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Abstract—This paper focuses on the estimation of the aircraft
mass in ground-based applications. Mass is a key parameter
for climb prediction. It is currently not available to ground-
based trajectory predictors because it is considered a competitive
parameter by many airlines. There is hope that the aircraft mass
might become widely available someday, but in the meantime it
is possible to estimate an equivalent mass from the data already
available, assuming the thrust to be known (maximum or reduced
climb thrust for example).

In this paper, we compare the performances of two mass esti-
mation methods proposed in recent publications. Both methods
estimate the aircraft mass by fitting the modeled energy rate
(i.e. the power of the forces acting on the aircraft) with the
energy rate observed at several points of the past trajectory.
The first method, proposed by Schultz et al. ([1]), dynamically
adjusts the weight parameter so as to fit the energy rate, using an
adaptive sensitivity parameter to weight each observation. The
second method, introduced in one of our previous publications
([2]), estimates the mass by minimizing the quadratic error on
the observed energy rate, taking advantage of the polynomial
expression of the modeled power when using the BADA model.
The robustness of both methods to the observation errors is
assessed, using simulated data with various distributions of the
noise added to the observed state variables. The results show that
both methods are able to find mass estimates that are very close
to the “actual” mass, with slightly better performances for the
least squares method.

Keywords: aircraft trajectory prediction, mass estimation,
BADA, energy rate, specific power

INTRODUCTION

With the emergence of new operational concepts ([3], [4])
centered on trajectory-based operations, predicting aircraft
trajectories with great accuracy has become a key issue for
most ground-based applications in Air Traffic Management
and Control (ATM/ATC). Some of the most recent algorithms
applied to ATM/ATC problems require to test a large number
of alternative trajectories. As an example, in [5] an iterative
quasi-Newton method is used to find trajectories for departing
aircraft, minimizing the noise annoyance. Another example
is [6] where Monte Carlo simulations are used to estimate the
risk of conflict between trajectories, in a stochastic environ-
ment. Some of the automated tools currently being developped
for ATC/ATM can detect and solve conflicts between trajecto-
ries, using Genetic Algorithms ([7]1), or Differential Evolution

1These algorithms are at the root of the strategic deconfliction through
speed adjustments developped in the European ERASMUS project ([8]). A
more recent application is the SESAR 4.7.2 (Separation Task in En Route
Trajectory-based Environment) project, where lateral and vertical maneuvers
are also used.

or Particle Swarm Optimization ([9]).
To be efficient, all these methods require a fast and accurate

trajectory prediction, and the capability to test a large number
of “what-if” trajectories. Such requirements forbid the sole
use of on-board trajectory prediction, which is certainly the
most accurate, but is not sufficient for these most promising
applications. Even with the existing (or future) datalink capa-
bilities that could transmit the on-board prediction to ground
systems, there remains a need for a fast and accurate ground-
based prediction.

Most trajectory predictors rely on a point-mass model to
describe the aircraft dynamics. The aircraft is simply modeled
as a point with a mass, and the second Newton’s law is
applied to relate the forces acting on the aircraft to the
inertial acceleration of its center of mass. Such a model is
formulated as a set of differential algebraic equations that
must be integrated over a time interval in order to predict the
successive aircraft positions, knowing the aircraft initial state
(mass, current thrust setting, position, velocity, bank angle,
etc.), atmospheric conditions (wind, temperature), and aircraft
intent (thrust profile, speed profile, route).

Unfortunately, the data that is currently available to ground-
based systems for trajectory prediction purposes is of fairly
poor quality. The speed intent and aircraft mass, being con-
sidered competitive parameters by many airline operators, are
not transmitted to ground systems. The actual thrust setting
of the engines (nominal, reduced, or other, depending on
the throttle’s position) is unknown. There are uncertainties
or noise in the Weather and Radar data. Some studies ([10],
[11], [12]) detail the potential benefits that would be provided
by additional or more accurate input data. In other works,
the aircraft intent is formalized through the definition of an
Aircraft Intent Description Language ([13], [14]) that could
be used in air-ground data links to transmit some useful data
to ground-based applications. There is hope that, in the future,
all the necessary data required to predict aircraft trajectories
will be available. In the meantime, we propose to learn some
of the unknown parameters of the point-mass model – typically
the aircraft mass – from the data that is already available.

Focusing on the aircraft climb, we are interested in this
paper in estimating the aircraft mass, which is one of the key
parameters for climb performance, using the past trajectory
points. This approach, where some unknown parameters are
adjusted by fitting the model to the observed past trajectory,
is not new. The past publications following this path ([15],
[16], [17], [18], [1], [2], [19]) propose several methods, with
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different choices for the adjusted parameter (mass, or thrust,
for example), the modeled variable that is fitted on past
observations (rate of climb, energy rate), and the algorithm
that is applied (stochastic method, adaptive mechanism, least
squares, etc.).

Among the publications dealing with mass estimation, let us
cite [15], where Warren and Ebrahimi propose an equivalent
weight as a workaround to use a point-mass model without
knowing the actual aircraft mass. Nominal thrust and drag pro-
files are assumed. The equivalent mass is found by minimizing
the gap between the computed and observed vertical rates. A
second study ([16]) raises doubts about the reliability of the
vertical rate for this purpose, and suggests to use the energy
rate instead. The proposed method is tested on simulated
trajectories only. In more recent works, Schultz, Thipphavong,
and Erzberger ([1]) introduce an adaptive mechanism where
the modeled mass is adjusted by fitting the modeled energy
rate with the observed energy rate. This adaptive method
provides good results on simulated traffic and the authors plan
to try it on real data. In [2], we use a Quasi-Newton algorithm
(BFGS) combined to a mass estimation method to learn the
thrust profile minimizing the error between the modeled and
observed energy rate. The thrust law, once learned on historical
data, is used to predict the future trajectory of any new
aircraft, together with the mass estimated on the past trajectory
points. This method has been tested on two months of real
data, showing good results. Concerning the mass estimation
method, we showed that, when using the BADA2 model of the
forces (or a similar model), the aircraft mass can be estimated
at any past point of the trajectory by solving a polynomial
equation, knowing the thrust setting at this point. When using
several points, and assuming a constant mass over the whole
trajectory segment, the mass can be estimated by minimizing
the quadratic error on the energy rate.

In the current paper, we propose an improvement of this
least squares method. The mass is no longer assumed to
be constant during the climb. It follows the fuel law given
by the Eurocontrol Base of Aircraft DAta (BADA) model.
We compare the performances of the two mass estimation
methods: the proposed least squares method and the adaptive
mechanism introduced by Schultz et al. in [1]. As the actual
aircraft mass is not available in the real data that we have
collected, we use simulated trajectories. In order to mimic the
diversity and volatility of the real Radar tracks, the simulated
trajectories are produced by sampling a number of parameters
(mass, calibrated airspeed, Mach number, temperature differ-
ential) according to some given distributions, and a Gaussian
noise is added independently to some state variables (altitude,
true airspeed, rate of climb, acceleration, temperature) for
each trajectory point. The robustness of both mass estimation
methods to the noise added to each state variable is studied.

The rest of this paper is organized as follows: Section I
describes the forces’ model and the equations governing the
aircraft dynamics. Section II describes the two mass estimation
methods. The data and experimental setup are detailed in sec-
tion III, and the results are shown and discussed in section IV,

2BADA: the Eurocontrol Base of Aircraft DAta

before the conclusion.

I. MODELS AND EQUATIONS

A. Aircraft Dynamics with the Effect of Wind

Ground-based trajectory predictors used for air traffic man-
agement and control purposes usually rely on a simplified
point-mass model to predict aircraft trajectories. In such a
model, all forces acting on the aircraft body are exerted at the
center of mass, making several simplifying approximations.
The inertial moments and angular accelerations of the aircraft
around its center of gravity are not included in the model.
The aircraft is modeled as a point of mass m, subject to the
second Newton’s law that gives us the inertial acceleration
−→ai = d

−→
Vi

dt =
−̇→
Vi of the center of mass (the dot above a vector

denotes the time derivative of this vector):

m
−̇→
Vi =

−→
Thr +

−→
D +

−→
L +m−→g (1)

In equation (1), mass is considered a stationary variable3 for
what concerns its impact on the aircraft dynamics. At a larger
scale, though, the fuel burn and the consequent loss of mass
must be taken into account when integrating the equations
to predict the future trajectory. Concerning the forces, it is
assumed that the thrust

−→
Thr exerted by the aircraft engines is

aligned to the airspeed vector
−→
Va, and in the same direction.

The drag
−→
D exerted by the relative wind on the flying airframe

is also aligned to
−→
Va, by definition, and in the opposite

direction. The lift force
−→
L caused by the motion of the

airframe through the air is perpendicular to these vectors and
in the plane of symmetry of the aircraft. The flight is assumed
to be symmetric and there is no aerodynamic sideforce. The
effects of Earth rotation on the aircraft dynamics are neglected
(flat Earth approximation).

The effect of wind
−→
W on the aircraft velocity and accelera-

tion cannot be neglected, however. It can be written as follows:

−→
Vi =

−→
Va +

−→
W (2a)

−→ai =
−̇→
Va +

−̇→
W (2b)

We can project equation (1) onto the airspeed vector
−→
Va

axis. This gives us the following equation, where “.” denotes
the dot product of two vectors:

m
−→
Va.

d
−→
Vi
dt

=
(−→

Thr +
−→
D +

−→
L +m−→g

)
.
−→
Va (3)

Combining equations (2) and (3), and introducing h the
geodetic height of the aircraft, and ḣ = dh

dt the inertial
vertical velocity (counted positive upward), equation (3) can be
reformulated as a law governing the total energy rate, denoting
WUp the upward component of the wind:(

Thr−D
m

)
Va︸ ︷︷ ︸

specific power

= VaV̇a + gḣ︸ ︷︷ ︸
specific energy rate

+ (
−̇→
W.
−→
Va − gWUp)︸ ︷︷ ︸
wind effect

(4)

3We assume in fact that d
dt

(mVi) = mV̇i, and neglect the impact of ṁ
on the acceleration.



3

Expressing the power of the forces acting along the true
airspeed axis, and the total energy (kinetic and potential) of
the aircraft gives us an interesting insight to equation (4). We
can see how the aircraft dynamics are governed by the specific
power (i.e. power per unit of mass) and energy rate:

Power = (Thr−D)Va (5a)

Energy =
1

2
mV 2

a +mgh (5b)

Power
m

=
d

dt

(
Energy
m

)
+ (
−̇→
W.
−→
Va − gWUp) (5c)

For historical and technical reasons, the geodetic altitude
h and the inertial vertical velocity ḣ are not much used in
air traffic control operations. Instead, a pressure altitude Hp

(also called geopotential pressure altitude in [20]) is computed
on board the aircraft and transmitted to ground systems by
Mode-C or Mode-S transponders. The relationship between
the pressure altitude and the geodetic altitude is the following,
with T denoting the air temperature, and ∆T is the difference
with the temperature that would occur using the International
Standard Atmosphere (ISA) model:

gḣ = g0

(
T

T −∆T

)
dHp

dt
(6)

Neglecting the vertical component of the wind WUP and
using the relationship between ḣ and Ḣp stated in equation (6),
equation (4) can be re-written as follows, introducing dHp

dt ,
the rate of climb or descent (ROCD), g0 the gravitational
acceleration at mean sea level, and a corrective factor related
to the temperature:

Thr−D
m

Va︸ ︷︷ ︸
specific power

= Va
dVa
dt

+ g0

(
T

T −∆T

)
dHp

dt︸ ︷︷ ︸
specific energy rate

+
d
−→
W

dt
.
−→
Va︸ ︷︷ ︸

wind effect

(7)

Considering an aircraft trajectory picked up from historical
data, the energy rate and wind effect (right-hand part of
equation (7)) can be computed at any point of the observed
trajectory. The specific power (left-hand part) is a function of
the mass m and the thrust and drag forces (Thr and D).

In the rest of this paper, we focus on estimating the mass
for climbing aircraft, using equation (7). In the two methods
presented in section II, the mass is adjusted so that equation (7)
is satisfied. This requires a model of the thrust and drag forces.

B. Modeling the Forces

Using equation (7) to actually compute a trajectory requires
a model of the aerodynamic drag D of the airframe flying
through the air. We also need a computational model of the
engines’ thrust Thr. In our experiments, we used version 3.9
of the Eurocontrol Base of Aircraft Data (see [21]) to compute
these forces.

The BADA model provides different parametric models of
the thrust force Thr for jet, turboprop, and piston engines (see
section 3.7 of [21]). These models are tuned by regression
using manufacturers’ data. They allow us to compute the

standard maximum climb thrust Thrmax climb as a function of Hp,
∆T , and Va:

Thrmax climb = f1(Hp, Va,∆T ) (8)

The dimensionless lift and drag coefficients are defined as
follows:

CL =
2mg0

ρVaS cos Φ
(9a)

CD = aD + bDC
2
L (9b)

where S is the wing surface, Φ is the bank angle, and aD
and bD are values depending on the phase of flight (landing
gear up or down, flaps extended, etc.).

Given these coefficients (experimentally found), the equa-
tion for the drag D is the following:

D =
CDρV

2
a S

2
(10)

With the atmosphere model and the equations of [20], the
air density ρ and temperature T can be expressed as a function
of the temperature differential ∆T . So the drag is as a function
of the aircraft mass m, the true air speed Va, the geopotential
pressure altitude Hp and the temperature differential ∆T .
Moreover, one can notice that the drag D is a polynomial
of the second degree with respect to the mass that has the
following form:

D = f2(Hp, Va,∆T ) +m2 × f3(Hp, Va,∆T,Φ) (11)

C. Fuel consumption

A fuel consumption model is also required when computing
a full trajectory. In climbing phase, the fuel consumption is
modeled by equation (12), where the mass variation dm

dt is
described as a function of Hp, Va and ∆T .

dm

dt
= −f4(Va, Hp,∆T ) (12)

II. MASS ESTIMATION

The two mass estimation methods compared here rely on the
idea of adjusting the mass m in order to equalize the specific
power and the specific energy rate.

In order to be more specific, let us introduce P and Q,
defined as follows, considering equations (5) and (7) :

P = Power−m×
[
d

dt

(
Energy
m

)
+ (
−̇→
W.
−→
Va)

]
︸ ︷︷ ︸

Q

(13a)

Q = Va
dVa
dt

+ g0

(
T

T −∆T

)
dHp

dt
+
d
−→
W

dt
.
−→
Va (13b)

The quantity Q is the sum of the energy rate and wind effect.
It can be computed at any point of the past trajectory using
the recorded Radar track, Weather data, and equations (2).
Considering the forces model given by equations (8) and (10)
in section I-B, only the mass m is missing to compute the
power. Thus, at each point i of the trajectory, the power is
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a function Power(mi) of the mass mi at point i. The total
energy model equation (7) becomes:

Pi(mi)

mi
= 0 ⇔ Poweri(mi) = miQi (14)

A. The Adaptive Method

The idea of the adaptive method introduced by Schultz et
al. in [1] is to dynamically adjust the weight mg so that the
modeled energy rate (i.e. the power of the forces acting on the
aircraft) fits the observed energy rate. The weight is adjusted
for each new trajectory point and the weight update depends
on a sensitivity parameter which is dynamically adapted,
comparing the energy rate error of the new observation to
the average value over the five last points. Small values of
the sensitivity parameter compensate for the volatility of radar
track data, giving less importance to the outliers (i.e. the points
that differ too much from the average), whereas high values
allow the algorithm to better follow the energy rate variations.

Let us now describe more formally the two parts of this
adaptive algorithm: the weight adjustment and the sensitivity
parameter adaptation. Due to our choice of notations and to the
form of our equation (7), and also because we adjust the mass
m instead of the weight mg, our description of the adaptive
method is slightly different from the one given by Schultz et
al.. Otherwise, the mechanism is exactly the same.

In the dynamic weight adjustment, the power at point i
is modeled using the previous mass mi−1. The current mass
mi is then obtained by applying equation (14), using Qi the
energy rate and wind effect observed at point i:

mi =
Poweri(mi−1)

Qi
(15)

Introducing Qi − Poweri(mi−1)
mi−1

= −Pi(mi−1)
mi−1

, the error
made on the energy rate when modeling the power at point i
using the previous mass mi−1, equation (15) can be rewritten
as follows:

mi =
Poweri(mi−1)

Qi

=
Poweri(mi−1)

Poweri(mi−1)
mi−1

+ (Qi − Poweri(mi−1)
mi−1

)

=
1

1
mi−1

+ 1
Poweri(mi−1)

(
Qi −

Poweri(mi−1)

mi−1

)
︸ ︷︷ ︸

error on the energy rate when using mi−1

=mi−1

(
1− Pi(mi−1)

Poweri(mi−1)

)−1
(16)

For the reasons explained at the begining of this section,
a sensitivity parameter βi is introduced in the update term of
equation (16). Finally, the mass is updated using the following
equation:

mi = mi−1

[
1 + βi

(
−Pi(mi−1)

Poweri(mi−1)

)]−1
(17)

The sensitivity parameter βi is adapted by comparing the
observed variations of the energy rate, given by Pi(mi−1) in
equation (17), to the average variation over the five previous
points. The adaptation rule given in [1] is the following, where
∆Ėi = Pi(mi−1)

mi−1gVa
(with our notations):

if i > 0 and ∆Ėi > 0.0001

and

∣∣∣∣∣∆Ėi −∆Ėavg

∆Ėavg

∣∣∣∣∣ < 3

then
βi = max(0.205, βi−1 + 0.05)

else
βi = 0.005

(18a)

In equation (18), ∆Ėavg is the average value of ∆Ėi over the
last five previous points. Note that there might be less than
five points when the algorithm “warms up”, at the beginning
of the trajectory.

With this mechanism, if ∆Ėi is repeatedly high in the
same order of magnitude, βi will increase, strengthening the
adaptation. Otherwise, βi has a low value. As a consequence,
an isolated high ∆Ėi does not have a great impact on
the adaptation. This improves the robustness of this mass
estimation process.

The algorithm starts with an initial mass m0 (typically the
reference mass given by the BADA model). The mass variation
at each iteration is bounded: in our experiments, it is limited
to 2%4 of the reference mass. During the whole process,
the estimated mass is bounded within 80% and 120% of the
reference mass.

B. Least Squares Method

In the adaptive method presented in section II-A, the mass
is iteratively updated with each new trajectory point. The
algorithm starts with an initial mass m0 and ends up with
a final mass mn after n iterations.

In the least squares method, the mass is directly estimated
by minimizing the sum of the squared errors over n points.
The total error E being minimized is the following:

E(m1, . . . ,mn) =

n∑
i=1

(
Poweri(mi)

mi
−Qi

)2

(19a)

=

n∑
i=1

(
Pi(mi)

mi

)2

(19b)

Note that in equation (19), the error function is related
to the modeled specific power Poweri(mi)

mi
(i.e. power per

unit of mass), and not the power (which might have given
simpler expressions later on in this section). This choice is
motivated by the trajectory prediction purpose of the mass
estimation: when trying to predict the pressure altitude Hp and
true airspeed Va of a climbing aircraft, one has to integrate the
total energy model equation (7), or alternatively an equation in

4This value differs from the one given in [1], but it gives better results in
our experiments.
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the form d
−→
V
dt =

∑−−−−−→Forces
m . The final expression of this integral

involves the specific power, not the power.
We introduced the least squares mass estimation method in

[2], where it was associated to another method in order to learn
the thrust profile of a given aircraft type from historical data.
When considering fresh trajectory inputs, the learned thrust
profile and the mass estimated on the past trajectory points
were used to predict the future values of the energy rate. In
a more recent publication currently under review, we showed
that the proposed method could improve the altitude prediction
accuracy up to 50% when compared to the standard BADA
model. These studies were conducted on real data (Mode-C
Radar tracks and Weather data).

In these previous works, we assumed that the mass m
remains constant over the n points used for the estimation.
We now improve the proposed method by taking the fuel burn
into account. The mass variation is ruled by equation (12) (see
section I-C).

With this equation, the mass mi at point i and time ti can
be written as a simple function of the final mass mn, knowing
the values of the state variables (temperature, altitude, velocity,
etc) observed at point i. The mass at point i is the following,
with f4 modeling the fuel burn:

mi = mn +

tn∫
ti

f4(Va(t), Hp(t),∆T (t))dt (20a)

' mn +

n−1∑
k=i

f4(tk+1) + f4(tk)

2
(tk+1 − tk) (20b)

= mn + δi (20c)

The quantity δi =
n−1∑
k=i

f4(tk+1)+f4(tk)
2 (tk+1 − tk) can be

computed from the available data for every point i of the
observed past trajectory. Therefore, the sum of squares error
E can be rewritten as follows:

P̃i(mn) = Pi(mn + δi) (21a)

E(mn) =
n∑

i=1

(
P̃i(mn)

(mn + δi)

)2

(21b)

The aircraft mass is estimated by minimizing E(mn) given
by equation (21b). This minimization can be done efficiently
when using the model of forces provided by BADA. With this
model, the power (Poweri(mi)) can be expressed as a second-
degree polynomial of the mass mi, using the functions f1, f2,
and f3 (see section I-B for the model of the forces):

Poweri(mi) =−m2
i × f3(Hpi, Vai,∆T i,Φi)

+ f1(Hpi, Vai,∆T i)

− f2(Hpi, Vai,∆T i)

(22)

Consequently, P̃i(mn) = Poweri(mn+δi)−(mn+δi)Qi is
a second-degree polynomial of the final mass mn. The overall
error E is a sum of rational terms (i.e. ratios of polynomial
functions). The minimum m∗ of this function satisfies the
equation E ′(m∗) = dE

dm (m∗) = 0. When introducing a

common denominator in E ′, the equality E ′(m∗) = 0 becomes
a polynomial equation of degree at most 3(n−1)+4. Solving
such a high degree polynomial might be a difficult task due
to numerical issues [22]. Therefore, instead of minimizing
E we minimize an approximation Eapprox as defined by
equation (23) below:

Favg(mn) =
1

n

n∑
i=1

(mn + δi) (23a)

Eapprox(mn) =

n∑
i=1

(
P̃i(mn)

Favg(mn)

)2

(23b)

With this approximation, the derivative of the error function
is given by the following equation (24):

E ′approx(mn) =

2

(Favg(mn))
3

n∑
i=1

P̃i(mn)
[
P̃i
′
(mn)Favg(mn)− P̃i(mn)Favg

′(mn)
]

(24)

With the above equation (24), the optimal mass m∗ must
satisfy the fourth-degree polynomial equation (25) below, in
order to cancel out E ′approx.

n∑
i=1

P̃i(m
∗)
[
P̃i
′
(m∗)Favg(m∗)− P̃i(m

∗)Favg
′(m∗)

]
= 0

(25)

One can solve analytically this fourth-degree polynomial
equation using Ferrari’s method. However, even for a third-
degree polynomial, analytical methods might not be numeri-
cally stable [23]. In our experiments, we used the numerical
method5 provided by the GNU Scientific Library. This nu-
merical method appears to be as fast as the analytical method
in our experiments. Among the four potential solutions given
by this numerical method, we select the solution6 in ]0; +∞[
minimizing Eapprox. The obtained value is the estimated
aircraft mass m∗ at point n.

III. DATA AND EXPERIMENTAL SETUP

A. Aircraft Trajectories

The two mass estimation methods (adaptive and least
squares) are tested on simulated trajectories. The version
3.9 of the BADA model is used to produce 4-minute long
climb segments, assuming a max climb thrust. The synthesized
trajectories start at altitude 12,000 ft. Three different aircraft
types are considered: the A320 which is a short-range aircraft,
the A333 which is a medium-range aircraft, and the B744
which is a long-range aircraft.

When the thrust law is fixed, the climb trajectory depends
only on the mass, the speed profile (CAS,Mach) and the
temperature differential ∆T .

5This method of the GNU scientific library uses a balanced-QR reduction
of the companion matrix.

6Actually, under reasonable hypotheses on the observed variables, one can
prove that there is exactly one solution in ]0; +∞[ that cancels out E ′approx.
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Our set of simulated trajectories is created by sampling
these four parameters independently, using uniform laws. The
parameters of these uniform laws are summarized in table I.
Such a uniform distribution is not realistic, but it is sufficient
for our purpose, which is to test the robustness of both
methods on a variety of trajectories. The useful state variables
T,Hp, VTAS ,

dHp

dt ,
dVTAS

dt are assumed to be observed every
12 seconds, giving us 21 points per trajectory. Each dataset
used in our experiments comprises 1000 climb segments of
21 points.

parameter distribution
CAS CASref + uniform([−30; 30])
Mach Machref + uniform([−0.03; 0.03])
∆T uniform([−20; 20])
mass massref × uniform([0.8; 1.2])

Table I: The distribution of the parameters used to generate
our trajectories.

B. Adding a Gaussian Noise

Assuming we used only the BADA model, without noise,
to produce our dataset, the resulting trajectories would be
smooth. Such trajectories would not be very representive of
the real-life radar data, which is much more noisy and volatile.

Our aim is to assess the robustness of both methods to
the observation errors. To that purpose, we add a Gaussian
noise to the state variables associated to each trajectory point.
This is done independently for each of the following five state
variables: temperature T , pressure altitude Hp, true airspeed
Va, acceleration dVa

dt , and rate of climb dHp

dt .
We create separate trajectory datasets for these five vari-

ables, adding a Gaussian noise to only one variable in a given
dataset. For a given climb segment, the random draws are
made in an independent way: we draw a random noise from
the chosen distribution for each trajectory point. Several values
of the standard deviation of the Gaussian distribution are tested
for each variable. For instance, if we want to test n different
values of the standard deviation for each observed variable,
we create 5× n datasets of 1000 trajectories each.

IV. RESULTS

A. Robustness to Observation Errors

The results are assessed by computing the root mean square
of the relative error, for each dataset. This relative error for
a given trajectory is simply 100 × massestimated−massactual

massactual
.

The root mean square errors (RMSE) are plotted on figures 1
to 5 for each variable and for different values of the Gaussian
noise’s standard deviation.

Concerning figures 2 to 5, the ranges chosen for the standard
deviation are inspired from the worst cases of the Eurocontrol
document [24]. Assuming a number of primary and secondary
surveillance radars, this document describes different scenar-
ios, with the associated errors in position and velocity.

Looking at figures 1 to 5, we see that both methods estimate
the mass with good accuracy. In all cases, the RMSE increases
with the input noise, which is not very surprising. From the
maximum ranges observed for the RMSE (only a few percents
in all cases), we can say that both methods are quite robust
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Figure 1: Sensitivity of the mass estimation methods to the
noise in the temperature T .
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Figure 2: Sensitivity of the mass estimation methods to the
noise in the pressure altitude Hp.

to the noise introduced in the temperature, altitude, velocity,
acceleration, and rate of climb.

Surprisingly, the estimated mass is relatively insensitive to
the noise in the pressure altitude Hp, according to the RMSE
values displayed on figure 2. This is especially true for the
least squares method.

The errors on the true airspeed Va, acceleration dVa

dt and
rate of climb dHp

dt are more sensitive to the input error, as
can be seen on figures 4 to 5. The highest errors are observed
when introducing a noise in the acceleration and rate of climb.
This is not very significant, however, as we may have chosen
too high standard deviations for the noise introduced in these
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Figure 3: Sensitivity of the mass estimation methods to the
noise in the true airspeed Va.
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Figure 4: Sensitivity of the mass estimation methods to the
noise in the true airspeed dVa

dt .

variables. For example, a standard deviation of 0.2 kts.s−1 for
the acceleration is a high value: the acceleration dVa

dt in our
experiments is in a range from −0.08 kts.s−1 to 0.44 kts.s−1

for the three considered aircraft types.
The behavior of the two methods is consistently the same

for all aircraft types, even if some differences can be observed
between the three aircraft types that were tested: the mass
estimation is slightly more sensitive to the noise for short-
range aircraft than for long-range aircraft.

In all figures, the least squares methods exhibits a better
RMSE than the adaptive method, except maybe for the noise
in the temperature, where the performances of the two methods
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Figure 5: Sensitivity of the mass estimation methods to the
noise in the rate of climb dHp

dt .

are fairly close. For the true airspeed Va, acceleration dVa

dt , and
rate of climb dHp

dt , the RMSE obtained with the least squares
method is about 20 to 50 percent less than the RMSE obtained
with the adaptive method. When considering the Hp variable,
the order of magnitude of the difference in RMSE goes up to
60 to 70 percent in favor of the least squares.

Overall, for what concerns the robustness to the observation
noise and with the parameter settings chosen for the algorithms
(number of points, thresholds, etc), the least squares method
seems to perform a little better than the adaptive method. One
must keep in mind, however, that all errors remain in a range
of a few percents only, for both methods.

B. Influence of ∆T on Mass Estimation Errors

Our datasets were generated by sampling random values
for (CAS,Mach,∆T,mass). Looking at how the error is
distributed among these various samples, we can observe
some differences, depending on the parameter values. This is
particularly true for the temperature differential ∆T .

As an illustration, we have plotted the individual errors
with respect to ∆T for both methods, with the observation
noise added to the temperature T . The results are shown on
figures 6 and 7. On these figures, we can observe a much
higher variance of the errors for the samples with high values
of ∆T . There is clearly a threshold for this ∆T parameter,
above which the mass estimation is much more sensitive to
input errors.

This can be explained as follows: according to the BADA
model, when ∆T is superior to a given threshold (CTc,4

7),
the maximum climb thrust drastically decreases when the
temperature increases, as shown on figure 8. Consequently,
when the atmospheric conditions are hot (∆T is superior a

7This constant is introduced by the BADA model. It depends on the aircraft
type.
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Figure 6: Influence of ∆T on the mass estimation error for
the adaptive method, when introducing a Gaussian noise in
the temperature T (A320, σT = 5 K).
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Figure 7: Influence of ∆T on the mass estimation error for
the least squares method, when introducing a Gaussian noise
in the temperature T (A320, σT = 5 K).

certain threshold), the mass estimation methods become much
more sensitive to temperature errors.

C. Discussion on the Two Methods

We have seen in section IV-A that both methods, adaptive
and least squares, are quite robust to the errors introduced in
the observed trajectory, with a slight advantage to the least
squares method that seems to give more accurate and robust
mass estimations.
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Figure 8: Thrust as a function of ∆T (BADA model, Airbus
A320, FL180).

When choosing one method or the other, we must also
consider the other characteristics of the two methods, dis-
cussed in this section. The weight adaptation method proposed
by Schultz et. al. does not rely on a specific model of the
forces, and a black-box model of the power can be used.
The least squares method takes advantage of the fact that
the specific power is a polynomial function, when using the
Eurocontrol BADA equations to model the forces. Therefore,
the least squares method is model-dependent, which might
be considered as a drawback. However, other models of the
forces might be compliant with this method. For instance, the
Enhanced Jet Performance Model ([25]) seems to be compliant
with the least squares method.

In both methods, the mass (or the weight) is adjusted by
fitting the modeled specific power to the observed specific en-
ergy rate, assuming a given thrust law during climb. However,
the mass variation during climb is guided by very different
laws in the two methods. In the adaptive method, the weight
update computed at each iteration is bounded so as to remain
within a “reasonable” domain (2% of the reference mass, in
our experiments). This mechanism is necessary in this method:
the weight adaptation gives poor results without it. Due to
this mechanism, a large number of iterations is required in
order to possibly reach every mass within [80%; 120%] of
the reference mass. Apart from this bounding mechanism,
the mass variations are free, so as to track the energy rate
variations as best as possible. In the least squares method, the
mass variations follow the fuel consumption law provided by
the BADA model all along the observed climb segment.

As a consequence of the last remark, it is more difficult
to dissociate the respective influence of the thrust and mass
variations with the adaptive method than with the least squares
method. The adaptive method dynamically adjusts an equiv-
alent weight so as to follow the energy rate variations, that
are caused by variations of both the thrust and actual mass
(assuming all the other parameters to be known), making it
difficult to dissociate these two sources of variation. In the



9

least squares method, the mass variation is ruled by the fuel
consumption model provided by BADA. If all other parameters
are perfectly known, the only way to explain a variation of
specific power is a change in the thrust law.

Introducing an additional constraint (the fuel consumption
law, here) in the mass estimation method allows us to handle
separately the thrust law and the mass estimation. In [2], we
proposed to learn a typical thrust profile from historical data
that minimizes the overall energy rate error, using an optimiza-
tion algorithm combined with the mass estimation method.
More detailed results on this approach can be expected in a
publication currently under review.

D. Limitations of our Study

For the reasons explained in the introduction, we have
used simulated data in this work, to compare the two mass
estimation methods described in section II. The purpose of this
study was not to compare the climb prediction performances
of both methods on real data, but to check if they could find
a close estimation of the “actual” mass, and if this estimation
was robust to the errors introduced in the observed trajectories.
These trajectory errors were artificially introduced by adding a
noise to some state variables observed at each trajectory point.

Concerning the simulated data, we are aware that the
uniform distributions from which the values of the BADA
input parameters (CAS, Mach, “actual mass”, etc.) were
sampled are unlikely to be observed in real traffic. The uncor-
related Gaussian noise that was added to the state variables,
independently for each trajectory point, might not be realistic
either. Actually, some studies suggest that, in real-life, there
are some correlated and systematic errors in the position and
speed measurements ([24]).

The simulated traffic served our purpose, however, and
we showed that for both methods the relative error on the
estimated mass is low, considering the high values of standard
deviation that were tested for the observation noise. We also
showed how the estimation error varies with some of the input
parameters: for instance, when ∆T is superior to a threshold,
the mass estimation methods are much more sensitive to the
noise in the temperature.

Another limitation of our study is that we have to know
the thrust profile, because we want to find a meaningful
estimation of the mass: our aim, in this study, is to compare
this estimation with the “actual” mass used to simulate the
observed trajectory. In this work, we assumed a maximum
climb thrust, both when simulating the trajectories and when
estimating the mass.

In operations, when trying to predict real trajectories, the
thrust profile (past or future) is not known, and many aircraft
use partial thrust instead of maximum climb thrust. Actually,
the fact that both mass and thrust are unknown is what
motivated the dynamic adjustment of modeled parameters
such as the equivalent weight or the modeled thrust ([17]).
Considering the equations governing the energy rate, one can
either adjust the mass, assuming a constant thrust, or adjust the
thrust, assuming a constant mass. In any case, the modelled
mass and thrust will most likely be different from the real ones,

but they can be tuned so as to improve the overall trajectory
prediction.

Considering the limitations discussed above, it is difficult
to draw some definitive conclusions from our results, as to
how the two mass estimation methods would compare when
using real data. To this end, we would need some real data
containing the actual aircraft masses and thrust profiles. Such
data is not available for the time being, so one can only
expect to assess the overall climb performance of prediction
methods that combine an adjusted (resp. assumed) mass with
an assumed (resp. adjusted) thrust. Alternatively, typical thrust
profiles can be learned from historical data. In [2], using two
months of real data, we demonstrated that the least squares
mass estimation method combined with a learned thrust profile
actually improves the prediction of the energy rate. It would
be interesting to compare this approach to the adaptive method
on real data. Such a comparative study of the overall climb
performance is not in the scope of the current paper, which is
only a first step toward this objective.

CONCLUSION

To conclude, let us summarize our approach and findings,
before giving a few perspectives on future works. In this study,
we compare two mass estimation methods (adaptive and least
squares), using simulated data. The adaptive method, recently
introduced by Schultz et al. in [1], dynamically adjusts the
weight to fit the modeled energy rate to the observation. The
least squares method is a refinement of the analytical method
that we proposed in [2]. This method minimizes the sum of
squared errors on the energy rate, using several points of the
past trajectory. It takes advantage of the fact that the specific
power is a polynomial function of the mass when modeling
the thrust and drag forces with the BADA model. Although it
is model-dependent, we believe that the least squares method
could be extended to some other point-mass models. As an
improvement to the analytical method introduced in [2], the
least squares method takes into account the fuel consumption.

The two mass estimation methods are tested on different sets
of simulated trajectories. For that purpose, the values of the
input parameters used to produce the simulated data (with the
BADA model) are sampled from uniform distributions. Some
noise, sampled from a Gaussian distribution, is introduced in
the state variables of the resulting trajectories, so as to simulate
observation errors. Several datasets are used, considering each
variable in turn, with several values for the noise’s standard
deviation.

The results show that both methods are quite robust to the
errors on the observed trajectory. Even when sampling the
noise from distributions with large standard deviations, the
estimated mass falls within a few percents of the “actual mass”
that was initially used to produce the simulated trajectory. With
the current parameter settings chosen for both algorithms, the
least squares method proves slightly more efficient than the
adaptive method when estimating the mass in noisy conditions.

The results presented in this paper prove that it is possible to
accurately estimate the aircraft mass from noisy observations,
at least when using simulated data and knowing the thrust
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profile. Some previous results ([2]) with real Weather and
Mode-C Radar data prove that the mass estimation combined
with a typical thrust profile learned from historical data can
highly improve the overall performance of the trajectory
prediction. Thus, with these two studies, we have a body of
evidence that mass estimation can be successfully applied to
real trajectories.

From an operational point of view, the resulting improve-
ment in the climb prediction accuracy would certainly benefit
air traffic controllers, especially in the vertical separation task
as shown in [1].

In future works, it could be interesting to compare the two
methods, adaptive and least squares, on Radar track records
instead of simulated data. As discussed before, we cannot
expect to find the actual aircraft mass in this case. Actually,
we can only evaluate the overall performance of the trajectory
prediction, using one method or the other to estimate an
equivalent mass (or weight). Ghasemi et al. ([26], [27]) have
applied machine learning techniques to the trajectory predic-
tion problem. We intend to use the estimated mass as input to
standard Machine Learning techniques (neural networks, linear
regression, etc). Some preliminary experiments show that such
techniques already give good results without even using the
mass. Finally, we plan to compare the Machine Learning
approach to the point-mass model with adjusted parameters
(estimated mass, learned thrust profile).
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