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Abstract—In human performance studies using real-time air
traffic simulation, the human performance analyst faces chal-
lenges to ensure that certain events and scenario characteristics
will occur during the experiments. While some events, such as
specific categories of conflicts, can be designed in the scenario,
the interaction of the humans can undo these events early in
the simulation. This poses a challenge that can compromise the
objective of the experiment; making the experimental data less
useful.

Computational Red Teaming (CRT) is a computational en-
vironment that attempts to play the role of a devil advocate.
A CRT is designed and used in this paper to monitor, re-
steer and adjust traffic events in these real-time air-traffic
simulation environments. The approach was able to correct events
successfully, when possible. In situations were the time to correct
events is greater than the time remaining for the experiments or
when the constraints of the scenario do not allow certain steering
requests to be issued or accepted, those events can’t be recreated.
Therefore, analysts are advised to avoid designing events closer
to the end of the session to allow for the CRT to take corrective
actions if the session does not evolve as planned.

I. INTRODUCTION

Human performance studies are very common in safety
critical systems in general, and in air traffic management
(ATM) in specific. These studies are critical to evaluate new
concepts such as dynamic sectorization and user preferred
trajectories [1], by studying mental workload and other cog-
nitive processes for air traffic controllers (ATCs) [1], [2]. The
complex processes of air traffic control rely significantly on
and are limited by human performance [2].

Human performance experiments in the air traffic field have
been conducted by many researchers [3], [4]. Real-time simu-
lation is a common means for human performance studies [3],
[5]. A major challenge faced by an analyst when conducting
human performance studies using real-time simulation is how
to correct for deviations from pre-designed air traffic events
in real-time.

For example, a scenario can be designed before the ex-
periment to test the subject’s response to different mix of
air traffic conflicts. The human subject can de-conflict these
conflicts very early in the experiment by changing speeds

of aircrafts, requesting controllers in the other sectors to
delay an aircraft, or vectoring the aircraft, to name a few.
Consequently, what needs to be tested in an experiment can’t
be tested because of the core nature of uncertainty caused by
the diversity of possible strategies and behaviors of human
subjects. To reduce the impact of this interference caused by
human actions, a subject matter expert may deny the human
subject some actions. This can be undesirable and sometimes
causes frustration of the human-subject.

In this paper, we propose a Computational Red Team-
ing (CRT) environment to run in parallel to the real-time
simulation session. CRT is a computer system that plays
devil’s advocates. The CRT environment monitors the real-
time session, detects deviations from designed effects, then
runs simulation and optimization engines to find the best set
of actions required to counteract the actions causing the devi-
ations. In other words, CRT will play devil advocates against
the human subject to ensure that the session is proceeding as
designed. The actions proposed by CRT are communicated
to pilots and/or other air traffic controllers in the experiment
as an advice. These players communicate these actions to the
human-subject as normal operating requests.

We use goal programming to model the optimization prob-
lem. When a deviation from a target number of events is an-
ticipated, the optimization problem is formulated to minimize
deviations from those targets. Evolutionary goal programming
is used to solve this problem by manipulating the scenarios to
meet one or more criteria of target number of conflicts. Goal
programming will attempt to balance across four conflict angle
groups in order to maintain the target difficulty of the scenario
being simulated. The system was able to successfully meet the
requirements in six different experimental setups spanning the
space of possible problems.

II. THE CONCEPT

A human performance experiment using real-time simula-
tion within the air traffic domain normally contains subject and
non-subject players. Subject players are the human subjects
that are being the focus of the analysis in an experiment
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Fig. 1.
with CRT environment on the right hand side.

and are normally responsible for specific sectors. Non-subject
players include pilots, other air traffic controllers, and super-
visors. They are needed to recreate and imitate the operational
environment in a realistic manner.

Figure 1 has two main components: the dotted boxes on
the left and right sides, respectively. The dotted box on left
depicts a typical real-time simulation experimental environ-
ment. A subject player is responsible for a specific sector
called the measured sector. Non-subject players include air
traffic controllers (this position is normally called “other”
and is responsible for unmeasured sectors) controlling the
sectors feeding traffic to the measured sector and human
pilots controlling individual flights. Sometimes the flights are
scripted, eliminating the need for human pilots. It is also
common to have one or two pilots controlling all aircrafts
in the experiment and one experienced air traffic controller
controlling all traffic in unmeasured sectors. A simulation
server provides the simulated air traffic to all other sub-
systems. The server responds to the interactions of pilots and
ATC. It is possible for non-subject players to issue requests to
the subject players to steer back the scenario to those events
that are critical for the human performance study.

The concept presented in this paper is a novel automated
advisory system that proposes requests to non-subject players
to correct deviations from those important designed events.
This concept extends the environment on the left hand side
with the Computational Red Teaming (CRT) [6] environment
on the right hand side. The CRT monitors all events. As soon
as it detects a possible deviation from some target designed

A conceptual diagram of the proposed concept. The typical human performance air-traffic testing environment on the left hand side is augmented

events, it activates the optimization engine.

The optimization engine commences by formulating a goal
programming problem that minimizes the deviations between
the existing characteristics of the system - such as predicted
number of conflicts - and the target characteristics - such as
the analyst pre-designed target number of conflicts. This cycle
is explained in more details below.

During the experiment, the statistical analyzer generates
various statistics including number of conflicts so far, which
are fed to a Request Trigger component. If the analyzed results
do not meet certain criteria then a number of steps are trigged
to steer the traffic towards the required events. The formulation
and optimization components are then triggered. These two
components attempt to model and optimize several permu-
tations of the current simulation state in order to meet the
given criteria. Once a permutation has been found which meets
the criteria, the actions for the original real-time simulation
environment required to create these events are communicated
to non-subject players. The non-subject players attempt to
generate requests to the subject players with these actions to
steer the scenario back to the originally designed events.

The optimization problem is best modelled as a goal pro-
gramming problem. Goal programming is a common technique
in optimization and is particularly useful when it is required
to simultaneously consider satisfying multiple goals. There are
several methods available for optimizing problems using goal
programming. One of these methods is the weighted sum goal
programming method where the optimization is done by as-
signing weights to each goal and then minimizing the weighted



sum of the deviations from targets [9]. Several alternative goal
programming optimization methods include the MINMAX and
Lexicographic methods [10]. In the MINMAX method, the
maximum deviation from the target is minimized instead of
minimizing the weighted sum of the deviations. This method
also makes use of weight factors. The lexicographic method
assigns priorities for different goals and goals with the highest
priority are considered first [10].

When a simulation environment is used to evaluate the goals
and/or constraints in the system, the problem becomes a black-
box goal programming problem. The name black-box comes
from the fact that we do not know the explicit mathematical
formulation of the behavior of the simulation. As such, it is
impossible to differentiate or study the exact mathematical
properties of these functions in the general case. These types
of problems are most suited for evolutionary algorithms [12].
Evolutionary algorithms simultaneously work with a set (sam-
ple) of possible solutions in a single run instead of a series
of separate runs as required by more traditional optimization
methods [13]. This characteristic gives evolutionary algorithms
the strength to produce multiple solutions in a single run.

We use differential evolution (DE) [14] as the evolutionary
algorithm for this paper. DE approximates implicit direction
information to guide the optimization [15]. DE compares the
fitness of an offspring directly to the fitness of the correspond-
ing parent which results in faster convergence speeds than
other EAs [15]. In addition, DE is also easy to use, requires
fewer control parameters and can find near optimal solutions
regardless of the initial parameter values [16]. DE has been
applied to a range of topics in science, engineering and
management, such as logistics [17], [18] and crew rostering
for airlines [19].

To test the above concept, an approach has been devised to
dynamically manipulate a set of human performance scenarios
by using DE to solve the goal programming problems. The
aim is to change the difficulty of the scenarios by increasing
or decreasing the number of conflicts throughout the scenario.
This aim is achieved by searching the space of possible actions
that if requested and accepted by the subject players, certain
traffic events will increase. On the contrary to traditional flight
scheduling [7], [8] which aims at eliminating conflicts, our
objective here is equivalent to optimizing a set of actions to
cause changes to scheduling flights to generate a target number
of conflicts.

III. PROBLEM DEFINITION

We require an initial input scenario consisting of a flight
plan which includes a set of aircraft A = {a;}}; where

a; = (T7 TaaS)

The input information for each aircraft includes its route (r),
activation time (7;) and initial speed (S). The aircraft’s route,
r =Wy, Wy, ...,Wj; consists of j waypoints, I¥/, each with x,
y and z coordinates, which must be visited by the aircraft in a
sequential order. Waypoint W, is the activation point for the
aircraft and W; is the deactivation or final point.

Airspace (S;)

Request making area (S,)

Conflict checking sector (S3)

Fig. 2. A conceptual diagram of the relative positions of the request making
area (S2) and the conflict checking area (S3) both contained within the
airspace S

The simulated airspace, S7, is further subdivided into two
nested areas, Sy and S3. Sy is an area which contains the
measured sector(s) Ss, but is entirely contained within Sj.
Aircraft can only make requests when they are inside Sa. S3
is a sector of the airspace S; within which a target number
of conflicts is required with a specific distribution of conflict
types. A conceptual diagram of the positioning of S;, Sy and
Ss can be seen in Figure 2.

TABLE I
CLASSIFICATION OF CONFLICTS BASED ON THE ANGLE OF CONFLICT

Criteria
6 < 0° + tolerance
0° + tolerance < 6 < 90° + tolerance
90° + tolerance < 6 < 180° - tolerance
180° - tolerance < 6 < 180°

Description

In-Trail (IT)

Crossing Narrow (CN)
Crossing Wide (CW)
Head-on (HO)

Conflicts among aircraft are a common design-element
when designing human performance experiments for ATC. In
this study, a conflict is defined as the distance between two
aircraft being less than or equal to SNM while the difference
in elevation between the two aircraft is less than or equal to
1000ft. Conflict can be grouped into one of four categories,
as shown in Table I, based on the relative heading angles of
the two aircraft engaged in the conflict.

The aircraft in the simulation is capable of making requests
at various times throughout the simulation. The requests are
recorded throughout the simulation as a list of requests Q) =
{ax 1M, where g, = (a;, T,Y,d) is produced. M is the total
number of requests in the list, a; is the aircraft which made
the request, 1" is the time the request was made, Y is the
type of request made and ¢ is a parameter list specific to the
request, for example the number of feet to climb that is being
requested.

The aim of the optimization problem is to identify the
minimum number of requests that are likely to steer the
simulation towards a specific number and distribution of
conflicts. In this paper, we assume that we wish to achieve a
uniform distribution of conflicts. To determine if the number
of conflicts in a group has met the target for that group we
use Equation 1 where z,, is the number of conflicts in group
n, T is the target number of conflicts for each group (in
goal programming language, this target is called the aspiration



level), d;" is over achievement for the group and d; is under
achievement for the group.

Ty, —df +d7 =T (1)

To determine if all four groups consist of the target number
of conflicts, we use Equation 2 where f, the objective or fitness
function, is the sum of the deviations of the number of conflicts
in each group. Because all deviations are non-negative, a
solution is an optimal solution for this optimization problem
if the corresponding objective value is zero. The deviations in
this objective function can be weighted if required.

N
f=Y_df +d; )

i=1
IV. METHODOLOGY
A. Simulation

A multi-agent system was developed to simulate an airspace
based on an input scenario. The multi-agent approach was used
as it allows for the mapping of an environment to individual
agents capable of autonomous action in the environment to
meet some design objectives [20]. The agents in this system
were individual aircraft. The input scenario contains flight
plans for a number of aircraft including their waypoints, speed
and activation times. The information extracted from the flight
plans was used to construct a number of routes in the airspace.
The agents were simulated to travel based on their selected
routes in one second time steps until all of aircraft reach their
deactivation point. A point-mass approach using the equations
of motion is used to model the movement of aircraft.

In this system, two simulations of the same scenario are
conducted simultaneously. One of the simulations is a real
time visual simulation of the scenario while the second
simulation is a background simulation without visualization.
The background simulation runs at a much faster rate than
the real time visual simulation. The background simulation
aims to dynamically change the difficulty of the scenario
being simulated by allowing the aircraft to make requests to
deviate from their flight plan during a specific period of time.
The background simulation and the aircraft requests will be
discussed in more details in the following sections.

In the real world, aircraft do not always travel in a perfect
great circle route between two points due to factors such
as error in meteorological conditions. These deviations are
simulated through a random noise using artificial deviation
points centered around the original path. Pilots can also request
deviations from the set flight plan. If these requests are
granted, the aircraft is allowed to deviate from the original
flight plan as being discussed in the next section.

B. Aircraft Requests

An aircraft travelling through the area S has the ability
to make one of four requests: change flight level, reschedule
arrival time, avoid an area on the route and skip a waypoint.

1) Change flight level: An aircraft can only request a
change of elevation in 1000ft increments. For example, if an
aircraft is travelling at FL300 then it can only request a change
to either FL310 or FL290. In addition an aircraft cannot make
a request to fly below FL200 or higher than FL400 which are
the typical ranges of aircraft in the cruise phase. In this study,
we assume that the rate of climb and rate of decent (ROCD)
are fixed for all aircraft at all flight levels.

2) Reschedule overfly time: The aircraft can also make a
request to delay its arrival at the deactivation point or request
to arrive at the deactivation point earlier by a set amount of
time, At, than its planned time of arrival, ¢,. The new arrival
time at the deactivation point is calculated using Equation 3.

tp =t, + At 3)

If this request is made, then the aircraft is given a target
speed which the aircraft will accelerate or decelerate to, within
a set time, t,, and maintain this speed until the deactivation
time is reached. The time ¢, is set in such a way that the
aircraft will be required to accelerate or decelerate to the
target speed at the maximum acceleration or deceleration rate
(ROAD). If the maximum or minimum speed for the aircraft is
reached before the target speed can be reached then the aircraft
maintains the maximum or minimum speed, respectively, and
this means the aircraft will not be able to arrive early or delay
its arrival at the deactivation point by a time of At.

3) Avoid an area ahead on the route: If an aircraft makes
a request to avoid an area ahead on the route, such as an area
of severe weather, then a circular avoidance area is created
around this area with the center of the circle positioned along
the route. Several intermediate artificial waypoints are added to
the flight plan to guide the aircraft around this circle by taking
the shortest path to rejoining the original route. If a waypoint
in the original flight plan is located within a distance D of the
center of the circle then it will not be visited by the aircraft.
If the deactivation point for the aircraft is located within a
distance D of the circle then the point cannot be avoided. The
avoidance circle is always given a radius of 15NM while the
aircraft will only begin deviating from the original route to
avoid the circle once it is within a distance D, where D =
20NM in this paper, of the center circle.

The method for determining the position of the additional
intermediate artificial waypoints is dependant on the angle
created by extending a line from the aircraft’s current position
to the center of the circle and another line extended from the
center of the circle to the next waypoint in the flight plan
which is located at a distance greater than D of the center of
the circle.

4) Skip an upcoming waypoint: If an aircraft makes a
request to skip a waypoint then the upcoming waypoint in
the flight plan is ignored and the aircraft begins travelling
towards the next waypoint in the flight plan. For example, an
aircraft has the route plan shown in Equation 4 where W is
the most recently visited waypoint, W, ..., W;_; are the next
waypoints in the route plan and W is the deactivation point.
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While travelling between W; and W, the aircraft requests to
skip the next waypoint then W3 will be skipped and the aircraft
will begin travelling towards Wjy. If there are no waypoints
in the route plan after W5 other than W; then the aircraft
begins to travel towards W;. If there are no waypoints in the
flight plan after W; other than ¥, the aircraft cannot skip any
waypoints.

r = Wl, WQ,

TWis1, Wi (€]

C. Aircraft Request Time

Decisions on requests are made at a randomly selected time
from a uniform distribution within a five minute window of
the most recent request. The relationship between one request
time and the following request time can be seen in Equation 5
where ¢; is the request time that is being selected, ¢;_1 is time
of the previous request and At,, is the length of the request
time window.

ti € [tim1,tiz1 + Aty
tiv1 € [, ti + Aty

D. Aircraft Request Probabilities

The aircraft which makes a request and the nature of the
request is based on given probabilities, which will be further
discussed in the following subsection. The given probabilities
include a set of probabilities for each request type, R =
{P(r;)},, where N is the number of request types and 7;
is request type number i; and another set of probabilities for
each aircraft, A = {P(a;) ;Vil where M is the number of
suitable aircraft in the airspace and a; is aircraft number j.

If a request and an aircraft are probabilistically chosen, this
aircraft needs to be able to carry out that request. The aircraft
is suitable to carry the request if none of the following is true:

o)

o The aircraft is currently undertaking another request;

o The aircraft would violate airspace or navigational con-
straints such as the aircraft is currently travelling at
FL400 and the selected request is to climb 1,000ft which
is not possible as discussed above;

o The aircraft is outside the selected sector, Ss

During the first time step of the simulation, if there is at least

one active aircraft within the selected sector then a request is

(b) a =180

(c) a <90

Shortest path taken to avoid an area (Dashed line = original path based on flight plan, solid black line = tangents and Py and P are the additional

made by one of these aircraft based on the given probabilities.
At the next request time another aircraft and request are
selected from the aircraft within the selected sector based on
the given probabilities. This process continues until all aircraft
have reached their deactivation point. The probability of a
particular request being made from a certain aircraft at a given
time is found using Equation 6. If an aircraft is not inside the
selected sector or does not meet the conditions for making the
request then it has a probability of zero of being selected.

P(rila;) = P(ri) x P(a;) (6)

Once a request and aircraft has been selected, the request
is approved instantly and the aircraft adjustments are made
instantly to the aircraft’s flight in order to fulfil the request.

E. Real time correction of traffic events

While the visual simulation is running in real time, there
is another set of simulations which are run simultaneously
in the background without visualization and at a much faster
rate than the real time visual simulation. The aim of these
background simulations is to dynamically change the difficulty
of the scenario by increasing or decreasing the number of
conflicts in the scenario through new requests made by the
aircraft in the flight plan.

Assume that the time when the frequency of events in the
scenario needs adjustment is Tr;. The scenario is simulated
from a time T'r1 +5minutes to a time when all of the aircraft
in the flight plan have reached their deactivation point.

Multiple lists of probabilities are generated using differential
evolution (which will be discussed in the following sections).
These lists include the probabilities for each of the requests
and the probability of each of the aircraft making a request.
Each of the lists of probabilities are separately used as an input
to the simulation of the agents from time Tr; + Sminutes to
the end. The probabilities determine the type of the requests
that is being made and the aircraft making the request.

During each simulation only the active aircraft can make
requests. It is these requests which will either cause an increase
or decrease in the number of conflicts in the scenario and
therefore increase or decrease the difficulty of the scenario
respectively. The requests can only be made by aircraft after



the time Tr; + 5minutes and when the aircraft are located
within a selected area of the airspace, S3. The area Ss
is located entirely within the simulated airspace, S;, but
encompasses the entire conflict checking sector, S3. Once a
list of requests has been generated from one simulation, it is
evaluated using Equation 2.

There is a maximum time limit of 5 minutes for the
generation and evaluation of the lists of requests. At the end
of the 5 minute period the list of requests which achieved the
best fitness score is added to the real time visual simulation.
The 5 minute time limit guarantees that a list of requests will
be available for insertion into the real time simulation when
it reaches the time Tr1 + dminutes.

If the fitness score for the selected list of requests is not zero
then the request generation process is repeated but this time
from a time T'ry + ¢ X Sminutes where ¢ = 2. The requests
from the current list between the time Tr; + bminutes and
Tr1 + ¢ X dminutes are retained and new requests are only
generated after Try + ¢ X dminutes. If a list of requests is
generated which results in a fitness score equal to zero or is
closer to zero than the currently selected list, then it is selected
to replace the list of requests in the visual simulation after
the time TRy + ¢ X dminutes. If none of the lists produce a
score better than the current best then they are discarded. This
process continues with an incremental increase of i by 1 until
i X dBminutes equals 60 minutes or a list of requests has been
found which results in a fitness score of zero, whichever is
first.

A flowchart of this process can be seen in Figure 4 and an
example of the selection process of the list of requests can be
seen in Figure 5. At the time Try + 60meinutes it is again
decided if the difficulty is required to be changed. If so, the
request generation process is repeated again, but this time from
Tre = Tgr1 + 60minutes, in a same fashion as the process
from T’r;. The requests which have already been inserted into
the real time simulation from time T'r; to Tro are retained
and new requests are only generated after Tro + Sminutes.

F. Differential Evolution

Differential evolution (DE) was used as the search technique
to optimize the objective function. A list of un-normalized
probabilities was generated randomly then was used as an
input for the simulation to generate a list of requests. Based
on feedback from the simulation environment, each of the lists
of requests were then evaluated using the objective function
to determine the fitness of each list. DE is used to find the list
of probabilities which can generate the minimum value for the
objective function.

Each solution (called a chromosome in DE) is represented
naturally as a vector of real numbers. As shown in Figure 6,
the chromosome used in this system included one parameter
for each aircraft and another for each of the four requests
types. The four parameters for the request types represent the
probability of that request being made at a particular time
while the parameters for the aircraft represents the probability
of the request coming from the corresponding aircraft.

Change
difficulty?

| After a random
time Tr

Continuously running (real time) | ves

Simulate from time
Ti=Tr +ix 5minutes
to end with new
requests after time Ti

NUmber of conflic
closer to target than
current best?

i+1) x 5minutes
= 60 minutes

Yes

Update visual
simulation request
list with new requests

Tr + (i+1) x 5minutes
= a time after the end of the
simulation?

Simultaneously running (fast mode)

Fig. 4. Flowchart of background simulations

‘ R: ‘ | Ra ‘ Ay ‘ ‘ Aso ‘
Probability of a command Probability of a command
being issued i being issued to aircraft
Fig. 6. Chromosome representation for use in the differential evolution

process where R is the probability for a request and A is the probability for
each of aircrafts

DE searches the space by used existing solutions to decide
on possible directions where the fitness function will improve.
Each time a new potential solution is generated, its fitness is
determined through simulation. During the simulation, checks
for potential conflicts are conducted at the end of each time
step in the simulation between every active aircraft inside the
airspace using conventional separation standards [21]. When
a conflict occurs between two aircraft the position of the two
aircraft are recorded along with the angle between the two
aircraft at the beginning of the conflict period.

V. EXPERIMENT DESIGN

Four input scenarios were used for testing the system. All
four of these scenarios were based on the same route structure
and consisted of 60 aircraft with 10 on each of 6 routes. The
scenarios differed from each other as the aircraft in each of
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the scenarios had different activation times, different speeds
and different amounts of deviation from the route due to
navigational error. The flight plan for each of the four scenarios
would have resulted in the same number of conflicts, 20 with
5 conflicts in each of the four groups, had they been simulated
without the interference caused by any requests. Each of the
aircraft in the flight plan had a starting speed between 400
and 500kts which remained constant throughout the scenario
as did the aircraft’s elevation.

All aircraft simulated in the system were given identical
performance envelops. The rate of acceleration and deceler-
ation (ROAD) for all the aircraft were set to 2.2ft/s?> while
the rate of climb and decent (ROCD) was set to 21 ft/sec
and 37 ft/sec respectively. These characteristics are typical
characteristics for common commercial aircraft in the cruise
phase. The maximum and minimum speeds for the aircraft
were set to 500 and 400kts respectively.

Differential evolution was conducted with a population size
of 20 individuals. Each run for an experiment used a different
seed for the random number generator to which follows a
uniform distribution in the range [0,1]. A crossover rate of
0.3 was used for all runs and the chromosomes in DE process
were initialized randomly.

A. Experiments

Six different experiments were conducted using the four
input scenarios. Each of the experiments had a different
combination of changes in difficulty requirements at times 7'z
and Tre which are as follows:

e I - TRy increase

e D - Tri: decrease

e I-I - Try: increase, Tro: increase

e I-D - T'py: increase, T'ro: decrease

o D-I - T'ry: decrease, Tro: increase

e D-D - Tgy: decrease, Tgro: decrease

In Experiment I-I an increase at time 7T’z; means an increase
in the number of conflicts in the scenario. If the scenario was
to have had 20 conflicts with the input flight plan, then the
aim is to generate requests such that at least 24 conflicts occur
in the entire simulation. Then at time 7ro the target is again
increased to 28 conflicts in the entire scenario. With all four
experiments the aim is to generate a number of requests which

will results in the target number of conflicts while the conflicts
are also evenly divided among each of the four groups shown
in Table I.

VI. RESULTS ANALYSIS

The results obtained from each of the six experiments
indicate that the system was successful at carrying out the
requirements for each experiment. The cumulative number of
conflicts for input scenario 3 was plotted as a function of time
for each experiment and can be seen in Figure 7. In the plots
shown in this figure, the solid line indicates the cumulative
number of conflicts which will occur in the real time visual
simulation, the dotted line indicates the number of conflicts
which would have occurred in the original input scenario
if it remained unchanged and the dashed line indicates the
number of conflicts that would occur if the difficulty had only
been changed at time T'r;. The vertical dotted lines indicate
times TRy and Tre, the two times when it was requested to
change the target number of conflicts. The conflicts which
occur between these dotted lines occur after the insertion of
the list of requests from the aircraft at time T'r;. The conflicts
which occur to the right of the second dotted line occurs after
the insertion of the list of requests from the aircraft at time
Tro. A triangle indicates a time when a new list of requests
has been accepted for insertion into the real time simulation
which improves the number of conflicts produced by the most
recently inserted list towards the target number.

Table II shows the number of conflicts which would have
occurred in each scenario without any modification of the
flight plans. It also shows the total number of conflicts which
would have occurred if there has been a change of difficulty
at only time T'r; and the total number of conflicts which will
occur in the real time simulation as a result of also changing
the difficulty at time Tgrs. From this table we see that in
all cases the total number of conflicts which occurred meets
the expected requirement for the corresponding experiments.
That is, if the requirement was to increase the number of
conflicts at Ty and then at Tro again increase the number of
conflicts, then we see that for all four scenarios the number
of conflicts after T’r; increases from the original 20 conflicts
and again there is another increase after Tr>. While the change
in difficulty requirement is met in all experiments, the target
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Fig. 7. Cumulative conflicts for time with scenario 3 as input

number of conflicts is not always met. As we can see in
experiment 3 for scenario 4, the requirement is to increase
the number of conflicts at Tr;. The target at this stage should
be 24 conflicts, but only 22 conflicts were possible. This is a
result of the time constraints put in place for the optimisation
algorithm to produce the lists of requests in a real time
environment.

The distribution of the sum of the deviations from the
target number of conflicts from each group (the fitness from

Equation 2) produced by each of the scenarios in each of the
experiments after both of the difficulty changes can be seen
in Figure 8.

If a list of requests inserted into the real time simulation
produced a set of conflicts which results in the sum of the
deviations from the target number of the conflicts from each
group to equal a number other than O then the conflicts are
not evenly distributed among the four groups. If the result is
1 then this means that in one of the four groups the number



TABLE I
NUMBER OF CONFLICTS WHICH WOULD HAVE OCCURRED IN EACH SCENARIO WITHOUT ANY MODIFICATION OF THE FLIGHT PLANS, THE TOTAL NUMBER
OF CONFLICTS AFTER THE CHANGE OF DIFFICULTY AT T'r; AND THE TOTAL NUMBER OF CONFLICTS AFTER CHANGING THE DIFFICULTY AT TIME TRo

Experiment Scenario 1 Scenario 2

Scenario 3 Scenario 4

Input Tr1 Thro Input Tr1

Thro Input Tr1 Thro Input Tr1 Thro

1 20 24 20 25

20 24 20 22

D 20 16 20 16

20 16 20 19

I-1 20 24 28 20 25

28 20 24 28 20 22 27

I-D 20 24 21 20 25

20 20 24 21 20 22 21

D-I 20 16 19 20 16

20 20 16 19 20 19 26

D-D 20 16 14 20 16

15 20 16 13 20 19 19

of conflicts does not meet the target while the remainder of
the groups consists of the target number.

In Figure 8 we can see that 7 of the inserted lists of requests
would have resulted in conflicts giving a fitness score of zero,
another 7 produced a fitness score of 1 and 13 produced a score
of 2. This means that more than 50% of the lists produced a
fitness score within 2 of the target. If we further analyze the
7 lists of requests which achieved a fitness score of 0 we
see that 3 of the lists were generated in 2, another 3 were
generated in 11 minutes and the remaining list was generated
in 6 minutes. These lists were generated within a significantly
small fraction of the allocated 60 minutes for the generation
and simulation of the lists. A breakdown of the deviations from
the target number of conflicts for each group for scenario 3
can be seen in Table III for each experiment. From this table
we can see that not all of the list of requests which were
inserted into the real time simulation resulted or would have
resulted in the target number of conflicts for each of the four
groups. Again this goal was also difficult to achieve due to the
time constraints put in place for the optimization algorithm
to produce the lists of requests in a real time environment.
Another factor which made this goal difficult to achieve is that
the route structure provided more potential conflicts points (ie.
crossings between routes) classified in crossing narrow than
the other three groups.

TABLE III
Experiment Tr1 Tro
IT CN CW HO | IT CN CW HO

1 -1 +1 0 0

D 0 0 0 0

I-1 -1 +1 0 0 0 +1 -1 0
1I-D -1 +1 0 0 0 0 0 0
D-1 0 0 0 0 0 0 0 -1
D-D 0 0 0 0 0 0 0 +1

VII. CONCLUSION

In this paper, we presented a computational red teaming
approach for the correction of air traffic events in real time
for human performance studies. The presented approach has
been shown to be capable of correcting the scenarios in real
time by meeting the requirements of all six tested experiments
for four different scenarios. The problem was modelled as a
goal programming model, where deviations from goals are
minimized. While the objectives of the experiments were met,

14 T T T T T T T T T

Number of occurances

2 3
Deviation from taraet

4 5

Fig. 8.
group

Sum of the deviation from the target number of conflicts for each

it was not always possible to meet the target goal levels if the
time were insufficient or scenario constraints will be broken.
This suggests that analysts should not schedule events late
in a real-time simulation environment to allow the proposed
concept to correct for events.

The optimization approach used in this paper was fast,
allowing solutions to be optimized between a time windows of
5 minutes. This approach can be made faster, but the details of
evolutionary computations and tricks to speed it up are outside
the scope of this paper.

This work has a huge potential for human performance
studies. While the goals defined in this paper are related to
the number of conflicts and distribution of conflict types, the
optimization problem is very general. For example, cognitive
and task load complexity indicators can be used instead. More-
over, the approach is applicable to many domains including
human performance studies for command and control (C2),
space, and other safety critical.
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