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Abstract—Given a specified amount of flight trajectory data,
data reduction and clustering methods (e.g., Principal Com-
ponents Analysis and k-means) have become established tools
for identifying flows (i.e., a group of similar flight trajectories).
However, most flow identification algorithms in the literature
rely solely on spatial clustering, without considering the temporal
dimension. Temporal characterization of flows is important, as
it: enables identification of salient air traffic features, provides
a basis for scenario (“what-if”) analyses, and allows for a more
robust distillation of large and time-varying air traffic datasets.

To address this shortcoming, this work proposes a methodology
for identifying flows which persist over an arbitrary time span.
This process leverages a generic Spectral Clustering framework,
building upon the methodologies established by Enriquez and
Kurcz in [4]. This algorithmic approach produces robust results,
while remaining easy to implement and being computationally
inexpensive. We present two examples to show the promise of this
algorithm. First, the algorithm is used to automatically identify
days in which irregular air traffic patterns occur in the Miami
International Airport (MIA) terminal airspace. Second, we use
this algorithm to help identify the minimum required number of
new Performance Based Navigation (PBN) arrival and departure
procedures in the National Airspace System (NAS), based on six
months of historic data.

Keywords—Trajectory Clustering; Terminal Area Flow Identi-
fication; Spectral Clustering; Eigenvalue Decomposition; Graph
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I. INTRODUCTION

Despite recent economic hardships, the National Airspace
System (NAS) traffic growth is still projected to rise by
more than 90 percent by 2032 – accommodating roughly 500
million more passengers [5]. In order to successfully plan and
accommodate for the increased number of flights, we must
understand dominant trajectory trends in the NAS. This paper
focuses on the terminal area airspace, where identifying such
patterns can reveal insights such as: how well procedures are
being utilized, how aircraft have historically handled adverse
weather conditions during arrivals, etc.

Advanced mathematical analyses can be leveraged to help
with such discoveries, and has been discussed in the literature
in the context of flow identification. (For the duration of
this paper, we define the term “flow” to be a collection of
flights that have similar spatial trajectories.) Eckstein coupled
Principal Component Analysis (PCA) and the k-means clus-
tering algorithm to realize a flight taxonomy in [3]. Gariel
et al. [7] also used PCA in their work, but first augmented
the dimensionality of the data (by adding heading, angular

position, etc.) and used the DBSCAN clustering algorithm.
The DBSCAN algorithm holds notable advantages over the
k-means algorithm, as it does not require a-priori selection
of cluster size and features outlier identification. Marzouli et
al. [8] also leveraged PCA and DBSCAN to identify flows,
from which a mathematical graph (network) was created.
More recently, Enriquez and Kurcz used spectral clustering
to identify flows in the terminal and en-route airspace [4].
The hierarchical clustering algorithm in Enriquez and Kurcz’
algorithm only required positional data (as opposed to oper-
ational data, such as distance from corner post or procedure
used) to yield robust results. Further, similar to DBSCAN, the
algorithm in [4] did not require a-priori selection of cluster
size.

To the author’s knowledge, only the spatial dimensions (i.e.,
patterns observed laterally and perhaps vertically) are consid-
ered in most terminal flow analysis applications; methodolog-
ical methods for identifying temporal relationships between
flows are not discussed. This is unfortunate, as there is an
emerging interest within the aviation community to character-
ize persistence and uncertainty in operations. This paper seeks
to provide insight to the former, the temporal characteristic of
flows.

This paper is written as a continuation and extension of the
work and methodologies established in [4], and also employs a
spectral clustering framework to identify temporally persistent
flows. Enriquez and Kurcz created a methodology to distill
flows into nominal lines, which can be regarded as a descriptor
of a flow. Furthermore, the nominal lines have been shown
to coincide with existing arrival and departure procedures
in the terminal area airspace. This paper establishes the
following fact: since nominal lines describe a flow for a given
time duration, they too can be clustered across the temporal
dimension to identify the temporal persistence of the flow.

An advantageous by-product of this research is that it also
makes the spectral clustering process more computationally
tractable for large flight datasets in the terminal area do-
main. It is well known that spectral clustering generally
incurs an O(n3) computational cost1 due to the eigenvalue
decomposition, where n is the number of data elements being

1Sparsification techniques (e.g., using the k−nearest neighbor or an
ε−neighbor approach, as mentioned in [12]), sampling-based methods (e.g.,
the Nyström sampling method [1]) and iterative methods for computing
eigenvalues (e.g., the power method, the Arnoldi method [11], [9]) may further
reduce this cost, but may also alter the quality of the obtained clusters.



compared. This can be prohibitively expensive when we
are considering one or multiple months’ worth of airspace
traffic. The methodology shown here will allow use of
spectral clustering for large, time-varying air traffic datasets
at a significantly reduced computational cost, since individual
flight comparisons are being replaced with flow comparisons
(i.e., a group of flights). This approach can be considered
related to the following approaches in large-scale spectral
clustering: the KASP algorithm [13] and the “Landmark-
Based Spectral Clustering” (LBSC) algorithm [2].

This paper is organized as follows. Section II-A reviews
the mathematical and algorithmic framework established in
[4]. Section II-B then examines how to extend the cluster-
ing methodology in [4] to identify temporal trends in the
trajectory data. We then use this temporal (or “4D”) trajec-
tory clustering algorithm on two applications: automatically
determining anomalous arrival flights at Miami International
Airport (MIA), and identifying the minimum number of PBN
procedures required to sufficiently support airspace traffic
at the top airports in the NAS. A detailed description of
these applications, and how the 4D clustering algorithm aided
such analyses, is discussed in Section III. The final section
highlights future research directions and concludes.

II. SPECTRAL CLUSTERING METHODOLOGY

This section outlines the methodology to identify temporally
persistent flows, by leveraging the generic spectral clustering
framework in [4]. Hence, this section begins by reviewing
the mathematical background and algorithmic approach behind
spectral clustering for identifying terminal area flows. (Please
consult [4] for further discussion of the mathematics and
details behind the flow detection algorithm.) We then extend
the above methodology to the temporal dimension, which will
be discussed in the latter half of this section.

A. Trajectory Clustering Algorithm

The trajectory clustering algorithm begins by parametrizing
track positions of terminal area flights as a function of time.
This is done by linearly scaling all the aircrafts’ position report
times to the interval [0, 1]. Each aircraft’s lateral position is
then interpolated at m uniformly spaced locations in [0, 1],
which enables direct position comparisons between flights.
Specifically, each flight trajectory can be written as a vector
with m components:

fi = [(x1, y1)(i), (x2, y2)(i), ..., (xm, ym)(i)],

where (xk, yk)(i) corresponds to the lateral position of aircraft
i at parametrized time k. Our task is to partition a collection
of n flight data elements {fi}ni=1 into similar groups, hence
defining flows.

We then turn to a graph partitioning approach to accom-
plish the grouping of flights. We first define a network by
constructing a similarity matrix, W ∈ Rn×n whose entries

are computed via the Gaussian kernel as Wi,j = e
−‖fi−fj‖

2
2

2σ2

for some local scale parameter σ. The local scale parameter σ
is important, as it dictates the “width” of each cluster. For a

Algorithm 1 Spectral Clustering Algorithm
1: def spectralCluster(W , ωmin)
2: D =

∑n
j=1W (i, j)

3: L = D −W
4: v = second smallest eigenvector of L
5: il = {i|vi ≥ 0} (indices of v with positive elements)
6: ir = {i|vi < 0}
7: if stop(Wil,il ) > ωmin

8: spectralCluster(Wil,il , ωmin)
9: else

10: save il
11: if stop(Wir,ir ) > ωmin

12: spectralCluster(Wir,ir , ωmin)
13: else
14: save ir

discussion of the effects of the scale parameter on clustering
quality, as well as a strategy for choosing this parameter
adaptively, see [14]. For the work considered here, it sufficed
to set σ = 1. Our goal is to partition this network (represented
by W ) into groups such that the similarity between groups is
minimized and similarity within a group is maximized.

It has been proved that the second smallest eigenvalue of
the graph Laplacian L = D − W , where D is a diagonal
matrix given by Dii =

∑n
j=1Wij , illuminates the semi-

optimal data partition [10], [6]. Specifically for this work, we
use the sign of the second eigenvalue’s elements to determine
the partition (i.e. {i|vi ≥ 0} corresponds to one group and
{i|vi < 0} corresponds to the other). This procedure can be
applied recursively until a stopping criteria is met, as written
in algorithm 1.

We note that in algorithm 1, the notation Wil,il (line 7)
denotes the submatrix of W formed by taking the rows and
columns of W corresponding to the index set il. Also,
the function stop implements user-defined stopping criteria.
For example, it could measure intra-cluster variance or as
considered in the work here, the ratio of maximum distances:

max(Wi·,i·)

max(W )
,

which converges to zero as the hierarchical partitioning pro-
gresses. If the ratio above is less than the specified tolerance
(lines 7 and 11), we save the index set and stop clustering that
data grouping (lines 10). Otherwise, we make a recursive call
to the clustering function (lines 8 and 12).

Figure 1 displays the output from algorithm 1, using one
day of arrival traffic in MIA on March 1, 2011 as inputs.
Figure 1a displays the flight clusters by color. Since each
flight is parametrized, we can take the point-wise median of
each flow, resulting in the nominal line. Figure 1b displays the
nominal trajectories associated with each flow. In Figure 1b,
circular markers denote fixes associated with Standard Termi-
nal Arrivals (STARs). Note how the nominal lines align with
the fixes.
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(a) Flights colored by flow.

(b) Nominal trajectories associated with each flow.

Figure 1: Flows for arrival flights at MIA on March 1, 2011.

B. Identifying Temporally Persistent Flows via Spectral Clus-
tering

The output algorithm 1 produces flights grouped by spatial
trends, which we referred to as a “flow”, during a set time
period (e.g., a day). For most analyses involving the terminal
airspace, examining one day is not enough – we must con-
sider longer timespans. This, however, presents a dilemma:
examining flows for a short period of time is computationally
inexpensive, but insufficient for analysis. Increasing the times-
pan significantly, however, is prohibitive since the eigenvalue
decomposition needed by spectral clustering generally incurs
an O(n3) computational cost. Aside from computational
feasibility concerns, we also wish to understand the temporal
characteristics of the flows identified by algorithm 1. How
often does a particular flow appear? How does it vary with
time? Which flows can be classified as irregular?

We can address the above concerns and questions with
the following insight: we can cluster the nominal lines
(obtained from daily flows) across the temporal dimension.
This idea is depicted in Figure 2. Since the nominal line is
a reduced-dimension descriptor of a flow, this methodology
will simultaneously reduce spectral clustering’s computational
cost while allowing us to gain insights about flows’ temporal
behavior. Specifically, if m denotes the number of nominal

Algorithm 2 4D Clustering Algorithm
1: foreach period in timespan
2: pre-process track data
3: form similarity matrix W (period)

4: flows(period) = spectralCluster(W (period), ωmin)
5: foreach flow in flows(period)

6: nominals(flow) = point-wise median of flow
7: end foreach
8: nominals(period) = union({nominals(flow)})
9: end foreach

10: nominals(all) = union({nominals(period)})
11: create similiarity matrix W̄ from nominals(all)

12: 4Dflows = spectralCluster(W̄ , ω4D)
13: post-process 4Dflows

lines identified from the dataset – hence implying m � n –
the computational cost of this approach becomes O(m3). A
further advantage of this approach is that it enables the re-
use of the generic spectral clustering framework established
in [4]. The pseudo-code implementing this idea can be seen
in algorithm 2. In algorithm 2, the dataset’s full timespan is
equally partitioned into “periods” such as one day, one week,
etc. Note that we use the spectralCluster function
defined in algorithm 1, with two different tolerances ωmin and
ω4D. The choice of these parameters is application dependent.
We advise to choose ωmin in such a way that the spatial
flows produced capture sufficient resolution as dictated by the
application. The parameter ω4D should be chosen such that
ω4D ≤ wmin. The final step of algorithm 2 is intentionally
vague, as there are many ways to post-process the “4D” flows.
For example, one could examine 4D flows which contain a
significant amount of flights and which also persist over a
long time, as this would give the dominant terminal area flows.
Consequently, we could also examine which of the 4D flows
that do not regularly appear, implying possible operational
changes. We note that this is a purely data-driven approach,
as we do not use operational knowledge to obtain the daily or
the 4D flows – only trajectory information. This is a further
advantage of this approach as using operational knowledge
may not always be feasible, or appropriate, for analysis.

To the author’s knowledge, the closest related approaches
in the large scale spectral clustering literature are the LBSC
algorithm [2] and the KASP algorithm [13]. Chen and Cai
[2] proposed the LBSC algorithm, which leverages fixed
“landmark points” and Sparse Coding theory to reduce the
computational complexity of the spectral clustering algorithm.
In the context of the work presented here, “landmark points”
are analogous to nominal lines. It is not clear how Chen
and Cai’s approach of approximating the similarity matrix
via Sparse Coding theory would affect the quality of the
identified flows, though they cite success with various datasets
such as the MNIST dataset. The KASP algorithm [13] uses
the k−means algorithm to find clusters in the dataset, and
then runs a spectral clustering algorithm on the k−means
clusters’ centroids. Though the authors cite good results from
KASP, we note that leveraging the k−means algorithm comes
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Figure 2: Picture depicting the idea behind the 4D clustering algorithm. By first clustering in the spatial domain, and then in the temporal domain, we are
able to identify the persistence of a flow. We also reduce the computational effort required to perform spectral clustering on such datasets.

with certain drawbacks: it requires a-priori knowledge of the
number of clusters expected out of the algorithm, and could
suffer from reduced robustness as the k−means algorithm may
not always converge to a favorable partitioning of the dataset.
An advantage of the LBSC and KASP algorithms, however,
is that they are general purpose algorithms that do not assume
temporal structure in the dataset. Our approach, in contrast,
exploits the knowledge of the trajectory datasets’ temporal
dimension in order to reduce the cost of spectral clustering.

III. APPLICATIONS

We now present two applications that leverage the 4D
trajectory clustering algorithm. First, we identify anomalous
arrival flights at MIA for March 2011. Second, we use the
4D trajectory clustering algorithm to quantify the minimum
number of RNAV procedures required to support airspace
traffic at the busiest U.S. airports. Results from the second
effort was included in the FAA response to Section 213 of
the “FAA Modernization and Reform Act of 2012” (H.R.
658). We note that the trajectory data used for all the results
in this section comes from Threaded Track, a MITRE data
source of synthetic flight trajectories, which themselves are an
amalgam of National Offload Program (NOP), Airport Surface
Detection Equipment System (ASDE-X) and Enhanced Traffic
Management System (ETMS) data.

A. Identifying Irregular Terminal Airspace Traffic at MIA

We first use the 4D clustering algorithm to distinguish
between “regular traffic” and “irregular traffic” in the terminal
area. Such knowledge, in turn, can be used to establish
baselines at a given airport, or can be used to automatically
detect large operational changes in the airspace traffic. The
results in this section will use Algorithm 2 to highlight the
latter, hence implying the former. We use March 2011 arrival
traffic at MIA. We use ωmin = 0.035 and ω4D = 0.01 for the
parameters in Algorithm 2, and we define “irregular flow” to
mean that the 4D flow consists of only one nominal line (i.e.,
the flow was not similar to any other flow in the timespan
considered). Figure 3 shows the arrival traffic in MIA for
four specific days, each with varying amounts of identified
irregular flights. Notice that Figure 3c shows an unusually

high number of holds on March 4 and Figure 3d shows a high
number of anomalous flights on March 28. The number of
irregular flights identified using the 4D clustering algorithm,
separated by date, can be found in Figure 4. Some research
on historical weather for the Miami region on March 28, 2011
shows that Miami incurred severe thunderstorms that day, with
hail up to one inch in diameter and gusts up to 70 miles per
hour.

B. Identifying the Required Number of RNAV Procedures in
the NAS

The MITRE Corporation recently conducted a “Top-Down”
analysis in order to assess whether an existing or planned
PBN procedure covers every arrival and departure flow seen
at the busiest airports in the NAS currently. This analysis was
included in the FAA’s congressional response to Section 213 of
the FAA re-authorization bill, known as “FAA Modernization
and Reform Act of 2012” (H.R. 658). Section 213 of H.R. 658
specifies that the FAA shall provide plans and status updates of
Area Navigation (RNAV) and Required Navigational Perfor-
mance (RNP) procedure implementation at National Airspace
System (NAS) airports looking forward three years.

The analysis began by identifying airports with higher Area
Navigation (RNAV) and Required Navigation Performance
(RNP) equipage and traffic. This resulted in a list of 267
airports which had more than 13,000 operations each in CY
2011. Of those, 196 had greater than 70% RNAV-12 equipage
and were considered candidate airports for new RNAV SIDs
and STARs. The 196 airports we considered accommodated
10.8 million flights over the first six months in 2011.

We separated the above 10.8 million flights by each candi-
date airport, and then by departures and arrivals. The resulting
tracks were used as the input to the 4D clustering algorithm 2,
with parameters ωmin = 0.035 and ω4D = 0.025. Since we
are identifying the “procedure gap” at the candidate airports,
we removed daily flows that corresponded to a published
Standard Instrument Departure (SID) or STAR. This filtering

2Per the FAA Advisory Circular 90-101A, Section 2, Item j: “The RNP
value designates the lateral performance requirement in NM increments
associated with a procedure.” Jeppesen expounds further: “Aircraft operating
on RNAV-1 STARs and SIDs must maintain a total system error of not more
than 1 nautical mile for 95% of the total flight time.”

4



(a) March 3, 2011 Arrival Flights (b) March 9, 2011 Arrival Flights

(c) March 4, 2011 Arrival Flights (d) March 28, 2011 Arrival Flights

Figure 3: Four different days of arrival traffic at MIA. The lines in black denote flights deemed to be “normal” by the 4D clustering algorithm, while the red
lines denote the identified anomalous flights. March 3 incurred no anomalous flights, and is shown here as a baseline. March 9, 4 and 28 incurred 4, 21 and
51 anomalous flights, respectively.

Figure 4: Plot of identified anomalous MIA arrival flights in March 2011 (red), and the total arrival flight count (blue). Please note that the red and blue bar
plots have different y-axes.
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Figure 5: Persistent departure flows, grouped by their cardinal direction at
Dayton International Airport (DAY). Each grouping of the persistent flows is
colored uniquely. We comprehend this to mean that there is an opportunity
to implement four new RNAV SIDs for DAY. We note that the flows seen
above do not represent actual procedure designs, but can be used to inform
such efforts.

step left approximately one million uncovered daily flows
consisting of 5.2 million flights. In the post-processing step,
we identified flows which appeared for at least 15 days as
being “persistent”. This resulted in the identification of 2601
persistent flows at the 196 airports that are not covered by an
existing RNAV procedure. Finally, to compensate for the fact
that multiple flows may be covered by the same procedure,
we grouped the persistent flows by their cardinal direction.
An example of this grouping logic can be seen in Figure 5.

Results of the Top-Down analysis suggest a potential need
for 87 new RNAV SIDs and 65 new RNAV STARs at the 35
busiest airports in the United States. These airports, formerly
referred to as the OEP (Operational Evolution Partnership)
35, are listed in table I. The procedure gaps identified by
the Top-Down analysis for each of the airports above can
be seen in Figure 6. Compared to the June 2012 National
Airspace and Procedures Team (NAPT) list of planned RNAV
SID and STAR procedures, the Top-Down analysis shows an
additional need for 47 SIDs and 38 STARs. For the remaining
161 airports considered in this analysis, 384 new RNAV SIDs
and 330 new RNAV STARs are identified, beyond existing and
planned procedures. We further note that local operational
considerations such as Special Use Airspace (SUA), facility
preferences, environmental restrictions, and other facility-
specific constraints were not taken into account here, as the
procedure suggestions which stem from such considerations
may not be operationally feasible.

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented a purely data-driven methodol-
ogy capable of identifying the temporal persistence of flows.
Understanding this often overlooked feature is important as it
allows us to characterize “normal” airspace traffic, automat-
ically detect anomalous flights and also quantify how flows

Figure 7: One month’s worth of flow tubes for Phoenix Sky Harbor Airport
(PHX) arrival traffic. Each flow tube was plotted as a transparent geometry
and then overlayed on top of one another. Hence, darker regions indicate
regions heavier traffic. We also plot PHX STARs here, for reference.

ATL - Hartsfield-Jackson Atlanta Intl LGA - New York LaGuardia
BOS - Boston Logan Intl MCO - Orlando Intl

BWI - Baltimore/Washington Intl MDW - Chicago Midway
CLE - Cleveland Hopkins Intl MEM - Memphis Intl
CLT - Charlotte Douglas Intl MIA - Miami Intl

CVG - Cincinnati/Northern Kentucky Intl MSP - Minneapolis/St. Paul Intl
DCA - Ronald Reagan Washington National ORD - Chicago O‘Hare Intl

DEN - Denver Intl PDX - Portland Intl
DFW - Dallas/Fort Worth Intl PHL - Philadelphia Intl

DTW - Detroit Metropolitan Wayne County PHX - Phoenix Sky Harbor Intl
EWR - Newark Liberty Intl PIT - Pittsburgh Intl

FLL - Fort Lauderdale/Hollywood Intl SAN - San Diego Intl
HNL - Honolulu Intl SEA - Seattle/Tacoma Intl

IAD - Washington Dulles Intl SFO - San Francisco Intl
IAH - George Bush Houston Intercontinental SLC - Salt Lake City Intl

JFK - New York John F. Kennedy Intl STL - Lambert Saint Louis Intl
LAS - Las Vegas McCarran Intl TPA - Tampa Intl

LAX - Los Angeles Intl

Table I: A list of the airports considered for the Top-Down analysis.

evolve over time. In turn, such insights will aid planners to
accommodate the projected increase in NAS traffic.

The 4D trajectory clustering algorithm we presented here
is a continuation of the spectral clustering flow algorithm
established in [4]. The 4D trajectory clustering algorithm
we present here has numerous advantages: it is simple to
implement, it relies solely on spectral clustering (as opposed
to the relying on the k-means algorithm), and it makes large-
scale spectral clustering computationally tractable. We also
applied the 4D trajectory clustering algorithm to two real-
world examples, to show the promise of this methodology.
We identified anomalous arrival flights at MIA, successfully
illuminating the change in operations during a severe storm.
We also identified the minimum number of PBN procedures
that should be implemented at the U.S. airports which ac-
commodate the highest number of RNAV and RNP-equipped
aircraft.

Future directions for this research consists of including
different characteristics of flows, aside from the nominal line,
for 4D clustering. We can consider creating “flow tubes”
from nominal lines, for example, by incorporating point-wise
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(a) Procedure gap identified by the Top-Down analysis, for RNAV STARs.

(b) Procedure gap identified by the Top-Down analysis, for RNAV SIDs.

Figure 6: Procedure gap identified, per airport, by the “Top-Down” analysis. The procedure gap for RNAV STARs is shown in the top figure, while the
procedure gap for the RNAV SIDs is shown in the bottom figure.
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standard deviations. Flow tubes derived from the Phoenix
Sky Harbor Airport (PHX) arrival traffic can be seen in
Figure 7. It is then our intention to cluster the flow tubes
across the temporal dimension as well, and compare and
contrast the results with those obtained via Algorithm 2.
Before proceeding with this effort, however, we must derive
a robust metric to quantify the differences between two flow
tubes. Presumably, the area of intersection between flow tubes
should be a part of this metric. We would to also formally
compare compute-time and cluster quality of our algorithm
against various large-scale spectral clustering algorithms, some
of which were mentioned here: the KASP algorithm, the
landmark-based clustering algorithm, and Nyström sampling-
based algorithms.

ACKNOWLEDGMENT

The author would like to thank Dr. Tom Becher and
Mahesh Balakrishna at MITRE CAASD for their continued
support for, and feedback on, this research. Further, the
author thanks Stephen Levin for his contributions to the Top-
Down analysis section, and for supplying the procedure gap
figures used in this paper. Finally, the author would like
to acknowledge the following, for their contributions towards
the Top-Down analysis effort: Olga Gisin, Cameron Osborne,
John Timberlake, Mushava Kodzwa and Faisal Arain.

REFERENCES

[1] C.T.H. Baker. The Numerical Treatment of Integral Equations. Mono-
graphs on numerical analysis. Clarendon Press, 1977.

[2] Xinlei Chen and Deng Cai. Large scale spectral clustering with
landmark-based representation. In AAAI, 2011.

[3] Adric Eckstein. Automated flight track taxonomy for measuring benefits
from performance based navigation. In Integrated Communications
Navigation and Surveillance Conference, 2009.

[4] Marco Enriquez and Christopher Kurcz. A simple and robust flow
detection algorithm based on spectral clustering. In ICRAT Conference,
2012.

[5] FAA. FAA aerospace forecast: Fiscal years 2012-2032. Technical report,
Federal Aviation Administration, 2012.

[6] Miroslav Fiedler. A property of eigenvectors of nonnegative symmetric
matrices and its application to graph theory. Czechoslovak Mathematical
Journal, 25, 1975.

[7] Maxime Gariel, Ashok N. Srivastava, and Eric Feron. Trajectory
clustering and an application to airspace monitoring. IEEE Transactions
on Intelligent Transportation Systems, 12(4):1511–1524, 2011.

[8] Aude Marzuoli, Vlad Popescu, and Eric Feron. Two perspectives on
graph-based traffic flow management. In First SESAR Innovation Days,
2011.

[9] Y. Saad. Iterative Methods for Sparse Linear Systems. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2nd
edition, 2003.

[10] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmenta-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(8):888–905, 2000.

[11] Lloyd N. Trefethen and David Bau. Numerical Linear Algebra. SIAM:
Society for Industrial and Applied Mathematics, 1997.

[12] Ulrike von Luxburg. A tutorial on spectral cluster. Technical report,
Max Planck Institute for Biological Cybernetic, 2007.

[13] Donghui Yan, Ling Huang, and Michael Jordan. Fast approximate
spectral clustering. Technical Report UCB/EECS-2009-45, EECS De-
partment, University of California, Berkeley, Mar 2009.

[14] Lihi Zelnik-Manor and Pietro Perona. Self-tuning spectral clustering.
In NIPS’04, 2004.

AUTHOR BIOGRAPHY

Marco U. Enriquez holds a Ph.D. and M.A. in computational and
applied mathematics from Rice University in Houston, Texas and a
B.S. in computer engineering and mathematics from Tufts University
in Medford, Massachusetts.

He is currently a Senior Applied Mathematician at MITRE
CAASD, located in McLean, Virginia. He works in the
Airspace/Procedures Criteria & Standards department. His research
interests include data reduction and optimization theory, and the
numerical algorithms supporting such topics.

8


