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Abstract—We present a novel integer optimization approach 

to optimize in a tractable and unified manner the airport 
operations optimization problem (AOOP). This includes solving 
the entirety of key air traffic flow management (ATFM) 
problems faced at an airport: a) selecting a runway configuration 
sequence, i.e., determining which runways are open at which 
times and in which mode they operate; b) assigning flights to 
runways and determining the sequence in which flights are 
processed (i.e., when they take off or land); c) determining the 
gate-holding duration of departures; and d) routing flights to 
their assigned runway and onwards within the terminal area and 
the near-terminal airspace. The key contribution of this paper is 
the modeling of these problems, which until present have been 
studied mainly in isolation, under a framework which is both 
unified and tractable. This allows the possibility of obtaining 
system-optimal solutions in a practical amount of time. 
Furthermore, the approach is implemented on historic datasets 
from both Boston Logan International (BOS) and Dallas/Fort 
Worth (DFW) airports. Computational experience indicates that 
significant improvements can be achieved from this optimization, 
and that computational tractability is such that real-world 
implementation is possible. 

Keywords-air traffic flow management; integer programming 
applications; reduced emissions, ground delay; airborne delay; 
runway separation; gate holding; departure metering; 
configuration selection; taxi routing. 

I.  INTRODUCTION 
In 2007, the cost of delays to US domestic flights on major 

airlines was estimated to be $8.3 billion, and the cost to 
passengers $16.7 billion ([3]). Reducing theses delays and their 
associated costs represents a significant challenge for the 
struggling airline industry and in particular for the Federal 
Aviation Administration (FAA) – not only to increase 
profitability for airlines, many of which presently operate at a 
loss, but also to improve the experience for passengers. 
Furthermore, the importance of addressing these delays is 
emphasized by the fact that the total number of air traffic 
operations at combined FAA and contract towered airports is 
estimated to increase from 61.1 million in 2006 to 81.1 million 
by 2020 and 95.9 million by 2030 ([13]). 

One way to reduce delays is to expand the air transportation 
infrastructure. This, however, is a very costly exercise in itself, 
and furthermore can take many years to successfully 
implement. Indeed, there is a consensus amongst experts in the 

airline industry that infrastructure development alone will not 
be enough to limit significant increases in delays above current 
levels ([3]). As a result, there is a growing need to incorporate 
optimization into the air traffic flow management (ATFM) in 
order to minimize these delays. With reduced delays, also come 
reductions in emissions, as well as improved management of 
safety. 

Much of the ATFM literature focuses on the traffic flows 
between airports in a network, and when previous studies have 
focused on optimizing operations at airports, they have largely 
focused on a single aspect of the decisions made there at a 
time, for example runway sequencing or the gate-holding of 
departures. It is our belief that optimizing the traffic flowing 
through an airport, in all its complexity, is of critical 
importance; hence this is the focus of this work. 

This airport-centric approach to optimizing national air 
traffic is a natural one, especially in the United States since 
often the most critically constrained elements of the air-traffic 
system are the airports. Moreover, given the efforts of the FAA 
to transfer airborne delays to ground delays through the use of 
ground delay programs (GDPs), the importance of optimization 
at airports further increases. GDPs come into effect when there 
is inclement weather either en-route or at a flight’s destination 
airport, in which case the FAA reduces that airport’s 
acceptance rate (AAR), and as a result certain arrivals are 
forced to be held at their origin airport. In this sense, besides 
having implications at the airport being optimized itself, the 
work of this paper can be used to determine AARs and thus 
affect air traffic on the network level through the use of GDPs. 

In this paper, we seek in particular to optimize the overall 
airport surface and near terminal area operations problem, 
involving the following key decisions: 

a) selecting a runway configuration sequence, i.e., 
determining which runways are open at which times and 
whether they will process arrivals and/or departures;  

b) assigning flights to runways and determining the sequence 
in which flights are processed at each runway (i.e., when 
they take off or land);  

c) determining the gate-holding duration of departures, if 
any;  



d) routing flights to their assigned runway at the desired time 
and onwards within the terminal  area and the near-
terminal airspace.  

A. Contributions of the Paper 
We present what is to the best of our knowledge the first 

truly unified and tractable optimization approach to solve the 
overall ATFM problem at a single airport. That is, the first 
optimization approach which solves subproblems (a)-(d) above 
together such that a (near-) system-optimal solution is attained 
within several minutes. The model is a general one – applicable 
to any airport, regardless of the runway, taxiway, or airspace 
design. We feel that this is a significant contribution due to 
both the size of the problem and the complexity of its 
subproblems, notably the runway sequencing subproblem. As a 
result of these characteristics, a naïve attempt to solve this 
overall problem would be far from computationally tractable, 
and it is only through our use of appropriate modeling that we 
have been able overcome this tractability challenge. 
Furthermore, solving the individual subproblems in isolation 
using the existing literature may lead to overall solutions which 
are sub-optimal, or indeed infeasible.  

We present extensive computational experience using real-
world datasets for two international airports, Boston Logan 
International (BOS) and Dallas/Fort Worth (DFW), which 
weighs in significant evidence to support firstly the claim of 
computational tractability, and secondly the claim that our 
optimization can provide significant benefits for air traffic 
systems. 

II. BACKGROUND 
There has been much work on these and related 

subproblems within the aviation and optimization communities, 
but this work has focused mainly on a single subproblem at a 
time in isolation: Gilbo [16] presented an integer optimization 
model for the arrival/departure runway balancing (ADRB) 
problem by modeling runway capacity using a runway 
configuration capacity envelope (RCCE). Bertsimas et al. [5] 
then solved the airport runway configuration management 
(RCM) problem (a) above, and the (ADRB) problem in a single 
optimization model, as well as proposing an extension to the 
case of airports in a metroplex with shared airspace. This work 
is more strategic in nature to that of this paper in that it presents 
no directive for controllers to achieve the desired balance of 
arrivals and departures to be served at any moment, in terms of 
specific flight assignments. Furthermore, its reliance on the 
heavy machinery of RCCE may be problematic, not only due to 
the difficulty in obtaining them, but also because they represent 
the average maximum throughput possible for each runway 
configuration, ignoring that the capacity of a configuration may 
vary from time to time depending for example on the sequence 
of different aircraft types at each runway. In this paper, 
capacity is modeled using much more fundamental units, 
resulting in greater accuracy. For example, we take as inputs 
the travel speeds of aircraft, the required separation between 
aircraft, and the structure of the taxiway system and near-
terminal airspace, which all go towards determining a more 
precise, and time-varying, maximal throughput. 

The sequencing problem of (b) above at a single runway is 
known to be an application of the Traveling Repairman 
Problem (TRP), which is closely related to the Traveling 
Salesman Problem (TSP), differing in its objective function, 
being equal to the sum of the times each city (or flight) must 
wait before being arrived at (processed). This is because the 
minimum separation time required between each pair of flights 
depends on the type of each of the two flights, with different 
aircraft types producing different wake vortices, and these must 
clear sufficiently before another take-off/landing is safe to go 
ahead. In particular, the TRP problem here is a special case (B-
TRPTW, to use the notation of [26], having a fixed number of 
different types of aircraft (or a bounded number of locations at 
which calls can arrive, using the euclidean traveling repairman 
analogy), as well as time windows. 

TRP and TSP have been studied in-depth, both more 
generally (see for example [26]) as well as in this application. 
Notably, [12], [20], [25], and [2] developed approaches which 
took advantage of the fairness principle that the optimal 
sequence should not differ too much from the first-come first-
served (FCFS) sequence. Recently, [24] proposed a stochastic 
optimization approach to the runway scheduling problem. 

There is also a substantial body of work on airport surface 
management and the gate-holding of departures which relates 
to subproblems (c) and (d) above. One objective here is to hold 
departures at the gate, with engines off, for as long as possible 
without delaying their take-off. In other words, delays in queue 
at runways or elsewhere on the taxiway system are transferred 
to delays at the gate. This results in less traffic on the surface, 
less fuel burn, and lower emissions. See for example [14], [21], 
[9], and [8]. Notably, [23] implemented a simple but effective 
“N-control” policy at BOS whereby the number of aircraft on 
the surface is restricted to reduce departure queue size, while 
also being large enough to ensure sequencing delays are not 
observed due to an insufficient pool of aircraft in queue at the 
runways. 

Marín [19], [22], and [18] proposed approaches to the 
optimization of aircraft taxi routes, while [17], and more 
recently [10], merged the sequencing problem with the taxiing 
problem, recognizing as does this paper the important 
interdependence between the two problems. However, their 
work ignores the important and complicating matter of runway 
configuration optimization. 

III. OVERVIEW OF THE MODEL 
In this section we present a novel binary optimization 

model which represents Phase One of our two-phase approach 
to solve the entirety of key air traffic flow management 
decisions to be made at an airport and within its near-terminal 
airspace. We shall call this the airport operations optimization 
problem (AOOP). The AOOP can be characterized by the set 
of decisions to be made, which comprises assigning for every 
departure:  i) a pushback time (and hence a gate-holding time); 
ii) a runway assignment and departure fix assignment;  iii) a 
route from gate to assigned runway, and then to departure fix, 
with timing; as well as for every arrival:  i) a time at arrival fix 
(which may imply a speed control policy before reaching the 
fix); ii) a runway assignment and gate assignment;  iii) a route 
from arrival fix to assigned runway, and then to gate, with 



timing. We now provide a high-level description of our two-
phase approach to solving the AOOP, as well as the 
corresponding motivation.  

The capacitated elements of the near-terminal area are: 1) 
the gates, 2) the taxiways, 3) the runways, and 4) the near-
terminal airspace. Our approach focuses initially (in Phase 
One) on the runway capacities since it is our view that these 
present the key bottleneck of the system, and assumes that the 
gate, taxiway and near-terminal airspace capacities are non-
binding. Under this assumption, the solution obtained in Phase 
One is a complete one –  optimal for the AOOP. Realizing that 
this assumption may not be realistic in practice, we then relax 
the assumption and make use of the Phase One solution to form 
a second-phase optimization problem which is relatively easy 
to solve. The solution to this second phase of optimization is 
guaranteed to be feasible for the AOOP, provided flight 
deadlines are not hard, which is the case in practice.  

Another way we can view our two-phase approach is that in 
Phase One we obtain the part of our solution corresponding to 
subproblems (a) and (b), while in Phase Two we obtain the part 
corresponding to subproblems (c) and (d).  It is in our particular 
decomposition of the AOOP into these two natural and 
complimentary phases that much of our contribution lies. As 
will be shown, it greatly increases computational tractability 
without a significant sacrifice in optimality. Based on our belief 
mentioned above about the nature of airport capacity, we might 
expect the solution obtained from Phase Two to be in general 
very similar to that of Phase One, and hence very close to 
optimal. Indeed, the computational experience with real-world 
data in Section IV will show there to be almost no loss of 
optimality in the real-world instances to which we apply our 
methodology.  

A. Phase One 
1) Data 
First we detail the data requirements of the Phase One 

optimization problem. We consider a time horizon T = {1, ..., 
T} of approximately one hour, discretized into small intervals 
of 20 seconds in length, being small enough so that proper 
separation times can be achieved. We have a set of flights F, 
with each flight having a weight class w (heavy, large, small, or 
Boeing-757) and an orientation o (arrival or departure). The 
pair i = (w, o) will be referred to as a flight type, belonging to 
the set of flight types C (the index i will always refer to a flight 
type in Phase One). Flight types are defined in this way since 
the minimum separation time required between two flights on 
the same runway will depend on these characteristics. 

There is also a set of runway configurations K. Each 
configuration k is described by a set of pairs {(r1, m1), ..., (rN, 
mN)}, a pair comprising a runway r and a mode of operation m 
(i.e., arrivals only, departures only, or mixed mode). 

The following is a complete list of the data: 

T = {1,…, T} = the set of time intervals comprising the time 
horizon considered;  

C = the set of flight types, each of which is a pair i = (w, o) 
corresponding to a weight class category w and a flight 
orientation (arrival/departure) o; 

CA, CD = the set of flight types whose orientation is arrival, 
departure, respectively; 

F = FA∪FD = ∪i Fi = the set of flights (and of arrivals, 
departures, flights of each type i); 

R = the set of runways, each of which includes a single, 
fixed, direction of operation; 

Rf (Ri) = the set of runways which is feasible for flight f (or 
for some flight of type i). The feasibility of a given runway for 
a given flight depends on several factors, notably aircraft type 
and runway dimensions; 

V = the set of pairs of runways {(r1, r2),…, (r2N-1, r2N)} 
where separation must be enforced between them, such as 
runways which physically cross each other; 

K = the set of runway configurations, each of which is a set 
of pairs k = {(r1, m1),...,(rN, mN)}, where mj is the mode of 
operation of runway rj. The operating mode can be arrivals 
only, departures only, or “mixed mode,” in which both arrivals 
and departures can be processed simultaneously; 

Rk = the set of runways used by configuration k; 

Irk = the set of flight types that can use runway r under 
configuration k; 

Ut = those runways which cannot be used at time t due, for 
example, to strong crosswinds to tailwinds; 

Tf
r = {𝑇f

r, 𝑇f
r +1, ..., 𝑇f

r} = the set of feasible times for 
flight f to arrive at runway r, considering the flight’s starting 
time and location, the shortest paths to and from r, when 
unimpeded by traffic, and its desired latest processing time; 

Tf
o(f) = the release time of flight f from its origin o(f) (gate or 

arrival fix) into the system;  

li
r = the number of time intervals constituting the runway 

occupancy time of flights of type i at runway r; 

sr
ij = the minimum number of time intervals of separation 

required between aircraft when an aircraft of type j follows an 
aircraft of type i at runway r. We refer the reader to [11] for 
more details, but we note that this is always at least equal to li

r, 
the runway occupancy time of the first aircraft; 

s(r, r′)
ij = the minimum number of time intervals of separation 

required at crossing runways when an aircraft of type j 
scheduled at runway r′ follows an aircraft of type i scheduled at 
runway r, if (r, r′) ∈ V; 

βA
A, βA

D = constants weighting the delay cost in the air for 
arrivals and departures, respectively, with βA

A > βA
D; 

βG
A, βG

D = constants weighting the delay cost on the ground 
for arrivals and departures, respectively; 

βG = a constant weighting the delay cost at the gate before 
pushback, for departures; 

df
r = the distance of a shortest path for flight f from runway 

r to its destination, which is either a departure fix or gate; 

K = a large constant which penalizes each configuration 
changeover. 



 
2) Decision Variables 
We define the following binary decision variables for our 

model:  

𝜔𝒌! = 1, if  configuration  𝑘  is  active  at  time  𝑡;
0, otherwise;

𝜑!
! = 1, if  flight  𝑓  is  assigned  to  runway  𝑟;  

0, otherwise;

𝜓!"𝒊 = 1, if  a  flight  of  type  𝑖  arrives  at  runway  𝑟  at  time  𝑡;  
0, otherwise;

𝜒! = 1, if  a  change  of  configuration  occurs  at  time  𝑡;  
0, otherwise.

 

 
We note that one of the key ideas behind this model and its 

tractability is that we have chosen to define the variables ψ by 
flight type, rather than by flight, capitalizing on the fact that 
separation depends only on flight type, and greatly reducing the 
number of variables to O(|C||R||T| + |F||R|), rather than 
O(|F||R||T|), and the number of constraints to O(|C|2|R||T|), 
rather than O(|F|2|R||T|). Indeed, this modeling technique may 
be applied for general bounded-TSP type problems. 

 
3) Objective Function 
Our objective is to minimize a weighted sum of delays: 
minΨ = 𝛽!!𝕀 𝒊∈!! + 𝛽!!𝕀 𝒊∈!! 𝑡𝜓!"𝒊!∈!!∈!𝒊 −𝒊  ∈!

   𝛽!!𝕀 !∈!! + 𝛽!!𝕀 !∈!!   𝑇! !
! +!∈!

   𝛽!!𝕀 !∈!! + 𝛽!!𝕀 !∈!!!∈!!!∈! 𝑑!
!𝜑!

! − 𝛽!! −

𝛽! 𝑡𝜓!"𝒊 −    𝑇!
!𝜑!

!
!∈!!!∈!!!∈!!∈!𝒊𝒊∈!! +

𝐾 𝜒!!∈! . 
 
This can be summarized in words as a summation over all 

flights of the following terms: (weighted time from first time  
period until touchdown/takeoff) – (weighted time from first 
time period until start time) + (weighted time from 
touchdown/takeoff to destination) – (weighted gate-holding 
duration) + (configuration change penalty). 

 
4) Model Formulation 
The constraints of the model, which we call P1, are as 

follows: 

𝜔!" = 1,∀𝑡 ∈ T!∈!    1   

  𝜓!"! = 0,∀𝑖 ∈ C, 𝑟 ∈ U! , 𝑡 ∈ T  (2)  

Constraints (1) require exactly one configuration to be used 
at any time, while Constraints (2) prevent flights from 
occupying runways which are not available at time t. Note that 
even if a runway is not available at a given time, a 
configuration may be used (as indicated by the ω variables) 
which uses that runway, and its capacity is set to zero by the 
latter set of constraints, rather than by the former. This method 
of controlling runway and configuration availability leads to 
fewer configurations being required in the model (any “sub-
configuration” of a configuration does not require additional 
configuration variables). In addition, it enables us to add an 
extra class of valid inequalities to strengthen the model. 

  𝜓!,!!!! + 𝜓!"
! ≤ 1,∀𝑖, 𝑗 ∈ C, 𝑟 ∈ R! ∩ R! , ℎ ∈

1,… ,min 𝑠!"! − 1, 𝑡 − 1 , 𝑡 ∈ T\{1}  (3)  

Constraints (3) can generally be referred to as the separation 
constraints, which state that if we process a flight of type i, then 
we must wait at least sr

ij time periods before processing a flight 
of type j, on any given runway. An important point to note here 
is that these constraints correctly model the fact that the 
triangle inequality is not respected in this problem. In other 
words, a sequence of flights f → g → h may not be legal/safe if 
we only respect the minimum separations required between 
flights f and g, and between g and h separately – we also 
require that the minimum separation between flights f and h be 
observed. 

𝜓!,!!!! + 𝜓!!!
! ≤ 1,∀𝑖, 𝑗 ∈ C, (𝑟, 𝑟!) ∈ R!×R! ∩ V, ℎ ∈

0,… ,min 𝑠!"
(!,!!) − 1, 𝑡 − 1 , 𝑡 ∈ T  (4)   

Constraints (4) enforce a similar separation requirement 
when we have a pair of runways (r, r′) which cross over each 
other. We also need to consider the case of close parallel 
runways, where operations on each runway are not 
independent. In this paper we take the (only slightly) 
conservative approach of modeling this situation as though 
there is only a single runway, although we could alternatively 
include appropriate additional constraints to the model. 

The final consideration regarding the separation between 
flights is that runway separation alone is not enough – flights 
also need to be separated throughout the airspace. In 
calculating our same-runway separation rules, we have 
incorporated the different flight velocities and their impact on 
the separation along a common flight path of 5 nautical miles, 
as in [11]. When flights use different runways and/or different 
fixes, the relevant separation requirements will be enforced in 
our second stage problem. Due to the nature of runway 
configurations, where a general flow in one direction is 
preserved, these second-stage constraints will not significantly 
impact the overall optimality of our two-phase approach. 

𝜓!"!!∈!∶!∈!! ≤ 1,∀𝑟 ∈ R, 𝑡 ∈ T  (5)  

𝜓!"! + 𝜔!" ≤ 1,∀𝑡 ∈ T, 𝑘 ∈ K, 𝑟 ∈ R! , 𝑖 ∈ I!" ∶ 𝑟 ∈ R!   (6)  

𝜓!"! − 𝜔!,!!!!∈!∶!  ∈!!,!∈!!" ≤ 0,∀𝑖 ∈ C, 𝑟 ∈ R! , ℎ ∈
0,… ,𝑚𝑖𝑛 𝑙!! − 1,𝑇 − 𝑡 , 𝑡 ∈ T  (7)  

We now remind the reader that the definition of ψ is such 
that ψi

rt = 1 if, and only if, a flight of type i arrives at runway r 
at time t, and hence such a flight might (and in general, will) 
actually occupy the runway for a longer period of time, even 
though this is not directly tracked by our decision variables ψ. 
Then, Constraints (5) state that only one flight may arrive at 
each runway at any given time. This set of constraints, along 
with Constraints (3) above, enforce the capacity of each 
runway to be one at all times (recall sr

ij ≥ li
r). Constraints (6) 

disallow the use of runway r for flights of type i if such use is 
not allowed under configuration k. Constraints (7) state that if 
we process a flight of type i at a given runway r, then that 
runway must remain open for at least li

r time periods, 
corresponding to the runway occupancy time of flights of type 
i. 



𝜑!
! = 1,∀𝑓 ∈ F  (8)!∈!!   

𝜑!
! ≤

!∈!!∶!∈!!,!!!!
!
!!!
!!!

𝜓!"! ≤ 𝜑!
!

!∈!!∶!∈!!,!!!!
!

!
!!! ,∀𝑖 ∈ C, 𝑟 ∈ R! , 𝑡 ∈ T  (9)  

Constraints (8) state that the every flight must be assigned 
to some runway. Then, Constraints (9) require each flight f to 
be processed at one of its feasible runways r after its earliest 
possible touchdown/takeoff time. The left-hand side is equal to 
the number of flights assigned to runway r which should have 
been processed by time t (based on our assumed flexible 
“deadlines”), and the right-hand side is equal to the maximum 
number of flights assigned to runway r which could feasibly 
have arrived at r by time t (recall this is based on shortest 
paths). So, these constraints state that the number of flights of 
type i assigned to runway r by time t must fall within this 
range, for every t ∈ T. These are the only constraints that link 
the ψ variables with the φ variables. 

𝜒! − 𝜔!" + 𝜔!,!!! ≥ 0,∀𝑘 ∈ K, 𝑡 ∈ T\{1}  (10)  

Finally, Constraints (10) enforce χt = 1 if a change of 
configuration occurs at time t, which happens if, and only if 
there exist a k such that ωkt = 1 and ωk,t−1 = 0. Note that this is 
equivalent to setting χt = 1, since χ is penalized in the objective 
function and this is the only constraint on χ. 

5) Remarks on the Model 
• A helpful way to think about this model is to first suppose 

that the taxiway/near-terminal area airspace network has 
infinite capacity. In this case, all flights can travel along 
their shortest paths without obstruction and hence arrive at 
their assigned runway within their time-window specified 
in the input data, and in particular at their assigned time (as 
discussed below, this can be derived from ψ and φ). Then, 
P1 gives an optimal solution to the AOOP, including the 
optimal configuration schedule (through ω), the optimal 
runway assignments (φ), the optimal sequencing of flights 
(ψ), and implicitly an optimal routing of flights. This 
routing is such that each flight:  i) spends any slack time 
waiting at its gate, if the flight is a departure; ii) travels 
unimpeded along a shortest path from its origin to its 
assigned runway;  iii) reaches its assigned runway at its 
assigned time;  iv) travels unimpeded along a shortest path 
from its assigned runway to its destination.  

• A key feature of our methodology is our particular 
definition of decision variables. A naïve attempt would 
define variables φf

rt, being equal to one if flight f were at 
runway r at time t. This,  however, would result in 
computational intractability as the number of flights and 
time periods  were to grow, especially due to the number 
of constraints required to enforce minimum between-
flight separation regulations. Instead, we note that the 
between-flight separation depends only  on the type of 
two adjacent flights, and not on their unique flight 
identifiers. Here, the type  is characterized by a weight-
class category and arrival/departure status. Hence, we 
define our  decision variables for the separation 

constraints based on flight type, giving ψi
rt = 1 if a flight 

of type i is at runway r at time t. As a result, we have a 
significant reduction in the number of  decision variables 
and constraints.  

• Since the variables ψ are defined by flight type, we have a 
sequence of “flight type slots” at each  runway, instead of 
having a sequence of flights at each runway. However, 
through the variables φ we also have an assignment of 
flights to runways, and it is through the time-window 
constraints (9) that we link these two sets of variables. 
Indeed, finding flight type slots and then allocating 
specific flights to these slots has also been proposed by [1] 
and [24]. Inspection of constraints (9) reveals that there is 
always at least one sequence of flights corresponding to a 
solution of P1, and that such a sequence can be trivially 
obtained from the solution, assuming flight deadlines are 
not strict. 

B. Phase Two 
In this section we detail the second phase of our 

optimization approach for the AOOP, addressing the case 
when the capacity of the gates, taxiways, or airspace becomes 
binding. This phase can essentially be viewed as the “routing 
phase,” in which we determine a routing of flights to achieve a 
runway processing schedule which is very close to that 
obtained in the first phase, if not the same. In particular, we fix 
the solution from Phase One to subproblems (a) and (b) 
outlined in Section I and in this second phase we obtain the 
solution to subproblems (c) and (d). In more detail, we present 
a binary optimization problem, P2, which takes the solution 
from P1 as an input and outputs a solution to the AOOP which 
preserves the assignment of flights to runways and the 
ordering of flights at each runway determined in Phase One, 
but not necessarily the specific touchdown/takeoff times. 

This approach provides the flexibility sufficient to ensure 
feasibility, provided flight deadlines are not hard, while also 
ensuring the solution retains the nice properties of the Phase 
One solution. In the case of infeasibility, we would require the 
flight deadlines used in the optimization problem P2 below to 
be relaxed, and if necessary, the time horizon increased before 
re-solving. The approach is informed by our belief that the 
runways are the most restrictive component of capacity, 
meaning that there should not be a significant loss of 
optimality in this second phase. In Section IV, we shall 
support this statement. 

 
1) Data 
In order to model the routing subproblem, the airport 

network is represented by a directed graph with nodes 
belonging to the set S, where each node represents a section of 
taxiway, a runway, an airspace route, a gate, or a fix. A full list 
of relevant sets and parameters, building on those above, is 
given below: 

S (Sf) = the set of nodes in the airport network (feasible for 
flight f);  



Lf
i = the set of nodes which are successors of node i for 

flight f;  

Pf
i = the set of nodes which are predecessors of node i for 

flight f;  

Ef  = the set of possible end nodes of flight f;  

Tf ={Tf, Tf +1, ..., Tf} = the set of feasible times for flight f 
to arrive at node i, considering the flight’s starting time and 
location and the shortest path to i, when unimpeded by traffic;  

cf  (∈ C) = the type of flight f;  

of = initial node of flight f; 

lf
i = the minimum amount of time flight f must spend at 

node i;  

uit = the capacity of node i, in flights, during time interval t. 

In addition to the above data, we require several inputs 
obtained from the Phase One solution. Before we detail these, 
recall that the solution to P1 provides runway assignments for 
each flight, but only times of flight types at their assigned 
runways. It does not provide times at which individual flights 
arrive at their assigned runways (and therefore does not 
completely specify the flight sequence at each runway) – there 
is some freedom in assigning specific flights based on the flight 
type assignments. There is not complete freedom, however. In 
particular, we can only make swaps amongst flights of the 
same type which are assigned to the same runway, and only 
ones which respect the relevant time window constraints. 
Although one can imagine many possible schemes for 
determining this ordering, this is not a focus of this chapter and 
we shall now assume we have fixed such an ordering. 

rf (∈ Rf) =  the assigned runway node at which flight f 
should be processed; 

Hr = {(f1, f2), (f2, f3), …, (fn−1, fn)} = the set of pairs of 
successive flights to be processed on runway r, for each r ∈ R;  

H(r,r′) = {(f1, f2), (f2, f3), …, (fn−1, fn)} = the set of pairs of 
successive flights (f, g) with f being processed on runway r and 
g being processed on r′, for every pair of runways (r, r′) at 
which pairwise separation must be enforced; 

Wi ={(f1, f2), (f2, f3), …, (fn−1, fn)} = the set of pairs of flights 
(f, g) which are processed at different runways and which pass 
through the same fix i in the order f → g “within close 
proximity” of each other, and require si

c(f),c(g) time intervals of 
separation there. 

Q = {(f1, g1), ..., (fk, gk)} =  the set of pairs of flights (f, g) 
such that the following hold: 
i) flight f is scheduled to use runway r in configuration A; 
ii) flight g is scheduled to use runway q in configuration B;  
iii) configuration A is scheduled for use before configuration 

B;  
iv) runway r is not used in configuration B in a mode of 

operation that would allow flight f to be processed then;  
v) runway q is not used in configuration A in a mode of 

operation that would allow flight g to be processed then.  

Figure 1 gives an example of an element of Q. This set will 
be used to ensure that configuration requirements are respected, 
since they are not modeled explicitly in the model P2 below. 

 
FIGURE 1: Example illustrating an element (f, g) belonging to 
the set Q at BOS. The arrows indicate the direction and mode 
of traffic as dictated by the configuration in use. Suppose in 
the solution to P1 we have: i) configuration A is used first, 
then configuration B, ii) flight f is assigned to runway 9, and 
flight g to runway 27. Since runway 27 is not used in 
configuration A, we have (f, g) ∈ Q. 

2) Decision Variables 
We have the following decision variables: 

𝑧!"
! = 1, if  flight  𝑓  reaches  node  𝑖  by  time  𝑡;

0, otherwise.

𝑥!"
! = 1, if  flight  𝑓  is  at  node  𝑖  at  time  𝑡;

0, otherwise.

 

Note that the z variables are defined as “by” variables in the 
spirit of [7], which will lead to nice properties in the model 
formulation. 

3) Objective Function 
The objective function, which we omit for brevity, is to 

minimize the same quantity as the P1 objective function – the 
weighted sum over the total time it takes for each flight to go 
through the system, between the gates and the arrival/departure 
fixes. 

4) Model Formulation 
The following constraints complete the binary optimization 
problem P2, which routes flights to achieve the schedule of 
assigned runways and assigned flight sequences at each runway 
which were found in P1. The model is based on the models of 
[6] and [7], which were presented to solve the network ATFM 
problem with and without re-routing, respectively. 

𝑥!"
! − 𝑧!"

! − 𝑧!"
!

!∈!!
!:!!!!

!

= 1,∀𝑓 ∈ F, j ∈ S! , 𝑡 ∈ T!
!    (11) 

𝑥!"
!

!∈!:!∈!!,!∈!!
!

≤ 𝑢!" ,∀j ∈ S\R, 𝑡 ∈ T    (12) 

Constraints (11) link the x variables with the z variables, 
with xf

jt being forced equal to one only if at time t flight f has 
arrived at node j but not yet at one of its successor nodes. 
Constraints (12) then limit the number of flights at any node at 

Configuration“A”

4L

4R

9

f

Configuration
“B”

32

33L

27
g

Figure 3-1: Example illustrating an element (f, g) belonging to the set Q at BOS.
The arrows indicate the direction and mode of traffic as dictated by the configuration
in use. Suppose in the solution to P3-1 we have: i) configuration A is used first, then
configuration B, ii) flight f is assigned to runway 9, and flight g to runway 27. Since
runway 27 is not used in configuration A, we have (f, g) ∈ Q.

rf(∈ Rf ) = the assigned runway node at which flight f should be processed;

Q = {(f1, g1), . . . , (fk, gk)} = the set of pairs of flights (f, g) such that

the following hold:

i) flight f is scheduled to use runway r in configuration A;

ii) flight g is scheduled to use runway q in configuration B;

iii) configuration A is scheduled for use before configuration B;

iv) runway r is not used in configuration B in a mode of operation

that would allow flight f to be processed then;

v) runway q is not used in configuration A in a mode of operation

that would allow flight g to be processed then.

Figure 3-1 gives an example of an element of Q. This set will be

used to ensure that configuration requirements are respected, since

they are not modeled explicitly in the model P3-2 below.
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a given time to the node’s capacity, excluding runways (we 
take care of these in later constraints, using properties of the 
solution from P1). 
𝑧!"
! − 𝑧

!,!!!!
!

!

!∈!!
!:!!!!

!!!!
!

≤ 0,∀𝑓 ∈ F, j ∈ S!\{𝑜!}, 𝑡 ∈ T!
!    (13) 

𝑧
!!!
!

! − 𝑧
!!!

!
!

!∈!!
!

≤ 0,∀𝑓 ∈ F, i ∈ S!\E!    (14) 

𝑧
!!!

!
!

!∈!!

= 1,∀𝑓 ∈ F    (15) 

Constraints (13) state that flight f cannot reach a node j by 
time t unless it has reached one of its predecessors i by time t 
− lf

i. Constraints (14) require that a flight f must eventually 
reach some follower of any node which it reaches, unless that 
node is its destination, in which case Constraints (15) state that 
the flight must reach one of its feasible destinations.  

𝑧
!!!

!
!

!∈!!
!

≤ 1,∀𝑓 ∈ F, i ∈ S!    (16) 

𝑧!,!!!
! − 𝑧!"

! ≤ 0,∀𝑓 ∈ F, j ∈ S! , 𝑡 ∈ T!
!\{𝑇!

!}    (17) 
𝑧
!!!!!

!
! = 1,∀𝑓 ∈ F    (18) 

Constraints (16) state that a flight f can only reach a single 
successor of any node i (note that the network representation 
therefore requires careful construction). Constraints (17) 
enforce monotonicity on the z variables, owing to their 
definition. Constraints (18) initialize each flight at its origin. 

𝑧
!!!!!

!
! = 1,∀𝑓 ∈ F    (19) 

𝑧!,!!!! ! ,! !
!

! − 𝑧!"
! ≤ 0,∀𝑟 ∈ R, g, f ∈ H! ,∀𝑡 ∈ T: 𝑡

≥ 𝑇!
!  and  t + s! ! ,!(!)

! ∈ T!
!    (20) 

𝑧
!!,!!!! ! ,!(!)

(!,!!)
! − 𝑧!"

! ≤ 0,∀(𝑟, 𝑟!) ∈ V, g, f ∈ H(!,!!),∀𝑡 ∈ T: 𝑡

≥ 𝑇!
!  and  t + s! ! ,!(!)

(!,!!) ∈ T!!
!     (21) 

Constraints (19) force a flight to use its assigned runway 
from P1. Constraints (20) state that flights must be processed 
at each runway in the order determined from P1, and be 
separated by at least the minimum separation time, while 
Constraints (21) enforce these same ordering and separation 
requirements for the pairs of flights scheduled on 
intersecting/closely-spaced parallel runways.  

𝑧
!,!!!! ! ,!(!)

!
! − 𝑧!"

! ≤ 0,∀ 𝑓,𝑔 ∈ W! , 𝑖 ∈ S,∀𝑡

∈ T!
!:  t + s! ! ,!(!)

! ∈ T!
!    (22) 

Constraints (22) ensure that flights which do not use a 
common runway (the separation is already incorporated in 
Phase One for those that use a common runway) are 
adequately separated at their arrival/departure fix. Note that 
since arrivals and departures use separate fixes in general, the 
number of such constraints will be small. All three sets of 
constraints (20), (21) and (22) are of a much nicer form than 
usual separation constraints, for two reasons. First, there are 
only a limited number of pairs of flights for which the 
constraints need be applied, as determined by the Phase One 

solution through the sets Hr, H(r,r′) and W. Second, due to the 
form of the constraints, which state that one set of the “by” 
variables z must dominate another set by a specified amount. 
Indeed, in [9] it was shown that such constraints were facet-
defining for the polyhedron corresponding to the convex hull 
of integer solutions to a very similar integer optimization 
problem. 
𝑧
!!,!!!!!

!
! − 𝑧!!,!

! ≤ 0,∀ g, f ∈ Q,∀𝑡 ∈ T: 𝑡 ≥ 𝑇!!
!   and  t + l!!

!

∈ T!!
!     (23) 

𝑥!"
! = 0,∀𝑓 ∈ F, 𝑟 ∈ U! , 𝑡 ∈ T!

! (24) 
Constraints (23) ensure that the configuration requirements 

are respected by ensuring that we process all pairs of flights in 
the set Q in the specified order. Note that we have defined the 
set Q to be as small as possible while still preventing the 
operation of illegal configurations, expanding the feasible 
space of P2. Constraints (24) state that a flight may not be 
processed at a given runway when that runway is not available 
(for example due to the weather conditions). 

𝑧!"
! = 𝑧

!!!
!

! ,∀𝑓 ∈ F, 𝑖 ∈ S! , 𝑡   ∈ 𝑇!
!
+ 1,… ,𝑇     (25) 

Finally, Constraints (25) extend the z variables so that they 
are constant at every node j beyond the final time at which a 
flight can feasibly arrive at that node. The reason we need 
these variables to exist beyond the upper time window is to 
ensure Constraints (11) correctly define the variables x in the 
boundary case – if we do not do this, the term in parentheses 
might be equal to one, even though flight f is not at node j at 
time t, due to the non-existence of the variable zf

it. 

IV. COMPUTATIONAL EXPERIENCE 
In this section we present computational experience which 

seeks to answer several key questions regarding the 
effectiveness of the solution approach we have presented, in 
particular: 

• Are our key assumptions valid? 

• Is the methodology computationally tractable? 

• Would the use of the methodology result in significant 
benefits in practice? 

In order to answer these questions, we focus on two 
international airports: BOS and DFW. We utilize data from 
historic days of operation at these airports, being 11/02/2009 at 
DFW and 9/28/2010 at BOS.  

All experiments were performed using the software package 
GUROBI 5.0 on a computer with an Intel® Core™ i7-860 
Processor (8MB Cache, 2.80GHz) and 16GB DDR3 RAM, 
running Ubuntu Linux 10.04. The solver time limit was set to 
1200s for each of P1 and P2. 

1) Model Validation and Computational Tractability 
Tables 1 and 2 present resulting computation times and 

solution values for several historic time periods. The purpose of 
these two tables is i) to demonstrate the suitability of our two-
stage approach, and ii) to demonstrate computational 
tractability on real-world instances. 



The first thing to note is that the guarantee of optimality 
(obtained by comparing solutions from Phase One and Phase 
Two, this value is an upper bound on the optimality gap of our 
feasible solution) is always very good – aside from the greatest 
difference of 2.1%, the others are at most 1.1%, and in the 
former case 1% of the gap is due to P2 not being solved to 
optimality. This indicates that our two-phase approach results 
in solutions which are very close to optimal. This supports our 
fundamental belief that the runways represent the key 
bottleneck of the system and justifies our particular two-phase 
approach. 

The second observation we make is that the computation 
times are low across all instances. However, in some instances 
P2 can take significantly longer than the median. In these cases, 
we typically have a good solution much earlier that at 
termination. 

TABLE 1  Computational Tractability and a Bound on 
the Optimality Gap Using Data from DFW on 11/2/2009 

Flights Optimality 
Bound 

Computational Times (s) 

P1 P2 Total 

155 2.1 120 1286 1430 
175 1.1 372 1071 1465 
153 0.6 64 129 211 
155 0.7 75 284 379 
168 0.5 340 187 546 
171 0.7 299 284 600 
159 0.9 252 533 806 
153 0.6 241 205 463 

 

TABLE 2  Computational Tractability and a Bound on 
the Optimality Gap Using Data from BOS on 9/28/2010 

Flights Optimality 
Bound 

Computational Times (s) 

P1 P2 Total 

90 0.2 252 147 418 
91 0.4 233 142 388 
80 0.1 143 16 168 
63 0.6 93 52 161 
63 0.3 198 15 229 
71 1.3 246 1200 1457 
59 0.5 255 59 325 
63 0.3 161 17 187 

 

2) Benefits Assessment 
Above we have demonstrated that our approach leads to 

solutions which are very close to optimal in a practical amount 
of time. Now we aim to assess the potential benefit that can be 
gained in practice from using the methodology. In Tables 3 and 
4 we present statistics both for what actually occurred on the 

historic days of operation considered and for our optimized 
schedule. In particular, we compare the means of the times 
taken for flights to traverse part of the system – for arrivals, we 
record the time from touch-down until arrival at the gate, and 
for departures we record the time from pushback until take-off. 
Ideally, we would present the overall system traversal times, 
from fix to gate or from gate to fix, but due to lack of historical 
fix-at times we could not make a comparison of these times. 
Nevertheless, the results presented give a good indication of the 
model’s benefits. Indeed, since the objective function weights β 
place a higher emphasis on reducing airborne delays (as is 
appropriate), it is fair to say that the ensuing benefits 
assessment is conservative, since it compares the less-
prioritized surface traversal times.  

TABLE 3  Comparison of Optimized and Historic 
Surface Times at DFW on 11/2/2009 
Optimized Surface Times 

(min./flight) 
Historic Surface Times 

(min./flight) 

Dep. 
G.H. Dep. Arr. Avg. Dep. Arr. Avg. 

1.8 9.5 10.8 10.2 13 8.9 10.7 
2.2 9.2 10.7 9.9 12.8 9.3 11.2 
1 9.5 10.6 10 13.5 9.2 11.6 
1 9.6 11.1 10.4 13.5 9 11 

0.9 9.3 11.8 10.5 13 10.1 11.6 
2.1 10 11.4 10.7 13.6 8.9 11.3 
1.3 9.1 10.8 10 13.9 9.1 11.4 
0.7 9 11.1 10.1 13.4 9.6 11.2 

Overall, we can see that in all cases the average optimized 
ground times are lower than the historic ones, with reductions 
of 5-14% at DFW and 7-25% at BOS. As mentioned above, the 
reductions to air delays could be expected to be at least as good 
as this. For arrivals, however, surface traversal times are in 
general worse in the optimized solution. However, this is due to 
the relatively low weight we place on arrival taxi times – the 
model sacrifices these slightly for the sake of reduced air 
delays and departure taxi times. Finally, we note that there is 
indeed a non-negligible element of gate-holding of departures, 
which appears to be positively correlated with the number of 
flights (and hence congestion), as would be expected. 

TABLE 4  Comparison of Optimized and Historic 
Surface Times at BOS on 9/28/2010 
Optimized Surface Times 

(min./flight) 
Historic Surface 

Times (min./flight) 

Dep. 
G.H. Dep. Arr. Avg. Dep. Arr. Avg. 

1.6 13.7 4.4 9.3 18.7 5.2 12.4 
0.8 14 4.5 9.6 16.7 6.1 11.6 
2.2 16.4 5 12.2 17.6 5.9 13.1 
0.5 16.6 4.9 10.3 18.2 6.5 12.2 
0.5 16 5 10.1 18.5 4.4 10.9 



1.3 11.6 8.2 10.1 16.6 5.1 11.4 
2.6 13.8 4.6 8.5 14.7 5.8 9.9 
0.9 16.2 4.9 10.5 17.1 6.6 11.3 

 
3) Summary of Findings 
We now return to summarize our answers to the questions 

introduced at the beginning of this section, using the above 
computational experience at DFW and BOS. 

• Our fundamental assumption about the nature of airport 
capacity is a reasonable one, as demonstrated by the small 
differences observed between the values of the first and 
second phases of optimization. 

• The computational tractability of the approach is 
promising for possible implementation in the future, with 
the complete optimization typically taking 5-10 minutes on 
a desktop computer, and always less than half an hour. 

• The methodology leads to significant reductions in delays 
from the levels historically observed. This is also results in 
increased throughput, less congestion of the airport surface 
and near-terminal airspace, less fuel burn and hence 
reduced fuel costs and associated emissions. 

CONCLUSION 
We have presented a novel, integrated approach to solving 

the entirety of key air traffic flow management problems faced 
at an airport. Through computational experiments using historic 
data from BOS and DFW airports, we have shown the 
methodology to be both tractable (in a practical sense) and of 
significant potential benefit. The models have the potential to 
influence ATFM on a very broad scale when one considers the 
optimization of a nationwide or supranational airspace as a 
combination of optimizations of through-airport flows, the 
airports being where many important and difficult decisions 
need to be made. 

We note two important points related to any potential 
implementation of the methodology outlined in this paper. 
Firstly, we have assumed all data inputs to be deterministically 
known, keeping the focus of the work away from the dynamic 
and uncertain nature of the real-world environment in which 
such a methodology could be used. Secondly, we have not 
considered the aspect of fairness between the different agents 
involved – it is a possibility, for example, that different airlines 
will be treated differently by a “system-optimal” solution. Both 
of these represent key areas for future research. Nevertheless, 
the methodology we have developed represents a significant 
step towards improving ATFM at airports. 
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