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Abstract—The en-route conflict resolution problem has been
modeled in many different ways, generally depending on the tools
that were proposed to solve it. For instance, with purely analytic
mathematical solvers, models tend to be very restrictive (constant
speeds, linear trajectories. . . ) to respect the inherent limitations
of the technology.

This paper introduces a new framework that separates the
model from the solver so as to be able to: first, enhance the model
with as many refinements (e.g. wind and trajectory uncertainties)
as necessary to comply with operational constraints; second,
compare different resolution methods on the same data, which
is one of the crucial aspects of scientific research.

To this aim, our framework can generate a benchmark of
conflict resolution problems built with various scenarios involving
a given number of aircraft, level of uncertainties and number
of maneuvers. We then compare two different optimization
paradigms, Evolutionary Algorithm and Constraint Program-
ming, which can efficiently solve difficult instances in near real
time, to illustrate the usefulness of our approach.

Keywords: conflict resolution, evolutionary computation, con-
straint programming

I. INTRODUCTION

An effective conflict solver relies on a realistic trajectory
prediction. Today, because of different uncertainty sources
(e.g. wind and aircraft mass), air traffic management systems
are not able to predict the future positions of aircraft with
a good accuracy and must take into account all these uncer-
tainties to choose the best trajectories in terms, first, of safety
and then efficiency. This probably explains why the short term
traffic resolution system still relies on human expertise and is
not automated yet.

A lot of research has been done on conflict detection
and resolution and many papers present models that are
so impractical that they strengthen the readers’ beliefs that
automating the conflict detection and resolution task is not
realistic in the near future. For example, the approach using
repulsive forces described in [1] or the B-spline approximation
model of [2] are very interesting on a mathematical level
but could hardly be implemented in an operational context.
They suppose continuous heading changes, which Flight Man-
agement Systems (FMS) are unable to exploit, and do not
take uncertainties into account. Pallottino’s approach [3] using
mixed integer linear programming (as [4], [5], [6]) relies on
constant speed trajectories that are changed all at once. None

of these approaches could deal with realistic trajectory models
able to handle evolutive aircraft or trajectory uncertainties.

Other approaches have been proposed, with more realistic
models, like [7], [8] which use the Base of Aircraft Data
(BADA) developed and maintained by EUROCONTROL in
CATS (Complete Air Traffic Simulator) to solve conflicts
using Evolutionary Algorithms. This model introduces un-
certainties on aircraft speed, climb and descent rate, thus
the solver needs to compute many alternative trajectories in
real time. Nevertheless, the solver is quite efficient as it can
handle complete days of traffic in the European airspace.
However, these algorithms are difficult to compare with other
methods because the conflict detection is embedded in the
solver. This problem also occurs in Erzberger’s approach [9],
where most of the expertise is focused on the trajectory
and maneuver model. But once more, the presented results
can hardly be compared with other algorithms because the
resolution maneuver generator is embedded in the solver.

In this paper, we propose a new framework to deal with
conflict resolution, which, from a given scenario, computes
a 4D-matrix indexed by aircraft pairs and maneuvers (i.e.
trajectories) pairs that provides all the necessary data to solve
the problem. Hence, the detection and maneuver model is
separated from the resolution, which enables to compare the
behavior of various algorithms on the same instances. As the
conflict resolution problem is highly combinatorial [10] and as
large instances can therefore be very difficult to optimize, it is
of utmost importance to be able to assess the relative merits
of solvers, even if finding the optimal solution is often not
required in a real-time context (a “good” conflict-free solution
can be sufficient).

In our benchmark framework, finding the future positions
can be done using any simulator and can take into account
different uncertainty sources such as wind, heading change,
beginning and ending maneuver positions, etc. Once the future
positions for every possible maneuvers are found, a simple
algorithm can detect conflicts for each pair of aircraft and
store this information in a 4D conflict matrix C, the first two
indexes specifying the pair of aircraft involved and the next
two the concerned maneuvers. For example, Ci,j,k,l returns
true if maneuver k of aircraft i and maneuver l of aircraft
j are conflicting, and false otherwise. When solving conflicts,
instead of recomputing the trajectory positions of each aircraft,
solvers can refer to this 4D-matrix very fast, in constant time
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complexity.
We then illustrate how resolution times and costs of different

solvers can be fairly compared within our benchmark frame-
work. Two resolution algorithms using different optimization
paradigms have been implemented: a metaheuristic, namely
an Evolutionary Algorithm [11], which is able to handle
over-constrained or very large instances, but cannot provide
optimality proofs, and a Constraint Program [12], which has
the converse properties (may be stalled while backtracking for
large scale problems, but able to provide proofs of optimality
or absence of solution for reasonable ones).

The next section of this paper introduces the model that was
chosen to build the trajectories of our benchmark framework.
We particularly detail its uncertainty model and how the
convex hulls of trajectories are built. Section III describes
the method used to build conflicting scenarios with different
sizes (number of aircraft) and levels of uncertainties, before
presenting the detection algorithm that builds the 4D conflict
matrix. We then detail in section IV two approaches for
the resolution of conflicts, an Evolutionary Algorithm and a
Constraint Program, to illustrate their comparison with our
benchmark framework in section V, where some experimental
results are analyzed.

II. TRAJECTORY PREDICTION MODEL

In this paper, we give an example of a trajectory prediction
tool that can be used to build the aircraft positions at each
time step according to the chosen maneuver options and the
uncertainties taken into account. To constrain the search space
to a “reasonable” size, only a limited number of maneuvers,
compatible with current ATC practice and FMS capabilities,
is defined for each aircraft involved in a conflict. Then each
pair of maneuvers for two different aircraft are tested to check
if they are conflicting or not.

Moreover, our model is able to handle various degrees of
uncertainties by considering the future positions of aircraft
not simply as mere 2D-points in the airspace but as growing
convex envelops representing all its possible positions. Loss
of separation between aircraft are then detected by computing
the minimal distance between their two envelops.

A. Maneuvers

In our trajectory prediction model, a discretization of time
into steps of duration τ is used to describe maneuvers. τ is
chosen small enough to detect every conflict in the application.
For example, in section III-A, τ = 3 s because two facing
aircraft flying at 600 kt (maximal speed) get only 1 NM closer
every 3 s, so no conflict could be missed with such a small τ
value (see [13] for a discussion on this topic).

Trajectories are defined in the horizontal plane, but the
scenarios could be easily extended to the vertical dimension
if we used a proper flight simulator. Initial routes are defined
by a list of points. The first point O is the origin and the
last point D is the destination (e.g. a segment of trajectory
between two waypoints). Aircraft fly from point to point and
are able to correct the lateral error to the original trajectory

thanks to their FMS. This means that in the further examples,
the associated uncertainty does not increase with time.

However, various other sources of uncertainties cannot be
reduced by current FMS features and must be taken into
account in our model. Aircraft speeds are hence subject to
a εs error such that future positions of aircraft are spread over
a range which grows with time.

In our trajectory model, maneuvers (i.e. heading changes)
are engaged on a point of the initial trajectory referenced
by the decision variable d0, which represents the curvilinear
distance from the origin O. Because of uncertainties on the
exact location of the turn, a distance error ε0 is added around
this point. This means that the aircraft may start the maneuver
ε0 nautical miles before or after d0.

An uncertainty εα is also associated to the heading change
angle α at the turning point corresponding to d0. Then the
maneuver ends at a curvilinear distance d1 from d0 (i.e. at
d0 + d1 from the origin O) with an associated error ε1, when
the aircraft returns towards its destination point D.

This kind of simple maneuvers, depicted in figure 1, are
representative of current Air Traffic Control practice and can
be easily implemented by pilots and current FMS technologies
(cf. [8]), unlike continuous maneuvers at arbitrary angles and
distances that are used in many conflict resolution models [1],
[2].

In order to limit the number of maneuvers created, and thus
the size of the search space, d0 can only take a limited number
n0 of values (typically n0 = 5 in the experimental benchmark
presented in section V). The heading change α can also take
nα = 7 different values in our benchmark, i.e. 0, 10, 20 or 30
degrees to the left or the right of the current heading, and the
number of values for the distance of the returning point d1 is
also limited by n1 (typically n1 = 5).

O

D

α

d1

d0

Fig. 1. Maneuver model.

If we consider 5 values for d0, 5 values for d1 and the 6
possible angles (there is no use to combine a null heading
change α = 0 with various d0 and d1 values, so that only
one maneuver is added when the aircraft is not deviated), the
number of maneuvers per aircraft is:

nman = n0 × n1 × (nα − 1) + 1

So for the benchmark presented in section III-A: nman = 5×
5× 6 + 1 = 151.

For an instance with n aircraft, the search space is then
of size nnman, i.e. ≈ 6.1021 for a 10-aircraft instance (almost
4.1043 for 20 aircraft).

B. Decision Variables
To simplify the access to the conflict matrix C and reduce

the number of combinations to the useful ones (e.g. only one
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possible maneuver for α = 0), the three decision variables d0,
α and d1 associated with aircraft i are aggregated into a single
decision variable mi by a bijection from the allowed triples
to interval [1, nman]. We call M the set of decision variables
of the problem:

M = {mi, i ∈ [1, n]} (1)

C. Cost

The maneuver cost of our model is straightforwardly com-
puted from the decision variables. Values of d0 are enumerated
by an index k0 varying in [1, n0], values of d1 by index k1 in
[1, n1] and angles α of value 10, 20 or 30 degrees right or left,
are respectively indexed by kα in [1, nα2 ]. For our benchmark
problems, the cost of a maneuver mi for aircraft i is then
defined as follows:

costman(mi) =

{
0 if α = 0
(n0 − k0)2 + k21 + k2α otherwise

(2)

where k0, k1 and kα are the indexes corresponding to ma-
neuver mi. This cost is null whenever an aircraft is not
maneuvered.

Furthermore, this cost function ensures the following prop-
erties:

1) any maneuver is more costly than no maneuver;
2) maneuvers should start as late as possible;
3) maneuvers should be as short as possible;
4) the angle should be as small as possible.

In a real environment, the cost function should be adapted to
the aircraft performance model or to other criteria, including
controllers’ preferences and fuel consumption. However, this
paper aims at giving a framework that dissociates the solver
method from the problem itself, so as to provide the scientific
community (which may be unfamiliar with ATM and conflict
resolution) with the simplest possible framework which en-
ables to compare different solvers on our benchmark.

Given an instance with n aircraft, we define the cost of a
solution as the sum of the maneuvers costs:

cost =

n∑
i=1

costman(mi) (3)

D. Handling Uncertainties

We shall now describe how the trajectories envelops are
build in order to be able to detect conflicts between two
maneuvers for two different aircraft, while taking various
uncertainties into account.

In our framework, the maneuvers description are stored in
a table that defines for each aircraft and each maneuver the
possible future positions of the aircraft at every time step.
These positions are represented by their convex hull, which is
computed with Graham’s algorithm [14].

Each aircraft position is described at multiples of the time
step τ (i.e. 0, τ , 2 τ , 3 τ . . .) by three convex hulls correspond-
ing to the three possible states of the aircraft:
• S0 if it has not been maneuvered yet;
• S1 if it is currently maneuvered;

• S2 if it is heading towards its destination after a maneu-
ver.

Once the three convex hulls are defined for every time step,
they are merged in a single one whenever several envelops
coexist for the same time step (e.g. around turning points of
the trajectory).

We first start with one point representing the current position
of the aircraft at t = 0. To build the possible positions at
t + τ , we take into account every extreme position of the
three convex hulls at time t and calculate the future possible
positions of each point. During this process, some points stay
in the same state while others change near the turning points
of the trajectory. Moreover, some points may generate two
different future positions in two different states. For example,
a point in state S0 (before any maneuver) may reach d0 − ε0
at the next step if the aircraft flies at the fastest possible speed
according to the amount of uncertainty taken into account by
parameter ε0. It will then change heading and be in state S1.
The same point may as well fly at the lowest possible speed
and stay in state S0. After each movement, the convex hull of
the cloud of points created is computed for each state. At the
very end of the process, the convex hull of the whole trajectory
is calculated for each time step.

Figure 2 gives an example of maneuver with the different
states. In red, the aircraft has not start any maneuver. In green,
the aircraft has changed its heading, and in blue, it is heading
back to the next point on its route (D). The gray line gives
the convex hull of the three states. The conflicts will then be
detected among such envelops by computing their minimal
distance.

Fig. 2. An example of trajectory prediction. Red, green and blue correspond
respectively to states S0, S1 and S2; gray parts represent the convex hulls.

It is important to notice that any traffic simulator using
any kind of uncertainty hypothesis could be used to build
the trajectory prediction for the aircraft and for the maneuver
options. Different aircraft could have different uncertainties
and different maneuver options according to their ability to
follow a route. We only need a convex hull of the possible
future positions of an aircraft at every time step of the
trajectory.
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This approach can easily be generalized to the third dimen-
sion (vertical plane), taking into account uncertainties on the
climbing rate of the aircraft. Convex 3D-volumes would thus
be defined and conflicts detected according to the distance
between them.

III. BENCHMARK GENERATION

The trajectory prediction presented in the previous section is
used to produce the data for the proposed benchmark. To gen-
erate an instance, two consecutive processes are involved: first
the creation of conflicting scenarios, presented in section III-A,
then the detection of conflicts, detailed in section III-B.

A. Scenarios

In the experimental results presented in section V, instances
of four different sizes have been considered, involving n = 5,
10, 15 and 20 aircraft, with three levels of uncertainties. For
each combination, 10 scenarios of aircraft converging to the
center of the considered airspace volume were randomly built.
For each scenario, speeds are chosen from 384 kt to 576 kt
(i.e. 20% variation around a typical speed of 480 kt). The
aircraft initial positions are chosen on a 70 NM radius circle
and are noised within a 20 NM-side square. The initial heading
is also noised with a value chosen in [−1, 1] radians (≈ ±60◦).
Figure 3 illustrates this geometry on an instance with 4 aircraft.

O4

Aircraft 1

Aircraft 2

Aircraft 4

D4

D1

D3

Aircraft 3

20NM
O1

D2

70NM

O2

O3

120◦

Fig. 3. Geometry of the conflict scenario generation (with 4 aircraft).

A total of 40 scenarios were built to compare the algorithms.
For each scenario, three levels of uncertainty are defined. The
lower level of uncertainty εlow takes into account εs = 1%
of error on the aircraft speed, ε0 = 1 NM of error on the
location of the turning point, εα = 1◦ on the angle of the turn
and ε1 = 1 NM of error on the location of the returning point.
The medium level of uncertainty εmed doubles every value:
εs = 2%, ε0 = 2 NM, εα = 2◦ and ε1 = 2 NM. Finally, the
higher level of uncertainty εhigh triples the lower uncertainty
values: εs = 3%, ε0 = 3 NM, εα = 3◦ and ε1 = 3 NM.

120 scenarios are thus built as a proposed benchmark basis
and we next detail how conflict are detected to complete the
framework description.

B. Conflict Detection

Once the trajectory predictions computed and stored, the 4D
conflict matrix C can be built. To simplify the access to the
matrix and reduce the number of combinations to the useful
ones (e.g. only one possible maneuver for α = 0), the three
decision variables d0, α and d1 are aggregated in a single
decision variable by a bijection from the allowed triples to
interval [1, nman]. Then, for each pair of aircraft (i,j) and each
pair of maneuver options (k,l) (where k is a maneuver option
for aircraft i and l for aircraft j), we test if maneuvers k
and l generate a conflict. In this case, Ci,j,k,l = 1 (i.e. true),
otherwise Ci,j,k,l = 0 (i.e. false). Furthermore, the matrix
is symmetric along its two first dimensions, since a conflict
between i and j is equivalent to a conflict between j and i,
so we only consider pairs of aircraft such that i < j.

To detect a conflict, the distance between the two envelops
representing the possible positions of aircraft i and j is com-
puted and compared to the standard separation norm (5 NM).
For every time step, the algorithm is divided in three stages:

1) Check if a vertex of convex hull k is inside convex hull
l, or if a vertex of convex hull l is inside convex hull k.

2) Otherwise, check if two edges of convex hulls k and l
intersect.

3) Otherwise, check the distance between every vertex of
convex hull k and every edge of convex hull l, or every
vertex of convex hull l with every edge of convex hull
k. As soon as one of the distances is smaller than the
separation standard, Ci,j,k,l is set to 1.

This calculation is the most time consuming of the prob-
lem generation because the number of pairs tested is big.
For example, a 20-aircraft conflict with 151 maneuvers per
aircraft generates 20×19

2 = 190 pairs of aircraft for which
1512 = 22, 801 pair of maneuvers must be tested. A total
of 4, 332, 190 pairs of maneuvers must be tested to build the
conflict matrix.

However, this operation can be parallelized very easily. For
instance, different processors can be used to test different pairs
of maneuvers. The computation time can thus drastically be
reduced. We give different examples in section V of the time
required to compute Ci,j,k,l as a function of the number of
processors. Furthermore, sweep-line techniques [15] could be
used to lower the time complexity of the edge intersection
checks performed during the second step of our convex
hull distance algorithm. Eventually, a preliminary filtering by
approximating the envelops with simple enclosing boxes can
spare many convex hull intersection checks.

Now that our framework is equipped with all the necessary
pre-computed data needed to implement a conflict solver inde-
pendently of the trajectory generation or the conflict detection,
we describe in section IV two different approaches to solve
the conflict scenarios of the proposed benchmark.
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IV. CONFLICT RESOLUTION

In this section, we propose two methods for the resolution
of the conflict scenarios generated with our benchmark frame-
work. The first one, an Evolutionary Algorithm (section IV-A),
is a metaheuristic that mimics natural evolution to explore
the search space. The second one, Constraint Programming
(section IV-B), is based on an efficient systematic search of
the solution space, which enables to prove the optimality (or
the absence) of a solution.

A. Evolutionary Algorithm

1) Principles: Our Evolutionary Algorithm (EA), described
in algorithm 1, follows classical Evolutionary Computation
principles such as presented in [16], [11].

Algorithm 1 Evolutionary algorithm (EA)
1: Initialize population
2: while termination criterion is not met do
3: Evaluate raw fitness of population elements
4: Apply scaling and sharing operations on raw fitness
5: Select new population w.r.t. new fitness criterion
6: Replace some elements by mutation and crossover
7: end while
8: Return best elements of population

First, a population of points in the state space is randomly
generated. Then, we compute for each population element the
value of the function to optimize, which is called fitness. In a
second step, we select1 the best individuals in the population
according to their fitness. Afterwards, we randomly apply
classical evolutionary operators, i.e. crossover and mutation,
to diversify the population (they are applied with respective
probabilities Pc and Pm). At this step a new population has
been created and we apply the process again in an iterative
way.

2) Sharing Improvement: Our problem is very combinato-
rial and may have many different optimal solutions. In order
to find most of these solutions2 and to avoid local optima, the
sharing process introduced by Yin and Germay [17] is used.
This improvement can be efficiently computed in Θ(p log p)
time complexity (instead of Θ(p2) for the classical sharing
process), where p is the size of the population.

A sharing process requires the definition of a distance
between two chromosomes (two trajectory sets) to group
alike population elements in the same cluster, according to
a threshold parameter controlling the size and number of
clusters. For the sake of simplicity, the distance implemented
in our EA returns only two values: true if the elements (set
of trajectories) are identical and false otherwise. The fitness
of elements belonging to the same cluster is then divided

1Selection aims at reproducing better individuals according to their fitness.
We tried two kinds of selection process, ”Roulette Wheel Selection” and
”Stochastic Remainder Without Replacement Selection” (described in [16]
for example); the latter always works out better.

2Finding several solutions is very interesting because the controller may
choose among several options or negotiate them with pilots, keeping con-
trollers and pilots alike in the decision making process.

by the size of the cluster to avoid an over-representation
of a particular solution in the population and encourage
diversification.

3) Fitness Function: The fitness function of our EA is very
basic and does not aim at taking into account fuel consumption
or controllers’ preferences. We just focus on finding a conflict-
free set of heading changes starting as late as possible, with
the smallest deviation length and heading change.

The fitness function is then defined by two cases, depending
on the presence (first case) or absence (second case) of
remaining conflicts in the solution:

F =


1

2 +
∑
i<j

Ci,j,mi,mj
if ∃(i, j), i < j, Ci,j,mi,mj 6= 0

1

2
+

1

1 + cost
if ∀(i, j), i < j, Ci,j,mi,mj = 0

where cost, defined by equation 3 in section II-C, represents
the cost of a solution.

Moreover, this fitness function guarantees that if a chro-
mosome value is larger than 1

2 , no conflict occurs, such that
the cost of proper solutions is strictly greater than the cost
of conflicting ones. If a conflict remains, the fitness does not
take into account the cost of the maneuvers, allowing the EA
to focus the search for conflict-free solutions first, regardless
of the quality of the maneuvers involved.

4) Adapted Crossover and Mutation: EAs are very versatile
because they do not require much information on the objec-
tive function. However, non-specific classical operators used
by Gruber, Alliot and Schoenauer in [18] did not produce
satisfactory results on our benchmark.

Nonetheless, in the case of the conflict resolution problem,
we do know many properties about the fitness function, and
they can be very useful to create adapted crossover and
mutation operators. Durand, Alliot and Noailles describe such
operators in [19].

The crossover operator, tailored to benefit from the structure
of functions defined as a sum of positive terms, is described
on figure 4. After choosing two parents A and B, we compare
the number of conflicts remaining for both sets of maneuvers
and choose the maneuver from the parent having the smallest
number of conflicts. When both maneuvers generate the same
number of conflicts, we pick up randomly the maneuver from
parent A and parent B.

The mutation operator is described on figure 5. After
choosing a chromosome, an aircraft is mutated (on figure 5,
aircraft 4 is chosen). Maneuvers generating conflicts for the
parent are chosen in priority and changed to favor conflict-free
maneuvers in the offspring.

These operators are more deterministic at the beginning of
the optimization, when many conflicts remain in the pop-
ulation, so that a solution without conflict can be found
very quickly. When conflict-free solutions become sufficiently
numerous, more randomness is allowed and other parts of the
search space can be explored.

B. Constraint Programming
Constraint Programming (CP) is a versatile optimization

technology based on the Constraint Satisfaction Problem
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Fig. 4. Adapted crossover operator.
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A6

A7

A8

new maneuver

A’4

Fig. 5. Adapted mutation operator.

(CSP) formalism which emphasizes the satisfaction of com-
binatorial constraints (i.e. arbitrary relations over a set of
decision variables). CP offers a clean separation between the
modeling language and the resolution algorithms, enabling
to quickly develop solvers in an incremental fashion and to
experiment with various search strategies without changing
the model. See [12] for example, where more details on the
CP technology can be found.

1) CSP Model: The set M of decision variables of the
CSP is the one defined by equation 1 in section II, where
each variable mi is the index of the maneuver for aircraft i
and thus takes a value in [1, nman].

The constraints are expressed as binary constraints, i.e.
constraints involving exactly two variables. For a given couple
of aircraft i and j (i < j), the constraint cij between variables
mi and mj is defined as the set:

cij =
{

(mk
i ,m

l
j) s.t. Ci,j,k,l = 1

}
(4)

where mk
i and ml

j are respectively the k-th and the l-th value
of interval [1, nman] of the maneuvers available for aircraft i
and j. cij therefore describes all couples of maneuvers that

cannot be performed by aircraft i and j without resulting in
a conflict.

We denote by |cij | the cardinal of the constraint cij , i.e. the
number of forbidden couples of maneuvers.

2) Solution Search: The exploration of the search space is
based on an enhanced version of a systematic tree-search al-
gorithm called backtracking, where an inference phase prunes
the unfeasible values of each variable at every node of the tree
by propagating local consistency properties in the constraint
network. In our algorithm, the search tree is explored by
following the weighted degree [20] adaptive heuristic which
learns from the failures during the search, so that the variables
involved in the constraints that have been violated the most so
far are instantiated first. This heuristic proved to be particularly
efficient on this problem, as it dynamically focuses on the
hardest parts of the CSP first.

3) Optimization: The optimization criterion c simply is
the sum of the costs of each single maneuver as defined in
equation 3 of section II-C. The optimization algorithm used
to solve the CSP is an adaptation of the backtracking algorithm
called branch and bound: each time a solution with cost cs is
found, the constraint c < cs is dynamically added to the CP
model, and the search is resumed to look for a better solution.
Eventually, the search for a better solution will fail, proving
that the best solution so far was optimal (or, if no solution
has been previously found, that there is no solution satisfying
all the constraints). In order to quickly obtain solutions of
good quality, which is mandatory in an operational real-time
context, our search strategy first focus on maneuvers that least
increase the cost.

V. RESULTS

The benchmark generation (section III-A) and the two
conflict resolution algorithms (section IV) were implemented,
using the FaCiLe constraint library [21] for the CP model.
The following results were obtained on a standard workstation
consisting of an octo-core Intel R© Xeon R© processor running
at 3.4 GHz and equipped with 8 GB of memory.

A. Benchmark

A total of 120 instances were produced, based on situations
with 5, 10, 15 and 20 aircraft in the same airspace volume
and with uncertainty levels 1, 2 and 3 (see section III-A), thus
changing the density of the problem. Ten random instances
were created for each set of parameters, in order to assess the
reliability of the resolution algorithms.

The generation of a given instance is highly parallelizable
(the computation of the constraint between two given aircraft
is independent from other constraints in the problem), which
made it possible to dramatically reduce the needed computa-
tion time. As an example, the biggest and hardest instances
(20 aircraft with high uncertainty level) were produced in less
than three minutes while the smallest ones only needed a few
seconds.

Figure 6 shows the influence of the number of processors
used on the benchmark generation time for a given instance.
The time saving is quite huge, since only 10 seconds are
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Fig. 7. A solution to a 10-aircraft conflict. Trajectories are depicted as
sequences of convex hulls, representing the uncertainty.

necessary with 64 processors where it took more than 9
minutes to a single processor. However, the gain becomes less
interesting when the number of processors further increases,
because the communication overhead between processes then
takes a significant amount of time. For the type of instances
we generated, 16 processors seemed to constitute a fair com-
promise.

B. Conflict Resolution

The resolution algorithms were both limited to a 5 minutes
execution time, in order to be compatible with the time
constraints of an operational setting. In this context, all feasible
instances were solved within seconds, and an optimality proof
was obtained for most of them. Figure 7 shows a solution for
a 10-aircraft conflict.

1) Computing Times: In more details, table I provides the
computation times (averaged over the 10 different instances for
each set of parameters) for finding the best solution. Instances
with 5 and 10 aircraft are efficiently solved (under one second)
by both algorithms (CP being a bit faster than EA). Most

TABLE I
AVERAGE TIME (IN SECONDS) FOR FINDING BEST SOLUTION WITH EA

AND CP ALGORITHMS, FOR EACH SET OF PARAMETERS.

n
5 10 15 20

CP EA CP EA CP EA CP EA
εlow 0.00 0.02 0.22 0.97 24.08 2.01 75.14 95.98
εmed 0.00 0.02 0.27 1.44 45.17 32.60 79.61 184.61
εhigh 0.00 0.02 1.04 0.37 48.59 93.19 58.44 274.16

TABLE II
AVERAGE COST OF BEST SOLUTIONS FOR EACH SET OF PARAMETERS.
RED CELLS INCLUDE SOLUTIONS THAT WERE NOT PROVED OPTIMAL,

2-IN-1 CELLS CORRESPOND TO SETS OF PARAMETERS WHERE BOTH CP
AND EA REACHED OPTIMAL SOLUTION.

n
5 10 15 20

CP EA CP EA CP EA CP EA
εlow 5.3 29.8 86.3 86.8 185.8 176.9
εmed 4.2 46.6 104.0 104.0 267.6 282.8
εhigh 5.1 45.7 170.4 156.3 299.0 305.0

15-aircraft instances are solved within one minute, while 20-
aircraft instances often need a few minutes. Moreover, a proof
of optimality is obtained (with CP only) on all instances with
5 and 10 aircraft and almost all instances with 15 aircraft.
When 20 aircraft are involved, however, optimality proof is
not reached within the five minutes time limit.

Particularly interesting is the fact that, for instances that do
not have any solution, a proof of non feasibility is obtained
within one second. This could make it possible to generate,
in a real-time setting, a new instance where, for the same
situation, more maneuvers would be allowed, hopefully giving
a resolution to the conflicting situation.

Finally, in almost all instances, including the toughest ones,
a first solution was found within seconds. This means that in
a real-time operational context, it could be possible to quickly
provide the controllers with a first set of maneuvers that solves
the conflict, so that it could be their choice to transmit them
right away or wait for a more efficient solution, depending on
their current workload and the urgency of the situation.

2) Cost of Solutions: Table II provides average costs for
each set of parameters. According to the definition given
in equation 2 (section III-B), each maneuver has a cost
belonging to the interval [0, 50] for the investigated instances.
As expected, the cost increases with the number of aircraft
involved, because the density of aircraft and conflicts increases
with this parameter for a given constant airspace volume (cf.
section III-A). The maneuver cost per aircraft varies from less
than 1 for the smallest instances to 15 for the hardest ones.

Figure 8 depicts the cost of the best solution found with
respect to the intrinsic difficulty ρ of the instance. The intrinsic
difficulty is here defined as the total number of forbidden
couples of maneuvers:

ρ =
∑

i,j∈[1,n]2
i<j

|cij |

where cij is the constraint between aircraft i and j, as defined
in equation 4. Clearly, the cost of the best solutions is closely
correlated to the intrinsic difficulty of the problem, which
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could be used a priori to determine the expected efficiency
of resolution.
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Fig. 8. Cost of the best solution found w.r.t. the intrinsic difficulty ρ of the
instance.

In terms of cost, CP and EA are equivalently efficient: they
both reach optimal solutions for almost all instances involving
15 or less aircraft, and alternately give the best solution for
20-aircraft instances. It would therefore be interesting to run
both algorithms in parallel for a given instance, in order to
always get the best possible solution.

VI. CONCLUSION AND FURTHER WORK

We have presented a new benchmark framework for the gen-
eration and solving of air traffic conflict resolution problems,
with many configuration opportunities. Unlike other previous
approaches, we have proposed to separate the generation of
instances from their resolution, giving the possibility to easily
test different algorithms for solution search and optimization.

The production of the benchmark is highly configurable:
the density of the conflict (controlled by the number of aircraft
involved or the volume of the considered airspace), the number
of authorized maneuvers and the level of uncertainty to be
taken into account are the main parameters, but the tuning
can be even finer, e.g. with the possibility of defining custom
maneuvers or trajectory uncertainties. The output is a data
file containing all pre-computed trajectories and a list of
maneuvers pairs that cannot be performed simultaneously. As
this phase is highly parallelizable, this method can be used
to generate an entire benchmark database within a reasonable
computation time.

To illustrate the usefulness of our benchmark framework,
we have also described two different approaches to solve
the generated conflict problems, an Evolutionary Algorithm
and a Constraint Program, and shown how to fairly compare
their results on the 120 instances of various difficulties of
our proposed benchmark basis. Most of these instances were
solved in less than one second, the hardest ones needing a few
minutes of computation. With the CP algorithm, optimality
proofs were obtained in most cases, and instances without
solution were proved inconsistent within one second. As
expected, the cost of the solutions, i.e. the sum of maneuver
costs defined in the conflict data, increases with the intrinsic

difficulty of the instance, defined as the overall amount of
forbidden maneuver pairs.

We plan to extend our approach in order to consider vertical
maneuvers, like a flight level change, interrupted climb or
anticipated descent, thus increasing the configurability and
generality of the framework. In terms of efficiency, the detec-
tion phase could be enhanced by the use of a fastest algorithm
for computing distances between the convex hulls that model
the uncertainties.

The realism of the instances can be greatly improved by
integrating the conflict generation into our fast-time simulation
platform CATS (or other third-party simulators), in order to
extract the conflicting situations from the simulated traffic.
This would also make it possible to test resolution algorithms
in a fast-time simulation setting over a whole day of traffic.

Finally, we are currently working on yet other algorithms
for the conflict resolution problem, such as an ad hoc branch
and bound and a Tabu Search, and their hybridization in order
to increase the efficiency and the robustness of the resolution.
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