
Tenth USA/Europe Air Traffic Management Research and Development Seminar (ATM2013)

Air Traffic Flow Management at Airports:
A Unified Optimization Approach

Dimitris Bertsimas, Michael Frankovich
Aviation Edge, LLC
Belmont, MA, USA

Dimitris Bertsimas
Operations Research Center

Massachusetts Institute of Technology
Cambridge, MA, USA

Abstract—We present a novel integer optimization approach

to optimize in a tractable and unified manner the airport
operations optimization problem (AOOP). This includes solving
the entirety of key air traffic flow management (ATFM)
problems faced at an airport: a) selecting a runway configuration
sequence, i.e., determining which runways are open at which
times and in which mode they operate; b) assigning flights to
runways and determining the sequence in which flights are
processed (i.e., when they take off or land); c) determining the
gate-holding duration of departures; and d) routing flights to
their assigned runway and onwards within the terminal area and
the near-terminal airspace. The key contribution of this paper is
the modeling of these problems, which until present have been
studied mainly in isolation, under a framework which is both
unified and tractable. This allows the possibility of obtaining
system-optimal solutions in a practical amount of time.
Furthermore, the approach is implemented on historic datasets
from both Boston Logan International (BOS) and Dallas/Fort
Worth (DFW) airports. Computational experience indicates that
significant improvements can be achieved from this optimization,
and that computational tractability is such that real-world
implementation is possible.

Keywords-air traffic flow management; integer programming
applications; reduced emissions, ground delay; airborne delay;
runway separation; gate holding; departure metering;
configuration selection; taxi routing.

I. INTRODUCTION
In 2007, the cost of delays to US domestic flights on major

airlines was estimated to be $8.3 billion, and the cost to
passengers $16.7 billion ([3]). Reducing theses delays and their
associated costs represents a significant challenge for the
struggling airline industry and in particular for the Federal
Aviation Administration (FAA) – not only to increase
profitability for airlines, many of which presently operate at a
loss, but also to improve the experience for passengers.
Furthermore, the importance of addressing these delays is
emphasized by the fact that the total number of air traffic
operations at combined FAA and contract towered airports is
estimated to increase from 61.1 million in 2006 to 81.1 million
by 2020 and 95.9 million by 2030 ([13]).

One way to reduce delays is to expand the air transportation
infrastructure. This, however, is a very costly exercise in itself,
and furthermore can take many years to successfully
implement. Indeed, there is a consensus amongst experts in the

airline industry that infrastructure development alone will not
be enough to limit significant increases in delays above current
levels ([3]). As a result, there is a growing need to incorporate
optimization into the air traffic flow management (ATFM) in
order to minimize these delays. With reduced delays, also come
reductions in emissions, as well as improved management of
safety.

Much of the ATFM literature focuses on the traffic flows
between airports in a network, and when previous studies have
focused on optimizing operations at airports, they have largely
focused on a single aspect of the decisions made there at a
time, for example runway sequencing or the gate-holding of
departures. It is our belief that optimizing the traffic flowing
through an airport, in all its complexity, is of critical
importance; hence this is the focus of this work.

This airport-centric approach to optimizing national air
traffic is a natural one, especially in the United States since
often the most critically constrained elements of the air-traffic
system are the airports. Moreover, given the efforts of the FAA
to transfer airborne delays to ground delays through the use of
ground delay programs (GDPs), the importance of optimization
at airports further increases. GDPs come into effect when there
is inclement weather either en-route or at a flight’s destination
airport, in which case the FAA reduces that airport’s
acceptance rate (AAR), and as a result certain arrivals are
forced to be held at their origin airport. In this sense, besides
having implications at the airport being optimized itself, the
work of this paper can be used to determine AARs and thus
affect air traffic on the network level through the use of GDPs.

In this paper, we seek in particular to optimize the overall
airport surface and near terminal area operations problem,
involving the following key decisions:

a) selecting a runway configuration sequence, i.e.,
determining which runways are open at which times and
whether they will process arrivals and/or departures;

b) assigning flights to runways and determining the sequence
in which flights are processed at each runway (i.e., when
they take off or land);

c) determining the gate-holding duration of departures, if
any;

d) routing flights to their assigned runway at the desired time
and onwards within the terminal area and the near-
terminal airspace.

A. Contributions of the Paper
We present what is to the best of our knowledge the first

truly unified and tractable optimization approach to solve the
overall ATFM problem at a single airport. That is, the first
optimization approach which solves subproblems (a)-(d) above
together such that a (near-) system-optimal solution is attained
within several minutes. The model is a general one – applicable
to any airport, regardless of the runway, taxiway, or airspace
design. We feel that this is a significant contribution due to
both the size of the problem and the complexity of its
subproblems, notably the runway sequencing subproblem. As a
result of these characteristics, a naïve attempt to solve this
overall problem would be far from computationally tractable,
and it is only through our use of appropriate modeling that we
have been able overcome this tractability challenge.
Furthermore, solving the individual subproblems in isolation
using the existing literature may lead to overall solutions which
are sub-optimal, or indeed infeasible.

We present extensive computational experience using real-
world datasets for two international airports, Boston Logan
International (BOS) and Dallas/Fort Worth (DFW), which
weighs in significant evidence to support firstly the claim of
computational tractability, and secondly the claim that our
optimization can provide significant benefits for air traffic
systems.

II. BACKGROUND
There has been much work on these and related

subproblems within the aviation and optimization communities,
but this work has focused mainly on a single subproblem at a
time in isolation: Gilbo [16] presented an integer optimization
model for the arrival/departure runway balancing (ADRB)
problem by modeling runway capacity using a runway
configuration capacity envelope (RCCE). Bertsimas et al. [5]
then solved the airport runway configuration management
(RCM) problem (a) above, and the (ADRB) problem in a single
optimization model, as well as proposing an extension to the
case of airports in a metroplex with shared airspace. This work
is more strategic in nature to that of this paper in that it presents
no directive for controllers to achieve the desired balance of
arrivals and departures to be served at any moment, in terms of
specific flight assignments. Furthermore, its reliance on the
heavy machinery of RCCE may be problematic, not only due to
the difficulty in obtaining them, but also because they represent
the average maximum throughput possible for each runway
configuration, ignoring that the capacity of a configuration may
vary from time to time depending for example on the sequence
of different aircraft types at each runway. In this paper,
capacity is modeled using much more fundamental units,
resulting in greater accuracy. For example, we take as inputs
the travel speeds of aircraft, the required separation between
aircraft, and the structure of the taxiway system and near-
terminal airspace, which all go towards determining a more
precise, and time-varying, maximal throughput.

The sequencing problem of (b) above at a single runway is
known to be an application of the Traveling Repairman
Problem (TRP), which is closely related to the Traveling
Salesman Problem (TSP), differing in its objective function,
being equal to the sum of the times each city (or flight) must
wait before being arrived at (processed). This is because the
minimum separation time required between each pair of flights
depends on the type of each of the two flights, with different
aircraft types producing different wake vortices, and these must
clear sufficiently before another take-off/landing is safe to go
ahead. In particular, the TRP problem here is a special case (B-
TRPTW, to use the notation of [26], having a fixed number of
different types of aircraft (or a bounded number of locations at
which calls can arrive, using the euclidean traveling repairman
analogy), as well as time windows.

TRP and TSP have been studied in-depth, both more
generally (see for example [26]) as well as in this application.
Notably, [12], [20], [25], and [2] developed approaches which
took advantage of the fairness principle that the optimal
sequence should not differ too much from the first-come first-
served (FCFS) sequence. Recently, [24] proposed a stochastic
optimization approach to the runway scheduling problem.

There is also a substantial body of work on airport surface
management and the gate-holding of departures which relates
to subproblems (c) and (d) above. One objective here is to hold
departures at the gate, with engines off, for as long as possible
without delaying their take-off. In other words, delays in queue
at runways or elsewhere on the taxiway system are transferred
to delays at the gate. This results in less traffic on the surface,
less fuel burn, and lower emissions. See for example [14], [21],
[9], and [8]. Notably, [23] implemented a simple but effective
“N-control” policy at BOS whereby the number of aircraft on
the surface is restricted to reduce departure queue size, while
also being large enough to ensure sequencing delays are not
observed due to an insufficient pool of aircraft in queue at the
runways.

Marín [19], [22], and [18] proposed approaches to the
optimization of aircraft taxi routes, while [17], and more
recently [10], merged the sequencing problem with the taxiing
problem, recognizing as does this paper the important
interdependence between the two problems. However, their
work ignores the important and complicating matter of runway
configuration optimization.

III. OVERVIEW OF THE MODEL
In this section we present a novel binary optimization

model which represents Phase One of our two-phase approach
to solve the entirety of key air traffic flow management
decisions to be made at an airport and within its near-terminal
airspace. We shall call this the airport operations optimization
problem (AOOP). The AOOP can be characterized by the set
of decisions to be made, which comprises assigning for every
departure: i) a pushback time (and hence a gate-holding time);
ii) a runway assignment and departure fix assignment; iii) a
route from gate to assigned runway, and then to departure fix,
with timing; as well as for every arrival: i) a time at arrival fix
(which may imply a speed control policy before reaching the
fix); ii) a runway assignment and gate assignment; iii) a route
from arrival fix to assigned runway, and then to gate, with

timing. We now provide a high-level description of our two-
phase approach to solving the AOOP, as well as the
corresponding motivation.

The capacitated elements of the near-terminal area are: 1)
the gates, 2) the taxiways, 3) the runways, and 4) the near-
terminal airspace. Our approach focuses initially (in Phase
One) on the runway capacities since it is our view that these
present the key bottleneck of the system, and assumes that the
gate, taxiway and near-terminal airspace capacities are non-
binding. Under this assumption, the solution obtained in Phase
One is a complete one – optimal for the AOOP. Realizing that
this assumption may not be realistic in practice, we then relax
the assumption and make use of the Phase One solution to form
a second-phase optimization problem which is relatively easy
to solve. The solution to this second phase of optimization is
guaranteed to be feasible for the AOOP, provided flight
deadlines are not hard, which is the case in practice.

Another way we can view our two-phase approach is that in
Phase One we obtain the part of our solution corresponding to
subproblems (a) and (b), while in Phase Two we obtain the part
corresponding to subproblems (c) and (d). It is in our particular
decomposition of the AOOP into these two natural and
complimentary phases that much of our contribution lies. As
will be shown, it greatly increases computational tractability
without a significant sacrifice in optimality. Based on our belief
mentioned above about the nature of airport capacity, we might
expect the solution obtained from Phase Two to be in general
very similar to that of Phase One, and hence very close to
optimal. Indeed, the computational experience with real-world
data in Section IV will show there to be almost no loss of
optimality in the real-world instances to which we apply our
methodology.

A. Phase One
1) Data
First we detail the data requirements of the Phase One

optimization problem. We consider a time horizon T = {1, ...,
T} of approximately one hour, discretized into small intervals
of 20 seconds in length, being small enough so that proper
separation times can be achieved. We have a set of flights F,
with each flight having a weight class w (heavy, large, small, or
Boeing-757) and an orientation o (arrival or departure). The
pair i = (w, o) will be referred to as a flight type, belonging to
the set of flight types C (the index i will always refer to a flight
type in Phase One). Flight types are defined in this way since
the minimum separation time required between two flights on
the same runway will depend on these characteristics.

There is also a set of runway configurations K. Each
configuration k is described by a set of pairs {(r1, m1), ..., (rN,
mN)}, a pair comprising a runway r and a mode of operation m
(i.e., arrivals only, departures only, or mixed mode).

The following is a complete list of the data:

T = {1,…, T} = the set of time intervals comprising the time
horizon considered;

C = the set of flight types, each of which is a pair i = (w, o)
corresponding to a weight class category w and a flight
orientation (arrival/departure) o;

CA, CD = the set of flight types whose orientation is arrival,
departure, respectively;

F = FA∪FD = ∪i Fi = the set of flights (and of arrivals,
departures, flights of each type i);

R = the set of runways, each of which includes a single,
fixed, direction of operation;

Rf (Ri) = the set of runways which is feasible for flight f (or
for some flight of type i). The feasibility of a given runway for
a given flight depends on several factors, notably aircraft type
and runway dimensions;

V = the set of pairs of runways {(r1, r2),…, (r2N-1, r2N)}
where separation must be enforced between them, such as
runways which physically cross each other;

K = the set of runway configurations, each of which is a set
of pairs k = {(r1, m1),...,(rN, mN)}, where mj is the mode of
operation of runway rj. The operating mode can be arrivals
only, departures only, or “mixed mode,” in which both arrivals
and departures can be processed simultaneously;

Rk = the set of runways used by configuration k;

Irk = the set of flight types that can use runway r under
configuration k;

Ut = those runways which cannot be used at time t due, for
example, to strong crosswinds to tailwinds;

Tf
r = {𝑇f

r, 𝑇f
r +1, ..., 𝑇f

r} = the set of feasible times for
flight f to arrive at runway r, considering the flight’s starting
time and location, the shortest paths to and from r, when
unimpeded by traffic, and its desired latest processing time;

Tf
o(f) = the release time of flight f from its origin o(f) (gate or

arrival fix) into the system;

li
r = the number of time intervals constituting the runway

occupancy time of flights of type i at runway r;

sr
ij = the minimum number of time intervals of separation

required between aircraft when an aircraft of type j follows an
aircraft of type i at runway r. We refer the reader to [11] for
more details, but we note that this is always at least equal to li

r,
the runway occupancy time of the first aircraft;

s(r, r′)
ij = the minimum number of time intervals of separation

required at crossing runways when an aircraft of type j
scheduled at runway r′ follows an aircraft of type i scheduled at
runway r, if (r, r′) ∈ V;

βA
A, βA

D = constants weighting the delay cost in the air for
arrivals and departures, respectively, with βA

A > βA
D;

βG
A, βG

D = constants weighting the delay cost on the ground
for arrivals and departures, respectively;

βG = a constant weighting the delay cost at the gate before
pushback, for departures;

df
r = the distance of a shortest path for flight f from runway

r to its destination, which is either a departure fix or gate;

K = a large constant which penalizes each configuration
changeover.

2) Decision Variables
We define the following binary decision variables for our

model:

𝜔𝒌! = 1, if configuration 𝑘 is active at time 𝑡;
0, otherwise;

𝜑!
! = 1, if flight 𝑓 is assigned to runway 𝑟;

0, otherwise;

𝜓!"𝒊 = 1, if a flight of type 𝑖 arrives at runway 𝑟 at time 𝑡;
0, otherwise;

𝜒! = 1, if a change of configuration occurs at time 𝑡;
0, otherwise.

We note that one of the key ideas behind this model and its

tractability is that we have chosen to define the variables ψ by
flight type, rather than by flight, capitalizing on the fact that
separation depends only on flight type, and greatly reducing the
number of variables to O(|C||R||T| + |F||R|), rather than
O(|F||R||T|), and the number of constraints to O(|C|2|R||T|),
rather than O(|F|2|R||T|). Indeed, this modeling technique may
be applied for general bounded-TSP type problems.

3) Objective Function
Our objective is to minimize a weighted sum of delays:
minΨ = 𝛽!!𝕀 𝒊∈!! + 𝛽!!𝕀 𝒊∈!! 𝑡𝜓!"𝒊!∈!!∈!𝒊 −𝒊 ∈!

 𝛽!!𝕀 !∈!! + 𝛽!!𝕀 !∈!! 𝑇! !
! +!∈!

 𝛽!!𝕀 !∈!! + 𝛽!!𝕀 !∈!!!∈!!!∈! 𝑑!
!𝜑!

! − 𝛽!! −

𝛽! 𝑡𝜓!"𝒊 − 𝑇!
!𝜑!

!
!∈!!!∈!!!∈!!∈!𝒊𝒊∈!! +

𝐾 𝜒!!∈! .

This can be summarized in words as a summation over all

flights of the following terms: (weighted time from first time
period until touchdown/takeoff) – (weighted time from first
time period until start time) + (weighted time from
touchdown/takeoff to destination) – (weighted gate-holding
duration) + (configuration change penalty).

4) Model Formulation
The constraints of the model, which we call P1, are as

follows:

𝜔!" = 1,∀𝑡 ∈ T!∈! 1

 𝜓!"! = 0,∀𝑖 ∈ C, 𝑟 ∈ U! , 𝑡 ∈ T (2)

Constraints (1) require exactly one configuration to be used
at any time, while Constraints (2) prevent flights from
occupying runways which are not available at time t. Note that
even if a runway is not available at a given time, a
configuration may be used (as indicated by the ω variables)
which uses that runway, and its capacity is set to zero by the
latter set of constraints, rather than by the former. This method
of controlling runway and configuration availability leads to
fewer configurations being required in the model (any “sub-
configuration” of a configuration does not require additional
configuration variables). In addition, it enables us to add an
extra class of valid inequalities to strengthen the model.

 𝜓!,!!!! + 𝜓!"
! ≤ 1,∀𝑖, 𝑗 ∈ C, 𝑟 ∈ R! ∩ R! , ℎ ∈

1,… ,min 𝑠!"! − 1, 𝑡 − 1 , 𝑡 ∈ T\{1} (3)

Constraints (3) can generally be referred to as the separation
constraints, which state that if we process a flight of type i, then
we must wait at least sr

ij time periods before processing a flight
of type j, on any given runway. An important point to note here
is that these constraints correctly model the fact that the
triangle inequality is not respected in this problem. In other
words, a sequence of flights f → g → h may not be legal/safe if
we only respect the minimum separations required between
flights f and g, and between g and h separately – we also
require that the minimum separation between flights f and h be
observed.

𝜓!,!!!! + 𝜓!!!
! ≤ 1,∀𝑖, 𝑗 ∈ C, (𝑟, 𝑟!) ∈ R!×R! ∩ V, ℎ ∈

0,… ,min 𝑠!"
(!,!!) − 1, 𝑡 − 1 , 𝑡 ∈ T (4)

Constraints (4) enforce a similar separation requirement
when we have a pair of runways (r, r′) which cross over each
other. We also need to consider the case of close parallel
runways, where operations on each runway are not
independent. In this paper we take the (only slightly)
conservative approach of modeling this situation as though
there is only a single runway, although we could alternatively
include appropriate additional constraints to the model.

The final consideration regarding the separation between
flights is that runway separation alone is not enough – flights
also need to be separated throughout the airspace. In
calculating our same-runway separation rules, we have
incorporated the different flight velocities and their impact on
the separation along a common flight path of 5 nautical miles,
as in [11]. When flights use different runways and/or different
fixes, the relevant separation requirements will be enforced in
our second stage problem. Due to the nature of runway
configurations, where a general flow in one direction is
preserved, these second-stage constraints will not significantly
impact the overall optimality of our two-phase approach.

𝜓!"!!∈!∶!∈!! ≤ 1,∀𝑟 ∈ R, 𝑡 ∈ T (5)

𝜓!"! + 𝜔!" ≤ 1,∀𝑡 ∈ T, 𝑘 ∈ K, 𝑟 ∈ R! , 𝑖 ∈ I!" ∶ 𝑟 ∈ R! (6)

𝜓!"! − 𝜔!,!!!!∈!∶! ∈!!,!∈!!" ≤ 0,∀𝑖 ∈ C, 𝑟 ∈ R! , ℎ ∈
0,… ,𝑚𝑖𝑛 𝑙!! − 1,𝑇 − 𝑡 , 𝑡 ∈ T (7)

We now remind the reader that the definition of ψ is such
that ψi

rt = 1 if, and only if, a flight of type i arrives at runway r
at time t, and hence such a flight might (and in general, will)
actually occupy the runway for a longer period of time, even
though this is not directly tracked by our decision variables ψ.
Then, Constraints (5) state that only one flight may arrive at
each runway at any given time. This set of constraints, along
with Constraints (3) above, enforce the capacity of each
runway to be one at all times (recall sr

ij ≥ li
r). Constraints (6)

disallow the use of runway r for flights of type i if such use is
not allowed under configuration k. Constraints (7) state that if
we process a flight of type i at a given runway r, then that
runway must remain open for at least li

r time periods,
corresponding to the runway occupancy time of flights of type
i.

𝜑!
! = 1,∀𝑓 ∈ F (8)!∈!!

𝜑!
! ≤

!∈!!∶!∈!!,!!!!
!
!!!
!!!

𝜓!"! ≤ 𝜑!
!

!∈!!∶!∈!!,!!!!
!

!
!!! ,∀𝑖 ∈ C, 𝑟 ∈ R! , 𝑡 ∈ T (9)

Constraints (8) state that the every flight must be assigned
to some runway. Then, Constraints (9) require each flight f to
be processed at one of its feasible runways r after its earliest
possible touchdown/takeoff time. The left-hand side is equal to
the number of flights assigned to runway r which should have
been processed by time t (based on our assumed flexible
“deadlines”), and the right-hand side is equal to the maximum
number of flights assigned to runway r which could feasibly
have arrived at r by time t (recall this is based on shortest
paths). So, these constraints state that the number of flights of
type i assigned to runway r by time t must fall within this
range, for every t ∈ T. These are the only constraints that link
the ψ variables with the φ variables.

𝜒! − 𝜔!" + 𝜔!,!!! ≥ 0,∀𝑘 ∈ K, 𝑡 ∈ T\{1} (10)

Finally, Constraints (10) enforce χt = 1 if a change of
configuration occurs at time t, which happens if, and only if
there exist a k such that ωkt = 1 and ωk,t−1 = 0. Note that this is
equivalent to setting χt = 1, since χ is penalized in the objective
function and this is the only constraint on χ.

5) Remarks on the Model
• A helpful way to think about this model is to first suppose

that the taxiway/near-terminal area airspace network has
infinite capacity. In this case, all flights can travel along
their shortest paths without obstruction and hence arrive at
their assigned runway within their time-window specified
in the input data, and in particular at their assigned time (as
discussed below, this can be derived from ψ and φ). Then,
P1 gives an optimal solution to the AOOP, including the
optimal configuration schedule (through ω), the optimal
runway assignments (φ), the optimal sequencing of flights
(ψ), and implicitly an optimal routing of flights. This
routing is such that each flight: i) spends any slack time
waiting at its gate, if the flight is a departure; ii) travels
unimpeded along a shortest path from its origin to its
assigned runway; iii) reaches its assigned runway at its
assigned time; iv) travels unimpeded along a shortest path
from its assigned runway to its destination.

• A key feature of our methodology is our particular
definition of decision variables. A naïve attempt would
define variables φf

rt, being equal to one if flight f were at
runway r at time t. This, however, would result in
computational intractability as the number of flights and
time periods were to grow, especially due to the number
of constraints required to enforce minimum between-
flight separation regulations. Instead, we note that the
between-flight separation depends only on the type of
two adjacent flights, and not on their unique flight
identifiers. Here, the type is characterized by a weight-
class category and arrival/departure status. Hence, we
define our decision variables for the separation

constraints based on flight type, giving ψi
rt = 1 if a flight

of type i is at runway r at time t. As a result, we have a
significant reduction in the number of decision variables
and constraints.

• Since the variables ψ are defined by flight type, we have a
sequence of “flight type slots” at each runway, instead of
having a sequence of flights at each runway. However,
through the variables φ we also have an assignment of
flights to runways, and it is through the time-window
constraints (9) that we link these two sets of variables.
Indeed, finding flight type slots and then allocating
specific flights to these slots has also been proposed by [1]
and [24]. Inspection of constraints (9) reveals that there is
always at least one sequence of flights corresponding to a
solution of P1, and that such a sequence can be trivially
obtained from the solution, assuming flight deadlines are
not strict.

B. Phase Two
In this section we detail the second phase of our

optimization approach for the AOOP, addressing the case
when the capacity of the gates, taxiways, or airspace becomes
binding. This phase can essentially be viewed as the “routing
phase,” in which we determine a routing of flights to achieve a
runway processing schedule which is very close to that
obtained in the first phase, if not the same. In particular, we fix
the solution from Phase One to subproblems (a) and (b)
outlined in Section I and in this second phase we obtain the
solution to subproblems (c) and (d). In more detail, we present
a binary optimization problem, P2, which takes the solution
from P1 as an input and outputs a solution to the AOOP which
preserves the assignment of flights to runways and the
ordering of flights at each runway determined in Phase One,
but not necessarily the specific touchdown/takeoff times.

This approach provides the flexibility sufficient to ensure
feasibility, provided flight deadlines are not hard, while also
ensuring the solution retains the nice properties of the Phase
One solution. In the case of infeasibility, we would require the
flight deadlines used in the optimization problem P2 below to
be relaxed, and if necessary, the time horizon increased before
re-solving. The approach is informed by our belief that the
runways are the most restrictive component of capacity,
meaning that there should not be a significant loss of
optimality in this second phase. In Section IV, we shall
support this statement.

1) Data
In order to model the routing subproblem, the airport

network is represented by a directed graph with nodes
belonging to the set S, where each node represents a section of
taxiway, a runway, an airspace route, a gate, or a fix. A full list
of relevant sets and parameters, building on those above, is
given below:

S (Sf) = the set of nodes in the airport network (feasible for
flight f);

Lf
i = the set of nodes which are successors of node i for

flight f;

Pf
i = the set of nodes which are predecessors of node i for

flight f;

Ef = the set of possible end nodes of flight f;

Tf ={Tf, Tf +1, ..., Tf} = the set of feasible times for flight f
to arrive at node i, considering the flight’s starting time and
location and the shortest path to i, when unimpeded by traffic;

cf (∈ C) = the type of flight f;

of = initial node of flight f;

lf
i = the minimum amount of time flight f must spend at

node i;

uit = the capacity of node i, in flights, during time interval t.

In addition to the above data, we require several inputs
obtained from the Phase One solution. Before we detail these,
recall that the solution to P1 provides runway assignments for
each flight, but only times of flight types at their assigned
runways. It does not provide times at which individual flights
arrive at their assigned runways (and therefore does not
completely specify the flight sequence at each runway) – there
is some freedom in assigning specific flights based on the flight
type assignments. There is not complete freedom, however. In
particular, we can only make swaps amongst flights of the
same type which are assigned to the same runway, and only
ones which respect the relevant time window constraints.
Although one can imagine many possible schemes for
determining this ordering, this is not a focus of this chapter and
we shall now assume we have fixed such an ordering.

rf (∈ Rf) = the assigned runway node at which flight f
should be processed;

Hr = {(f1, f2), (f2, f3), …, (fn−1, fn)} = the set of pairs of
successive flights to be processed on runway r, for each r ∈ R;

H(r,r′) = {(f1, f2), (f2, f3), …, (fn−1, fn)} = the set of pairs of
successive flights (f, g) with f being processed on runway r and
g being processed on r′, for every pair of runways (r, r′) at
which pairwise separation must be enforced;

Wi ={(f1, f2), (f2, f3), …, (fn−1, fn)} = the set of pairs of flights
(f, g) which are processed at different runways and which pass
through the same fix i in the order f → g “within close
proximity” of each other, and require si

c(f),c(g) time intervals of
separation there.

Q = {(f1, g1), ..., (fk, gk)} = the set of pairs of flights (f, g)
such that the following hold:
i) flight f is scheduled to use runway r in configuration A;
ii) flight g is scheduled to use runway q in configuration B;
iii) configuration A is scheduled for use before configuration

B;
iv) runway r is not used in configuration B in a mode of

operation that would allow flight f to be processed then;
v) runway q is not used in configuration A in a mode of

operation that would allow flight g to be processed then.

Figure 1 gives an example of an element of Q. This set will
be used to ensure that configuration requirements are respected,
since they are not modeled explicitly in the model P2 below.

FIGURE 1: Example illustrating an element (f, g) belonging to
the set Q at BOS. The arrows indicate the direction and mode
of traffic as dictated by the configuration in use. Suppose in
the solution to P1 we have: i) configuration A is used first,
then configuration B, ii) flight f is assigned to runway 9, and
flight g to runway 27. Since runway 27 is not used in
configuration A, we have (f, g) ∈ Q.

2) Decision Variables
We have the following decision variables:

𝑧!"
! = 1, if flight 𝑓 reaches node 𝑖 by time 𝑡;

0, otherwise.

𝑥!"
! = 1, if flight 𝑓 is at node 𝑖 at time 𝑡;

0, otherwise.

Note that the z variables are defined as “by” variables in the
spirit of [7], which will lead to nice properties in the model
formulation.

3) Objective Function
The objective function, which we omit for brevity, is to

minimize the same quantity as the P1 objective function – the
weighted sum over the total time it takes for each flight to go
through the system, between the gates and the arrival/departure
fixes.

4) Model Formulation
The following constraints complete the binary optimization
problem P2, which routes flights to achieve the schedule of
assigned runways and assigned flight sequences at each runway
which were found in P1. The model is based on the models of
[6] and [7], which were presented to solve the network ATFM
problem with and without re-routing, respectively.

𝑥!"
! − 𝑧!"

! − 𝑧!"
!

!∈!!
!:!!!!

!

= 1,∀𝑓 ∈ F, j ∈ S! , 𝑡 ∈ T!
! (11)

𝑥!"
!

!∈!:!∈!!,!∈!!
!

≤ 𝑢!" ,∀j ∈ S\R, 𝑡 ∈ T (12)

Constraints (11) link the x variables with the z variables,
with xf

jt being forced equal to one only if at time t flight f has
arrived at node j but not yet at one of its successor nodes.
Constraints (12) then limit the number of flights at any node at

Configuration“A”

4L

4R

9

f

Configuration
“B”

32

33L

27
g

Figure 3-1: Example illustrating an element (f, g) belonging to the set Q at BOS.
The arrows indicate the direction and mode of traffic as dictated by the configuration
in use. Suppose in the solution to P3-1 we have: i) configuration A is used first, then
configuration B, ii) flight f is assigned to runway 9, and flight g to runway 27. Since
runway 27 is not used in configuration A, we have (f, g) ∈ Q.

rf(∈ Rf) = the assigned runway node at which flight f should be processed;

Q = {(f1, g1), . . . , (fk, gk)} = the set of pairs of flights (f, g) such that

the following hold:

i) flight f is scheduled to use runway r in configuration A;

ii) flight g is scheduled to use runway q in configuration B;

iii) configuration A is scheduled for use before configuration B;

iv) runway r is not used in configuration B in a mode of operation

that would allow flight f to be processed then;

v) runway q is not used in configuration A in a mode of operation

that would allow flight g to be processed then.

Figure 3-1 gives an example of an element of Q. This set will be

used to ensure that configuration requirements are respected, since

they are not modeled explicitly in the model P3-2 below.

75

a given time to the node’s capacity, excluding runways (we
take care of these in later constraints, using properties of the
solution from P1).
𝑧!"
! − 𝑧

!,!!!!
!

!

!∈!!
!:!!!!

!!!!
!

≤ 0,∀𝑓 ∈ F, j ∈ S!\{𝑜!}, 𝑡 ∈ T!
! (13)

𝑧
!!!
!

! − 𝑧
!!!

!
!

!∈!!
!

≤ 0,∀𝑓 ∈ F, i ∈ S!\E! (14)

𝑧
!!!

!
!

!∈!!

= 1,∀𝑓 ∈ F (15)

Constraints (13) state that flight f cannot reach a node j by
time t unless it has reached one of its predecessors i by time t
− lf

i. Constraints (14) require that a flight f must eventually
reach some follower of any node which it reaches, unless that
node is its destination, in which case Constraints (15) state that
the flight must reach one of its feasible destinations.

𝑧
!!!

!
!

!∈!!
!

≤ 1,∀𝑓 ∈ F, i ∈ S! (16)

𝑧!,!!!
! − 𝑧!"

! ≤ 0,∀𝑓 ∈ F, j ∈ S! , 𝑡 ∈ T!
!\{𝑇!

!} (17)
𝑧
!!!!!

!
! = 1,∀𝑓 ∈ F (18)

Constraints (16) state that a flight f can only reach a single
successor of any node i (note that the network representation
therefore requires careful construction). Constraints (17)
enforce monotonicity on the z variables, owing to their
definition. Constraints (18) initialize each flight at its origin.

𝑧
!!!!!

!
! = 1,∀𝑓 ∈ F (19)

𝑧!,!!!! ! ,! !
!

! − 𝑧!"
! ≤ 0,∀𝑟 ∈ R, g, f ∈ H! ,∀𝑡 ∈ T: 𝑡

≥ 𝑇!
! and t + s! ! ,!(!)

! ∈ T!
! (20)

𝑧
!!,!!!! ! ,!(!)

(!,!!)
! − 𝑧!"

! ≤ 0,∀(𝑟, 𝑟!) ∈ V, g, f ∈ H(!,!!),∀𝑡 ∈ T: 𝑡

≥ 𝑇!
! and t + s! ! ,!(!)

(!,!!) ∈ T!!
! (21)

Constraints (19) force a flight to use its assigned runway
from P1. Constraints (20) state that flights must be processed
at each runway in the order determined from P1, and be
separated by at least the minimum separation time, while
Constraints (21) enforce these same ordering and separation
requirements for the pairs of flights scheduled on
intersecting/closely-spaced parallel runways.

𝑧
!,!!!! ! ,!(!)

!
! − 𝑧!"

! ≤ 0,∀ 𝑓,𝑔 ∈ W! , 𝑖 ∈ S,∀𝑡

∈ T!
!: t + s! ! ,!(!)

! ∈ T!
! (22)

Constraints (22) ensure that flights which do not use a
common runway (the separation is already incorporated in
Phase One for those that use a common runway) are
adequately separated at their arrival/departure fix. Note that
since arrivals and departures use separate fixes in general, the
number of such constraints will be small. All three sets of
constraints (20), (21) and (22) are of a much nicer form than
usual separation constraints, for two reasons. First, there are
only a limited number of pairs of flights for which the
constraints need be applied, as determined by the Phase One

solution through the sets Hr, H(r,r′) and W. Second, due to the
form of the constraints, which state that one set of the “by”
variables z must dominate another set by a specified amount.
Indeed, in [9] it was shown that such constraints were facet-
defining for the polyhedron corresponding to the convex hull
of integer solutions to a very similar integer optimization
problem.
𝑧
!!,!!!!!

!
! − 𝑧!!,!

! ≤ 0,∀ g, f ∈ Q,∀𝑡 ∈ T: 𝑡 ≥ 𝑇!!
! and t + l!!

!

∈ T!!
! (23)

𝑥!"
! = 0,∀𝑓 ∈ F, 𝑟 ∈ U! , 𝑡 ∈ T!

! (24)
Constraints (23) ensure that the configuration requirements

are respected by ensuring that we process all pairs of flights in
the set Q in the specified order. Note that we have defined the
set Q to be as small as possible while still preventing the
operation of illegal configurations, expanding the feasible
space of P2. Constraints (24) state that a flight may not be
processed at a given runway when that runway is not available
(for example due to the weather conditions).

𝑧!"
! = 𝑧

!!!
!

! ,∀𝑓 ∈ F, 𝑖 ∈ S! , 𝑡 ∈ 𝑇!
!
+ 1,… ,𝑇 (25)

Finally, Constraints (25) extend the z variables so that they
are constant at every node j beyond the final time at which a
flight can feasibly arrive at that node. The reason we need
these variables to exist beyond the upper time window is to
ensure Constraints (11) correctly define the variables x in the
boundary case – if we do not do this, the term in parentheses
might be equal to one, even though flight f is not at node j at
time t, due to the non-existence of the variable zf

it.

IV. COMPUTATIONAL EXPERIENCE
In this section we present computational experience which

seeks to answer several key questions regarding the
effectiveness of the solution approach we have presented, in
particular:

• Are our key assumptions valid?

• Is the methodology computationally tractable?

• Would the use of the methodology result in significant
benefits in practice?

In order to answer these questions, we focus on two
international airports: BOS and DFW. We utilize data from
historic days of operation at these airports, being 11/02/2009 at
DFW and 9/28/2010 at BOS.

All experiments were performed using the software package
GUROBI 5.0 on a computer with an Intel® Core™ i7-860
Processor (8MB Cache, 2.80GHz) and 16GB DDR3 RAM,
running Ubuntu Linux 10.04. The solver time limit was set to
1200s for each of P1 and P2.

1) Model Validation and Computational Tractability
Tables 1 and 2 present resulting computation times and

solution values for several historic time periods. The purpose of
these two tables is i) to demonstrate the suitability of our two-
stage approach, and ii) to demonstrate computational
tractability on real-world instances.

The first thing to note is that the guarantee of optimality
(obtained by comparing solutions from Phase One and Phase
Two, this value is an upper bound on the optimality gap of our
feasible solution) is always very good – aside from the greatest
difference of 2.1%, the others are at most 1.1%, and in the
former case 1% of the gap is due to P2 not being solved to
optimality. This indicates that our two-phase approach results
in solutions which are very close to optimal. This supports our
fundamental belief that the runways represent the key
bottleneck of the system and justifies our particular two-phase
approach.

The second observation we make is that the computation
times are low across all instances. However, in some instances
P2 can take significantly longer than the median. In these cases,
we typically have a good solution much earlier that at
termination.

TABLE 1 Computational Tractability and a Bound on
the Optimality Gap Using Data from DFW on 11/2/2009

Flights Optimality
Bound

Computational Times (s)

P1 P2 Total

155 2.1 120 1286 1430
175 1.1 372 1071 1465
153 0.6 64 129 211
155 0.7 75 284 379
168 0.5 340 187 546
171 0.7 299 284 600
159 0.9 252 533 806
153 0.6 241 205 463

TABLE 2 Computational Tractability and a Bound on
the Optimality Gap Using Data from BOS on 9/28/2010

Flights Optimality
Bound

Computational Times (s)

P1 P2 Total

90 0.2 252 147 418
91 0.4 233 142 388
80 0.1 143 16 168
63 0.6 93 52 161
63 0.3 198 15 229
71 1.3 246 1200 1457
59 0.5 255 59 325
63 0.3 161 17 187

2) Benefits Assessment
Above we have demonstrated that our approach leads to

solutions which are very close to optimal in a practical amount
of time. Now we aim to assess the potential benefit that can be
gained in practice from using the methodology. In Tables 3 and
4 we present statistics both for what actually occurred on the

historic days of operation considered and for our optimized
schedule. In particular, we compare the means of the times
taken for flights to traverse part of the system – for arrivals, we
record the time from touch-down until arrival at the gate, and
for departures we record the time from pushback until take-off.
Ideally, we would present the overall system traversal times,
from fix to gate or from gate to fix, but due to lack of historical
fix-at times we could not make a comparison of these times.
Nevertheless, the results presented give a good indication of the
model’s benefits. Indeed, since the objective function weights β
place a higher emphasis on reducing airborne delays (as is
appropriate), it is fair to say that the ensuing benefits
assessment is conservative, since it compares the less-
prioritized surface traversal times.

TABLE 3 Comparison of Optimized and Historic
Surface Times at DFW on 11/2/2009
Optimized Surface Times

(min./flight)
Historic Surface Times

(min./flight)

Dep.
G.H. Dep. Arr. Avg. Dep. Arr. Avg.

1.8 9.5 10.8 10.2 13 8.9 10.7
2.2 9.2 10.7 9.9 12.8 9.3 11.2
1 9.5 10.6 10 13.5 9.2 11.6
1 9.6 11.1 10.4 13.5 9 11

0.9 9.3 11.8 10.5 13 10.1 11.6
2.1 10 11.4 10.7 13.6 8.9 11.3
1.3 9.1 10.8 10 13.9 9.1 11.4
0.7 9 11.1 10.1 13.4 9.6 11.2

Overall, we can see that in all cases the average optimized
ground times are lower than the historic ones, with reductions
of 5-14% at DFW and 7-25% at BOS. As mentioned above, the
reductions to air delays could be expected to be at least as good
as this. For arrivals, however, surface traversal times are in
general worse in the optimized solution. However, this is due to
the relatively low weight we place on arrival taxi times – the
model sacrifices these slightly for the sake of reduced air
delays and departure taxi times. Finally, we note that there is
indeed a non-negligible element of gate-holding of departures,
which appears to be positively correlated with the number of
flights (and hence congestion), as would be expected.

TABLE 4 Comparison of Optimized and Historic
Surface Times at BOS on 9/28/2010
Optimized Surface Times

(min./flight)
Historic Surface

Times (min./flight)

Dep.
G.H. Dep. Arr. Avg. Dep. Arr. Avg.

1.6 13.7 4.4 9.3 18.7 5.2 12.4
0.8 14 4.5 9.6 16.7 6.1 11.6
2.2 16.4 5 12.2 17.6 5.9 13.1
0.5 16.6 4.9 10.3 18.2 6.5 12.2
0.5 16 5 10.1 18.5 4.4 10.9

1.3 11.6 8.2 10.1 16.6 5.1 11.4
2.6 13.8 4.6 8.5 14.7 5.8 9.9
0.9 16.2 4.9 10.5 17.1 6.6 11.3

3) Summary of Findings
We now return to summarize our answers to the questions

introduced at the beginning of this section, using the above
computational experience at DFW and BOS.

• Our fundamental assumption about the nature of airport
capacity is a reasonable one, as demonstrated by the small
differences observed between the values of the first and
second phases of optimization.

• The computational tractability of the approach is
promising for possible implementation in the future, with
the complete optimization typically taking 5-10 minutes on
a desktop computer, and always less than half an hour.

• The methodology leads to significant reductions in delays
from the levels historically observed. This is also results in
increased throughput, less congestion of the airport surface
and near-terminal airspace, less fuel burn and hence
reduced fuel costs and associated emissions.

CONCLUSION
We have presented a novel, integrated approach to solving

the entirety of key air traffic flow management problems faced
at an airport. Through computational experiments using historic
data from BOS and DFW airports, we have shown the
methodology to be both tractable (in a practical sense) and of
significant potential benefit. The models have the potential to
influence ATFM on a very broad scale when one considers the
optimization of a nationwide or supranational airspace as a
combination of optimizations of through-airport flows, the
airports being where many important and difficult decisions
need to be made.

We note two important points related to any potential
implementation of the methodology outlined in this paper.
Firstly, we have assumed all data inputs to be deterministically
known, keeping the focus of the work away from the dynamic
and uncertain nature of the real-world environment in which
such a methodology could be used. Secondly, we have not
considered the aspect of fairness between the different agents
involved – it is a possibility, for example, that different airlines
will be treated differently by a “system-optimal” solution. Both
of these represent key areas for future research. Nevertheless,
the methodology we have developed represents a significant
step towards improving ATFM at airports.

ACKNOWLEDGMENT
This work was supported by MIT Lincoln Laboratory. We

would like to thank James Kuchar, Bill Moser, Tom Reynolds,
Ngaire Underhill and Mark Weber of MIT Lincoln Laboratory
for their assistance with data. We would also like to thank Mr
Ross Anderson and Dr Shubham Gupta for helpful discussions.

REFERENCES

[1] Ioannis Anagnostakis and John-Paul Clarke. Runway operations
planning: A two-stage solution methodology. The 36th Hawaii
International Conference on System Sciences, HI, 2003.

[2] H. Balakrishnan and B. Chandran. Algorithms for scheduling runway
operations under constrained position shifting. Operations Research,
58(6), 2010.

[3] Michael Ball, Cynthia Barnhart, Martin Dresner, Mark Hansen, Kevin
Neels, Amedeo Odoni, Everett Peterson, Lance Sherry, Antonio Trani,
and Bo Zou. Total delay impact study – a comprehensive assessment of
the costs and impacts of flight delay in the united states. Technical
report, NEXTOR, November 2010. Accessed at
http://www.isr.umd.edu/NEXTOR/pubs/TDI Report Final 11 03 10.pdf.

[4] Dimitris Bertsimas and Michael Frankovich. Unified optimization of
traffic flows through airports. Unpublished, 2012.

[5] Dimitris Bertsimas, Michael Frankovich, and Amedeo Odoni. Optimal
selection of airport runway configurations. Operations Research,
59(6):1407–1419, 2011.

[6] Dimitris Bertsimas, Guglielmo Lulli, and Amedeo Odoni. An integer
optimization approach to large-scale air traffic flow management.
Operations Research, 59(1):211–227, 2011.

[7] Dimitris Bertsimas and Sarah Stock-Patterson. The air traffic flow
management problem with enroute capacities. Operations Research,
46(3):406–422, 1998.

[8] P. Burgain. On the control of airport departure processes. PhD thesis,
Georgia Institute of Technology, 2010.

[9] F. Carr. Stochastic modeling and control of airport surface traffic.
Master’s thesis, Massachusetts Institute of Technology, 2001.

[10] G.L. Clare and A.G. Richards. Optimization of taxiway routing and run-
way scheduling. IEEE Transactions on Intelligent Transportation
Systems, 12(4):1000–1013, December 2011.

[11] R. de Neufville and A. Odoni. Airport systems: Planning, Design, and
Manage- ment. McGraw-Hill, New York, November 2003.

[12] Roger G. Dear. The dynamic scheduling of aircraft in the near terminal
area, research report r76-9. Technical report, Flight Transportation
Laboratory, Massachussetts Insitute of Technology, Cambridge, MA,
September 1976.

[13] FAA. Long-range aerospace forecasts fiscal years 2020, 2025 and 2030,
September 2007. Accessed at http://www.faa.gov/about/office
org/headquarters offices/ apl/aviation forecasts/long-range
forecasts/media/long07.pdf.

[14] E. R. Feron, R. J. Hansman, A. R. Odoni, R. B. Cots, B. Delcaire, W. D.
Hall, H. R. Idris, A. Muharremoglu, and N. Pujet. The departure planner:
A conceptual discussion. Technical report, Massachusetts Institute of
Technology, 1997.

[15] Michael J. Frankovich. Air Traffic Flow Management at Airports: A
Unified Optimization Approach. PhD thesis, Operations Research
Center, Massachusetts Institute of Technology, Cambridge, MA, 2012.

[16] E. P. Gilbo. Optimizing airport capacity utilization in air traffic flow
management subject to constraints at arrival and departure fixes. IEEE
Transactions on Control Systems Technology, 5(5):490–503, 1997.

[17] J-B. Gotteland, R. Deau, and N. Durand. Airport surface management
and runways scheduling. 8th USA/Europe Air Traffic Management
R&D Seminar, Napa, CA, 2009.

[18] Waqar Malik, Gautam Gupta, and Yoon Jung. Managing departure
aircraft release for efficient airport surface operations. AIAA Guidance,
Navigation, and Control Conference, Toronto, Ontario, Canada, 2010.

[19] Ángel G. Marín. Airport management: Taxi planning. Annals of
Operations Research, 143:191–202, 2006.

[20] Harilaos N. Psaraftis. A dynamic programming approach for sequencing
groups of identical jobs. Operations Research, 28(6):1347–1359, 1980.

[21] N. Pujet, B. Delcaire, and E. Feron. Input-output modeling and control
of the departure process of congested airports. AIAA Guidance,
Navigation, and Control Conference and Exhibit, pages 1835–1852,
Portland, OR, 1999.

[22] S. Rathinam, J. Montoya, and Y. Jung. An optimization model for
reducing aircraft taxi times at the dallas fort worth international airport.
26th International Congress of the Aeronautical Sciences (ICAS), pages
14–19, 2008.

[23] I. Simaiakis, H. Khadilkar, H. Balakrishnan, T. G. Reynolds, R. J.
Hansman, B. Reilly, and S. Urlass. Demonstration of reduced airport
congestion through pushback rate control. Technical Report ICAT-2011-
2, MIT International Center for Air Transportation (ICAT), January
2011.

[24] Gustaf Sölveling, Senay Solak, John-Paul Clarke, and Ellis Johnson.
Runway operations optimization in the presence of uncertainties. Journal
of Guidance, Control, and Dynamics, 34(5), 2011.

[25] Dionyssios A. Trivizas. Parallel parametric combinatorial search – its
application to runway scheduling. PhD thesis, Flight Transportation
Laboratory, Massachusetts Institute of Technology, Cambridge, MA,
1987.

[26] John N. Tsitsiklis. Special cases of traveling salesman and repairman
problems with time windows. Networks, 22:263–282, 1992.

AUTHOR BIOGRAPHY
Dimitris J. Bertsimas is the Boeing Leaders for Global Operations

Professor of Management at Massachusetts Institute of Technology (MIT), the
codirector of the Operations Research Center at MIT, and a co-founder of
Aviation Edge, LLC. He is also a member of the National Academy of
Engineering. His research interests include discrete, robust, and stochastic
optimization and their applications.

Michael J. Frankovich received his PhD in Operations Research from

the Massachusetts Institute of Technology in 2012. He is a co-founder of
Aviation Edge, LLC, and is interested in optimization and its applications in
transportation, notably in the airline industry.

