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Abstract— Flexibility for operators is a Key Performance Area 
(KPA) for Air Traffic Management (ATM). This paper presents 
a framework for development of operator flexibility metrics, with 
a first test-case application to management of departure queues. 
Through the use of virtual queuing (VQ) in departure operations, 
operators are provided with additional flexibility in prioritizing 
flights for departure. VQ allows flights whose delays are more 
expensive to skip ahead in the departure queue, while other 
flights with less expensive delays move back. Operators are 
expected to benefit significantly from the additional flexibility of 
VQ because the cost of departure queuing delays can vary widely 
among different flights due to differences in delay already 
accumulated, different number and types of passengers, and 
considerations such as crew time limits. Flexibility metrics 
derived from delay recovered with VQ relative to physical 
queuing (PQ) are compared under a variety of operational 
scenarios. These scenarios include: non-linear delay costs, 
variable costs by aircraft type, flexibility across all flights and 
flexibility constrained to intra-operator exchanges, as well as 
small physical queues at the departure runway end. Flexibility 
measures have been defined that are not dependent on the 
specifics of the operator business case (i.e., cost structure or 
decision criteria). This is accomplished through a comparative 
assessment of flexibility metrics derived from fast-time 
simulations assuming a variety of operator cost functions and 
optimization objectives. Results show that metrics can be 
normalized to allow operators, based upon their cost-structure 
and optimization objectives, to infer a value of improved 
flexibility. Results also indicate that constraining exchanges to 
intra-operator and including small physical queues at the 
departure runway end substantially reduce the flexibility 
performance of VQ, which implies that operational mechanisms 
to permit inter-operator exchanges and to reduce the size of small 
physical queues could substantially improve operator flexibility 
performance. 
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I.  INTRODUCTION 
For decades operators have argued for the provision of 

greater flexibility on the part of Air Traffic Management 
(ATM) [1]. The desire for flexibility benefits is re-iterated in 
the International Civil Aviation Organization (ICAO) Global 
ATM Operational Concept [2] as one of the performance 
expectations of the ATM system. Thus, flexibility is a Key 

Performance Area (KPA) for the ATM system. The RTCA 
Task Force 5 report [3] emphasizes flexibility as an area of 
benefits. Both Single European Sky ATM Research (SESAR) 
[4] and Next Generation Air Transportation System (NextGen) 
[5, 6] have qualitatively described flexibility shortfalls and 
benefits. With both NextGen and SESAR relying on 
capabilities requiring investment on the part of the user 
community, it is imperative that these qualitative benefit stories 
be developed into quantitative measures to help operators and 
the Air Navigation Service Provider (ANSP) develop their 
business cases. 

Literature relevant to flexibility in ATM operations 
includes work by the U.S. Joint Planning and Development 
Office (JPDO) to develop NextGen performance metrics, 
which calls out flexibility as a “fundamental attribute” that 
remains a challenge for metrics development [7]. Other papers 
[8-13] describe trajectory flexibility metrics, with focus on 
strategically-planned flexible aircraft trajectories for mitigation 
of traffic complexity in the airspace. The literature also 
describes modeling of operator decision-making behavior in 
schedule disruptions with ground delay programs (GDPs), 
using simple non-linear costs as a function of delay time [14-
16] to drive decision-making, an approach that is applied in this 
paper as well. Bayesian network analysis [17] suggests that 
actual operator decision-making behavior in schedule 
disruptions varies widely in ways that depend on operators’ 
business models. Thus, individual operators ultimately need to 
analyze the flexibility benefits to their own operations. 

Flexibility metrics measure the range of potentially useful 
options available to operators. Increased flexibility provides 
benefit to operators because they can use flexibility to make 
their own choices based on their own valuations of outcomes. 
For example, in today’s U.S. ATM system, Collaborative 
Decision Making (CDM) increases operator flexibility (relative 
to no CDM) by allowing each operator to exchange the 
positions of its flights in a GDP for an arrival airport with 
reduced capacity because of bad weather. With the increased 
flexibility provided by CDM, an operator can reduce arrival 
delays for higher-priority flights at the expense of relatively 
low-priority flights, and in this way reduce the impact of the 
schedule disruption to the operator. CDM is a successful and 
widely-used flexibility-increasing feature of the U.S. ATM 
system. The CDM principles have been applied to departure 
queue management on the surface to provide operators 
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flexibility to reorder flights within the departure sequence to 
reflect their business needs [18]. 

Flexibility interacts with another KPA, predictability. Over 
a long period of time, predictability can be measured with long-
term statistics of how well the originally intended schedules of 
flights were met in actual operations. In the example of a GDP, 
bad weather at the arrival airport disrupts schedules, thereby 
contributing negatively to predictability, and CDM is a way for 
operators to mitigate disruption costs. Thus, increased 
flexibility may be used to limit the costs of unpredictability. 

For the purpose of developing flexibility metrics for new 
flexibility-increasing systems, the focus is on quantitative 
measures indicating how much a system increases the set of 
potentially useful options available to operators. Useful options 
are those that are expected to reduce costs, at least for some 
operators at some times. Whether or not the options are 
actually exercised by a specific operator in a particular 
operational scenario depends on the priorities of the operator, 
which depend on a variety of factors including the operator’s 
business model. Because priorities and valuations of different 
alternatives are operator-dependent, the use and benefit of 
increased flexibility may differ widely among different 
operators.  

A fundamental question regarding flexibility metrics is that 
of whether it is possible to define operator-valuation-
independent measures of flexibility that can be applied by both 
the ANSP and operators to facilitate common understanding 
regarding performance of flexibility-enhancing systems. 
Valuation-independent flexibility metrics would be somewhat 
analogous to value-independent maximum service-rate metrics, 
like the number of operations that can be handled in a given 
time period, for the capacity KPA. 

II. FLEXIBILITY METRICS FOR DEPARTURE 
QUEUE MANAGEMENT 

Today, at congested U.S. airports, long queues of departing 
aircraft develop when departure demand exceeds the departure 
capacity of a runway or the surrounding airspace. Once aircraft 
are in the queue, at many airports operators have little 
opportunity to exchange positions among the flights, so the 
queuing discipline with such physical queuing (PQ) can be 
characterized as first-come first-served (FCFS). Each operator 
is motivated to enter each of its flights into the queue as soon 
as possible, lest another operator take its place.  

Virtual queuing (VQ) is defined generally to encompass 
any number of processes or mechanisms that are an alternative 
to PQ, in which flights that become ready to depart are 
considered for the departure sequence without (or before) 
having to leave the vicinity of the gate to enter a physical queue 
at the runway. A software system or other collaborative 
process, similar to those defined in [18] is involved in 
managing the flights in the “virtual queue” and their planned 
order of departure or entry into a small physical queue. 
Benefits of VQ relative to PQ in terms of reduced fuel burn 
already have been studied [19], and are not addressed here. 
This paper focuses on the additional flexibility provided by 
VQ, which can be used by operators to move flights with 
higher delay costs ahead in the queue (at the expense of flights 

with lower delay costs), thus allowing operators to reduce 
overall delay costs.  

There are multiple reasons why the cost of delays to some 
flights may be more than other flights. For example, if flight A 
already has accumulated significant delay prior to departure 
and flight B has not, then the cost of additional departure 
queuing delay to flight A may be higher, because flight A’s 
departure queuing delays propagate to subsequent legs of the 
airframe’s itinerary, whereas most of flight B’s departure 
queuing delays can be absorbed in the margins provided by 
operators in the aircraft’s itinerary schedule. Other factors 
influencing relative cost of delays among different flights 
include the number and types of passengers on the flights, 
direct operating costs while on the ground, and crew time 
limits. Also, operators might want to move a flight ahead in the 
departure queue if, for example, the airframe is needed at 
another airport more quickly than would be possible with PQ. 
And, with confidence that flexibility can be used on a daily 
basis to reduce queuing delays for select flights, operators may 
be able to re-schedule these flights to reduce their block times.  

In this paper, fast-time simulation is used to investigate and 
develop metrics to quantify the improvement in flexibility 
provided by VQ relative to PQ. Many operational details of 
departure management are omitted deliberately, to maintain 
focus on the aspects pertinent to development of flexibility 
metrics. The analysis is not intended to be a benefits 
assessment of VQ. 

Operational constraints typically are expected to reduce the 
flexibility performance of VQ relative to PQ. One such 
constraint considered in this paper is the restriction of 
exchanges among flights to intra-operator-only exchanges, 
rather than permitting exchanges between different operators’ 
flights. Another operational constraint considered in this paper 
is the provision of small physical queues at the runway end to 
ensure full utilization of runway departure capacity. Small 
physical queues reduce flexibility because flights in these 
queues cannot be exchanged with other flights. In this paper, 
fast-time simulation is used to develop flexibility metrics for 
relatively-simple cases without these operational constraints, 
and then the operational constraints are added to the simulation 
to show their effect on the flexibility metrics. 

A. Fast-time simulation of departure delay recovery 
To begin the analysis, PQ and VQ cases were simulated in 

fast-time in a set of multi-hour operational scenarios, based on 
departure demand data taken from actual multi-hour PQ 
scenarios at Newark Liberty International Airport (EWR) 
departure runway 04L during year 2009. The demand data 
includes actual pushback time plus scheduled pushback time 
for each flight, as obtained from the Aviation System 
Performance Metrics (ASPM) database. It is assumed that 
actual pushback time is the earliest the flight could have pushed 
back, in accord with the fact that operators are motivated to 
push back as soon as possible. (It is recognized that traffic flow 
management delays can constrain pushback and departure 
times for some flights, and the simulation does not account for 
these constraints. However, in the specific scenarios described 
in this paper, the number of such flights was small, comprising 
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less than 2% of the total number of flights.) Thus, in 
corresponding simulated PQ and VQ cases, the PQ actual 
pushback time corresponds to the VQ pushback-ready time. 
The order of flights in the virtual queue without exchanges is 
assumed to be identical to the order of departures in the PQ 
case. Taxi times were assumed to be identical in corresponding 
PQ and VQ cases. VQ flights are assumed to leave the gate and 
taxi with perfect timing to meet departure capacity rate limits. 
Since perfect timing is unlikely in practice, the effect on 
flexibility performance of introducing small physical queues to 
compensate for uncertainty is considered. In actual operations, 
the order of departures may affect the maximum departure rate 
of the runway. However, as a first approximation, 
corresponding VQ and PQ cases are assumed to have identical, 
constant runway maximum departure rates, so total delay 
across all flights is identical in the simulated VQ and PQ cases.  

“Recovered delay” for a flight is defined as the reduction in 
delay in the VQ case relative to the PQ case. A flight’s 
recovered delay can be positive, negative or zero. With VQ, it 
is expected that operators will have positive recovered delay 
for flights where delay cost is relatively high and negative 
recovered delay for flights where delay cost is relatively low, 
during times when the virtual queue is not empty. Some flights 
with high delay cost may have zero recovered delay because 
the virtual queue happens to be empty when they become ready 
to push back. 

Figure 1. Simulated Delay Recovery with Virtual Queuing 

The pattern of flight exchanges depends upon the operator’s 
valuation of the departure times, which may depend upon the 
delay already accumulated by the flight at pushback-ready time 
as well as various other factors such as number and types of 
passengers and considerations related to crew time limits. An 
operator’s flight-exchange behavior in a VQ scenario is 
modeled by assuming the operator attempts to minimize total 
cost of delays. For the purpose of developing flexibility 
metrics, very rough non-linear operator costs as a function of 
departure delay are adequate, and a quadratic cost function 
originally developed for arrival delays [20] is used in this 
paper. Other non-linear cost function estimates from the 
literature [21] could be used as well. 

 Fig. 1 depicts the results of PQ and VQ simulations based 
on data from 17 December 2009 for the 04L departure runway 
at EWR. The 365 flights in the scenario are arranged along the 

horizontal axis in order of increasing recovered delay. Also 
shown is the difference between VQ and PQ delay for each 
flight. All 365 flights in this scenario were allowed to exchange 
with each other in the VQ case, even though the flights are 
those of different operators. There are no small physical queues 
in the VQ case. Departure delay cost is assumed to be quadratic 
as a function of total departure delay [20], and no other factors 
(including aircraft size) influence delay cost. Here, total 
departure delay is defined as the excess time at the gate beyond 
schedule (i.e., pushback delay) plus time in queue. Operators 
are assumed to re-order departures by sending the flight at 
every departure time with highest marginal delay cost (i.e., 
with the largest first derivative of cost as a function of delay), 
which for a cost function quadratic in delay is just the most-
delayed flight. A departure capacity of 0.533 per minute 
resulted in a simulated maximum departure queue size of 21, 
which is well within maximum departure queue lengths 
estimated for major U.S. airports with departure congestion 
issues [22, 23]. 

Flights on the right-hand side of Fig. 1 are those with 
positive recovered delay and those on the left-hand side have 
negative recovered delay. Flights on the right-hand side of Fig. 
1 have, on average, larger PQ delays than flights on the left-
hand side, so with cost a quadratic function of delay, their 
delays are more expensive per unit time. Thus, with VQ, delay 
is reduced for flights with more expensive delay and increased 
for flights with less expensive delay, and overall cost is 
reduced.  

Figure 2. Maximum Recoverable Delay (MRD) and Actual Recovered Delay 
(ARD) for Each Flight in a Scenario 

B. Flexibility metrics at the individual-flight and scenario 
levels 
Recovered delay in a specific scenario expresses the 

increase in scope of the potentially useful outcome space to 
operators from VQ, but recovered delay is operator valuation-
dependent. A valuation-independent metric for an individual 
flight in a specific scenario is maximum recoverable delay 
(MRD), defined as the delay a flight could recover if the flight 
is moved to the head of the virtual queue and departs as soon as 
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possible. MRD is not necessarily actual recovered delay 
(ARD); rather it is an upper limit to a flight’s ARD. For a 
constant departure rate, MRD is the quotient of the queue 
length at the time the flight first becomes able to depart and the 
departure rate. Fig. 2 shows MRD and ARD for each flight in 
the 17 December 2009 EWR 04L departure scenario described 
above, plotted as a function of the pushback-ready time for the 
flights. At the peak queue length in this scenario, MRD is about 
39 minutes, and the flight able to depart at this time actually 
recovered the full MRD. However, since total delay recovered 
across all flights is zero in the simulation, if some flights get 
positive ARD, then other flights must get negative ARD. Thus, 
while MRD is valuation-independent, it is limited in its utility 
for expressing flexibility, because MRD fails to account for 
delay-recovery interactions among flights in a scenario. 

Figure 3. APRD Dependence on Flight-Exchange Assumptions and Maximum 
Small Physical Queue Size 

 

 

 

Figure 4. GARD Dependence on Flight-Exchange Assumptions and 
Maximum Small Physical Queue Size 

 

Figure 5. DRS Dependence on Flight-Exchange Assumptions and Maximum 
Small Physical Queue Size 

The existence of interactions between recovered delays 
among flights implies that scenario-level flexibility metrics 
need to be considered. To begin, three scenario-level metrics 
are defined, all of which are valuation-dependent and are 
computed by comparing PQ and VQ simulation results for a 
particular scenario day with an assumed flight valuation. 
Average positive recovered delay (APRD) is the average delay 
recovered per flight in the scenario, where negative delays do 
not contribute to the measure. Greatest actual recovered delay 
(GARD) is the largest value of ARD among all the flights in 
the scenario. Delay recovery spread (DRS) is defined as the 
standard deviation of both positive and negative PQ-versus-VQ 
delay differences across all flights in the scenario, as suggested 
by the difference curve in Fig. 1. The value of DRS is affected 
by delay recovery of each flight in the scenario, but weights 
large differences more than smaller differences. Together, 
APRD, GARD and DRS quantify key aspects of the 
distribution of recovered delay among flights in a departure 
scenario, assuming a particular flight valuation scheme. 

Figs. 3, 4 and 5 plot APRD, GARD and DRS for the 
December 17, 2009 EWR 04L scenario as a function of 
assumed maximum small physical queue (sPQ) size, for both 
intra- and inter-operator exchange assumptions, with each 
metric computed across all flights in the scenario. Flight 
valuation is assumed to be based on marginal delay cost, as in 
the results depicted in Figs. 1 and 2. Operator codes in ASPM 
were used to distinguish different operators in the intra-
operator exchange simulation, ignoring potential business 
relationships that could permit exchanges between flights with 
different codes. A maximum sPQ size of zero in Figs. 3, 4 and 
5 corresponds to no small physical queues. Restricting 
exchanges to intra-operator-only reduces APRD by more than a 
factor of two, with somewhat smaller reductions in DRS and 
even less change in GARD. There is a sharp drop-off in APRD 
as a function of maximum sPQ size, and a linear decrease in 
GARD for inter-operator exchanges. GARD shows more of a 
step-function behavior for intra-operator-only exchanges, 
reflecting the disappearance of exchange opportunities at 



specific levels of sPQ size. DRS behavior is intermediate 
between APRD and GARD, as expected. 

C. Valuation-independent, scenario-level flexibility metrics 
Among all possible flight valuations for a particular 

departure scenario, there must be a valuation-independent 
upper limit to the values of APRD, GARD and DRS. The sheer 
number of possible departure re-orderings (which exceeds 10120 
in the 17 December 2009 EWR 04L scenario) makes 
exhaustive search for the upper limit a practical impossibility. 
Instead, the observation is made that the last-come first-served 
(LCFS) queuing discipline maximizes recovered delay at each 
departure time relative to FCFS, hence LCFS maximizes all 
three metrics, APRD, GARD and DRS. The upper bounds of 
the metrics can be computed easily by simulating delay 
recovery in a VQ scenario with LCFS queuing discipline. 
These upper bounds for flexibility metrics are somewhat 
analogous to maximum service rate (operations per unit time) 
metrics for the capacity KPA in the sense that maximum 
service rate is an upper limit to operations per unit time that can 
be handled in a given scenario. Also, flexibility is multi-
dimensional, as suggested by the three different flexibility 
metrics, just as capacity is multi-dimensional. However, the 
upper bounds for flexibility metrics are unlike maximum 
service rates for capacity metrics in that they are very unlikely 
to ever be approached in actual operations involving significant 
departure queues. 

The “consumption” of a flexibility metric (APRD, GARD, 
or DRS) for a given flight valuation scheme in a scenario is 
defined as the fraction of the LCFS upper bound actually used. 
Thus, flexibility consumption is analogous to “throughput” for 
capacity. A flexibility metric’s “stability” indicates how little 
the consumption of the metric varies across different scenarios, 
for a fixed valuation scheme. A stable, valuation-independent 
metric is most likely to be useful to operators and the ANSP, 
since the metric can be computed across a set of scenarios 
under PQ and VQ conditions, and each operator, knowing its 
own valuation scheme, can readily make rough estimates of 
valuation-dependent flexibility metrics for its own operations. 

D. Metric stability analysis 
To assess flexibility metric stability, VQ simulations were 

run across the following set of operator valuation schemes: 

In the “delay only” valuation scheme, the operator always 
sends the most-delayed flight in queue at every departure time. 

In the “weighted delay” valuation scheme, delays are 
multiplied by a weight proportional to the number of seats on 
the aircraft. The operator always sends the flight in queue with 
the largest weighted delay at every departure time. 

The “weighted delay (shuffled)” valuation scheme is the 
same as weighted delay, except that, prior to simulation, 
weights among all flights in the scenario are randomly shuffled. 
During simulation, weights are kept fixed. Shuffling the 
weights prior to running the scenario is for sensitivity analysis 
of how the values of flexibility metrics vary with the specific 
characteristics of the departure demand. Multiple simulations 

are run, each with a different weight shuffle. (In the results 
reported below, 100 simulations were run.) 

In the “weighted cost” valuation scheme, the operator 
always sends the flight with the largest marginal cost at the 
departure time. Cost as a function of delay time is assumed to 
be quadratic [19], multiplied by a factor proportional to number 
of passenger seats on the aircraft. 

The “weighted cost (shuffled)” valuation scheme is the 
same as weighted cost, except that, prior to simulation, weights 
among all flights in the scenario are randomly shuffled. During 
simulation, weights are kept fixed. Shuffling the weights prior 
to running the scenario is for sensitivity analysis with respect to 
how the values of flexibility metrics vary with the specific 
characteristics of the departure demand. Multiple simulations 
are run, each with a different weight shuffle. (In the results 
reported below, 100 simulations were run.) 

In the “random valuation” scheme, prior to simulation, 
weights between 0 and 1 are assigned at random to each flight 
in the scenario. During simulation, weights are kept fixed. 
Random valuation thus assigns different weights to flights that 
are completely independent of delay. This valuation scheme 
provides a limiting case where factors unrelated to accumulated 
departure delay drive the prioritization. Multiple simulations 
are run, each with a different random assignment of weights. 
(In the results reported below, 100 simulations were run.) 

In the “upper bound” valuation scheme, prior to simulation, 
weights are assigned to flights that correspond to the reverse 
order of departures in the FCFS scenario. This valuation 
scheme implements the LCFS queuing discipline, which yields 
an upper bound to the flexibility metrics. 

Each of the valuations described above were run with four 
different EWR 04L runway scenario days (November 6, 
November 12, November 17, December 17, all 2009) and for 
several different departure capacities. For the three November 
scenario days, a calibrated departure capacity was determined 
by finding the simulated departure capacity that resulted in the 
same maximum departure queue size as the actual day [22]. 
Other capacities were chosen that were lower and higher than 
each of the calibrated departure capacities. 

Fig. 6 plots APRD, GARD and DRS consumption for the 
December 17 scenario day described previously. The plot on 
the left includes the operational constraints of intra-operator-
only exchanges and small physical queues (maximum size 5) in 
the VQ cases, and the plot on the right excludes these 
operational limitations. In both plots, the flexibility metrics are 
assessed across all flights in the scenario. Upper bounds to 
APRD and DRS are much less when operational constraints are 
introduced, but flexibility consumption is fairly stable, except 
that there is some spreading with operational constraints. Fig. 7 
shows the same type of plot for the November 6, 2009 
EWR 04L scenario, also at a departure capacity of 0.533 
departures per minute. In this scenario, the main demand pulse 
is concentrated into a shorter time than in the December 17 
scenario, so queues are larger and the upper bounds of APRD, 
GARD and DRS are larger. In this, as well as other relatively 
high-demand scenarios that were simulated, consumption 
stability is observed across intra-operator and  
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Figure 6. Flexibility Consumption for December 17 2009 Scenario Day 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Flexibility Consumption for November 6, 2009 Scenario Day 

 

inter-operator exchange scenarios. In lower-demand scenarios, 
stability breaks down because fewer flights contribute to the 
metrics, and therefore the metrics show more spreading across 
shuffles. Comparing Figs.6 and 7, flexibility consumption is 
fairly stable across different scenario days, despite large 
differences in the upper bounds. 

III. CONCLUSION 
This paper identifies APRD, GARD and DRS as scenario-

level, valuation-dependent flexibility metrics that indicate the 
average and distribution in delay recovery among flights in 
departure scenarios with VQ. Upper bounds to these metrics, 
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computed by simulating a LCFS queuing discipline, are 
valuation-independent flexibility metrics that potentially could 
be used by ANSPs and operators to facilitate a common 
understanding of flexibility performance of VQ relative to PQ 
in specific departure scenarios. Introduction of two realistic 
operational constraints, namely intra-operator-only flight 
exchanges and small physical queues, significantly reduces 
delay recovery, with a steep fall-off in APRD at low values of 
maximum small physical queue size. Thus, measures to 
facilitate inter-operator exchanges and reduce physical queuing 
could substantially improve operator flexibility performance. 
Flexibility consumption, for a given flight valuation scheme, is 
fairly stable when flexibility metrics have relatively high values 
(hence the potential operator benefit of flexibility is relatively 
high). In scenarios where flexibility metrics have relatively low 
values (hence flexibility is less important), stability breaks 
down. 

Further work is needed to bring the flexibility metrics for 
departure operations presented in this paper into practical 
application by ANSPs and operators for use in development of 
pre-implementation business cases and post-implementation 
verification of flexibility performance improvements from VQ. 
In addition, the flexibility concepts presented here need to be 
extended to other flexibility-increasing ATM improvements, 
such as those to increase routing flexibility. 
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