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Abstract— The Next Generation Air Transportation System 
(NextGen) is expected to improve flight efficiency in the National 
Airspace System (NAS). However, some of these benefits will only 
be realized at the pace with which operators equip their fleets 
with the required enabling avionics. To accurately assess the 
prospects of voluntary equipage, policymakers must understand 
the value of NextGen improvements as seen from the airlines’ 
perspective. Traditional cost-benefit valuation methods are not 
well suited for providing this perspective. The MITRE 
Corporation (MITRE) conducted research to better understand 
how airlines perceive NextGen, and how they internalize changes 
in flight performance in their operations. This understanding was 
pursued through interviews with airline managers and with 
regression analysis of historical airline operational data. We 
observe the pervasiveness of block time management in response 
to operational changes for a subset of airlines, and the impact of 
this response on various aspects of airline operations. The results 
of this research will be used to incorporate airline response into 
operational modeling and benefit valuation methodologies. 

Keywords- NextGen; equipage incentives; cost-benefit analysis; 
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I.  INTRODUCTION 
The Next Generation Air Transportation System (NextGen) 

is an ongoing, transformative change in Air Traffic 
Management (ATM) and operations. NextGen capabilities 
integrate new and existing technologies to enhance the safety 
of aviation, reduce its environmental footprint, and increase its 
operational efficiency by way of shorter, more predictable 
flight trajectories. These improvements are expected to more 
efficiently accommodate the projected growth and increased 
operational complexity of aviation demand [1]. 

More so than with previous infrastructure improvements 
funded by the Federal Aviation Administration (FAA), 
NextGen is predicated on large scale private investments in 
enabling cockpit avionics systems. This means that the 
expected societal benefits of key NextGen capabilities will only 
be realized if aircraft operators equip in sufficiently large 
numbers. Current equipage levels vary by operator and 

capability, and benefit projections typically assume 
comprehensive adoption through new aircraft deliveries 
(forward fit) and aggressive retrofitting of existing fleets [2]. 
For their part, most commercial operators will only invest in 
avionics under a compelling business case that considers their 
own situation-specific risks, benefits, and costs relative to 
competing uses of capital; and in light of impacts on current 
and projected competitive positioning. 

To understand the prospects of voluntary aircraft equipage 
(particularly for retrofits), it is imperative that aviation 
policymakers understand how airlines perceive the NextGen 
value proposition. While operators are gradually modernizing 
their fleets through new deliveries, relatively low retrofit rates 
for some avionics packages are indicative of negative business 
cases in terms of operators’ investment criteria and 
considerations. Even for specific NextGen capabilities with 
high existing and projected levels of fleet equipage, such as 
Performance Based Navigation (PBN), the business case may 
not close for some operators at levels needed to yield system-
wide benefits. Thus, an understanding of the airline perspective 
is critical to inform the design of effective implementation 
strategies, and to accelerate adoption rates beyond the levels 
implied in existing long-term fleet acquisition plans. This 
prerequisite has been increasingly recognized by industry and 
academia, prompting efforts to develop innovative methods for 
conducting business case analysis [3, 4, and 5]. 

II. BACKGROUND 
The conventional methodologies used to estimate the 

impact of investments in ATM are not well suited for 
understanding their value from the airline perspective. The 
Business Case and Performance Metrics Working Group 
(BCPMWG) of RTCA’s NextGen Advisory Committee (NAC) 
cited this misalignment after surveying business case analytic 
methods and closure criteria [4]. 1  Specifically, cost-benefit 

                                                           
1 RTCA, Inc. is a private, not-for-profit corporation that develops consensus-
based recommendations regarding communications, navigation, surveillance, 
and air traffic management (CNS/ATM) system issues.  
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analyses tend to be conducted at an aggregate, system-wide 
level without regard to individual decision-making entities.  In 
addition, the scope of operational impacts evaluated is typically 
limited to average aircraft delays, and implicitly assume that 
airlines are static—that is, they do not adapt their operations to 
internalize postulated changes in flight performance. In 
practice, ATM system performance affects an airline’s daily 
operations, which in turn affects schedules through the 
operations analysis feedback cycle [6]. Inasmuch as airlines 
modify their schedules over time in response to such changes, 
analyses of the potential benefits of air traffic system 
improvements may reflect unrealistic demand scenarios; and 
lead to different impact assessments than those projected by 
airlines in accounting for their ‘consumption’ of benefits [7]. 
Collectively, these practices can undermine the ability to 
understand the airlines’ avionics equipage business case. 

In Fiscal Year (FY) 2011, The MITRE Corporation’s 
(MITRE) Center for Advanced Aviation System Development 
(CAASD) sponsored internally-funded research on potential 
operational mechanisms for incentivizing voluntary NextGen 
avionics equipage [8]. That work reinforced the need for 
different conceptual and analytical frameworks than those 
traditionally used to estimate and value operational benefits in 
cost-benefit analysis of ATM improvements. Thus, in FY 2012 
MITRE extended the research to enhance our understanding of 
how airlines perceive and value prospective NextGen 
improvements. Specifically, this work sought to explore how 
airlines consume improvements in ATM-related flight 
performance; and to develop analytic tools to quantify the 
impact of such improvements on airline operational and 
financial performance, given airline response.   

We pursued these objectives through discussions with 
airline managers, and with analysis of historical airline 
performance data aimed at linking operational performance to 
airline behavior. 2  As envisioned, the findings from this 
research will be used for two purposes. First, they will inform 
enhancements to CAASD’s system performance modeling 
processes to reflect fundamental, observable airline behaviors. 
Secondly, they will assist in understanding and communicating 
the impact of ATM operational improvements in terms that 
resonate with airline stakeholders, through consensus-building 
forums such as RTCA’s NAC.  

This paper presents the results of an analysis that explored 
relationships between historical changes in actual and 
scheduled airline block (gate-to-gate) times and other airline 
performance metrics, so as to isolate and (where possible) 
value the impact of various airline response strategies. As the 
goal of this research was to lay a foundation for an enhanced 
modeling approach, neither the problem statement nor overall 
analytical methodology was wholly novel. That said, the main 
contributions of this work in the context of traditional modeling 
approaches include the differentiation among airlines 
(acknowledging the existence of vastly different operating 
models, and hence different responses to changes in 
performance); and the explicit treatment of airline response in 
estimating the value of ATM improvements (extending impacts 
beyond traditional valuation of flight time savings and 

                                                           
2 MITRE is currently conducting similar research relating to general aviation. 

associated direct operating costs, which assume static airline 
behavior).  

III. APPROACH 

A. Airline Interviews 
To gain insight into airline perspectives on NextGen 

improvements, the MITRE research team met with senior 
managers at several airline headquarters. These discussions 
included heads of scheduling, operations, finance, strategy, and 
other functional departments. Topics spanned investment 
analysis criteria and processes, performance measurement and 
reporting, operational responses to changes in performance, 
competitive positioning, and the role of corporate culture on 
strategic decisions, among others. The key findings from these 
meetings are discussed in [9].   

A specific goal of these discussions was to appreciate the 
importance of the various factors required to close an airline’s 
business case—particularly in the context of avionics equipage. 
The conceptual framework depicted in Fig. 1 was developed to 
generalize the motivating drivers behind airline investment 
decisions and assist in these discussions. 3  This framework 
postulates that individual airlines will be ‘motivated’ to invest 
if they have an understanding of the operational change in 
question; believe with some certainty that the changes will 
occur and can be exploited operationally; and value the 
operational and financial results of the investment. In this 
context, assumptions relating to airlines’ dynamic response to 
changes in flight are depicted in the red chevron in Fig. 1. 

At the same time, airline managers also emphasized the 
misalignment between aggregate-level, static, and delay-centric 
analyses used to communicate the impact of ATM 
improvements, and the airlines’ investment analysis 
methodologies and considerations. Uncertainty aside, the 
operational benefits of NextGen were described as 
opportunities to ‘do more with less’—that is, to increase the 
productivity of resources by applying operational efficiencies 
toward business objectives. The exact application (or 
consumption) of a flight performance improvement would 
depend on a multitude of situational factors, including current 
and forecasted demand environment, competition, network 
structure, and operational and resource constraints, among 
others.  

                                                           
3 This framework was loosely based on the Expectancy Theory of Motivation, 
introduced in 1964 by Victor H. Vroom of the Yale School of Management to 
explain individuals’ decision-making process [10]. Though the theory 
admittedly oversimplifies the internal dynamics of intra-organizational 
decision processes, its general principles can be applied to business decisions. 
 



  
Figure 1.  Airline Equipage Motivation Factors 

All airlines interviewed identified the compression of 
scheduled block times from reduced flight times and variability 
as a major potential benefit of NextGen. Such schedule 
adjustments could increase passenger connectivity at hubs, with 
varying impacts depending on the relative importance of 
connecting itineraries to each airline’s revenue structure. 
Airlines also validated the notion that reductions in scheduled 
block time could be used to enable additional flight segments 
with existing fleets; or, alternatively, to reduce the number of 
aircraft required to deliver a given schedule. However, such 
fleet utilization benefits were generally characterized as having 
less potential in terms of leveraging ATM operational 
improvements (perhaps merely a reflection of the aircraft 
utilization strategies of the airlines consulted, and the current 
low-growth environment).  

As these benefits suggest, delay savings are but one 
relevant outcome when evaluating operational improvements. 
As it relates to the framework in Fig. 1, it suggests that benefit 
estimation approaches that do not consider airline response 
may mischaracterize the value of such improvements from an 
airline perspective. To the extent that this is true, the 
assumption of static airline schedules undermines policy-
makers’ ability to fully appreciate the incentivizing power of 
prospective performance changes.   

This realization informed the design of a three-pronged 
effort to understand, model, and (where possible) value 
airlines’ responses to changes in block time performance, given 
the emphasis that airlines placed on this behavior. The rest of 
this paper documents an analysis that relates historical 
scheduled block time changes to underlying block time 
performance at a system-wide level; and a set of airline-
specific regressions that sought to correlate changes in 
scheduled block times with other operational and financial 
performance metrics.4 A methodology to incorporate scheduled 
block response in National Airspace System (NAS) 
performance simulations was developed, but has not yet been 
implemented. 

                                                           
4 While a market-specific analysis would align better with the airline decision-
processes we were exploring, the airline data used in this research are only 
available at the system level. 

B. Analysis of Block Time Trends in the NAS 
NAS performance is one factor in airlines’ production 

functions. Airlines interface with ATM through rules and 
procedures that impact how aircraft operate—including the 
time and predictability with which aircraft travel from ‘gate-to-
gate’. Airlines constantly internalize these aspects of flight 
performance through schedules that trade off operating costs 
with service-level business objectives in the pursuit of profits. 
As airlines detect changes in individual flight performance 
through monitoring and reporting processes, they can adjust 
schedules to maintain operational integrity or exploit new 
opportunities. Similarly, airlines can modify schedules to 
pursue different outcomes—such as to achieve higher on-time 
performance levels—even in the absence of changes in flight 
operational performance. 

Nowhere is this behavior more evident than in the historical 
relationship between scheduled and achieved, or actual, block 
times—the elapsed time between gate pushback at the origin 
airport, to gate arrival at the destination airport. Fig. 2 
illustrates the average actual (red) and scheduled (blue) block 
times per flight in the NAS between 1995 and 2012, for the 
subset of airlines that report Airline Service Quality 
Performance (ASQP) data on domestic operations to the United 
States (U.S.) Department of Transportation (DOT). These 
airlines currently account for over 85% of scheduled flights in 
the NAS, and serve over 340 airports. They are particularly 
representative of operational performance at larger airports.  

The calculation of monthly average block times per flight in 
ASQP controls for changes in fleet mix and airport-pairs over 
time to account for differences in aircraft performance and 
market distance, respectively. This is achieved by calculating 
frequency-weighted averages between each pair of contiguous 
months in the series, based on the common set of departure-
arrival-aircraft triplets in each month. This method leverages 
the fact that the overall structure of airline operations changes 
little from month to month, such that normalized changes 
between periods are highly representative of underlying trends. 
The monthly changes are then connected and applied to an 
initial period to produce synthetic series that remove the effects 
of airport-pairs and fleet mix changes, but which may not 
necessarily match directly-computed statistics for individual 
periods.



 

  

Figure 2.  Monthly Historical Block Time Performance in the NAS (adjusted for changes in fleet mix and airport pairs)

In addition to a pronounced seasonal pattern—smoothed 
out by the dotted, 12-month moving averages—Fig. 2 clearly 
illustrates the airline practice of “padding” scheduled block 
times to accommodate actual performance (note the truncated 
y-axis to emphasize the point). Block delay (depicted in grey) 
is defined as the difference between actual and scheduled block 
times. It serves as an indicator of intended schedule padding 
(over expected performance), since actual performance in any 
period may deviate from the projections that informed the 
schedule-setting process.  

Historically, airlines have set scheduled block times that 
preserve prevailing levels of negative block delay (i.e., flights 
take less time than scheduled, on average). We observe this 
during periods of block time increases, such as 1995 – 2000 
and 2003 – 2008; and the interim period, during which block 
times dropped with demand (demand not shown). Beginning 
around 2008, scheduled padding increased to unprecedented 
levels as airlines did not reduce scheduled block times to match 
the downward trend in actual performance. This phenomenon 
reflects a comprehensive, concerted effort by airlines to 
improve on-time performance—in the words of one airline 

executive, airlines began “buying” on-time performance at the 
cost of higher schedule padding (though not necessarily longer 
scheduled block times, in absolute terms). This trend roughly 
coincides with the introduction of the Airline Passenger Bill of 
Rights Act of 2007, which established financial penalties for 
chronically late flights and reflected increased public focus on 
airline delays. 

The effect of block time padding on average gate arrival 
delay—an indicator of on-time performance—is illustrated in 
Fig. 3. For any completed flight in ASQP, gate arrival delay 
equals the sum of gate pushback delay (measured against 
scheduled departure time) and block delay (defined previously 
as the difference between actual and scheduled block time). 
Thus, reductions in block delay—either from longer scheduled 
times, shorter actual times, or combinations of both—translate 
to reductions in gate arrival delay, all else equal. Fig. 3 
highlights the reduction in average gate arrival delay from 
lower block delays starting around 2009, and continuing 
through 2012. In terms of this metric, the period from the end 
of 2011 to the start of 2012 produced the best continuous 
period in gate arrival performance since 1995. 

 



 

Figure 3.  Monthly Historical Block Delay Performance in the NAS (adjusted for changes in fleet mix and airport pairs)

Fig. 4 quantifies the changes in average airline block 
performance over three historical periods. Note that from 2005 
to 2010, a 4.25 minute decrease in average gate arrival delay 
was comprised primarily of a large reduction in block delay, 
which itself was driven almost exclusively by a 3.64 minute 
increase in average scheduled block times [Fig. 5]. 

 
Figure 4.  Change in Average Pushback, Block, and Gate Delays 

 
Figure 5.  Change in Average Scheduled and Actual Block Times 

As the historical data illustrate, block time scheduling is 
one way through which airlines internalize and actively 
manage flight performance toward business objectives. Airlines 
respond to changes such as those anticipated from NextGen 
with tactics that alter the structure of their operations and drive 
key performance outcomes. This dynamic behavior has 
implications for aviation policy analysis, including in the 
context of avionics equipage incentives. Specifically, it raises 
two related questions: 1) how might assumptions about airline 
response affect the modeled operational performance on which 
the business cases for various NextGen capabilities are 
predicated? and 2) what will be the impact of NextGen on 
airlines in light of their likely responses to operational 
improvements, and associated costs and benefits? The rest of 
this paper focuses on the latter.  

C. Analysis of Airline Block Time Response 
We investigated individual airline’s responses to actual 

block time changes through regression analysis of operational 
and financial data.  

1) Airline Value Chain Framework: We tested several 
hypothesized relationships in the context of a generic airline 
‘value chain’ as informed by our discussions with airlines and 
prior research (Fig.6). This framework outlines various 
mechanisms by which changes in flight performance, once 
observed by an airline, are presumed to be exploited through 
explicit changes to its schedule. While not exhaustive, the 
possible mechanisms place airline performance (and 
corresponding impact metrics) in the proper context of a 
complex, dynamic aviation system. The highlighted paths 
correspond to the postulated causal relationships that we 
investigated through regression analysis, starting with the 
change in actual flight performance (darkly shaded box). From 
here, we hypothesize an observable response in average 
scheduled block time, which we recognize as one among 
various possible changes to the schedule structure which are 
not explicitly depicted.  



 
Figure 6.  Generalized Airline Value Chain and Hypothesized Relationships for Regression Analysis (Highlighted) 

We postulate that changes in scheduled block time inversely 
impact fleet productivity, flight and passenger (or network) 
connectivity, and aircraft turn times; and directly impact 
variable operating costs through higher pilot salary expenses, 
as explained in more detail under “Results”. While the other 
hypothesized relationships illustrated in grey in Fig. 6 are not 
addressed explicitly in this paper, they reflect a qualitative 
understanding of secondary impacts which may serve as 
candidates for further analysis. 

The goal of the regression analyses was to quantify 
observable, airline-specific, and statistically significant linear 
relationships that are consistent with this conceptual model 
(recognizing that in practice, these relationships may not be 
linear). In this way, the framework forced a degree of discipline 
on the statistical analysis, since the operational complexity, 
number of variables, aggregation of data, and inherent 
randomness could easily lead to the misinterpretation of non-
intuitive, coincidental relationships as significant.  

2) Data: The analysis dataset was fused from multiple 
sources collected and reported by the U.S. DOT. These 
consisted of the aforementioned ASQP, and Form-41 Airline 
Financial reports, which also include a vast array of airline 
operating metrics.5 The latter was restricted to U.S. domestic 
operations so as to match the scope of the ASQP data. We 
analyzed quarterly, network-wide data for eight ASQP airlines 
for the period 1998 (Q1) through 2011(Q3), for a possible total 

                                                           
5 Form-41 quarterly reports were obtained from DataBase Products, based in 
Dallas, Texas. 

of 55 periods per airline.6 These airlines consisted of American 
Airlines, American Eagle, Delta Airlines, JetBlue Airways, 
Northwest Airlines, Southwest Airlines, United Airlines, and 
US Airways. 7  The resulting dataset contained over 60 
continuous and categorical variables for each airline-period 
combination represented, most of which were ultimately 
excluded from analysis due to weak, unexplained, or otherwise 
unobserved explanatory relevance. The variables included in 
the final regressions are defined below. 
 

• Average actual block time: Elapsed time between 
aircraft gate departure time and gate arrival time 
(minutes) 

• Average actual flight time: Elapsed time between 
aircraft wheels-off at departure airport and wheels-on 
at arrival airport (minutes) 

• Average taxi-in time: Elapsed time between aircraft 
wheels-on at arrival airport and gate arrival (minutes) 

• Average scheduled block time: Elapsed time between 
aircraft scheduled gate departure time and scheduled 
gate arrival time (minutes) 

• Average scheduled aircraft turn time: Elapsed time 
between scheduled aircraft gate arrival and next 
scheduled gate departure (minutes, intra-day flights) 

                                                           
6 The set was limited to eight airlines due to volume and processing constraints 
of the methods employed. 
7 Note that US Airways and America West began reporting DOT data as US 
Airways in October, 2007; and Delta and Northwest began reporting jointly as 
Delta in January, 2010. 



• Average daily flights per aircraft: Number of flights 
per day / number of aircraft in quarter 

• Average distance per flight: Total aircraft miles / 
number of flights in quarter 

• Average number of seats per flight: A measure of 
aircraft size 

• Number of daily flights: Daily domestic flights by 
airline 

• Network concentration index: A measure of the 
distribution of an airline's operations over the airports it 
serves. Calculated as the Gini coefficient, ranging from 
0 (uniformly distributed operations) to a theoretical 
maximum of 1 (perfect inequality). 

• Schedule bank index: A measure of the "peakiness" of 
an airline's arrival schedule over the course of a day at 
its four largest airports. Used to distinguish between 
rolling-hub and pronounced bank operations. Measured 
by the degree of serial correlation between arrival 
counts in rolling 30-minute time periods (as calculated 
through a Durbin Watson statistic, where higher values 
indicate more "peaky" schedules).8 

• Daily possible aircraft connections: Total number of 
possible airport arrival-departure aircraft combinations 
in schedule day within assumed connection window 
(between 30 and 240 minutes from scheduled arrival, 
as assumed for all airports in an airline’s network.) 

• Quarterly connecting passengers: Total number of 
multiple-coupon passenger itineraries from 10% ticket 
sample 

• Average pilot salary per available seat mile (ASM, 
real): Total pilot salary / total ASMs (inflation 
adjusted) 

3) Airline Response Regressions: We performed 
multivariate, Ordinary Least Squares (OLS) regressions using 
JMP statistical software to model the impact of unit changes 
between operational variables of interest (i.e., to test the effect 
of changes in performance variables on dependent outcomes 
depicted in Fig. 6). All regressions initially took the linear 
form: 

 Y = α + β1X1 + β2X2 +…βnXn +  e (1) 

where Y refers to the dependent operational performance 
variable in question, α is a constant, X1…Xk are values for the 
explanatory variables, β1...βk are the estimated coefficients, 
and e is an error term. 

Though we performed regressions on a common set of 
dependent variables (Y) for all airlines, the set of explanatory 

                                                           
8 The choice of four airports was driven by computational limitations, but was 
deemed to reasonably capture each airline’s main hubs. The ‘rolling’ nature of 
the time periods reduces the sensitivity of the metric to the 30-minute 
assumption (since much of the information in one period is included in the 
next).  

variables (X) was allowed to vary by airline in recognition of 
their potentially different operating models and performance. 
The goal of each regression was to isolate the effect of a single 
operational variable by accounting for as much variability as 
possible explained by other variables. The main objectives in 
constructing each regression were: 

• Intuitive direction of effects (signs) and causality (as 
reflected in Fig. 6) 

• High explanatory power, as measured by adjusted R2 

• Significance of explanatory variables at the 0.05 level 

• Low degree of correlation between explanatory 
variables (needed to meaningfully isolate the effect of 
unit changes in the operational variable of interest. As 
a general rule, correlation coefficients greater than 0.30 
were deemed excessive, and were addressed by 
excluding the appropriate explanatory variables from 
the regressions.) 

• Randomly distributed residuals, with no evidence of 
serial correlation. 

Not surprisingly due to the time-series data, initial models 
exhibited high degrees of positive serial correlation, as 
evidenced by low Durbin Watson statistics. To remove 
potential estimation errors introduced by the presence of 
autocorrelation, we took the first difference of all variables, 
thus re-expressing each observation as the change over the 
value in the preceding period. The resulting regressions took 
the form: 

∆Yt =  β1∆X1t  + β2∆X2t  +…βn∆Xn1+…e               (2) 

where ∆Yt denotes the change in Y in period t, and ∆X1t…∆Xnt 
are the changes in the corresponding variables in period t. This 
effectively addressed serial correlation; but also significantly 
diminished the significance and explanatory power of many of 
the relationships tested in Fig. 6 using (1).9 Since we presume 
that airline responses to persistent changes in performance lag 
observed data, it is highly likely that models with more tailored 
lag specifications could perform better. While several models 
were explored to test the hypothesized relationships, only those 
that demonstrated statistically significant results are presented 
in the following section.   

4) Regression Results and Interpretation: Table 1 presents 
the significant regression coefficients between explanatory and 
dependent operational variables of interest, by airline. 

 

                                                           
9 A lag of one period effectively removed the trend in the time series, thus 
enabling the use of cross-sectional analysis which requires independent 
observations. 



TABLE I.  SUMMARY OF REGRESSION RESULTS BY AIRLINE 

  
 

The relationships are sorted from most direct (i.e. between 
flight performance variables and scheduled block time) to 
secondary, downstream effects in the airline value chain in Fig. 
6. Note that some variables—most notably, the change in 
average scheduled block time—are used as both dependent and 
explanatory variables in different regressions. Each cell in 
Table 1 presents the regression coefficient for the variable of 
interest (in bold), atop the total number of explanatory 
variables in the model, and the model adjusted R2 (in brackets). 
Empty cells indicate that a statistically significant linear 
relationship was not established at the 0.05 level. Thus, Table 1 
summarizes the results of 64 attempted models (8 relationships 
explored for each of 8 airlines). 

a) Scheduled block time: The first two rows in table 1 
characterize the historical linear relationships between two 
metrics of actual block time performance and scheduled block 
time. On average, one minute increases in actual block time 
tend to be correlated with between 0.6 and 0.9 minute increases 
in scheduled block time. By comparison, one minute increases 
in actual flight time (that is, excluding taxi components) are 
associated with larger increases in scheduled block time, with 
the exception of Southwest airlines. Though not tested 
explicitly, this suggests relatively weaker relationships between 
taxi times and block schedules. The coefficients and high 
adjusted R2 across airlines for the first two models listed 
highlight the pervasiveness of schedule padding as a 
performance and resource management tool—even with a 
model specification that does not account for a lag in the 
planning horizon. The relationships that follow quantify the 

impact of network-level changes in scheduled block times on 
other operational variables under the airlines’ control. 

b) Aircraft utilization: Increases in scheduled block time 
are historically achieved at the expense of daily aircraft 
utilization, as measured by average daily flights per aircraft. 
This tradeoff was observed with four airlines—notably, the 
four largest hub-and-spoke networks. While coefficients of       
-0.02 daily flights seem operationally insignificant, over 
networks averaging close to 400 aircraft operating 3.6 flights 
per day, this represents a loss of 8 flights per day and 2,920 
flights a year.10 Assuming 2010 representative values for flight 
distance (1,060 miles), seats per flight (162), and revenue per 
available seat miles (RASM, $0.106), this translates to an 
annual revenue loss of over $52 million per airline, all else 
equal. 11  For additional perspective, compare this result to a 
simple valuation of the underlying 1.3 minute increase in actual 
block time needed to generate the assumed, one minute 
increase in scheduled block time (1/0.75). Valuing fuel 
consumption at a nominal $32 per actual block minute12, the 
same fleet and network would impose an additional fuel 
expense of approximately $22 million per airline. (Note that 
this figure should be compared to the lost operating profit on 
the $52 million in revenues calculated above, to account for the 
non-incurred operating costs.) This simple calculation suggests 
that the observed impact of scheduled block time increases on 
aircraft utilization is small, though not insignificant, relative to 

                                                           
10 The interpretation of the reduction in aircraft utilization as a loss assumes a 
causal relationship with changes in scheduled block time. 
11 This estimated revenue impact is presented for perspective, and was not 
tested empirically. 
12 2010 value for the airlines in this analysis. 



a directly-incurred increase in fuel expense from an underlying 
change in actual block time. This finding is not inconsistent 
with anecdotes from our discussions with airlines. If we assume 
scheduled block time increases to ‘buy’ on-time performance 
(with no changes in actual block performance), these fleet 
productivity losses would, in principle, be offset by gains 
related to service quality and schedule integrity improvements. 
Such effects were not modeled in this analysis. 

c) Aircraft turn times: At least two airlines described the 
operational trade-off between scheduled block time and 
scheduled aircraft turn time. Intuitively, more time between 
gate departure and arrival should translate to less time at the 
gate, all else equal. However, only a weak inverse relationship 
was observed for Delta Airlines, through a regression that 
explained only 17% of the historical variance in average turn 
times.  

Though we were not able to establish statistical 
relationships between scheduled block and aircraft turn times 
for most airlines, we did find (intuitive) inverse relationships 
between scheduled turn time and daily aircraft utilization.  
Here, the impact of an additional minute of scheduled turn time 
was similar in magnitude to the incremental effect of scheduled 
block time (for airlines with statistically significant coefficients 
for both measures). While not established in this analysis, to 
the degree that future efforts can identify or reasonably assert 
an inverse link between schedule block time changes and 
aircraft turn times, there is quantitative, empirical basis for 
estimating the impact on aircraft utilization (as discussed 
previously). 

d) Network connectivity: The related trade-off between 
scheduled block time and aircraft hub connectivity, as 
referenced by one airline, proved more evident in the data—
albeit indirectly. In principle, reduced scheduled block times in 
the form of earlier scheduled arrivals at hubs can enable more 
passenger connection itineraries given constant minimum and 
maximum connect times. We defined the dependent variable as 
the daily number of possible aircraft connections on an airline’s 
network (i.e., excluding regional code-sharing partners) for a 
representative schedule day in each month. 13 Note that this 
metric is merely an indicator of potential connectivity, without 
regard to the commercial marketability of each arrival-
departure aircraft pair. Thus measured, the coefficients for 
aircraft connections enabled by a one minute reduction in 
scheduled block time for American Eagle, Delta Airlines, and 
Southwest Airlines in Table 1 represent 0.94%, 1.34%, and 
0.44% of their 2010 levels, respectively (2010 levels are not 
shown in Table 1). These models achieved adjusted R2 of 0.75 
or greater, with much of the variance in aircraft connections 
explained by the number of flights in each airline’s network 
(the other explanatory variable in each model referenced in 
Table 1). 

While we established statistical relationships between 
scheduled block time and possible aircraft connections for only 
three airlines, all but one airline exhibited positive relationships 
between aircraft connections and the number of actual, or 

                                                           
13 We used the third Thursday of each month, averaged by quarter. 

observed quarterly passenger connections. Taking Delta 
Airlines as an example, the estimated 2,016 aircraft 
connections enabled from a network-wide one-minute decrease 
in average scheduled block time translates to an estimated 
37,681 additional domestic passenger connections per quarter 
(2,016 x 18.7 passengers). This represents less than 1% of 
Delta’s 5.6 million connecting passengers averaged per quarter 
in 2010. Though small in relative terms, these coefficients 
allow future studies modeling or directly measuring schedule 
changes to estimate the impacts on connecting passenger 
traffic.  

e)  Pilot expenses: conventional benefit valuation 
methods generally assume that increases in scheduled block 
times translate to higher pilot salary expenses, in recognition of 
the fact that some airlines pay pilots based on the greater of 
scheduled and actual block times. We observed a direct 
statistical relationship between scheduled block time and 
inflation-adjusted pilot salary per ASM for only three airlines 
(the dependent variable is normalized by unit of output). The 
significant coefficients, which ranged from 6.4 x 10-5 to 8.2 x 
10-5, need to be placed in context for interpretation. Relative to 
their inflation-adjusted 2010 reference values, one minute 
increases in scheduled block time represent 1.9%, 1.6%, and 
1.3% of real pilot salary expense per ASM for American, 
Northwest, and Southwest Airlines, respectively. That said, our 
regressions only achieved adjusted R2 of around 0.12 in each 
case, implying that little of the quarter-to-quarter variance in 
pilot unit expense is explained by variations in scheduled block 
time. This finding is consistent with anecdotal insight from 
former airline personnel describing impacts on pilot salaries as 
small, if any, due to crew duty time constraints. This would 
point to the number of employed pilots as a better measure of 
the impact of changes in scheduled block time; however, this 
statistic is only reported annually, and was therefore not used 
as a dependent variable. 

IV. CONCLUSIONS 
The regression analyses presented in this paper were part of 

a broader effort to understand and quantify airlines’ responses 
to systemic and lasting changes in ATM performance, such as 
those anticipated from NextGen. They were informed by a 
conceptual understanding of airline perspectives and behavior 
based on prior research, and enriched through candid 
discussions with senior airline managers and executives. An 
understanding of how airlines generically and specifically 
‘consume’ operational performance changes is critical for 
evaluating the prospects of voluntary investments in enabling 
avionics. This has important implications on the adequacy of 
traditional modeling and valuation approaches for assessing 
impacts on airlines, as most implicitly assume static airline 
behavior even in the face of significant operational 
performance changes.   

MITRE is contemplating enhancements to its modeling 
capabilities that will facilitate inclusion of some of the most 
fundamental and pervasive forms of airline response, including 
block time scheduling. The relationships quantified in this 
paper underscore these behaviors and provide a basis for the 
next phase of research and development. They also highlight 



real differences between airline business models, affirming that 
a given set of operational improvements may present vastly 
different value propositions to different stakeholders. To this 
end, the analysis also highlights real limitations in the ability to 
observe complex, dynamic operational trade-offs from 
quarterly, network-level data.  

At the same time, aviation analysts and policy-makers 
should also appreciate the role of improved benefits-estimation 
methods (and greater operational benefits) as necessary but 
insufficient in the broader context of airline motivating factors. 
The significant policy, implementation, and operational risks 
perceived by airlines are equally important challenges; but they 
require different tools and solutions.    
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