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Abstract— Airspace capacity is a key parameter in the air traffic
management system. Numerous metrics for estimating it have
been proposed including simple ones such as aircraft count and
sophisticated ones representing traffic complexity. In this paper,
an approach is presented for estimating airspace capacity that
addresses two main factors: (1) the risk element in determining
capacity, represented by the tradeoff between capacity and the
ability to mitigate the risk of violating traffic management
constraints, and (2) the cognitive element in determining
capacity, represented by the control strategy used by different
control schemes such as human control, automation control, or
automation assisted control.  The approach is demonstrated using
a risk mitigation metric, called adaptability, which estimates the
number of feasible trajectories that are available to an aircraft,
using a certain control strategy, to avoid violating traffic
management constraints. Using this metric, the tradeoff between
adaptability and capacity to absorb delay that exists in current
human control behavior was identified through analysis of
historical track data of two airspace sectors. This metric was also
used to compare alternative control strategies in a simulated
metering situation involving separation assurance and meeting
required times of arrival at a fix. The comparison highlighted the
higher capacity and adaptability levels that can be achieved with
more efficient control strategies relative to human control. Thus,
the presented analysis demonstrates the potential of risk
mitigation metrics such as adaptability to estimate airspace
capacity limits that achieve desired levels of risk mitigation under
different control strategies and automation schemes.
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I. INTRODUCTION

Capacity is a key parameter in the air traffic management
(ATM) system. It needs to be set at values that maintain safe
operations and at the same time accommodate the demand for
moving passengers in the air transportation system. With the
projected increase of the demand for air transportation,
properly determining capacity becomes even more critical
under the next generation air transportation system (NextGen).

Determining airspace capacity has been a challenging
question for the ATM research community. The current
measure used for capacity sets a limit on the number of aircraft
present in an airspace sector. It is attractive because it is easy to

measure but also to control. Over years, many approaches and
metrics have been suggested. In a human controlled airspace,
traffic complexity often referred to the difficulty of managing
the traffic to maintain safe operations. A number of metrics
have been suggested for measuring traffic complexity and its
limits. Kopardekar and Magyarits listed a number of factors
that affect traffic complexity and associated metrics were based
on the notion of dynamic density, including, for example,
aircraft count and density, sector geometry, traffic mix and
distribution, traffic flow structure, mix of aircraft types and
performance characteristics, and weather [1][2]. Then using
linear regression, factors were found that best correlated with
subjective controller ratings of the difficulty to control traffic
scenarios of different complexities [3]. Histon et al. [4] and
Davison et al. [5] emphasized cognitive elements of
complexity, in particular the use of structure by controllers
(standard flows, grouping of traffic, and merge points) to
simplify the control cognitive processes. Athenes et al. [6]
developed a metric that measures the effect of uncertainty and
time pressure on controller workload. They used objective
measures such as heart rate to demonstrate the validity of their
metrics. Delahaye and Puechmorel [7] introduced several
complexity metrics based on traffic geometry (proximity,
convergence, sensitivity to control maneuver) and traffic flow
pattern organization or disorder (topological entropy). They
extended the entropy metric building dynamical system models
to fit actual aircraft trajectories [8]. Building on this effort,
Ishutkina et al. [9] estimated traffic complexity by the ability of
a mathematical linear program to interpolate a vector flow field
between aircraft positions and velocities, given constraints on
speed and turn rate. Aigoin [10] used clustering techniques to
measure complexity. Granger and Durant [11] analyzed the
impact of the cluster size of aircraft in conflict. Clustering
techniques were also used by Billimoria and Lee [12] to
determine airspace congestion independent of sectors.

NextGen envisions an ATM system that allocates functions
to the human and automation and between different
stakeholders such as pilots and controllers in a significantly
different manner than today’s system. These concepts promise
increases in capacity while simultaneously improving safety.
For example, in an automation controlled or managed airspace,
a computer can perform certain tasks that are needed to
separate aircraft and hence the airspace may be able to
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accommodate a larger amount of traffic. However, if the
automation is turned off the human has to take over and
maintain safe separations, possibly with a larger amount of
traffic than usually managed by the human and starting from
initial patterns that are unfamiliar to the human. In any of these
situations, nominal or off-nominal, the airspace capacity has to
be set at values that maintain safe operations. A challenge is to
develop metrics to estimate airspace capacity that are generic
and versatile and hence can be applied to assess the capacity
implications of the variety of control schemes envisioned by
NextGen as well as practiced in the current environment.

In order to help achieve this goal, in this paper an approach
is proposed for estimating airspace capacity that addresses two
main factors: (1) the risk element in determining capacity,
represented by the tradeoff between capacity and the ability to
mitigate the risk of violating traffic management constraints.
With a generic metric that captures such risk and the ability of
the system to mitigate it, it would be possible to represent
human, automation, or mixed operations. (2) The cognitive
element in determining capacity, represented by the strategy
used to control the traffic situation and mitigate the risk of
violating traffic management constraints. The control strategy
may represent human control, automation control, or
automation assisted control. The control strategy may also
represent different schemes of configuring the airspace,
structuring traffic flows, distributing functions, among others.
Therefore, by explicitly representing the control strategy in the
metrics it would be possible to assess and compare the capacity
implications of the variety of control schemes envisioned by
NextGen as well as practiced in the current environment.

Metrics have been developed to represent the ability of an
aircraft trajectory to mitigate the risk of violating traffic
management constraints [13][14][15][16] – which was called
aircraft trajectory flexibility. These metrics showed promising
potential in terms of their generality, conciseness and
correlated well with previous metrics of traffic complexity. For
example, it was shown in these previous studies that planning
aircraft trajectories such that flexibility is increased resulted in
mitigating the complexity of the traffic situation. Building on
that research, one of these metrics called adaptability was
applied in this study to estimate airspace capacity under
different control strategies. Using this metric, the tradeoff
between adaptability and capacity to absorb delay that exists in
current human control behavior was identified through analysis
of historical track data of two airspace sectors. This metric was
also used to compare alternative control strategies in a
simulated metering situation involving separation assurance
and meeting required times of arrival. The analysis highlighted
the higher capacity and adaptability levels that can be reached
with more efficient control strategies relative to human control.
Thus, the presented analysis demonstrates the potential of risk
mitigation metrics such as adaptability to estimate airspace
capacity under different control strategies and automation
schemes and to achieve desired levels of risk mitigation ability.

The concept of using risk mitigation metrics to estimate
airspace capacity is presented along with the metrics in Section
II. Section III presents an analysis of historical traffic data to
identify the tradeoff between risk mitigation and capacity under
current human control. Section IV compares a human control

and an alternative control strategy using simulation. Finally
some conclusions and extensions are presented.

II. CONCEPT AND METRICS

An approach is presented to estimate airspace capacity
based on the ability to mitigate the risk of violating constraints
while managing the traffic. Constraints include avoiding
violation of the minimum separation requirements and adhering
to flow management constraints, which maintain safe
operations by avoiding the overload of downstream resources.
In this section first the concept of using risk mitigation metrics
to estimate airspace capacity is presented. Then airspace
capacity metrics and risk mitigation metrics are defined.

A. Using risk mitigation metrics to estimate capacity
Human air traffic controllers attempt to maintain safe

operations using conservative methods that reduce the risk of
violating ATM constraints to an acceptable level according to
their risk tolerance. These methods manifest in the controller
decision making strategies while attempting to meet and avoid
violating the constraints. These strategies include procedural
practices that stabilized over time and resulted in common
airspace and traffic structures. They also include dynamic
decisions to control continuously changing traffic situations.

Alternative control strategies are often proposed to increase
airspace capacity in the face of increasing demand. For
example, automated control may adopt strategies to achieve
efficiency benefits. Dynamic airspace configurations that are
optimized for enhanced aircraft performance may be able to
accommodate a larger traffic flow. These new control schemes
have to maintain the constraint violation risk below acceptable
limits for safe operations as in human control schemes.

Therefore, the amount of traffic that an airspace resource
can service – airspace capacity – is dependent on the strategy to
control the traffic that the resource services. An automated
strategy may be able to serve more traffic than a human control
strategy and a structured flow may exhibit higher throughput
than a chaotic flow. One method to compare and determine the
capacity under different strategies is to relate their capacity to
their associated risk of violating constraints. The underlying
concept is to determine the capacity levels that can be achieved
by alternative control strategies while ensuring an acceptable
ability to mitigate the risk of constraint violation. Using this
approach, different control strategies can be compared in terms
of the tradeoff between capacity and constraint violation risk
mitigation. In addition, if a risk mitigation level is desired then
such a level may be used to set the airspace capacity limit
under each control strategy. In order to instantiate this concept,
metrics for measuring airspace capacity and for measuring the
ability to mitigate the risk of constraint violation are needed.
These metrics are described in the next two subsections.

B. Airspace capacity metrics
Airspace capacity in this paper refers to the ability of an

airspace resource, such as a sector, to service air traffic in a
traffic flow sense. A number of metrics of the airspace resource
can be used to measure this ability such as its maximum



throughput, the maximum delay that can be absorbed in it and
the maximum number of aircraft that can be held in it.

Throughput capacity is the maximum flow rate that can be
achieved through the airspace resource under infinite demand.
It can apply to one or all flow streams through the airspace.
Throughput capacity is dependent on the traffic control
strategy. For example, higher throughout can be achieved when
aircraft travel at faster speeds along shorter paths; when the
separation between the aircraft is maintained at lower values;
and when different flow streams are parallel rather than
crossing. Therefore, increasing the maximum aircraft speed
limit and reducing the minimum required separation between
aircraft increase throughput capacity.

Some airspace sectors have the capacity to delay aircraft
beyond the minimum time that they can spend in the sector.
This is desired when congestion at resources downstream of the
sector necessitates delaying aircraft before they are released
from it. An airspace sector has a limit on the amount of delay
that an aircraft can absorb in it depending on its size, the
degrees of freedom that are available to absorb delay (for
example, speed reduction, path stretching, spinning) and
constraints that limit the use of the degrees of freedom such as
loss of separation with other aircraft. Therefore, an airspace
sector exhibits a delay absorption capacity as the maximum
amount  of  delay  that  can  be  absorbed  by  an  aircraft  in  the
sector using a control strategy. For example, a strategy that
includes spinning aircraft in a loop enable more lengthening of
the path relative to strategies that do not include spinning.
Certain tools such as time based metering use the capacity to
absorb delay in a sector as a parameter to decide how to
allocate delay absorption among sectors along a route of flight.

Similar to delay absorption, an airspace sector may have
capacity to hold aircraft. This capacity is the number of aircraft
that can be stacked in the airspace with maintaining the
minimum separation between them. However, typically the
airspace capacity for the number of aircraft is set by the ability
of the air traffic controller to monitor and communicate with
the same number of aircraft simultaneously. The number of
aircraft that can be handled in a sector also depends on the
control strategy. For example, the airspace capacity when
stacking aircraft using holding patterns is different than when
using path stretching only to delay aircraft.

Capacity limits on throughput, delay and aircraft count are
related to each other using traffic flow and queuing dynamics.
These limits could be computed theoretically under
deterministic assumptions and specific traffic flow structures
and control strategies. However, practical limits on these
parameters are often set lower than theoretical limits based on
uncertainties in the environment and the ability of the human
controller to control the traffic with acceptable risk. For
example, the spacing between aircraft may be increased by a
human controller beyond the minimum required to reduce the
risk of violating separation constraints. In this study an
approach is proposed to identify limits on the airspace capacity
metrics based on metrics that measure the ability to mitigate the
risk of constraint violation under specific control strategies.
These metrics are presented in the next subsection.

C. Risk mitigation metrics
Metrics have been proposed by the authors to represent the

exposure of the aircraft to the risk of violating constraints
imposed on it using a decision theoretic approach
[13][14][15][16]. Using the decision theory approach the
solution space of an underlying control strategy was
represented by a discrete decision tree. ATM constraints were
incorporated into the decision tree resulting in the elimination
of infeasible solutions that violate the constraints. Based on
counting the feasible and infeasible solutions, metrics for
measuring the ability to mitigate the risk of violating the
constraints were derived and extended for this study as follows.

Constraints are imposed on aircraft trajectories to meet
certain objectives, such as imposing a required time of arrival
(RTA) which is intended to help balance demand and capacity
of airspace resources. Constraints are also imposed on
trajectories in order to avoid safety hazards, such as violation
of separation requirements from traffic or weather cells. The
violation of the constraints may be caused by uncertainties in
the constraints, which were called constraint disturbances; they
represent variation in predicted constraints or appearance of
new constraints that were unforeseen at the time of trajectory
planning. The violation of constraints may also be caused by
uncertainties in the aircraft states, which were called state
disturbances; they represent predicted or unforeseen deviations
in the state due to wind or pilot error for example. Flexibility of
the aircraft trajectory was defined as its ability to mitigate the
risk of constraint violation. The following characteristics were
defined to help derive metrics for measuring this risk.

Robustness (RBT) is defined as the ability of the aircraft to
maintain feasibility (i.e., not violating any constraints) despite
the occurrence of constraint and state disturbances that pose the
risk of constraint violation. Robustness, denoted as RBT, is
measured with the probability of feasibility RBT(.) = Pf(.),
where the dot refers to the object of which robustness is
measured. Hence, the robustness of a specific aircraft trajectory
is defined as the probability that the trajectory remains feasible.
For example if the trajectory (traj) is defined as a series of
points (k) in space and time, and each point has a probability of
feasibility pf(k) that is independent of all other points, then the
probability of feasibility of the trajectory is the multiplication
of the independent probabilities of feasibility of all the
trajectory points: RBT (traj) = Pf(traj) = Πk(pf(k)). The
robustness of the solution space that consists of a set of
possible trajectories available to the aircraft at a point (k) and
that the aircraft can select from according to a decision strategy
is defined as the probability that a trajectory selected according
to the strategy is feasible. For example, one decision strategy is
to select a trajectory out of the total trajectories available at a
point (k) randomly (i.e. with equal probability) regardless of
the outcome of disturbances. Using this simplified decision
strategy, Idris showed that the probability of feasibility of the
selected trajectory at any point k (i.e., RBT at point k) can be
estimated by the ratio of the expected number of feasible
trajectories f(k) to the expected total number of trajectories
N(k) available at the point k [13]. RBT(k) = Pf(random traj
selected at k) = f(k) /  N(k) where N is the sum of feasible and
infeasible trajectories and the number of trajectories are
expected values given the disturbance probability distributions.



Adaptability (ADP) is defined as the ability of the aircraft
to regain feasibility of its trajectory in case it lost it due to the
occurrence of disturbances. The aircraft regains feasibility by
selecting from the feasible trajectories available to it at that
point in space and time according to a decision strategy.
Therefore, adaptability at a point in space and time (k), is
measured with the expected number of feasible trajectories f(k)
available to the aircraft to select from according to a decision
strategy: ADP(k) = f(k), where f(k) is the expected value given
the probability distributions of the disturbances.

In order to measure robustness and adaptability as defined
above, the number of total and feasible trajectories available to
the aircraft at a point k in space and time to reach its destination
needs to be estimated. The destination is a collection of points
in space and time representing, for example, an RTA at a fix
with some temporal or spatial tolerance. To be able to count the
number of trajectories, a discrete representation of time and
space and of the solution space is developed as follows:

· Time is discretized into equal time steps (ε apart) up to
a time horizon T, representing for example the RTA.

· The airspace available is discretized into rectangular
cells in three dimensions (or two if planar).

· The number of trajectories is estimated at the center (k)
of each cell at each of the time steps. Therefore the
sizes of the time steps and of the spatial cells represent
the estimation sampling resolution.

· The aircraft degrees of freedom (speed, heading, and
altitude) assume discrete values between maximum
and minimum limits. Their limits and resolutions may
represent operational procedures, human behavior, or
decision strategy. For example speed may be allowed
to change in increments of five km/hour only. The
limits and resolutions may be different depending on
the point k in the time-space domain and the aircraft
state in terms of speed, heading and altitude at k.

· Each trajectory is assumed to consist of a series of the
discrete cells k that are reachable given the aircraft
degrees of freedom and the assumption that the values
of the degrees of freedom are maintained constant
between two successive time steps.

· Reachability is measured from the centers of the cells,
which are the points k at which the number of
trajectories are estimated. A cell is considered
reachable from a cell in the previous time step if any
part of it is reachable given the assumption of constant
values of the degrees of freedom along the time step.
The number of ways a cell can reach another cell in the
next time step are counted and recorded in the
reachability function g(k). This is depicted on the left
side of Fig. 1 for a two dimensional example with three
heading values and three speed values. The cells that
are reachable from the center of a cell (k) with
coordinates (11, 11) over one time step are identified.
The values of the function g(k) are noted on each cell
that has a value larger than zero. The right hand side of
Fig. 1 shows the process repeated to compute the

reachability function from the centers of the reachable
cells over the next time step. In this example the
function g(k) was assumed the same for all cells, but it
can be dependent on k and the speed and heading at k.

· The example shown in Fig. 1 is deterministic, where
each of the reachable points that lie within a cell occurs
with probability of one. To represent state
disturbances, each of these points may be substituted
with multiple reachable points with a probability value
assigned to each. Then an expected number of
trajectories that reach a cell can be computed.

Figure 1. Example of discrete framework and reachability from one cell

A method for estimating the metrics has been devised, as
described in Idris et al [16]. The method estimates the number
of trajectories that emanate from each of the cell centers k to
the destination. It combines a convolution process to count the
number of trajectories in the discrete reachability tree with a
filtering process to eliminate infeasible trajectories that violate
constraints. It is summarized in the following steps and
depicted in Fig. 2 for a two dimensional case:

Figure 2. Discrete estimation of number of feasible trajectories

1. First, the last time step T is initialized by setting the
number of trajectories fT(k) to one for each cell k that
is  feasible  and  to  zero  for  each  cell  k  that  is  not.
Feasibility is determined based on constraint violation.
If the center of the cell violates separation with another
aircraft, or lies within a hazard airspace, or lies outside
a  required  time-space  region,  then  it  is  infeasible.  In
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Fig. 2, the cells that lie within an RTA requirement are
set to one and the ones that violate it to zero. Also in
Fig. 2 the trajectory of an intruder aircraft (or weather
polygon) is enclosed in a polyhedral object (shown in
red) that represents the separation requirements from it.
The resulting polyhedral object eliminates certain
volume of the solution space. A center of a cell that lies
inside the polyhedral object indicates infeasibility of
the cell and its fT is set to zero.

2. The reachability function g(k) is computed for each
cell in the previous time step T-1. This results in
gT-1(kài) – the number of trajectories that reach from
each cell k in time step T-1 to each cell i in time step T.

3. If the trajectory segment connecting the center of cell k
in time step T-1 and the center of cell i in time step T is
not feasible, the corresponding value gT-1(kài) is set to
zero. The segment may not be feasible if violating
separation with another aircraft, crossing a hazardous
airspace, or violating an RTA. In Fig. 2, the segment is
infeasible if it crosses the red polyhedral object
representing an intruder aircraft trajectory.

4. Then the function gT-1(k) is multiplied by the function
fT(i) of the last time step T to compute the number of
feasible trajectories fT-1(k) at each cell k in the previous
time step: fT-1(k) = ∑i{gT-1(kài) × fT(i)}.

5. Steps 1 through 4 are then repeated for the previous
time steps, replacing T with T-1 and T-1 with T-2, until
the initial state is reached.

Given this discrete representation of the trajectory solution
space, a number of metrics representing risk of constraint
violation can be formulated. For example, RBT, ADP, or
combinations of them have been used in previous analyses. In
the analysis in this paper the adaptability metric ADP was used.

III. CAPACITY-RISK TRADEOFF UNDER CURRENT HUMAN
CONTROL STRATEGY

In this section the method presented in the previous section
is applied to a human control strategy elicited through
interview with an experienced controller. First the control
strategy is described followed by an analysis of the tradeoff
between capacity and risk mitigation in two airspace sectors.

A. Human control strategy
The following notes describe human strategies involving

metering situations. The process of merging and sequencing the
aircraft in a stream that feeds a meter fix involves a low altitude
sector ending at the fix and one or two high altitude sectors that
feed the low altitude sector. For simplicity we assume one low
and one high sector. The controllers of the low and high sectors
attempt to absorb the delay displayed by a scheduler for each
flight. Their procedures and behavior depend on the amount of
delay that needs to be absorbed as outlined in Table 1.

A human controller typically simplifies the solution space
to few degrees of freedom by a number of techniques. This
simplification is due to the limited ability of the human
controller to process a large number of degrees of freedom for

a large number of aircraft. One simplification technique is
grouping the aircraft into a “string” of platooning aircraft. This
reduces the degrees of freedom to the length of the string as
opposed to the combinations of the heading, speed and altitude
degrees of freedom of all aircraft. Namely, the controller has
only to manage the length of the string in order to absorb delay
while keeping the aircraft separated along the string.

TABLE I. HUMAN CONTROL STRATEGY IN METERING SITUATION

Delay High sector Low sector
1 to 2
minutes

Do nothing Drop speed to 491
then to 463 km/hr
(265 to 250 knots)

3 minutes Do nothing Use path stretch
4 to 7
minutes

Drop speed to 463
km/hr (250 knots).
Establish a sequence.
Drop altitude earlier
to level 270, to give
low sector more
control at low altitude

Use path stretch.
For larger delay drop
altitude earlier to
level 190, to allow
more control at low
altitude, increasing
level segment at 190

More than
7 minutes

Descend to altitudes
stacked by 300
meters (1000 feet)
anticipating  holding

Hold aircraft. The
exit from the holding
pattern is computed
to meet the time at fix

This situation is depicted in Fig. 3 where a string of aircraft
is shown. A path stretch is performed close to the meter fix for
small delay and grows upstream as the delay needed is larger.
According to the interview, one reason for absorbing the delay
near the meter fix is to avoid committing the delay too early
anticipating that the delay requirement may be withdrawn.
Another reason is that the aircraft are “lower and slower” near
the meter fix giving the controller more controllability.

Sector boundary

Nominal string
of aircraft

Path stretch
under high
delay

Path stretch
under low
delay

Path stretch
starting earlierPath

stretch
magnitude

Turn out angle 60-
70 degreesDominant wind

direction

Meter fix

Merging into
single stream

Figure 3. Human path stretch strategy in metering situation

The basic variables that are controlled to stretch the string
of aircraft as more delay absorption is needed are the start of
the deviation from the center line, the magnitude of the
deviation, and the turn out angle. The extent of the deviation is
determined by the widest area of the sector, as shown in Fig. 3.
According to the interview, the controller is able to compute
the appropriate turn back point to meet the RTA with one
minute tolerance. If increasing the path stretch magnitude is not
enough, the starting point is moved upstream to start the delay



absorption earlier. Throughout the process the string of aircraft
remains intact. The turn-out angle may also be increased, but
according to the controller interview, stays below 60-70
degrees. Turning is typically performed only to the larger side
of  the  sector  where  there  is  more  space  to  path  stretch.  While
S-turns using both sides may be practiced, they are rare. The
turn angle is typically against the dominant wind direction as
indicated in Fig. 3. When the wind direction changes
dynamically, the turn direction is based on the sector geometry
and space availability as opposed to wind direction.

B. Tradeof between Risk mitigation and capacity
Two sectors that feed arrival gates of the Chicago O’Hare

airport (ORD) were selected for analysis because their traffic
flow patterns represented the elicited decision strategy
described in the previous subsection. The two sectors included
a small size sector ZAU26 and a relatively large sector ZAU74.
In particular, both sectors merge the inbound traffic to a center
line that exits the sector at a fix and both sectors perform path
stretch to predominantly one side. This is shown in the flight
plans in Fig. 4 for both sectors and in the actual trajectories
from one day (ASDI June 7, 2004) in Fig. 5.

Figure 4. Flight plans for sectors ZAU74 and ZAU26

ZAU74

ZAU26

Figure 5. Actual trajectories showing pathstretch in ZAU74 and ZAU26

As seen in the flight plan and the actual trajectories in the
figures, the general behavior is to merge the traffic in a single
stream. In the case of the smaller sector ZAU26, the merge is
mainly performed in an upstream sector ZAU22 while ZAU26
mainly meters the traffic through path stretching. In the case of
the larger sector ZAU74, the traffic is merged within the sector
then path stretch is performed mainly after the merge. While
there are some dominant merge points, the merge seems to
occur sometimes loosely throughout the centerline.

As described in Table 1, the air traffic controller switches to
holding aircraft when the delay is larger than a certain value,

typically around six or seven minutes. Fig. 6 shows the traffic
trajectories from another day of operations for each of the
sectors ZAU26 and ZAU74 when the delay was higher than the
examples shown in Fig. 5. The loops that are evident in the
track data indicate that the dominant strategy to absorb delay
used by the air traffic controllers in these cases was holding.

ZAU74

ZAU26

Figure 6. Actual trajectories showing holding in ZAU74 and ZAU26

ADP versus delay curves were generated for the two sectors
ZAU26 and ZAU74 using ASDI traffic data from May and
June of 2004. For each flight that passed through the sectors
heading to ORD, delay and ADP were computed as follows.
The entry and exit points were determined as the crossings of
the sector boundary using extrapolation of track data if needed.
The duration of the flight in the sector was taken as the exit
time minus the entry time. The delay was computed by
subtracting from the duration an unimpeded travel time, taken
as the travel time over a straight line between the entry and exit
points using the entry speed of the aircraft. In order to isolate
the flights that were delayed using path stretching, aircraft that
were held were identified using an algorithm that detected a
loop in the trajectory. Fig. 7 shows two delay histograms for
each sector, where each flight is one occurrence: one for the
sample with all flights and one for flights that were not held.
The two frequencies are similar at low delay values as expected
because no holding was applied at low delay. As delay grows,
the number of flights that were held grows relative to the total.
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Figure 7. Delay distrubution in ZAU74 and ZAU26

The adaptability metric ADP was computed for each flight
using the method presented in Section II.C. The discrete



solution space representing the underlying human control
strategy was generated for the flight using the following
assumptions and ADP was taken as the number of feasible
trajectories at the starting point (entry point into the sector):

· Each flight was required to spend in the sector the
duration computed from the actual data.

· Each flight merged on the center line between the
dominant entry and exit points in the flight plans (see
Fig. 4). The flight can merge anywhere along the
center line as was inferred from the actual data.

· The flight used path stretch to one side only, as
determined in Fig. 5. Path stretch starts after the merge.

· The aircraft was forced to return to the exit point along
the center line before exiting the sector. A tolerance of
5.6 km (three miles) around the exit point was used.

· The aircraft  was  allowed to  step  down its  speed using
three values inferred from the actual data. The ground
speed reported in the ASDI data was analyzed to
determine the three dominant speeds, where each
report was used as an occurrence (See Fig. 8 for an
example). A large bin size of 93 km/hr (fifty knots)
was used to categorize speed in mostly three values.

· Altitude was ignored in this analysis. Hence the speed
reduction represented speed reduction due to descent as
well as commanded speed reduction to absorb delay.

· Flights not destined to ORD were considered intruder
aircraft and their trajectories blocked some of the
solution space of the ORD flights thus reducing the
number of feasible trajectories in ADP. 9.3 km (Five
miles) were used as the minimum separation required.

Figure 8. Example of speed distribution to identify dominant speeds

Fig. 9 shows the ADP versus delay plots for the two sectors
analyzed. The log of ADP is plotted on the vertical axis and the
delay  that  was  required  on  the  horizontal  axis.  ADP  was
averaged over the flights in each delay bin, excluding the
flights that were held because they used a different strategy to
absorb delay than path stretching. The flights that were held are
encircled in the figure. The values of the log of the average
ADP at each delay bin are connected to show the overall trend.
At low delay values the ADP value is small because as the
required duration approaches the unimpeded duration (i.e. zero
delay), there are few solutions for the aircraft to meet it. As the
delay increases the ADP value also increases reflecting more

solutions available to meet the corresponding durations. The
average ADP value reaches a maximum indicating that
adaptability, and hence the ability to mitigate the risk of
constraint violation, is highest at certain delay values larger
than zero. This indicates that forcing some aircraft to spend
more than their unimpeded travel time in the sector allows the
controller to adapt to possible risks of violating constraints,
including in this case the imposed delay. Then ADP starts to
decline as the number of feasible solutions to meet higher
values of delay, using path stretching, becomes smaller. This
trend is the same for both sectors, with the smaller sector
exhibiting smaller ADP values because of its smaller size. The
kinks in the trend are due to the smaller sample at higher delay.

Figure 9. Adaptability (ADP) versus delay tradeoff

There is a wide variation in the values of ADP at each delay
bin in Fig. 9. Two main sources of this variation are the number
of intruder traffic and the distance between the entry and exit
points. Fig. 10 shows the correlation of ADP with the number
of intruder aircraft, for one duration (13 minutes), in sector
ZAU74 as an example. As expected, ADP is smaller the larger
the number of intruder aircraft, because the intruder traffic
eliminates trajectories that violate the minimum separation.

Figure 10. Adaptability (ADP) versus number of intruder aircraft

The  ADP  versus  delay  analysis  in  Fig.  9  was  conducted
using flights that were path stretched or slowed down to absorb
delay rather than held using spinning. As the required delay
increases the air traffic controllers switch from using path
stretch to using holding as the delay absorption strategy.



Therefore, switching to holding can be used as an indication of
reaching or exceeding the capacity to absorb delay using path
stretch, as perceived by the air traffic controller. In order to
identify this capacity limit, the percentage of flights that were
held was plotted at each of the delay values. The holding rates
are superimposed on the ADP versus delay curves for the two
sectors that were analyzed, as shown in Fig. 11. The holding
rate is zero at low delay values then it starts increasing at some
delay value and reaches hundred percent at high delay values.
As expected, holding starts earlier for the smaller sector
ZAU26 because it has less capacity to absorb delay using path
stretch than the larger sector ZAU74. For sector ZAU26,
holding started at about three minutes of delay, reached fifty
percent around five minutes and reached hundred percent at
about six or seven minutes of delay. For sector ZAU74 holding
was at ten percent at a delay value of about five minutes,
reached fifty percent around seven minutes and reached ninety
percent around eight minutes. It should be noted that the
sample  size  gets  small  at  high  delay  values  as  was  shown  in
Fig. 7, making it difficult to estimate when holding reached
hundred percent because of noise.

Figure 11. Path strecth delay capacity limit as indicated by holding

Switching  to  holding  is  used  as  an  indication  of  the
controller’s perception of the sector capacity to absorb delay
using path stretch. Hence, one can read in Fig. 11 the ADP
values at the capacity limits of absorbing delay using path
stretch where the controller switches from path stretching to a
holding  strategy.  One  can  also  infer  what  ADP  values  were
considered acceptable by the controller at such capacity limits
for each sector. For example, using fifty percent holding as a
threshold indication of strategy switch, the corresponding log-
ADP value for the smaller sector ZAU26 is around 10 while for
the larger sector ZAU74 is around 15.

The two sectors analyzed indicate that the level of ADP that
corresponded to capacity to absorb delay using path stretch as
perceived by the controller (i.e., switching to holding)
depended on the sector size. This observation may have a
number of reasons. For example, one observation is that the
smaller sector ZAU26 used almost all of the area of the sector
for path stretching while the larger sector ZAU74 used less of
its complete area (see Fig. 5). The ADP metric in this analysis

assumed that all of the sector area is available for path stretch
solutions. Hence, the ADP values for ZAU74 may have
overestimated the number of feasible solutions compared to
what the controller considered an available area for solutions.
The air traffic controller may switch to holding at certain delay
values for which path stretching becomes excessive, even if
additional sector area is still available to perform larger path
stretches to absorb larger delays. It should be noted that this
observation is based on analysis of two sectors only; a wider
analysis is needed to generalize this observation and identify
additional insights about inherent human capacity perception.

IV. CAPACITY-RISK TRADEOFF UNDER ALTERNATIVE
CONTROL STRATEGIES

In this section an analysis demonstrates how alternative
control schemes can be compared using the risk mitigation and
capacity metrics presented in Section II. As an example, the
human control strategy described in Section III is compared to
another control strategy, assumed to be used by automation, in
terms of the tradeoff between capacity represented by the limit
to absorb delay and risk mitigation represented by ADP.

An algorithm based on the Efficient Descent Advisor
(EDA) decision support tool was used as an example of an
automation control strategy to absorb delay [17]. The algorithm
absorbs delay in a metering situation by considering each
aircraft individually without coupling the aircraft along a
string. See Fig. 12. EDA uses speed as the preferred degree of
freedom to absorb delay and if insufficient it resorts to path
stretching. The trajectories generated are conflict free. The
premise of the automation is to absorb the delay needed at
higher altitude enabling more efficient continuous descent. The
human controller would be unable to compute the types of
solutions that the automation computes; hence would not reap
such benefits. The automation strategy would also use the
airspace more effectively. Whereas the airspace is reduced in
the human control case to a stretched string of aircraft, the
automation is able to spread the aircraft more effectively.

Sector boundary

Each aircraft on its
own path stretch

EDA Path stretches
at higher altitude

Figure 12. Alternative path stretch strategy in metering situation

The human and automation control strategies described in
Fig. 3 and Fig. 12 respectively, were simulated in a Matlab
environment using the discrete space-time decision tree
described in Section II.C with the same parameters except for
differences in the control strategy. A hypothetical two



dimensional airspace was modeled as a 185 km by 278 km
(100 by 150 nautical mile) rectangle as shown in Fig 13, with a
resolution of 185 meter (one nautical mile) square cells. Time
was discretized into one minute increments. The centerline of
the flow starts at point (0, 0) and ends at the metering fix at
point (0, 150). Aircraft were introduced at random locations
along an arc centered about the meter fix, which ensures that all
flights are equidistant from the metering fix when they enter
the airspace to reduce variability. Each aircraft was required to
absorb a delay which was varied in the simulation experiment
to determine the capacity of the airspace to absorb delay.

XX

YY

Human controlAutomation control

Figure 13. Simulation of human and automation control strategies

The differences of the automation from the human control
assumptions described in Section III.B are: (1) aircraft were not
forced to merge on the centerline, rather were allowed to path
stretch from their entry and (2) path stretching was allowed to
both sides of the centerline as shown by example trajectories in
Fig. 13. In both strategies aircraft were allowed to reduce speed
using 556, 500, 445 km/hr (300, 270, 240 knots) steps.

A steady state condition was analyzed for both the human
and automation control cases, where the rate of aircraft entry
into the airspace was set to be equal to the rate at which the
aircraft exited the airspace. Ten aircraft were introduced two
minutes apart and forced to leave at the meter fix also two
minutes apart. Under such a condition the number of aircraft in
the airspace does not grow dynamically, and the amount of
delay that is absorbed in the airspace corresponds to the
number of aircraft in it. Each aircraft was assumed to follow a
trajectory that was generated by optimizing ADP using a
dynamic program. This trajectory was assumed to be known to
the other aircraft and was taken into account in the computation
of ADP as described in Section II.C. Therefore ADP for each
aircraft counted the number of feasible trajectories that did not
lose separation with the trajectories of preceding aircraft.

For both the human and automation control strategies,
increasing values of delay were imposed on all ten aircraft until
no solution was possible, indicating reaching the delay
absorption capacity using each strategy. In this analysis, the
airspace capacity was measured in terms of the maximum
ability to absorb delay at constant throughput. A similar
analysis can be conducted for identifying the maximum
throughput that can be achieved. ADP was computed for each
aircraft at its initial position and averaged over all aircraft. Fig.
14 plots the log of the average ADP value versus the required
delay. The following observations can be made from the figure.

Delay Delay

2 4 6 8 10 12 14 16 18 20 22 24
10

15

20

25

30

Delay

Lo
g(

A
dp

.)

Average Adp. of total 10 AC

Manual
Automation

ISO-ADP curve

Figure 14. Adaptability vs delay for human and automation control strategies

Fig. 14 shows that the automation strategy was able to
absorb more delay because of the increase in the degrees of
freedom relative to the human control strategy modeled.
Namely, the aircraft can path stretch earlier and to either side of
the centerline. Therefore, under this automation strategy it was
possible to absorb 24 minutes of delay, by all ten aircraft, while
the human control strategy was able to absorb a maximum of
20 minutes of delay, with the same airspace size.

Each  ADP  versus  delay  curve  in  Fig.  14  shows  the  same
tradeoff between adaptability and capacity to absorb delay that
was observed in the historical data analysis in Fig. 9. Namely,
each curve exhibits a limited capacity to allow unimpeded
travel (zero delay) as ADP is low at low delay values. (Note
that although not shown in Fig. 14, log(ADP) is equal to zero at
zero delay because there is only one solution corresponding to
the fastest transition time.) Each curve reaches a limit on the
capacity of the airspace to absorb high delay values as ADP
drops to low values and ultimately zero. The curves also show
that adaptability reaches a maximum level at certain delay
values that are higher than zero. This indicates that forcing
aircraft to spend more than their unimpeded travel time in the
sector allows the control strategy to adapt better to possible
risks of violating constraints, including in this case the imposed
target throughput of two minutes between aircraft.

While the theoretical capacity to absorb delay corresponds
in Fig. 14 to where ADP drops to zero, practical limits are
usually set at higher ADP values, as was demonstrated in the
previous section where human controllers switched from path
stretching to holding aircraft at relatively high ADP values.
Fig. 14 depicts a horizontal ISO-ADP line that represents
notionally such an adaptability threshold that is larger than
zero. This threshold may represent either inherent risk
tolerance (as in a human controller) or a desired level of risk
mitigation that should be afforded by either human,
automation, or combined control strategies.  Using the analysis
approach presented in the previous section, albeit applied to a
larger number of sectors, one may infer statistically levels of
adaptability that the human controller considers acceptable
under certain conditions and control strategies. The
identification of a desired adaptability level under human or
automation control is a subject of further research and would
consider safety standards for example. Given the existence of
such a desired ADP level, it can be used to trace the delay
limits that produce this ADP level under the different control
strategies  as  shown  by  the  ISO-ADP  line  in  Fig.  14.  For
example, this line demonstrates that at the same adaptability, or
risk mitigation level, higher delay absorption capacity may be



reached with the automation strategy, by generating more
solutions, which is one benefit of automation.

Another observation from Fig. 14 is that the adaptability
ADP is higher, particularly at higher delay values, under the
automation  control  strategy.  Therefore,  for  the  same  delay
requirement, the additional solutions considered by the
automation enable more mitigation of the risk of violating
constraints. It should be noted however, that while the
automation is capable of considering these additional solutions,
the human may not be able to. Therefore, if the automation
failed, the human has to handle using human control strategies
more traffic and unusual traffic patterns that the automation
was handling. Hence the human controller may not achieve the
same level of adaptability or risk mitigation as the automation.
The approach presented in this paper may be applied to such
off-nominal conditions to assess the risk mitigation that the
human may experience when taking over from automation.

V. CONCLUSIONS AND FUTURE EXTENSIONS

A risk mitigation metric called adaptability was applied to
analyze the tradeoff between risk mitigation and airspace
capacity under different control strategies that may represent
current or future control schemes. By analyzing historical
traffic data, it was possible to identify the tradeoff between
adaptability and capacity to absorb delay that is inherent in
human control strategies using path stretch in metering
situations as an example. It was shown that the human
controller switched from path stretching to holding aircraft at
relatively high values of adaptability where there were still
solutions to absorb delay using path stretch, particularly in a
larger sector. A human control strategy was also compared to
an alternative strategy, representing automation for example,
demonstrating the potential of metrics such as adaptability to
determine capacity limits at desired levels of risk mitigation.
The analysis presented is preliminary with many possible
extensions. For example, research may be conducted to relate
the presented risk mitigation metrics to safety and to analyze a
larger set of airspace resources and control strategies to
generalize the insights about human risk tolerance and capacity
perception. In addition, the metrics can be applied to assess
future ATM control schemes, in nominal and off-nominal
conditions, in terms of risk mitigation and capacity tradeoffs.
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