)] = 0 implement the NLP BB algorithm. In our case, we used
(23) the solver Bonmin [26]. Bonmin is an open-source MINLP



solver implementing several different algorithms for $ody

mixed integer nonlinear optimization problems. Sourceecod

and binaries of Bonmin are available from COIN-OR (http:

/lwww.coin-or.org). Bonmin may be called from both the & g : , -

AMPL and GAMS modeling languages or be used via a web " . ‘A [dpn'i' L A [deg]

interface on NEOS (http://www-neos.mcs.anl.gov). o Poom o E s o

(a) European Waypoints (b) Free flight optimal trajectories
(orange-dotted without wind; green-

dotted with wind) and interest region
0 [deg] 0 [deg]
54
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VI. NUMERICAL EXPERIMENTS

We consider the horizontal motion of a commercial aircraft
constrained to pass through a certain number of waypoints. =
We analyze three cases, namely Case A, Case B and Case
C. In these experiments the underlying idea is to proof the o
consistency and robustness of this formulation applied to “‘2‘ |
the cruise phase optimization. We solve realistic problemg - -1"
taking into consideration real waypoints (Section 1I-Cjnev

5 10 15A [dgqu n 0. — 5 10 15)\ [deg]

2. . . (c) Waypoints layout (d) Free flight optimal trajectories
conditions (Section 11-B) and overfly costs (Section II-I). (orange-dotted without wind; green-
Case A we neither consider wind nor overfly costs; in Case dotted with wind) and waypoints lay-
B we consider wind dynamics; and in Case C we consider out
overfly costs and neglect wind effects. Fig. 3. Free flight optimal trajectories and waypoints layou

In all cases, an Airbus A-320 performs the cruise phase of a

flight Madrid-Berlin with the following boundary conditien . .
A, — —3.56 [deg], 6;, — 40.47 [deg], h;, — 10393 [m] waypoints, the assigned costs does not necessary corcespon
I = . y I . H I 1

Vi, = 220 [m/s], v, = 0 [deg], x = 0 [deg], u = 0 [deg], to the real cost of the country in which the waypoint lays.

my, = 64000 [Kg]; A, = 13.52 [deg], 0, = 52.38 [deq], 5 = (4058, —2.8%); 84.11€ | wpiz = (40.78, —2.63); BAIIE
hi, = 10393 [m]. wp1,3 = (40.65, —2.57); 84.11€ | wpr4 = (41.48, —2.37); 84.11 €
Since the big amount of waypoints makes it impossible_%p1.s = (40.48, =2.15); 65.1€ | wpz = (42.63, ~1.75); 65.1€

- L . . wpag = (4118, —1.45); 65.1€ | wpa3 = (43.42, —1.13); 65.1€
an efficient computation, it is mandatory a reduction of thei wpe.1 = (43, —1.10); 68.64€ | wp2.s — (40.87, —0.78); 68.64 €

number through a proper selection of potential candidates, s, = (43.40,0.33); 65.1 € wp3.2 = (41.48,0.5); 65.1 €
denotedwp; j, i = 1...n¢g, j = 1...nyp, Whereng is wp3,3 = (44.5,0.92); 75.05 € wp3,a = (43,0.97); 68.64 €
the number of clusters, a the number of waypoints per wps,5 = (41.68,1.1); 65.1 € wp4,1 = (41.67,1.78); 65.1 €
cluster ndlp yP P wps,2 = (44.98,1.93); 65.1 € wpa,3 = (44.50,2.22); 65.1 €
: _ _ o wpa,a = (42.20,2.47); 65.1 € wpa,5 = (48.22,2.78); 65.1 €

The parameten,; will be given by the minimum number | wps1 = (46.33,3.42); 68.99€ wps.2 = (45.82,3.60); 65.1 €
of waypoints to be flown trough when defining the flight plar};___wps.s = (48.02,3.90); 651 € wps,4 = (49.58,4.35); 65.1 €
nwp iS @ trade off between accuracy in the optimal solutiga—22%:s = (45:12,4.60); 76.59€ | wps. = (46.92,5.23); 68.99 €
wp =t ! ! X e pe.2 = (46.67, 5.58); 65.80 € wpe,3 = (49.53, 5.82); 65.80 €
and the need for efficiently computing trajectories at styit wps.a = (51.02,6.08); 68.99 € wpe.5 = (49.37,6.45); 76,59 €
level. We choose, for the three cases; = 10 clusters of wpr,1 = (49.70,6.95); 76.59 € wpr,2 = (51.27,7.15); 65.80 €
n.wp = 5 Waypoints each, so that the aircraft must fly through|{1 P73 = (49.85,7.57), 65.80€ | wpr.4 = (50.10,7.65), 6580 €
RS ) wpr,5 = (48.23,8.15); 65.80 € wps,1 = (50.93,8.92); 68.99€

out of n,, = 5 waypoints inside each cluster. The continuoys—;,~ —"57.33.9.12), 68.99 € wps 3 — (49.18,9.12); 68.09°€
motion of the aircraft is given by Equation 1, while the deter wps.4 = (50.98,9.47); 68.99 € wps,5 = (49.33,9.67); 68.99€
dynamics are given by the sequence of waypoints. wpg,1 = (50.07,10.23); 68.99€ | wpg.2 = (51.43,10.50); 68.99 €
For clustering, we start considering all waypoints in Fig—222:3 = (6142,10.52); 68.99€ | wpos = (51.17,10.75); 68.99 €
lering, g all waypoints In Fig— . —(51.32, 11.27); 68.99€ | wpio.1 = (52.02, 11.02); 68.99 €

ure 2, retaining only the en-route waypoints and elimir@tin =y, , = (51.40, 11.97); 68.99€ | wpio.3 = (51.38, 12.08); 68.99 €
all navaid and airport waypoints, see Figure 3(a). Then, wevpios = (51.72,12.12); 68.99 € | wpio,5 = (51.93,12.20); 68.99€

generate the free-flight optimal trajectories (with andhwitt TABLE |

wind), see Figure 3(b). Afterwords, we define an interest CORDINATES OF THEWAYPOINTS, wp;,; = (0[deg], A[deg]), AND

region close to the free-flight optimal trajectories, searfg ASSOCIATED COST Cup,;

3(b). Finally, we taken., = 10 clusters homogeneously

distributed along the free-flight optimal trajectory. Fraach

cluster, we randomly choose,,;, = 5 waypoints. 1) Case A:The total consumed fuel in this experiment is
The waypoints layout, and its coordinates together with tt5€59.35 [Kg]. The optimal sequence of waypoints, denoted by

associated costs are shown in Figure 3(c) and in Tablethe active set of binary variablels ;, withi =1...n¢,j =

respectively. Notice that the associated waypoint dOst,, ;, 1...7.y, is given in Table Il. The optimal trajectory is given

has been assigned considering the basic unit rates of thd-igure 4 (orange-dotted line). The switching times bemwe

different countries (see Section II-D). To illustrate hdwe tost phases and total flight time are listed in Table V. The statk an

of the different flight regions affects the optimal sequente control variables of the optimal solution are shown in Feggr



(orange-dotted line). The computation time to find the soiut
was 2442.3 [s].

2) Case B:The total consumed fuel in this experiment is
4839.34 [Kg]. The optimal sequence of waypoints, denoted by
the active set of binary variables ;, withi =1...ny,j =
1...nwp, is given in Table Ill. The optimal trajectory is given
in Figure 4 (green-dotted line). The switching times betwee
phases and total flight time are listed in Table V. The statk an
control variables of the optimal solution are shown in Fegbr
(green-dotted line). The computation time to find the soluti
was 6820.9 [s].

3) Case C:To take overfly cost into consideration, we use
Equation (6) as objective function, considering to#t,,,,, =
UR x dxp, whereUR is modeled as a cost due to overflying
a determined waypoint.,, ;, listed in Table I.d is modeled
as a constant consisting on dividing the total distance to be
flown (1854.98 [km]) by 100 and by the number of waypoints
to overfly,n.,; = 10, andp is defined as in Section II-D. We
also assume that 1 [kg] of fuel burnt costsel

The total consumed fuel in this experiment&5.35 [Kq].
The optimal sequence of waypoints, denoted by the active set
of binary variablesy; ;, with i = 1...n¢,7 = 1...nyp, iS
given in Table V. The optimal trajectory is given in Figure 4

TABLE IV

CASE C: SWITCHING SEQUENCE

52'7]'

0;,1

di2  60;3

S;

i

61 7j
02,5

3,5
64_]

5,7
06,;
67_]
58’3
69_]
010,j

0 [deg]
54

52
50
48
46
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(red-dotted line). The switching times between phasesatatl t -5
flight time are listed in Table V. The state and control vaegab

of the optimal solution are shown in Figure 5 (red-dotted)in Fig. 4

The computation time to find the solution wék20.2 [s]. The
overfly cost as defined above was 158765

0

5

10

75 [deg]

Optimal trajectory and optimal sequence of waymoir@ase A,
orange-dotted line; Case B, green-dotted line; Case Ccloged line.

Case A [s] Case B [s] Case C [s]
TABLE Il 71 = 681.52 1 = 655.87 1 = 681.52
CASEA: SWITCHING SEQUENCE Tz = 1531.79 o = 1480.77 To = 1531.79
dij  6ix  Si2 i3z Jdia dis t3 = 2533.19 {3 = 2425.00 {3 = 2533.19
01,5 0 0 0 1 0 {4 = 2956.31  ty = 2803.01 ¢4 = 2946.43
02,5 0 0 0 1 0 T5 = 3765.07 15 = 3437.77 &5 = 3641.18
33,5 0 0 1 0 0 16 = 5544.11  tg = 4143.38 15 = 4418.89
04, 0 1 0 0 0 T; = 5916.23 {7 = 5184.43 &7 = 5554.09
95, 1 0 0 0 0 Ts = 6774.41 i3 =5717.58 s = 6113.63
96,5 0 0 0 0 1 fo = 7162.08 1ty = 6244.45 1y = 6672.24
§”‘ 8 8 é (1’ 8 t10 = 7733.49 110 = 7055.88 110 = 7536.55
8,J = = =
5o 0 0 1 0 0 t; = 8214.78  t; = 7696.14 _ #; = 8219.84
S0, O 0 0 0 1 TABLE V
SWITCHING TIMES AND TOTAL FLIGHT TIME
TABLE IlI
CASEB: SWITCHING SEQUENCE
dij  0;1  Oi2  0;3  ia i . . . . . ..
31 0 0 0 1 0 tions without and with wind, respectively. Indeed, the BRrip
92,5 0 0 0 1 0 consumption gap between waypoints constrained trajestori
03,5 8 (1) é 8 8 (Figure 4) and (without and with wind) free flight trajectesi
f; 0 1 0 0 0 (Figure 3(d)) is a _gooo_l caliber of how good is the Iayeut
36, 1 0 0 0 0 of selected waypoints, i.e., the closer we are to the optimal
gw 8 8 2 8 : solution the better waypoints layout have been selected. Th
5:3 1 0 0 0 0 above mentioned gap is, respectively, 53.57[I_<g] and 39g]5[.
10,5 | | Wi
5 0 0 1 0 0 for Case A and Case B (Notice that Case A is compared with

A. Discussion on the experiments

the without wind free flight optimal consumption and Case B
is compared with the with wind one. See Table VI for more
details).

In Case A and Case B, we can observe that we achieve conNotice that in Case C the assigned costs are significative
sumptions slightly far from the free-flight optimal consumpenough to generate a trajectory substantially differeamfr



2 to better model overfly costs, or to better reflect the airgpac
structure.
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Fig. 5. State and control variables: Case A, orange-doftesl Case B, [7]
green-dotted line; Case C, red-dotted line.
TABLE VI
(8]

Case Consumption [kg  Gap [kg] OC]
Free flight without wind 5205.68 - -
Free-flight with wind 4800.29 - - [l
Case A 5259.35 53.57 -
Case B 4839.34 39.05 -
Case C 5265.35 59.57  1587.65 [10]
[11]

Case A.

These experiments illustrate how the optimal trajectofy?)
changes when we increase the accuracy of the model, intro-
ducing for instance wind effects or overfly costs. Thus, out3]
MINLP approach provides a very powerful tool to tackle such
problems. [14]

VII. CONCLUSIONS AND FUTURE WORK

Since free-flight does not seem to be implemented in the!
medium term, we have shown that combining an airspace
structured in waypoints together with a more flexible camtin [16]
ous motion of the aircraft, e.g., not performing steady s&yi [17]
might be a very powerful tool for a more efficient strategic
flight planning within a short and medium-term future ATM[18
concept.

Our current research efforts are focused on improving the
numerical efficiency of the method to reduce the computatiori®]
time, a key factor to timely deliver flight plans, and, on gejt
closer to real flights, combining cruise with ascent and eesc

]
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