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Three Models for Weather Impacted 

Airspace Capacity Estimation and Forecast 

Abstract – Following NASA’s request to develop and test 

airspace capacity estimation models of different fidelity (for use in 

the agency’s air traffic simulation toolsets), we have developed 

three different models - simple, mid-level, and complex - and have 

evaluated them on airspace units of different size, from large 

(Centers), to medium (Areas-of-Specialization) to small (Sectors). 

The simple model computes capacity degradation of an airspace 

unit as the area of convective weather coverage within its 

boundary divided by the unit’s total area. The mid-level Scanning 

model utilizes our multi-directional scanning algorithm developed 

in the course of prior research. The most complex model, Probe 

Reroutes, extends the directional scanning idea by “flying” 

groups of aircraft on parallel tracks through weather-impacted 

airspace, rerouting them if needed and finding the viable number 

of safe-passage “air lanes”; airspace capacity estimate is derived 

from that. A range of convective weather-impacted days were 

studied and model capacity estimates were compared to actual 

occupancy counts in airspace units. Initial validation results are 

encouraging and they also demonstrate the trade-off between 

model complexity and accuracy. It appears that capacity 

estimates become more accurate as we “zoom in” from Centers to 

Sectors; and the accuracy improves somewhat (but not 

dramatically) when a finer weather grid resolution is used. 

Reasonably good airspace capacity predictions can also be made if 

a forecast product is used as input instead of convective weather 

diagnostic. 

Keywords – Airspace Capacity Estimation; Convective Weather 

Impact; Scanning Algorithm; Probe Reroutes. 

I. INTRODUCTION 
1
Convective weather is a major contributor to excess air 

traffic delays and costs because it blocks portions of airspace, 

thereby limiting its capacity. It is very important to be able to 

correctly estimate this airspace capacity degradation due to 

convective weather impact – so that avoidable delays and costs 

are minimized. Appropriate models need to be developed for 

this task. A model of this kind should ideally be able to produce 

reasonably accurate capacity estimates for airspace units of 

different size, from sectors to Centers; work well for a wide 

variety of convective weather scenarios; be usable with both 

actual and forecast weather for airspace capacity prediction; and 

                                                           
1 This research was funded in part under NASA SBIR AS.12.01, "Translation and 

Integration of Weather data from Localized Aviation MOS Program with FACET". 

 

reflect the notion of directional capacity that conforms to 

directional traffic demand (for instance, east-west traffic flows 

are impacted by typical U.S. convective weather fronts more 

than north-south flows). The model should be fast enough to be 

relevant in fast-time simulation environment and in future real-

time decision support tools, so a tradeoff between a model’s 

complexity and speed needs to be explored. Although promising 

new methods for airspace capacity estimation have been 

proposed and inroads have been made into implementing such 

models in software, many of the above listed requirements 

remain to be met. The present paper reflects our NASA-funded 

effort to develop and evaluate several candidate models of 

different complexity that are a step closer to satisfying these 

requirements. 

II.  BACKGROUND 

A. Prior Research 

Research on weather-impacted Airspace capacity 

estimation has become particularly active in the last 5-7 years. 

One fruitful direction of research is being followed in [1-3]. It 

focuses on route availability when traffic is impeded by 

convective weather; the related airspace capacity estimation is 

derived from actual and short-term forecast convective weather 

information. This directional route- (or flow-) based capacity 

approach is echoed, and developed further, in [4], which 

introduces an important notion of probabilistic traffic flow 

management (including probabilistic sector capacity estimation 

based on sector’s traffic flow patterns).  

A new concept, MaxFlow/MinCut, is introduced in [5] as 

another take on flow-based sector capacity. A minimum 

weather-free cross-section (MinCut) of a sector partially blocked 

by weather is determined mathematically for a specific flow 

direction; this bottleneck determines capacity as a function of the 

number of “air traffic lanes” that can fit into the MinCut. The 

model was applied to hypothetical sectors and a wide range of 

experimental traffic flows vs. convective weather diagnostic 

data. This method is applied in [6]: main flows through a sector 

are identified; flow blockage by weather is determined using the 

MinCut method (each flow has its own MinCut estimate); and 

the reduced sector capacity is defined as weighted sum of flow 

blockage. Another approach to building a simple sector 

capacity model in terminal airspace is proposed in [7]; it is 
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based on a Weather Severity Index which quantifies the degree 

of weather coverage computed for wedge-shaped regions 

around the airport’s arrival metering fixes. 

All of the above models concentrate on sectors as the 

“nucleus” airspace unit of the NAS. In [8], we have introduced a 

new type of airspace capacity estimation model based on our 

directional scanning algorithm, and tested it on large airspace 

units, ATC Centers. Our interest was to explore how this model 

might be applied in strategic Air Traffic Management (ATM). 

We have now expanded this initial research to include two new 

airspace capacity models and a range of airspace unit sizes. 

B. Weather Data and Airspace Units 

In our models, National Convective Weather Diagnostic 

(NCWD) is used. NCWD is represented by the amount of 5-min 

reports of significant convective weather, collected on a 4-Km 

grid covering the National Airspace System (NAS) area. For 

ATM purposes, this resolution is too fine; it is therefore 

aggregated into larger hourly “bins” on a coarser hexagonal grid 

covering the NAS. The specifics of this aggregation are 

described in [8]. 

In addition to weather diagnostic, NCWD, we have 

developed a methodology to convert various convective forecast 

products into quasi-NCWD format, so that airspace capacity 

estimation models initially built for actual weather can be 

seamlessly applied to forecast weather [8, 9]. The probabilistic 

forecast product we chose for most of our experiments is the 

Localized Aviation MOS Product (LAMP). 

Rather than limiting ourselves to just sectors, we have 

applied our models to airspace units of three different sizes: 

sectors, Areas-of-Specialization, and ATC Centers; this would 

cover both strategic and tactical ATM. 

A pre-requisite to realistic airspace capacity estimation of an 

airspace unit is a good definition of its nominal (unimpeded) 

capacity. For sectors, Monitor Alert Parameter (MAP) value is 

the traditionally used, if not ideal, proxy for nominal capacity. 

For Areas and Centers, other metrics need to be established. For 

the Areas, our working assumption is that we can still use the 

sum of an Area sectors’ MAP values. For Centers, we use a 

lower number corresponding to the peak actual traffic load ever 

observed, possibly augmented by a small extra buffer. All these 

nominal capacity metrics, however, need further study. 

III. WEATHER AGGREGATION, PERMEABILITY 

We aggregate NCWD from 5-min reports on a rectangular 

4-Km grid into hourly “bins” on a 180x110 hexagonal grid 

covering the continental US. This resolution is a default 

parameter that can be changed; and in fact, our experiments 

with a finer grid “bins” are described at the end of this paper. 

A key concept we use is that of weather permeability for air 

traffic. Our method for determining the permeability thresholds 

is based on the research conducted by Sheth et al [10]. In it, 

actual flight tracks deviating around convective weather were 

superimposed on convective probability grids using the National 

Convective Weather Forecast product (NCWF-6). The PCP 

(Probability Cut-Off Parameter) thresholds were established as 

follows: when convective probability reaches PCP, most aircraft 

flight plan or deviate around such weather areas. Sheth and co-

authors found that for 1-hr NCWF-6 forecast, PCP was in the 

order of 40%; that is, when the forecast puts the probability of 

severe convective weather (VIP
2
  Level 3 or higher) at 40% or 

greater, 90% of all aircraft will plan or deviate around the 

weather area. For 2-hr forecast, the PCP at 90% deviation was 

approx. 35%, and for 4-hr forecast it was approx. 25%. 

This allows us to define the permeability thresholds as 

follows. The maximum possible hourly convective score for a 

hexagonal grid cell is derived from the NCWD product and is 

defined as M. This score would be reached if all 4-Km NCWD 

grid points inside the hexagon were to report continuous 

significant convective activity (VIP Level 3 or higher) for the 

entire hour. We compute the actual (or forecast) highest 

convective score in the hexagons that are crossed by a scan 

line. The permeability score of a weather area by this scan line 

is then defined as the ratio of the highest convective score 

found in hexagons along the scan line vs. maximum possible 

convective score of M: 

     P= 100 * Highest_conv_score_along_scan_line / M 

IV. THE SIMPLE MODEL 

The first capacity model is indeed simple; the capacity of an 

airspace unit (Center, Area, Sector) is reduced from a sector’s 

MAP value (or Area’s or Center’s nominal capacity) according 

to the percent weather coverage in that airspace unit. Nominal 

capacity for an Area is defined as the sum of its sector MAP 

values. Nominal capacity for the Centers was determined from 

empirical observations of peak occupancy counts. 

To improve the sensitivity of this model to weather impacts, 

we have augmented this simple approach as follows. We 

compute observed weather score WO in hourly increments: 

 For each hexagonal cell whose midpoint is inside the 

given airspace unit, we check if its NCWD score (or 

quasi-NCWD score if a forecast product is used) is 

below or above the permeability threshold. 

 If above, we add Maximum Possible Hourly NCWD 

Score, NCWDMax  for this cell to WO. 

 If below, we add the actual NCWD score, NCWDActual , 

for this hexagonal cell to WO. 

We then compute the maximum possible weather score WM 

for the given airspace unit. It is simply NCWDMax * K, where 
K is the total number of hex cells inside the airspace unit. The 

resulting capacity (as % nominal) for the airspace unit for the 

given hour is C= 1.0 – WO / WM . 

                                                           
2 Video Integrator and Processor which contours radar reflectivity (in 

dBZ) into six VIP levels. 
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V. THE SCANNING MODEL 

A. Basic Idea 

A simple idea is to estimate the airspace availability of an 

airspace unit by scanning it in a series of directions [8], e.g., 

every 20
O
, using scan lines with spacing commensurate with the 

granularity of weather grid and the size of the airspace unit 

(Figure 1). In this example, an airspace unit is scanned in the 

320
O
 direction (and the reciprocal 140

O
 direction). Each scan 

line may or may not encounter convective weather significant 

enough to block traffic flow along this line. During the scanning, 

we are looking for the maximum intensity (“ridge”) of 

convection in the airspace unit along the scan line. This 

maximum will determine whether this area of weather is 

permeable by the given scan line.  

To determine that, we relate the maximum convective score 

found in the hexagonal grid cells that are crossed by each scan 

line (and are inside the 

unit being evaluated) to 

the maximum possible 

NCWD score. This ratio, 

ranging from 0 to 100%, 

is then compared to the 

permeability thresholds 

described in Section III  

that indicate at what 

probability or actual 

intensity of convective 

weather will most 

aircraft be likely to 

deviate (or plan the flight around the weather in the first place). 

In addition to using just “permeable” and “not permeable” we 

introduce the notion of weather being “half permeable”.   

Then, Directional Airspace Availability percentage along any 

scan direction is NSIGWX / N, where NSIGWX is the sum of the scan 

line permeability scores (which can be 0, 0.5 or 1 for each scan 

line) that cross the significant weather area(s) and N is the total 

number of scan lines that cross the unit in the given direction. 

For example, if there is no weather in the airspace, permeability 

scores of all scan lines will be 1 (“yes”) and the unit’s capacity 

in this particular direction will be 100% nominal. 

B. Converting Directional Airspace Availability into 

Aggregated Capacity 

The scanning method gives us directional airspace 

availability percentages in 18 different directions at 20-degree 

steps. We multiply them by 1/18
th

 of the airspace unit’s good-

weather nominal capacity to obtain initial cut of weather-

impacted absolute capacity in each direction. This directional 

capacity is molded, to the extent possible, to reflect directional 

demand, so capacity in certain directions is increased at the 

expense of other, less-busy directions (total capacity does not 

change). This produces finalized directional capacities [8]. The 

aggregated hourly capacity value is also computed - as the sum of 

the 18 directional capacities of the airspace unit.  

C. “Blended” Capacity Estimation Method  

The scanning algorithm introduced above finds the “ridge” 

(maximum impact) of convective weather along a scan line. The 

line crosses hexagonal cells; if their NCWD (actual weather) or 

quasi-NCWD (forecast) score exceeds a certain threshold, the 

related weather area can be declared not permeable. This can be 

characterized as an optimistic convective impact estimate (only 

one hexagonal cell – with the highest NCWD score – matters).  

Now let us consider the following. If we know individual 

probabilities of scan line blockage by hexagonal cells with 

weather, what is the cumulative probability of the scan line being 

blocked? Such probability can be computed as (1.0 – probability 

of scan line not being blocked). This latter, in turn, is the product 

of individual probabilities of the scan line not being blocked by 

hexagonal cells’ weather. Even if we have a few hexagonal cells 

with low (e.g. 10%) probability of weather, the cumulative 

probability of a scan line not being blocked will deteriorate 

quickly (90% after first hexagonal cell, 81% after two consecutive 

cells, 72% after three consecutive hexagonal cells with only 10% 

weather probability in each, etc). This calculation reflects a more 

pessimistic view on airspace capacity.  

In actuality, taking the product of the individual probabilities is 

only accurate if each probability is independent, which it is not.  

Given the spatial correlation in the convective weather 

probabilities, we know that using this approach overestimates the 

probability of the route being blocked [11]. We have therefore 

adopted the blended scan line permeability computation method 

using the average value of the two probabilities (“ridge” and 

cumulative) described in this section. As shown in [8], [11], this 

approach produces better correlation between actual and forecast 

weather impact estimates. This is the finalized value of airspace 

capacity according to the Scanning Model. 

VI. THE “PROBE REROUTES” MODEL 

This model is an extension of the scanning algorithm and a 

bridge, of sorts, toward the MinCut model described in [5]. It 

builds upon our Dynamic Airspace Rerouting Tool (DART) 

developed in 2010 under NASA SBIR
3
 sponsored research. 

DART features flight rerouting algorithms that take into account 

both actual and forecast weather. It employs an original “step-

out-and-scan” algorithm to find an economical reroute around 

dynamic convective weather (it can combine diagnostic and 

forecast) and, if a reroute is not possible, adds a small ground 

delay and retries until either a reroute is found or the delay 

exceeds some threshold (so the flight has to be cancelled).  

As part of this research we have developed a concept of 

Probe Reroutes, described next. Areas of airspace can be 

“probed” (tested) for permeability using series of probe flights; 

we can start and end them at any Lat/Long location. As an 

example, consider ZKC Center in case of minor weather (or 

high risk tolerance whereby most weather is considered 

permeable), Figure 2. 

                                                           
3 NASA SBIR Phase 1 #A3.01-9634, “Least-Impact TMIs”, awarded Jan 2010.   

Figure 1. Scanning algorithm illustration 
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 Figure 2. Probe flights on parallel tracks traversing ZKC in west-east 
direction, all weather is considered permeable; no impediment to traffic. 

 

 Figure 3. Probe flights on parallel tracks traversing ZKC in west-east 

direction, some weather is considered non-permeable. Most flights have to be 

rerouted and/or delayed. There are about 4 lanes available to traffic to traverse 
ZKC. Blue aircraft are those delayed (i.e., viable reroute at the time of launch 

is not available, so a delay is assigned incrementally and the reroute is re-

attempted); yellow are aircraft not delayed.  

 

Figure 4. Probe flights on parallel tracks traversing ZKC in west-east direction 
when more weather is considered non-permeable. All flights have to be 

rerouted and the majority have to be delayed as well. There is only one lane 

available to traffic in this west-east direction. 

Permeable weather is shown in green, non-permeable 

weather in red. In this example, all flights converge at a point 

outside ZKC but they don’t have to: they could continue on 

parallel tracks if that mattered.  

In fact, the parallel tracks for the probe flights can be 

created from the scan lines used in our Scanning Algorithm. If 

we compute how many distinct lanes of traffic can get through 

an airspace unit (e.g. Center) in a given direction – vs. total 

number of probe flights – this could give us an indication of 

the capacity of this airspace unit. Figures 3 and 4 show the 

same airspace with increasingly more significant weather 

impact and the resulting Probe Reroutes in east-west direction. 

This idea is applied to airspace capacity estimation as follows. 

1. We create series of probe flights along the scan lines, in 18 

different directions (at 20-degree steps). The flights are 

launched some distance away from an airspace unit’s 

boundary and are ended some distance after exiting the 

airspace unit at the other end. Spacing between parallel 

tracks depends on the CONUS grid resolution; we reduce 

it for smaller airspace units such as Sectors. 

2. Each group of flights is launched in hourly increments (or 

15-min increments if that time step is selected). 

3. Directional capacity of the airspace unit is computed as 

C = NValid / NTotal 

where NValid is the number of “valid” flights (or rather 

lanes) that can get through the airspace, navigating around 

the weather and NTotal is the total number of flights along 

the scan lines covering the width of the perpendicular-to-

scan-lines cross-section of the airspace unit.  

The formula we use is: 

        NValid = NTotal – NDelayed – NOutside – NMerged 

where  

NDelayed is the number of delayed probe flights,  

NOutside is the number of probe flights whose reroutes 

take them entirely outside the airspace unit, 

NMerged is the number of probe flights whose reroutes 

become “bunched” together with another reroute for 

at least a portion of the flight inside the airspace unit. 

That is, when multiple flights are forced into a single 

lane of traffic which of course means reduced 

capacity, we count each such “bunch” as a single 

traffic lane. 

4. As a last step, directional capacities are averaged, similar 

to Scanning Algorithm approach
4
. 

The rationale for not counting the delayed flights is that, if 

a flight cannot proceed through the given airspace unit 

                                                           
4 Note that we could also consider directional capacity vectors without the 

averaging; but this would require additional calibration and would expand the 
analysis material 18-fold. 
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immediately, this means that right now, this hour, the airspace 

is blocked for it. Even if the flight could proceed later, after a 

delay, that delay would be exactly the consequence of the 

reduced airspace capacity which we are trying to estimate; 

therefore delayed flights are not counted. 

VII. MODEL VALIDATION 

A.  Limited Scope of Applying the Capacity Models  

All three models – Simple, Scanning and Probe-Reroutes – 

estimate weather-related capacity of airspace units (Centers, 

Areas, Sectors) in isolation, one by one. They do not attempt to 

assess the impact of capacity degradation in one airspace unit 

on other units. This job is left to TFM models (of which 

capacity estimation is one component). While this approach 

seems logical and consistent to us, it also creates some 

difficulties and pitfalls during model validation [8]. We must 

remember that when we compare degraded capacity with 

actual occupancy counts in airspace units, the occupancy 

counts reflect cross-unit dependencies.   

B. Airspace Area of Study 

We have selected a block of five Centers in middle and 

Eastern section of the U.S. (Figure 5). We deliberately avoided 

using Northeast Centers for validation because of 

“contamination” of actual traffic counts in the airspace by 

weather related delays at major airports on the Eastern 

seaboard, as well as by airspace design constraints, especially 

in New York Center (ZNY).  

Figure 5. Airspace area of study: Centers (blue) and QuasiAreas (purple) 

To create an interim airspace unit between a Center and a 

sector, we have devised “QuasiAreas”. These notional airspace 

units are approximately the size of actual Areas-of-

Specialization but they only contain high-altitude sectors and 

are simplified as extruded polygons. Each QuasiArea contains 

3-4 sectors (See Fig. 5). 

C. Weather Impacted Days  

We have focused on the 2008 convective season because 

traffic volumes were higher than in 2007 or 2009-2010 (good for 

validation). Further, we have identified those days when 

significant weather impacted the 5-Center airspace area of study 

rather than the Northeast. That way, we could obtain “cleaner” 

actual occupancy counts for model validation. Figure 6 shows a 

daily NCWD summary for one of such days, June 9, 2008. 

Figure 6. 06/09/08 NCWD daily summary (“smear”) 

D. Centers 

We began our validation with the largest airspace units, 

Centers. Figure 7 shows the three capacity estimates (green, 

blue and red lines) vs. actual occupancy (dashed purple line) at 

ZAU on August 4, 2008. The Scanning and Probe Reroutes 

(“RR”) models, especially the latter, reflect lower traffic in the 

morning due to convective weather.  

Figure 7. ZAU capacity and occupancy, 08/04/08 

Figure 8 shows estimated capacity and actual occupancy for 

another Center, ZKC, on a different day, 08/07/08. In this case, 

the Scanning and Probe Reroutes models somewhat 

underestimate the impact of the weather, while the Simple 

model’s capacity estimate is excessively optimistic. Figure 9 

refers to afternoon weather impact at ZID on 06/09/08. 

Overall statistics for all four days (hourly Center capacity 

estimates vs. actual occupancy counts, five Centers, only the 

hours with at least some weather impact) is shown in Fig. 10 and 

11. Fig. 10 shows the correlations and Fig. 11, the average Center 

capacity / occupancy count magnitudes. Together, these two 

charts show that the Scanning and Probe Reroutes models produce 
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substantially better correlation and closer capacity magnitude 

estimates than the Simple model: the latter overestimates available 

airspace capacity by a wide margin. 

Figure 8. ZKC capacity and occupancy, 08/07/08 

Figure 9. ZID capacity and occupancy, 06/09/08 

 

Figure 10. Center capacity-vs-occupancy correlation 

Figure 11. Center capacity and occupancy averages 

 

E. QuasiAreas 

The following series of Figures (Fig. 12-14) show 

QuasiArea capacity estimates and actual occupancies for ZID’s 

three QuasiAreas, ZID1, ZID2 and ZID3, on 06/09/08.  

Figure 12. ZID1 QuasiArea capacity and occupancy 

Figure 13. ZID2 QuasiArea capacity and occupancy 
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Figure 14. ZID3 QuasiArea capacity and occupancy 

When compared to ZID Center chart for the same day (see 

Fig. 9), it is obvious that the models now reveal more nuances 

in convective weather impact distribution across the areas of 

the Center, in both spatial and temporal dimensions.  Figures 

15 and 16 show the correlations and magnitudes for QuasiArea 

capacity estimates (compare to Fig. 10 and 11 for Centers). 

The QuasiArea model-estimated-capacity-vs-actual-counts 

correlations are higher and the difference in magnitudes is less 

than for Centers. Still, the Simple model is behind the other two 

in terms of its weather impact prediction quality. 

F. Sectors 

Continuing downward in terms of airspace unit size, the 

next two Figures (Fig. 17, 18) show Sector capacity estimates 

and actual occupancies for some of ZID’s high-altitude sectors 

on 06/09/08. Note how Simple model’s sector capacity 

estimates come closer to those made by the other two models 

(if compared to estimates for Centers and QuasiAreas). 

 

Figure 17. ZID75 sector capacity and occupancy 

 
Figure 18. ZID89 sector capacity and occupancy 

Figure 19 shows the trend lines in hourly sector capacity 

estimates for all 74 sectors in our 5-Center area of study for 

06/09/08. The capacity estimates are sorted according to lowest-

to-highest actual occupancy count estimates. This allows us to 

see the under- or over-estimation trends for our models.  
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Figure 20. Sector capacity-vs-occupancy correlation 

Figure 21. Sector capacity and occupancy averages 

In this case, the Probe Reroutes model (red trend line marked 

“RR Cap” in Fig. 19) matches the actual occupancy counts 

(purple step-wise line, “Actual Occ”) best, followed by Scanning 

model (blue trend line, “Scanning Cap”) and Simple model 

(green trend line, “Simple Cap”). Note, however, that there can 

still be considerable variance in specific hourly sector capacity 

estimates, as the actual capacity values (not trend lines) in Fig. 

19 show. The Probe Reroutes model with its current settings 

tends to slightly over-estimate weather impact, the other two 

models tend to under-estimate it. 

Figures 20/21 show the overall correlations and average 

magnitude comparisons for hourly sector capacity estimates by 

our three models, vs. actual occupancy counts in the 74 sectors. 

The three models’ estimates converge more than in case of either 

QuasiAreas or Centers: correlations are higher and capacity 

magnitude averages are closer to actual counts. 

 

VIII. GRANULARITY ANALYSIS 

An obvious question arising from the above results is how 

they are affected by the granularity of our weather translation 

model’s weather grid.  

To generate results presented so far in this paper, we used a 

180x110 hexagonal grid covering the NAS as a default 

(approximate diameter of the hexagons is 18 NM).  This grid 

resolution corresponds to the standard WITI grid [9]. To test our 

model behavior at finer grid granularity, we doubled the 

accuracy to a 360x220 grid and reduced spacing between scan 

lines and probe reroutes by half as well, and ran the same set of 

weather impacted days to obtain airspace unit capacity estimates. 

Our initial finding is that there is an improvement in 

accuracy, although it is not dramatic (but the models take almost 

three times longer to run). 
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Figure 19. Sector capacity and occupancy trends, 06/09/08 
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For example, Figure 22 shows a comparison of the lower-

granularity model (left) with higher-granularity (right) for 

QuasiArea ZME3. For reference, Figures 23 and 24 show the 

hourly snapshot of convective weather in that area at around 

0800Z with 180x110 and 360x220 NCWD grids, respectively.  

 
Figure 23. NCWD weather at 0800Z on 06/09/08, 180x110 hex grid 

 
Figure 24. NCWD weather at 0800Z on 06/09/08, 360x220 hex grid 

Compare the difference in weather depiction to the 

difference in airspace capacity estimate at 0800Z in Fig. 22, Left 

vs. Right. For instance, the north-south corridor marked by a 

green arrow in Fig. 23 is permeable for probe flights while the 

same corridor at higher grid granularity is not (purple arrow, Fig. 

24). This causes a greater capacity loss because the weather now 

blocks the entire northern section of ZME3 QuasiArea. 

IX. USING FORECAST WEATHER 

The models presented above can be applied to airspace 

capacity forecasting if, instead of actual weather (diagnostic) 

we use forecast weather. We have developed Weather-to-

TFM-Constraints translation models for a variety of convective 

forecast products such as LAMP [8, 11]. The quality of 

airspace capacity estimation depends on the forecast accuracy. 

Generally, the difference between capacity “diagnostic” based 

on actual weather (NCWD) and capacity forecast based on 

LAMP tends to increase - and exhibit greater variability - as 

the airspace unit’s size decreases from Center to Area to 

Sector, which is to be expected. Fig. 25-27 show sample 

diagnostic / forecast capacity estimates for an individual sector. 

 

Figure 25. NCWD-based capacity estimate, sector ZAU36, 06/09/08 
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Figure 26. 2-hr LAMP based capacity forecast, ZAU36, 06/09/08 

 

Figure 27. 4-hr LAMP based capacity forecast, ZAU36, 06/09/08 

X. CONCLUSIONS 

We have developed three airspace capacity models of 

increasing complexity and have tested them on a variety of 

weather scenarios applied to airspace units of different size.  

Initial validation shows that the mid-level (Scanning) and 

the complex (Probe Reroutes) models produce reasonably good 

capacity degradation estimates for all airspace unit sizes, 

although the trend is for model accuracy to improve as the size 

decreases. For sectors, both the Scanning model and the Probe 

Reroutes model perform well; the latter tends to exhibit higher 

variance, leaning toward over-prediction of weather impact, 

but can reflect localized weather impacts better on some 

occasions. The Simple model performs better for sectors than 

for larger units but its overall utility is questionable.  

In addition to using convective weather diagnostic, we 

have developed weather translation methods for a number of 

convective forecast products, so that our models can be used 

for airspace capacity degradation prediction. This makes them 

potentially usable in ATM decision support tools. An added 

benefit of the Probe Reroutes model is that it could help traffic 

managers identify viable flight paths through weather impacted 

airspace. 
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