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Abstract—A critical step in the design and development of
new tools and systems for air traffic management is the estima-
tion of potential benefits of the added technology. The current
methodology of estimating the added benefit of a new tool is based
on a combination of simulation and field observations, requiring
either an extensive model of the system or a fielded prototype.
This paper contributes a Markov model for benefits estimation,
which allows for quick assessment of benefit uncertainty and
rapid evaluation of different operational scenarios. In this paper,
a Markov model is employed to estimate the benefits of a strategic
departure management tool. The model probabilities are derived
from a historical archive of Route Availability Planning Tool
(RAPT). Monte Carlo simulations are performed to estimate
the range of benefit for uncertainties in model parameters and
technology performance accuracy. Using this model we also
provide an illustration of how different decision procedures can
be accommodated, and their impact on benefits.

I. Introduction

The estimation of potential benefits is an important com-
ponent of investment analysis and system design for air traffic
management automation and decision support capabilities. The
typical process of estimating benefits can incorporate the
following steps. First, a system shortfall is identified through a
combination of operational review and analysis of performance
metrics. Next, a potential benefits pool, which includes the
scope of operations that are affected by the shortfall and the
external factors (e.g. weather) that contribute to the shortfall, is
defined. A system capability is proposed which addresses the
shortfall by providing automation, decision support, and pro-
cedures that enable air traffic service providers and operators
to make better decisions and implement them more efficiently.
The likelihood that the proposed capability will successfully
address the shortfall must be assessed, and potential benefits
can be estimated by discounting the size of the benefits pool
by the anticipated effectiveness of the solution. Finally, the
benefits estimation methodology should identify the aspects
of the proposed capability that are most critical to achieving
the expected benefits, and guide requirements for the accuracy,
precision, and timeliness of data and forecasts incorporated in
the proposed capability [1].

As an example, the difficulty in strategic planning for
arrival traffic flows into major metroplexes during periods of
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significant convective weather impacts is considered a repre-
sentative traffic management shortfall[2]. The potential benefits
pool would focus on a set of metroplexes and days where
convective impacts are significant, as well as the flights and
traffic flows affected. The potential benefits pool is discounted
by estimating the lost effectiveness due to weather forecast
uncertainty, and identifying the likelihood and cost of poor
decisions based on inaccurate forecasts. The resulting benefits
would assist in determining the need for requiring a high
degree of forecast certainty before decisions can be made and
implemented.

Modeling forecast uncertainty and properly accounting for
its impact on the effectiveness of proposed system capabilities
is particularly difficult due to the complexity of the air traffic
management process and the external factors, such as weather,
that affect it. It requires the estimation of probabilities that
forecast errors will result in missed opportunities to make a
beneficial decision or wrong decisions based on overly opti-
mistic forecasts. It can be further complicated by the availabil-
ity of actionable forecast information with sufficient lead time
to implement the appropriate action. Realistic assumptions
about user confidence in forecasts and time lags between the
appearance of forecast information and air traffic management
actions must be made. It is optimistic to assume that air traffic
decisions will always be made and implemented at the earliest
appearance of forecast opportunity, or that decision makers
will always be able to recognize the difference between a good
forecast and a poor one.

A variety of approaches are used to estimate potential
benefits of aviation technologies: queuing models [3], [4], ex-
trapolation from field observation [5], [6] and simulation [7].
Queuing models are predominantly used to predict and analyze
delay performance in the system, although some studies have
monetized the delay. Benefits estimates extrapolated from field
observation are based on detailed observations of the decisions
that are made during live operations using a prototype of
the proposed capability. Post event data analysis estimates
the improvement in performance metrics from outcomes of
circumstances when the prototype technology is present and
absent. Achievable benefits are estimated by extrapolating from
limited duration observation instances, to a multi-year duration
of operation. Field observation eliminates the need to make
assumptions about the effectiveness of the capability in driving
beneficial decision making, the feasibility of implementing
decisions based on the capability, and the degree of forecast
certainty and user confidence required to achieve benefits, since
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all of these factors are observed directly during live operations.
However, the reliability of benefits estimate derived from oper-
ational observations is limited by the accuracy of the post event
outcome modeling and extrapolation from a relatively small
data set. Furthermore the extrapolation methodology requires
a working prototype, and cannot be used to estimate benefits
for a proposed capability that has not been implemented.

Simulations of the air traffic operations, either fully auto-
mated for Monte Carlo simulation or with human-in-the-loop
(HITL), are also used to estimate performance improvements
enabled by the incorporation of the proposed capability into
the traffic management system [8]. Monte Carlo simulation
eliminates (in principle) the problem of benefits extrapolation
from a small number of cases; the number of days studied and
variations in operational behavior are limited only by the avail-
able computational resources. Sensitivity analysis can support
the specification of requirements. However, the accuracy of
benefit estimation depends upon the fidelity of the simulation
in capturing the factors that affect system performance and
accurately modeling the complex interactions between human
decision makers responding to events as they unfold. Validating
the fidelity of simulations during complex operational scenar-
ios can be very difficult. Benefits estimation based on HITL
simulation is characterized by the shortcomings of both ex-
trapolation and simulation methodologies, since HITLs rarely
model complex operational scenarios with sufficiently high
fidelity to estimate benefits, and estimates must be extrapolated
from the limited number of HITL instances that is practically
feasible.

This paper presents an approach for modeling benefits,
and examining the impact of uncertainty on the operational
costs and benefits of introducing a new air traffic management
technology. We consider uncertainty from factors such as:
forecast accuracy of the technology, variations in external
factors (e.g. weather), variations in user decision making, and
variations in cost. Our approach employs a stateful model of a
flight’s operation. The choice of states is based on treating
flight phases that are relevant to changes in decisions and
outcomes facilitated by the introduction of a new decision
support technology. In section II we present a general frame-
work for probabilistic modeling of costs and benefits using a
stateful approach, with state transitions that follow the Markov
property. The example diversion mitigation technology, to
which we apply our cost and benefits model, is described
in section III. In section III we consider alternative decision
policies that may be employed in concert with the diversion
mitigation technology. The application described in section III
is sufficiently tractable to allow for analytic expressions for cost
and benefits, which are provided in section IV. In section V
we describe how uncertainty arising from the technology, the
decision making, and external factors (e.g. weather and cost)
are incorporated into our framework. The estimation of model
probabilities for our application, as well as empirical data for
assessing the validity of our model are discussed in section
VI. The statistical values for cost and benefits computed from
the application of our model are presented in section VII.

II. Markov Model

We use a state transition model to represent different phases
experienced by a flight. The movement from one state to

another is the result of a decision or response to an event.
Our model associates a cost with each state, therefore cost
is accrued when a flight visits a state. The probability of
transition between state Xn−1 = i and Xn = j is given by
γij , where n is the number of transitions. Collectively these
transition probabilities are represented by the matrix:

P =


γ1,1 γ1,2 · · · γ1,K

γ2,1 γ2,2 · · · γ2,K

...
... · · ·

...

γK,1 γK,2 · · · γK,K

 (1)

The probability of a flight being in any particular state on the
n-th transition is given by the vector:

πTn =
[
π1,n π2,n · · · πK,n

]
(2)

where πk,n is the probability of being in state k on the n-th
transition. The state probabilities can be obtained iteratively
by solving

πTn = πTn−1P (3)

The costs incurred by visiting any state are collectively given
by

c =
[
c1 c2 · · · cK

]
(4)

The incremental cost accrued by a flight on the n-th transition
is

θn = πTnc (5)

The total cost incurred by a flight is the sum over the
incremental costs

S =
∑
n

θn = πT0

[∑
n

Pn

]
c (6)

The benefit gained by introducing a technology is assessed
by adjusting the transition probability matrix. The adjusted
probability matrix can be written as

P = PB + ∆P (7)

where PB is the base transition probability matrix, and ∆P
is the adjustment to the base resulting from the introduction of
new technology. The cost benefit is defined as the difference
between the base cost and the new cost.

∆S = SB − S = πT0

{∑
n

[Pn
B − (PB + ∆P)n]

}
c (8)

III. Application:Impact of Diversion Mitigation
Technology

In this section we will illustrate the application of the
Markov model to an air traffic control scenario involving
diversion of aircraft due to weather blockage along the path
to an arrival destination. In this scenario we examine the
impact of a potential technology that can assist in accurately
forecasting the weather blockage over a time horizon. We
suppose that short flights, whose origins are within this time
horizon, can exploit the blockage forecasting technology by
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Fig. 1: State Transition Diagram For Diversion Mitigation

delaying their departure until the weather blockage has abated.
Figure 1 provides the state transition diagram which models
this simple diversion mitigation scenario. The model con-
sists of six states which delineate phases that a flight may
pass through: 1) Pre-Departure, 2) Ground Delay, 3)
Planned Arrival, 4) Diverted Arrival, 5) Flight
Cancelled, and 6) End Flight. State transitions in this
model are based on considering a non-ideal diversion miti-
gation technology, which at times produces inaccurate fore-
casts. In order to describe the transition probabilities, we first
consider the forecasted and actual probabilities of finding the
arrival path open or closed. The random variable X(t) ∈
{open, closed} gives the forecasted state of an arrival path
at time t, and Y (t) as the actual state of the path. We define
the following probabilities:

αt = P (X(t) = open, Y (t) = open) (9)
αf = P (X(t) = open, Y (t) = closed) (10)
ρt = P (X(t) = closed, Y (t) = closed) (11)
ρf = P (X(t) = closed, Y (t) = open) (12)
ρ = ρt + ρf (13)
α = αt + αf = 1− ρ (14)

Employing these definitions we assume that a flight will
successfully pass to its desired arrival destination without en-
countering weather blockage or being delayed with probability
γ1,3 = αt. The probability that a flight is diverted due to a
false open forecast is γ1,4 = αf . The parameter γ1,5 = ε
is introduced to allow for flight cancellations resulting from
operational decisions after receiving information about the
state of the flight path. The event that a flight is delayed on
the ground for an interval Tg when the diversion mitigation
technology forecasts the arrival path state to be X(t) = closed,
has probability of γ1,2 = (ρ∗t + ρf ), where the quantity
ρ∗t = ρt − ε. The probabilities of transitioning to the End
Flight (including the self-transition) are all set to one,
γ3,6 = γ4,6 = γ5,6 = γ6,6 = 1. The End Flight state
is an absorbing state, which has been added to assist in
terminating the Markov process, without the need to explicitly
track the number of transitions. The quantity γ2,3 = βt
defines the probability of successfully arriving at the intended
destination after accepting a ground delay. The probability of
a being diverted due to an erroneous forecast is represented

by γ2,4 = βf , after being delayed. Jointly these represent
the probability, β = βt + βf , of a flight departing after
experiencing a ground delay. The probability of a flight being
cancelled after being delayed is γ2,5 = φ. The probabilities
of transitioning from the Ground Delay state depend on
decision policies employed by operations control. Here we
consider two policies: i) fixed delay policy and ii) adaptive
delay policy.

A. Fixed Delay Policy

In this case we assume that for operational simplicity a
fixed duration ground delay, Tg , is imposed on a flight when the
diversion mitigation technology forecasts the path to be closed.
Based on this policy we define probability φ of transitioning
to the Flight Cancelled state as

φ = P (X(t+ Tg) = closed|X(t) = closed) (15)

The probability of not cancelling the flight is given by β =
βt + βf .

β = P (X(t+ Tg) = open|X(t) = closed) (16)

A concrete expression for φ and β can be obtained by assuming
X(t) to be an embedded two-state discrete Markov process
with geometrically distributed open and closed periods[9]. We
will address the accuracy of this assumption in section VI. The
two-state process is defined by letting ϑ be the probability
of transitioning from closed to open state, and ϕ be the
probability of transitioning from open to closed state. The
transitions take place at fixed intervals ∆t = tn−tn−1, with tn
representing the time of n-th transition. The state probability
vector ζT (tn) is defined as:

ζT (tn) = [P (X(tn) = closed P (X(tn) = open)] (17)

The state probability vector is calculated by the recurrence
relation

ζT (tn) = ζT (tn−1)

[
1− ϑ ϑ

ϕ 1− ϕ

]
(18)

The equilibrium distribution ζ, as n→∞, is given by

ζT (∞) = [ρ α] =
1

ϑ+ ϕ
[ϕ ϑ] (19)

If we allow Tg to be expressed as a multiple of discrete time
intervals, mg(∆t), then φ(mg) and β(mg) are given by

φ(mg) = ρ+ α(1− ϑ− ϕ)mg (20)
β(mg) = α[1− (1− ϑ− ϕ)mg ] (21)

In this context, the probability of a false forecast leading to
a flight being diverted after the ground delay given by βf
can be obtained in terms of the joint probabilities αt and αf .
Substituting α = αt + αf into the above equation, we get

βf (mg) = αf [1− (1− ϑ− ϕ)mg ] (22)
βt(mg) = αt[1− (1− ϑ− ϕ)mg ] (23)
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B. Adaptive Delay Policy

In this case we assume that the diversion mitigation tech-
nology provides a forecast of flight path being closed, as well
as the duration for which it is closed. The adaptive policy
requires a flight to be delayed only for the duration that the
path is closed. As a result we set the transition probability
φ = 0, and while allowing flight cancellations, characterized
by the parameter ε, to occur as a result of initially observing
the closure duration of the flight path. In accordance with
the adaptive policy, the transition probabilities βt and βf are
defined as:

βt = P (Y (t) = open|X(t) = open) =
αt

αt + αf
(24)

βf = P (Y (t) = closed|X(t) = open) =
αf

αt + αf
(25)

IV. Calculating Cost and Benefits

In this section we provide analytic expressions of costs
and benefits for the diversion mitigation scenario described
in section III. Based on the definitions given in section III
we can construct the probability transition matrices for the
cases in which the diversion mitigation technology is absent
and present. The later case can be further divided into two
cases – ideal and non-ideal forecasts. In the non-ideal case the
diversion mitigation technology provides erroneous forecasts of
path blockage with finite probability. The transition probability
matrix for the non-ideal diversion mitigation scenario is:

P =



0 ρ∗ αt αf ε 0

0 0 βt βf φ 0

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1


(26)

The assessment of benefits derived from introducing the
diversion management technology is performed relative to
base and ideal scenarios. The base case lacks the diversion
mitigation technology, while in the ideal case the technology
is assumed to provide perfect forecasts of the arrival path state.
These two scenarios are modeled by the following probability
transition matrices:

PB/PI = (27)

0 0 / (αf + ρt) (αt + ρf ) (αf + ρt) / 0 0 0

0 0 0 / 1 0 1 / 0 0

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1


In this example the starting state probability vector is πT0 =
[1 0 0 0 0 0], and the (excess) cost vector is cT =
Nf [0 (ηgTg) 0 (ηdTd) Ccf 0]. Here the cost varies linearly
with the number of total flights considered Nf , and considers
relevant factors such as the ground delay duration Tg and the

additional delay imposed by a diversion Td. The quantities
ηg and ηd are the cost rates for ground delay and diversion
respectively. The cost of a flight cancellation is taken as
Ccf . Although this is a simple cost vector, the model can
be extended to accommodate more general costs, as well as
the dependency of cost on the state probability πn, which is
relevant when considering traffic volume dependent cost.

The substitution of the model parameters for this applica-
tion into Eqn. 6 results in the following expressions for the
base cost SB , ideal cost SI , and non-ideal cost S:

SB = (αf + ρt)NfηdTd (28)
SI = (αf + ρt)NfηgTg (29)
S = (ρt + ρf − ε)NfηgTg

+ [αf + (ρt + ρf − ε)βf ]NfηdTd
+ [ε+ (ρt + ρf − ε)φ]NfCcf (30)

The cost improvement of employing the diversion mitigation
technology is calculated as the difference between SB and S:

∆S = −(ρt + ρf − ε)NfηgTg
− [ε+ (ρt + ρf − ε)φ]NfCcf
+ [(1− βf )ρt − βf (ρf − ε)]NfηdTd (31)

The first term in this expression discounts the cost of ground
delay from the total benefit, while accounting for aircraft de-
layed erroneously through the probability ρf . The second term
diminishes the overall benefit by the cost of flight cancellations.
The third term yields the benefit of avoiding diversions, while
accounting for false forecasts.

V. Incorporating Uncertainty

In section IV we have treated the development of the
transition probabilities P, the initial state probabilities πT0 ,
and the cost c as deterministic parameters. In reality all
elements of each of these array quantities are not fixed. We
expect transition probabilities characterized by ρ and α to
vary due to regional differences in weather conditions. The
quantities ρf and αf are expected to vary from region to
region due to implementation and adaptation differences in
the deployed diversion mitigation technology. The costs of
diversion, ground delay, and flight cancellation can be expected
vary with airline carrier and between geographic regions. Here
we have considered a simple example which only considers
short duration flights that can employ the diversion mitigation
technology resulting in a fixed value for π0. A more represen-
tative scenario would involve short and long duration flight,
whose relative proportion would be different from region to
region. We propose to characterize these variations by treating
elements of P, πT0 , and cT are random quantities that can be
drawn from the joint distributions: fP(P) fπ0

(π0), and fc(c).
Assuming that P, π0 and c can be treated as independent
random array variables, the expected value of the total cost is
given as

E[S] = E[πT0 ]

[
E[
∑
n

Pn]

]
E[c] (32)
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The variance in the cost can be written as:

var(S) = E[(πT0
∑
n

Pnc)2]− (E[S])2 (33)

= E[cT
∑
n

(PT )nπ0π
T
0

∑
n

(P)nc]− (E[S])2

In order to characterize the distribution of costs and ben-
efits, as well as computing the expected value and variance,
we describe how uncertainty arises in our application scenario.
Some of the state transitions in our scenario are an outcome of
decisions based on information provided to actors controlling
the flight. The decision information in our application is pro-
vided by a diversion mitigation technology, which forecasts the
impact of weather along the flight path. Errors in forecasting
are represented by the quantities ρf and αf . We expect that
errors produced by geographically disparate deployments of
the technology to be distributed over a range of values. As
result we treat ρf and αf as random quantities, and assume
them to be independent. For ease of analysis we will draw
ρf and αf from the uniform distributions U(ρf,min, ρf,max)
and U(αf,min, αf,max) respectively. The actual probability of
the flight path being closed is represented by q = P (Y (t) =
closed). Since the likelihood of finding a flight path closed due
to weather is expected to vary between geographic regions,
q is treated as an independent random variable described
by the uniform distribution U(qmin, qmax). The parameter ε
may also be allowed to vary randomly with the distribution
U(εmin, εmax), to capture user decisions on cancelling a flight.
We note that in order to maintain conservation of probability
the maximum and minimum values for q, αf , ρf , ε cannot be
selected independently. If αf,min and ρf,min are selected to be
zero, then the inequalities qmin ≥ αf,max, qmax ≤ (1− ρf,max),
εmin ≥ 0 and εmax ≤ qmax, must be satisfied. Employing
the definitions given in Eqn. 9, the quantities αt and ρt can
be written as linear combinations of the independent random
quantities q, αf , and ρf .

αt = 1− q − ρf (34)
ρt = q − αf (35)

The quantities βt, βf , and φ are also dependent on q, αf , and
ρf , through the expressions defined for the fixed and adaptive
delay policies in section III.

The duration of ground delay, Tg , is another parameter that
impacts the cost. For the fixed delay policy Tg is given as
a deterministic value. However, for the adaptive policy, the
duration Tg depends on the remaining duration of forecasted
weather blockage, conditioned on being in X(t) = closed
state. Here we assume that the diversion mitigation technology
provides forecasts at discrete intervals tk = (k∆t), and the
ground delay is also measured as a multiple of (∆t). In order
to derive the probability distribution for Tg = (m∆t), we first
wish to characterize the probability of a path remaining closed
for a time interval (m∆t) in the future, given it is currently
closed. Such an event, conditioned on the total duration of
blockage (b∆t), is given as

ψm|c,b = {X(tk ≤t < tk +m∆t) = closed

|X(tk) = closed, B = b} (36)

The quantity B is the random variable which characterizes the
duration of a blockage event. The probability of this event is

defined as:

P (ψm|c,b) =


b−m+ 1

b
b ≥ m,m ≥ 1

0 else
(37)

The probability of a path remaining closed for duration m in
the future is given by

P (ψm|c) =
∑
b

P (ψm|c,b)P (B = b) (38)

The probability distribution P (B = b) may be obtained
experimentally, as presented in section VII. In which case the
probability distribution P (M = m) is given as

P (M = m) =
P (ψm|c)∑
k

P (ψk|c)
(39)

If we assume the blockage durations to be derived from a two-
state Markov process, as given in section III, then P (B = b)
is expressed as:

P (B = b) = ϑ(1− ϑ)b−1 (40)

The probability of a path remaining closed for a duration m
is in this case given by

P (ψm|c) = (1− ϑ)m−1 − (m− 1)
ϑ

1− ϑ

∫
(1− ϑ)m−1

ϑ
dϑ

(41)

VI. Estimating Model Probabilities

In this section we will characterize the model probabilities
using historical data from a planned operational system. The
Route Availability Planning Tool (RAPT) system provides
decision support to air traffic managers on the impact of
weather on flight operations [10]. This system forecasts the
blockage state of a set of flight paths near an airport in ∆t = 5
minute increments. This system has been prototyped at the
New York Area and Chicago airports, during live operations.
It is currently being integrated into the FAA’s Traffic Flow
Management System (TFMS) for more widespread deploy-
ment within the National Airspace System (NAS). Figure 2
illustrates the user display for RAPT in the New York area.
RAPT assigns a status color to indicate the severity of weather
impact on a flight path: RED (blocked), YELLOW (moderate
weather), DARK GREEN (light weather), GREEN (clear).
RAPT is capable of forecasting the impact of weather on each
route up to 30 minutes into the future. The status is determined
by combining the deterministic precipitation and echo-top
forecasts from the Corridor Integrated Weather System (CIWS)
with a route blockage algorithm that incorporates a model for
departure airspace usage. The RAPT system employs historical
data to determine a set of median path trajectories employed by
flights for a particular airport. The forecasted weather impact
is computed by examining the intersection of the forecasted
weather field over a flight path segment that is visited by
the flight based on a predetermined speed profile. The CIWS
precipitation intensity forecast is presented to the user over
a weather map for the region of interest, as well as a set of
timelines for individual flight paths (rows) with whose status
is given at discrete time intervals of 5 minutes (columns). In
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Fig. 2: User interface for Route Availability Planning Tool
(RAPT)

addition to the forecasted status of blockage on flight paths,
the RAPT system also maintains the truth status of weather
impact in order to assess the errors in the forecasted product.

The computation of model probabilities employs the fore-
casted and truth status data generated while operating the
prototype RAPT system in the New York and Chicago regions.
The model probabilities are based on a set of 31 weather
impacted days, of which 17 days are from the New York
area and 14 days from Chicago. The selected days include
significant convective weather impacts during the time period
of 0900Z to 0000Z. The cumulative set of data over the
selected days and the regional flight paths consists of 33,660
samples from New York and 70,560 samples from Chicago.

In order to compute the model probabilities we first map the
RAPT status as: [{GREEN,DARK GREEN,YELLOW} →
open)] and [{RED} → closed]. The probabilities
(αt, αf , ρt, ρf ) are calculated by counting the different
events enumerated by (X(tk) ∈ {closed, open}, Y (tk) ∈
{closed, open}), and normalizing by the total count. The
probability q is calculated as the sum of αf and ρt. The
transition probabilities for the two-state path blockage process
as computed from considering the one step forecast events
(X(tk), X(tk+1)).

ϑ =
|{X(tk) = closed, X(tk+1) = open}|

|{X(tk) = closed}|

ϕ =
|{X(tk) = open, X(tk+1) = closed}|

|{X(tk) = open}|
(42)

The results of these calculations are summarized in Table I.

Region αt αf ρt ρf q ϑ ϕ

New York 0.8299 0.0343 0.1195 0.0163 0.1538 0.1 0.017

Chicago 0.9142 0.0115 0.0628 0.0115 0.0743 0.1118 0.009

TABLE I: Empirically derived path blockage and technology
performance probabilities

The computation of distributions for path blocked and
available durations are given by considering the events

UB(b) = {X(tk−1) = open, X(tk) = closed,

. . . , X(tk+b−1) = closed, X(tk+b) = open}
UA(a) = {X(tk−1) = closed, X(tk) = open,

. . . , X(tk+a−1) = open, X(tk+a) = closed} (43)

The probability distribution are given as:

P (B = b) =
|UB(b)|∑
b

|UB(b)|

P (A = a) =
|UA(a)|∑
a
|UA(a)|

(44)

The probability distributions P (B = b) and P (A = a)
for the New York region are shown in Figures 3 and 4
respectively In these plots the symbol “o” curves represent

Fig. 3: Distribution of X(t) = closed durations for New York
region

the distributions computed from empirical data, and the solid
lines represent a least squares fit to a geometric distribution.
Figure 3 illustrates that a geometric distribution serves as
a reasonable fit for the probability of closed durations. The
empirical distribution of path open durations, as shown in
Figure 4, deviates significantly from a geometric distribution.
The aggregate decay of the empirical distribution is however
captured by a geometric model.

The expression for calculating the distribution of residual
duration of a blockage event, conditioned on being in a
blockage event was given by Eqn. 39. Using the results for
P (B = b), the distribution P (M = m) is calculated. Figure
5 shows the empirically derived distribution for the New York
region using “o” symbols, and the solid line is the least-
squares fit to a geometric model, with mean m̄ = 40.16. The
expected values for m in the New York and Chicago regions,
calculated directly from the empirical distribution, are found
to be m̄NY = 32.96 and m̄CHI = 32.75 respectively.
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Fig. 4: Distribution of X(t) = open durations for New York
region

Fig. 5: P (M = m) for New York region

VII. Simulation Results

In this section we will examine the statistics of costs and
benefits as we vary parameters related to the proposed Markov
model. The values for the parameters associated with flight
path blockage and diversion mitigation technology perfor-
mance are listed in Table II. The three case studies considered
examine the effects of increasing the mean and variance of
forecast errors αf and ρf and the range of q. In addition we
assume that the parameters of the embedded two-state process
defining the path blockage vary such that their sum, (ϑ+ ϕ),
remains fixed. We justify this assumption by noting that the
sum of these parameters for New York and Chicago regions is
nearly the same. Maintaining the sum (ϑ+ϕ) to be a constant
also ensures that the characteristic decay rate of the correlation
of the forecasts in time is invariant.

The average input costs used in the simulation of benefits
are given in Table III. In order to capture the effect of variation
in cost, we will allow each input cost to vary uniformly by ±10

percent.

The results for benefits for the three cases identified in
Table II, assuming the fixed delay policy, are presented in
Figures 6-8. In each case distributions of benefits are plotted

Fig. 6: Probability distribution of ∆S for case I

Fig. 7: Probability distribution of ∆S for case II

for {mg : 5 - 45}. These results show distributions that are a
significant departure from the uniform distributions of the input
parameters. The results of each of the three cases show the
greatest cost benefit for values of mg = 15, hence providing
a mechanism for selection of Tg = (mg∆t). Increasing mg

beyond this value, results in a degradation in the benefit due

Case αf,min αf,max ρf,min ρf,max qmin qmax εmin εmax

I 0.0 0.02 0.0 0.02 0.06 0.2 0.0 0.01

II 0.0 0.04 0.0 0.04 0.06 0.2 0.0 0.01

III 0.0 0.04 0.0 0.04 0.08 0.5 0.0 0.01

TABLE II: Path blockage and diversion mitigation technology
performance parameters

< NfηdTd > < Nfηg∆t > < NfCcf >

100 1 100

TABLE III: Average input costs
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Fig. 8: Probability distribution of ∆S for case III

the increased cost of delay. On the other hand, for values ofmg

below 15, the benefit degrades due to increased likelihood of
a cancellation by attempting to depart while the flight path is
still blocked. The shift in the distributions of benefits with mg

show a greater sensitivity to loss of benefits when mg < 15,
while the rate of benefits loss is lower for mg > 15.

The expected base cost is invariant in mg and given by a
constant average value of (αf + ρt)NfηdTd. The dominant
terms in S that exhibit change with mg are Qβ = (ρ −
ε)βtNfηgTg and Qφ = (ρ−ε)φ[NfηgTg+NfCcf ] with βt and
φ increasing and decreasing respectively with mg . For small
values of mg , Qφ >> Qβ , resulting in a low expected value of
∆S = SB−S. With increases inmg ,Qφ decreases, converging
to a constant value, whereas Qβ increases to a comparable
value. These features, lead to a maximum in the expected value
and variance of ∆S in the region around mg = 15.

The benefits distributions for case II shown in Figure
7 capture the impact of increasing αf,max and ρf,max by a
factor of two. In comparison to case I, the reduction in
the average benefit for mg = 15 in case II, with greater
forecast inaccuracy, is approximately 18%, without appreciable
change in the variance. In operational terms, the reduction
in benefit is a result of increased likelihood of diversion and
unnecessary ground delay due to forecasting errors. This type
of information can be relevant when assessing the return on
investment in improving the diversion mitigation technology
to provide greater forecast accuracy. For other values of mg

there are greater differences in the distributions for case I and
II.

The results for case III are shown in Figure 8. Here we have
increased the range over which the distribution of q varies, thus
resulting in greater likelihood of path blockages. A broadening
of the distribution for q yields a corresponding broadening of
the benefits distribution. In addition, the distribution exhibits a
negative skew, with the mass of the distribution favoring high
benefit values. The results also show a shift in the sensitivity
to a greater loss of benefits for values of mg > 15.

Results for the adaptive policy for each of the three cases
in Table II are presented in Figure 9. For the adaptive delay
policy, m is drawn from the empirical distribution presented in
section V. In general, the distribution of benefits for each case
deviates slightly from a uniform distribution. The statistics for

Fig. 9: Probability distribution of ∆S for adaptive delay policy,
cases I-III

each case show a mean and variance that is larger than the
corresponding values for the fixed delay policy. In particular,
the mean benefit for the adaptive policy exhibits increases of
72%, 87%, and 162% over the mg = 15 fixed policy cases I,II
and III, respectively. The decisions to enter a ground delay in
the adaptive delay case exploit the forecasted duration of the
path blockage in order to depart as soon as the blockage has
abated. This allows for minimizing the cost of ground delays,
as well as reducing the likelihood of cancellations as seen with
the fixed delay policy. It is also apparent from case III that
the likelihood of blockage has a large effect on the benefit of
the tool, especially for the adaptive delay policy. This point
highlights the need for accurate weather forecasts in the NAS
so that flight-specific traffic management can be enabled. A
comparison of case I and II distributions for the adaptive policy
case also show a resilience of benefits to an increase in forecast
errors, as was found for the fixed delay policy.

VIII. Conclusions and Future Work

In this paper we have developed an approach for cost and
benefits modeling when introducing a new air traffic manage-
ment technology into operations. This approach is capable of
incorporating uncertainty in factors that influence flight oper-
ations and air traffic decision processes, without performing
high-fidelity simulations or experiments. We have applied this
approach to a candidate diversion management technology. In
this context, we have described the impact uncertainty has on
the statistics of costs and benefits. We have also compared
the relative value of different operational procedures (fixed or
adaptive ground delay), when employed in concert with the
diversion management technology. Although, the technology
example we have analyzed is limited, the approach presented
is generally applicable. We expect to employ this approach
for understanding benefits for more complicated operational
scenarios, as well as for comparison of alternate technologies.
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Nomenclature

c Cost vector

Ccf Cost of flight cancellation

ηg Cost rate of ground delay

ηd Cost rate of diversion

Nf Total number of flights

Td Additional delay due to diversion

Tg Duration of ground delay

∆t Measurement and forecast time intervals

mg Duration of ground delay in discrete number of ∆t intervals

P Transition probability matrix

π State probability vector

S Total cost

X(t) Forecasted path blockage state

Y (t) Actual path blockage state

∆S Total benefit

θn Incremental cost

αf False forecast probability of path open

αt True forecast probability of path open

α Forecast probability of path open

ρf False forecast probability of path closed

ρt True forecast probability of path closed

ρ Forecast probability of path closed

βf False forecast probability of path open during Tg if presently closed

βt True forecast probability of path open during Tg if presently closed

β Forecast probability of path open during Tg if presently closed

φ Forecast probability of path closed during Tg if presently closed

ε Probability of flight cancellation

q Actual probability of path being closed

ζ State probability vector for embedded path blockage process

ϑ Probability of closed to open transitions

ϕ Probability of open to closed transitions

B, b Duration of blockage or closed period

A, a Duration of available or open period

M,m Remaining duration in blockage or closed period
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