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Abstract—In the continuous effort for ensuring increasing levels 
of safety, it is of utmost importance to understand the reasons 
behind the occurrence of operational errors. In this contribution, 
we propose the use of the Trajectory Synchronization Likelihood 
metric for the analysis of two types of events: situations resulting 
in a reduced separation between aircrafts, and situations that 
might have resulted in similar conditions but were solved on time. 
Results indicate that unsolved events are associated with highly 
synchronized pairs of aircraft, which have been deviated from 
the usual expected trajectories. This opens new way for the 
development of more effective automated safety systems, capable 
of detecting in real time events that are known to have a high 
probability of resulting in a conflict. 

Keywords-safety; Trajectory Synchronization Likelihood; data 
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I. INTRODUCTION 
Separation assurance between aircraft is obviously an 

essential component in the safety of air transport. In the actual 
system, the maintenance of such separation is built upon two 
different concepts [1]: the organization of the airspace in 
routes, and the use of dedicated procedures. Human errors, 
especially in the design or execution of a given procedure, are 
possible and the separation results strongly depend on the 
human intervention.  

In order to reduce operational errors and safety-related 
events, automated systems, like the Short-Term Conflict Alert 
(STCA) used by ground-based equipments, or the Traffic 
Collision Avoidance System (TCAS) on-board have an 
important role as a safety net. These systems use sensors data 
to predict conflicts between aircraft, in order to alert humans 
and provide guidance for the resolution of the situation. Yet, 
these systems are safety nets expected to be activated as rarely 
as possible, and only act in a narrow range of situations. There 
is an increasing interest in the identification of more general 
safety related scenarios [2-3], especially by means of data 
mining and machine learning techniques [4]. Mining historical 
data in the search of relevant patterns, and especially mining 
historical trajectories, presents several challenges. Firstly, the 

huge quantity of data to be analyzed, which requires highly 
optimized algorithms if results have to be obtained in real-time. 
Secondly, the shifting of the focus from the study of the 
behavior of individual aircraft, to the characteristics of the 
interactions between different aircraft; this last point requires a 
systemic approach and the adoption of non-standard techniques 
drawn from complex systems theory. 

In this contribution, we tackle the problem of forecasting 
the occurrence of safety-related events, corresponding to 
situations in which separation minima is not respected, by 
analyzing real aircraft trajectories and planned intentions. Two 
are the main differences with respect to previous researches.  

First of all, we investigate the differences between two 
groups of events: those events that may have evolved in safety-
related events, but were avoided by the intervention of ATC, 
and those that actually ended up in a separation loss. In other 
words, we are interested in the understanding and forecasting 
of these events that are not safely managed by means of actual 
technology and procedures. It should be noticed that this idea 
of discriminating accidents from events that could have 
resulted in an accident has already been explored in the 
literature [5-6]; clearly, the discrimination of the characteristic 
features of each groups may have important implication for 
safety, as they are indicating which mechanisms are failing 
when an accident appears. 

Second, we here propose the use of complex systems 
techniques to analyze the trajectories of aircraft. Complexity 
science is an interdisciplinary field, encompassing mathematics 
and physics, devoted to the analysis of systems composed of a 
large number of elements interacting in a non-linear way [7]. 
Examples span from communication networks [8], social 
networks [9], or biological systems [10-11]. The presence of 
such interactions between the constituting elements results in 
the appearance of emergent behaviors, i.e., macro-scale 
properties that cannot be forecasted by analyzing the dynamics 
of isolated individual elements. This has required the 
development of specific tools, for instance, aimed at the 
extraction of information from the non-linear dynamics of the 
single elements, or at the representation of large-scale 
relationship structures [12-13]. Aircraft trajectories indeed 
form a complex system, as their global evolution strongly 
depends on the interactions between flights. Due to this, 
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Figure 1.  Example of the SL calculation process. 

classical data mining tools may not be able to detect the causes 
behind some macro-scale effects, like for instance, the presence 
of airspaces with higher probability of conflicts. 

In this contribution, we adapt a well-known technique for 
the study of the dynamics of the brain, known as 
Synchronization Likelihood [14], to the study of the evolution 
of pairs of trajectories through time. Thanks to this metric, it is 
possible to assess whether two aircraft are “synchronized”, in 
the sense that a deviation from the expected trajectory of one of 
them is always associated with a deviation of the second 
aircraft. The hypothesis we test is that synchronized aircraft 
have higher probability of developing safety-related events. 

This contribution is organized as follows. Section II 
introduces the Synchronization Likelihood metric, and its main 
applications in biomedical problems, while Section III proposes 
a modification for the study of aircraft trajectories. Section IV 
presents the data set used in this work, comprising real 
trajectories of flights over Europe, and Section V reports the 
main results obtained. Finally, Section VI draws some final 
conclusions and future lines of work. 

II. SYNCHRONIZATION LIKELIHOOD 
The concept of Synchronization Likelihood (SL in short) 

was firstly introduced by Stam and van Dick as a way to assess 
whether two (chaotic) systems were synchronized in a general 
way [14]. When two dynamical systems are in the so-called 
generalized synchronization condition, the dynamics of one of 
them is partly defined by the other, but their outputs maintain 
some specific characteristics [15]. Mathematically, if two 
systems x and y are represented by the two vector of variables 
(x1, x2, …, xN) and (y1, y2, …, yM), they are said to be in a 
generalized synchronization regime if, after an initial transitory 
evolution, it exists a function Θ such that: 

[ ] ).,,,(,,, 2121 NM xxxyyy …… Θ=   (1) 

Assessing the existence of this function is, of course, not 
straightforward: although an analysis of the Lyapunov 
exponents of the coupled system can be performed, its 
computational cost makes such approach unfeasible in any 
real-world situation. 

The SL measure is a proposal for the fast calculation of the 
level of generalized synchronization between two systems, 
based on the analysis of the time series generated by them. The 
basic intuition behind it is that, whenever the time series 
associated to x repeats a given pattern, the output of system y 
should also repeat another pattern. Notice that both patterns 
may be different, as the two systems are not homogeneous, and 
therefore no complete synchronization is expected. 

This idea is illustrated in Fig.1, where two systems (x and y) 
are represented by two different time series (x(t) and y(t) 
respectively). In a qualitative manner, one can observe that, 
whenever the dynamics of x is repeated (see the two green 
boxes), the system y responds with a different, yet constant 
dynamics; therefore, we expect x and y to be somehow related. 
As proposed in [14], both time series can be expressed as 
embedded vectors 

),,,,,( )1(2, lmililiiik kkkkX −+++= …   (2) 

k being one of the two time series (that is, x or y), l the lag, and 
m the embedding dimension. Notice that this is equivalent to 
represent a set of m values of the time series as a single point in 
an m-dimensional space. In the simple case where l=1, each 
vector is equivalent to the time series of length m starting at 
time i. Afterward, the closeness of two different Xs, 
respectively starting at time i and j, can be easily computed as 
follows: 

( ).,,),,( jkikjik XXP −−= εθε   (3) 

⋅  is the Euclidean distance in a m-dimensional space and θ 
the Heaviside step function. Notice that P is a function that 
returns one only when the two embedded vectors (i.e., the time 
series starting at i and t) are within a radius ε. 

Once the function P has been defined, it may be used to 
calculate the final SL function. Specifically, for each pair of 
time steps i and j, we calculate the proportion of pairs i and j 
simultaneously fulfilling 1),(, =ε

jiYP  and 1),(, =ε
jiXP . 

A. Applications of the SL 
Since its introduction in 2002, Synchronization Likelihood 

has attracted a special interest in the field of neuroscience, and 
specifically in the study of neurological diseases. Different 
groups of neurons generate electromagnetic signals during their 
activity, which can be recorded by means of an 
electroencephalography (EEG) or a magnetoencephalography 
(MEG). A standard assumption in neuroscience is that two 
neural ensembles show some kind of synchronization in their 
activity when they share information, or, in other words, that 
synchronization is an essential element for neural computation. 
Therefore, by analyzing the degree of correlation between 
different parts of the brain during a cognitive task, it is possible 
to unveil where and how information is being processed [11]. 

Yet, it has to be noticed that different parts of the brain are 
not homogeneous: the number of neurons monitored by each 
sensor of the machine may vary, their connectivity can also be 
different, and finally neurons themselves can have different 
characteristics [16]. Due to these, it is not realistic to expect a 
linear (i.e., Pearson’s) correlation between their activities; 
instead, we may look for a complex function Θ defining a 
generalized synchronization by means of SL. 

Examples of successful application of SL to neuroscience 
problems include the analysis of different neurological diseases 
(e.g., schizophrenia, epilepsy, autism, Alzheimer's, or 



 

Figure 2.  Average TSL, for solved and unsolved iEvents, and 
Bhattacharyya distance, as a function of the threshold ε. 

 

Parkinson's), which seems to be partly caused by abnormalities 
in the temporal coordination of information through the brain 
[17-18]; or the analysis of brain dynamics, and its efficiency in 
managing information at different time scales [19-20]. 

III. SL BETWEEN TWO TRAJECTORIES 
The Synchronization Likelihood, as previously defined, 

cannot be directly applied to the study of aircraft trajectories, as 
these have some specific characteristics that should be taken 
into account. 

Firstly, each trajectory can be seen as a multivariate time 
series, composed of 3 different components (i.e., latitude, 
longitude, and flight level). Yet, these three components are not 
independent, and should be analyzed altogether; for instance, 
the evolution of the latitude of two aircraft cannot be studied 
without taking into account their longitude. 

Secondly, and within the scope of the present work, we are 
interested in co-occurring modifications in the trajectories, 
while the actual modification is not interesting per se. For 
instance, suppose that two flights have to be re-routed due to 
adverse en-route weather. Our aim is to detect whether both 
trajectories have been re-routed at the same time, i.e. if their 
dynamics is somehow synchronized, while the actual re-routing 
strategy (turn left or right) is not relevant. 

In what follows, we define a Trajectory Synchronization 
Likelihood (TSL in short) fulfilling these two requirements. 

A. TSL overview 
Generally speaking, we define that two aircraft are 

synchronized when both of them present significant deviations 
from their usual trajectories at the same time. Therefore, and as 
a first step, it is necessary to define what is the usual trajectory 
of an aircraft, and how to measure if a deviation is statistically 
significant. 

Let us denote the trajectories of two aircraft, x and y, as 
),( trX  and ),( trY  respectively. These trajectories are 

defined, in a discrete way, as a set of points, describing the 
position of the aircraft at time max,,2,1 tt …= . In what follows, 
we consider each point as composed of two coordinates, 
longitude and latitude (such that [ ]),(),,(),( trXtrXtrX lonlat=  
and [ ]),(),,(),( trYtrYtrY lonlat= ); in the sake of simplicity, the 
flight level is discarded from the analysis. Each flight is also 
identified by an index max,,2,1 rr …= , which allows us 
distinguishing between different repetitions of the same flight 
across several days. 

An example may help clarifying the latter index. Suppose 
that we have identified a safety related event on a given day, in 
which two flights were involved: AIR0001 and AIR0002. The 
same two flights may have been operated in previous days, and 
this can be easily checked by looking at flights with the same 
code, operating between the same pair of airports and with the 
same planned departure time. These other historical flights are 
then used to compute the expected position of each aircraft at 

the time of the considered event. Thus, ),( trX  will represent 
of position of flight x at time t, and in the day r. 

The expected position of each flight can be approximated 
by the mean value of aircraft positions at a given time, 
calculated for different r: 

∑
=

=
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Notice that )(tEX is a vector of two coordinates, latitude 
and longitude; furthermore, a similar expression can be 
calculated for the second flight, by substituting X by Y 1. 

The distance of any flight from its expected position, and 
therefore the deviation with the expected trajectory, is given by 

)(),(),( tEtrXtrd XX −= ,  (5) 

⋅  being the Euclidean distance in the considered 2-dimensional 
space. Assuming a Gaussian distribution of distances, its 
variability is given by 
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)(tXµ being the mean value of the deviations, i.e., 
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Using the previous definitions, it is possible to define a Z-
Score of the deviations of each trajectory: 
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For each flight, and for each point in the trajectory, Z is a 

                                                             
1 If not otherwise stated, all following equations hold for the second flight, by 
substituting X by Y . 



 

Figure 3.  Histogram of TSL for solved and unsolved events. 

 number defined in the interval 0,∞⎡⎣ )  describing how close was 
that flight to its expected (historical) position. Specifically, we 
expect most of flights to have Z < 2, while values of Z > 2 
designate extreme deviations from the normal trajectory 2 . 
Furthermore, notice that the intrinsic variability is naturally 
taken into account: for instance, if a flight frequently suffers 
from delays at take-off, its corresponding σ will increase, 
returning a value of Z > 2 only for unusual high delays. 

The TSL is finally defined as the number of times the 
trajectories of both aircraft are deviated more than a given 
threshold, divided by the number of times the trajectory of the 
first aircraft is deviated: 
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TSL is therefore normalized between zero and one; the 
higher the value, the more synchronized are both trajectories, in 
the sense that significant deviations from the expected route 
happen at the same time. 

IV. ANALYSIS OF HISTORICAL DATA 
In what follows, we present the analyses performed on 

actual historical traffic data, including planned and real 
trajectories over the European airspace, and their implications 
for the analysis of safety-related events. 

A. The data set 
Trajectories data have been extracted from the ALL_FT+ 

data set, collected by the EUROCONTROL PRISME group. 
This includes information about planned, regulated and 
executed trajectories for all flights crossing the European 
airspace. The data set covers the period from 1st March to the 
31st December 2011, including a total of 10.3 million flights. 

                                                             
2 Specifically, if a normal distribution of deviations is assumed, the 95% of 
realizations will have Z < 2. 

B. Definition of safety-related events 
In order to assess a relationship between trajectory 

synchronization and the appearance of safety-related events, we 
have firstly identified a set of interesting events in the data set. 
These iEvents were identified by projecting the intentions of 
each aircraft (that is, the future route according to the filed 
flight plan) starting from a given position (obtained by the 
radar trajectory), and by detecting if two aircraft may break the 
separation minima in the near future. Notice that this is 
equivalent to the surveillance task performed by any Air 
Traffic Controller. Following this definition, iEvents include 
both events that may result in a safety-related condition (e.g., a 
reduction of the separation between aircrafts), and situations 
that might have resulted in similar conditions, but in which the 
intervention of the controllers (or of the pilots) solved the 
problem before its appearance. By analyzing the real evolution 
of both flights, all iEvents have been classified in these two 
groups, called “unsolved iEvents” and “solved iEvents” 
respectively. 

C. iEvents pre-filtering process 
While analyzing the recorded iEvents, the characteristics 

associated to some of them have been noticed to be unrealistic, 
e.g., the case of commercial aircraft flying parts of the 
trajectory at supersonic velocities. This was mainly due to the 
low resolution of radar trajectories, or to errors and 
incongruence in the used data set. In order to clean the data on 
which calculations are made, events fulfilling one of the 
following conditions have been eliminated: 

• Flights whose radar (i.e., real) and planned trajectories 
are exactly the same; 

• iEvents for which the final real separation has been 
lower than 20 seconds. This is usually due to a low 
spatial or temporal resolution in the radar information 
available. 

• Flights whose real trajectories included physically 
impossible segments, like supersonic velocities. 

A total of 100.032 iEvents passed this selection, 4.316 of 
which have been classified as “unsolved iEvent”. 

D. Assumptions and simplifications 
In order to simplify the analysis, the following assumptions 

and simplifications have been considered when calculating the 
TSL between different trajectories: 

• Only events between trajectories in the en-route phase 
have been considered, and their trajectories have been 
projected to the latitude-longitude plane. In other 
words, level change maneuvers have been disregarded. 

• The number of realizations of the same flight (i.e., rmax) 
was the same for both aircraft involved in an iEvent.  

• In the calculation of the TSL, only the ten points 
previous to the considered event are included; this 
reduces the computational cost of the algorithm, while 
at the same time excludes other non-relevant factors 
(e.g., runway configuration at take-off). 



 
Figure 4.  Histogram of the ZScore of trajectory deviation (see Eq. 8), 

for solved and unsolved events. 

 V. ANALYSIS OF RESULTS 
In this Section, we will review the main results obtained by 

applying the TSL to trajectories of flights involved in iEvents.  

As the objective of this research is the identification of 
characteristics able to discriminate solved and unsolved events, 
special attention has been devoted to the assessment of the 
distance between the two TSL distributions, one for each group 
of events. Results are presented in Fig. 2, where the blue points 
(red squares) represent the average TSL for solved (unsolved) 
events, for different thresholds ε. Interestingly, the average 
TSL is always greater for unsolved iEvents, which seems to 
suggest that pairs of aircraft involved in unsafe situations have 
“synchronized” trajectories. 

In order to confirm the significance of such differences, a 
two-sample t-tests has been performed [21], indicating that, for 
all ε, the two distributions (i.e., corresponding to solved and 
unsolved iEvents) are not the same with a p-value smaller than 
0.01. Furthermore, the distance between both distributions has 
been calculated by means of the Bhattacharyya distance [22-
23]. This measure is based on the calculation of the overlap 
surface between two different distributions, so that the higher 
the value, the more different are the considered samples. 
Results are represented in Fig. 2 by green triangles. The 
maximum of the Bhattacharyya distance corresponds to ε = 
1.75: this is therefore the threshold that best discriminates both 
groups of events, and that will be considered in the following 
analyses.  

In Fig. 3 are shown the two histograms representing the 
probability of finding an event associated to a given TSL in 
each one of the two categories considered. It is worth noticing 
that both distributions are quite similar, except for the extreme 
values of TSL = 0 and TSL = 1: in other words, it seems that 
the difference resides in the pairs of trajectories displaying no 
synchronization (mostly associated to solved iEvents) or a 
complete synchronization (associated to unsolved iEvents). 

At this point, it is necessary to recall the meaning of the 
proposed TSL, in order to understand the properties of events 
here highlighted. A high degree of synchronization between 

two flights indicates situations in which they are used to travel 
along the same trajectory every day; therefore, ATC officers 
are also used to manage the separation of these two flights. 
Nevertheless, from time to time, one of them is rerouted, and it 
happens that the trajectory of the second is also modified; the 
two flights will now cross in a new airspace, thus generating a 
scenario that is not the usual one. Under these circumstances, 
ATC officers in charge of this airspace may have a higher 
probability of incurring in errors, as they are not familiar with 
this traffic pattern. 

In order to confirm this hypothesis, Fig. 4 reports the 
ZScore of the deviation of trajectories associated with the 
iEvents (see Eq. 8). It can be noticed that, although similar, the 
two distributions are not the same (p-value < 0.01), and that 
unsolved iEvents are associated with higher ZScore. Therefore, 
unsolved iEvents have a high probability of appear far away 
from the expected position of the aircraft.  

VI. CONCLUSIONS AND FUTURE WORK 
Summing up, we have presented a new metric, based on a 

biomedical technique for analyzing the dynamics of the brain, 
able to assess the degree of “synchronization” between the 
trajectories of two aircraft. Here we define that two flights are 
synchronized if they are simultaneously deviated from their 
expected trajectories, the latter defined as the mean trajectory 
obtained from historical data. 

By using the proposed Trajectory Synchronization 
Likelihood, it has been possible to detect differences between 
two classes of safety-related events, here called iEvents: 
situations resulting in a reduced separation between aircrafts, 
and situations that might have resulted in similar conditions, 
but that were solved by controllers or pilots. 

Results indicate that unsolved iEvents appear when two 
aircraft are simultaneously deviated from their expected 
trajectories, so that they create a conflict in an airspace which is 
not the usual one. Therefore, the controller has to face a 
situation that is new (and unknown), increasing the probability 
of an operational error. 

It has to be noticed that this insight is not new, as 
controllers are well-aware of the dangers associated with 
deviations from the operational routine; yet, this awareness is a 
merely qualitative intuition. In this contribution, we have 
presented a framework for the mathematic and statistic 
assessment of the relevance of these situations in the 
development of unsafe events. Beyond the mining of historical 
data, TSL may also be used in real-time operation analysis, in 
order to forecast events that are known to have a high 
probability of resulting in a conflict, therefore improving the 
efficiency of the available automated safety systems. 

Future works will be aimed at the application of the 
complex networks theory [12-13] to the characterization of 
iEvents. Complex networks have been extensively used in the 
past to analyze air transport in general [24], or safety events 
[25]. Within this framework, the traffic crossing one sector 
may be represented by a network, where each node is an 
aircraft, and pairs of them are connected if the corresponding 
TSL is higher than a given threshold. The analysis of the 



resulting networks, by means of suitable data mining 
techniques [26], will allow shedding light on features that may 
better explain the appearance of unsolved safety events. 
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