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Abstract—This paper focuses on the occurrence of aircraft 

separation minimum violations as documented in the form of 

operational errors (OEs) at terminal radar approach control 

(TRACON) facilities. Poisson regression was used to analyze the 

daily count of OEs at various facilities. The occurrence of OEs 

was found to increase approximately with the square of daily 

traffic at TRACON facilities. At TRACON facilities, where 

separation violations are not automatically reported, an increase 

in reporting was seen after a new severity metric was introduced 

in 2007. It was also found that large, consolidated TRACON 

facilities tend to behave like a sum of several smaller facilities 

rather than a single larger facility with respect to the occurrence 

of OEs vs daily traffic. Weather effects such as visibility and wind 

were found to influence the occurrence of OEs as well. The model 

prediction for TRACON facilities is very good for the most severe 

OE types and very poor for the least severe OE types, indicating 

many unobserved factors contributing to the reporting of the 

least severe OE types in the terminal environment.  
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I.  INTRODUCTION 

An operational error (OE) occurs when there is a violation 
of aircraft separation minimums due to air traffic control or 
from allowing an aircraft to enter another controller’s airspace 
without notification. These events, while infrequent, often pose 
a serious safety risk.  

Considerable work has been done on the incidence of OEs, 
which is presumed to reflect the risk of catastrophic mid-air 
collisions. Due to their infrequent nature, they are often studied 
using models that can handle large sets of sparse data. One of 
the most common among these is Poisson regression. Of 
particular interest to us are the effects of traffic, weather, and 
policy changes on the incidence of operational errors at 
terminal radar approach control (TRACON) facilities. In this 
paper we first review some of the studies involving operational 
errors and then analyze the incidence of operational errors at 
TRACON facilities using Poisson regression. Conclusions and 
recommendations for future work will follow.  

II. BACKGROUND 

A. Literature Review 

Although the occurrence of operational errors has been 
studied extensively, most studies have aggregated OE data 
across time and/or space as a starting point for the analysis. 
Hansen and Zhang [1] modeled the daily count of operational 
errors at all TRACONs with negative binomial regression, 
Gosling [2] studied the occurrence of OEs at separate Area 
Route Traffic Control Center (ARTCC) facilities aggregated 
over an entire year, and Panagiotakopoulos et al [3] modeled 
the rate of OEs per month at a single facility using extreme 
value theory. We propose to use the daily count of operational 
errors at specific facilities between 2004 and 2009. While a 
daily count at a specific facility is still aggregated across the 
entire day, it should present insights into the occurrence of OEs 
that is not seen with more aggregate data. 

One of the primary questions of interest that motivated this 
research is the relationship between OE occurrence and traffic. 
It has been suggested that the relationship should be roughly 
quadratic (# OEs ~ traffic

2
) because the number of possible 

path intersections roughly increases with the square of the 
number of aircraft in a sector. Murphy [4] has shown that the 
exponent for traffic should be at least 2 for en route facilities, 
with significant differences across centers. These results were 
found by using the number of aircraft in the sector at the time 
each OE occurred as the measure for traffic. Hansen and Zhang 
[1] have shown that the value of the exponent is around 1.7 for 
daily operations at all TRACON facilities.  

Secondly, the impact of weather on the occurrence of OEs 
is important. Many authors have included weather effects 
through an overall subjective metric called traffic complexity, 
which has been shown to be a significant factor contributing to 
OEs [3]. Rodgers and Nye [5] found that once the number of 
operations was accounted for, air traffic complexity was a 
significant predictor of the total number of operational errors. 
Air traffic complexity is partially a subjective measure, but is a 
function of the variety of operations, airspace limitations, and 



weather. Weather variables such as wind, visibility, and 
temperature can represent a portion of traffic complexity that 
could give rise to operational errors. 

Finally, another factor of interest is the effect of policy 
changes on OE reporting. At TRACON facilities, no automated 
tool is currently universally used to detect losses of separation 
like the Operational Error Detection Patch is used in the en 
route environment [6]. As a result, some errors will go 
unreported. The specific policy change that we investigated is 
the adoption of the Separation Conformance as a metric for OE 
severity. In June 25, 2007, an FAA order was sent out that 
specified a new measure of OE severity that would replace the 
OE Severity Index as the official measure. A key component of 
the new safety measure was the introduction of proximity 
events which would no longer be classified as operational 
errors, although they are still violations of separation 
minimums. Because they are no longer considered operational 
errors, controllers should not be penalized for reporting them as 
they would for a normal OE. Thus one would expect the 
number of reported errors in this category to increase. 

B. OE Severity Metrics 

The OE severity index had a range from 0-100 and was 
based on many weighted factors, such as horizontal separation, 
closure rates, and converging / diverging paths. The separation 
conformance metric is much simpler, and relies only on 
horizontal and vertical separation retained at the closest point 
of proximity. Depending on the relative percentage of vertical 
and horizontal separation retained, the OE is classified into four 
categories, A, B, C and PE (proximity event), with A being the 
most severe type and a PE being a very minor breach of 
separation minimums.  

Figure 1, shown below, illustrates the categories of 
separation conformance as a function of the horizontal and 
vertical separation retained at the point of minimum separation. 
Only the percentages of the minimum separation requirements 
matter, so the metric is the same regardless of the magnitude of 
the separation required in each direction. 

III. TRACON ANALYSIS 

The OE data used for this study is the daily count of errors 
at each of the largest 16 stand-alone TRACON facilities from 
October 1, 2004 to June 28, 2009 (see Table 1, below), 
resulting in a total of 27,710 TRACON-days. A total of 1,798 
operational errors were observed over this time period, which is 
roughly a rate of 0.06 OEs/TRACON-day, or 1 OE/day across 
all TRACONs studied here. For purposes of comparison 
between the time period before and after the adoption of the 
separation conformance metric, all OEs will be classified as A, 
B, C, and PEs using the separation conformance metric even if 
the OEs occurred before the measure went into effect.  

 

Figure 1.  Separation conformance severity metric (Source: FAA) 

A. TRACON Model 

Poisson regression is a common model that is used to study 
count data, and can be used for sparse data like we observe 
with operational errors. One observation in our model will be 
defined as the number of OEs at a particular TRACON on a 
particular day. Thus, each facility will have many different 
observations for each day in our time period of study, which we 
will assume are independent of each other. This type of model 
will allow us to capture longitudinal changes in OE occurrence 
as well as cross-sectional variation across facilities. 

TABLE I.  TRACON FACILITIES 

TRACON Facility Primary City 

N90  New York 

D10 Dallas 

A80 Atlanta 

C90 Chicago 

PCT Washington D.C. 

SCT Los Angeles 

D21 Detroit 

I90 Houston 

NCT San Francisco 

D01 Denver 

L30 Las Vegas 

P50 Phoenix 

S46 Seattle 

M98 Minneapolis  

S56 Salt Lake City 

A90 Boston 

 

For our model, we assume that the occurrence of daily 
operational errors at any TRACON follows the Poisson 
distribution. The probability of observing a specific number of 
OEs for a given facility and date is shown by the following 
equation: 
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where:  iy = OE number at date and facility i  

iY = observed OE number at date and facility i  

i = average number of OEs expected at date and 

facility i  

We will model the expected number of OEs, i , with a 

logarithm link function of our explanatory variables: 

  
j
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where: jix = explanatory variable j for date / facility i  

 j =coefficient for explanatory variable j  

 = the model intercept 

A list of our explanatory variables is given below in Table 
2. Previous research has investigated the quantity and type of 
operations and how they influence the occurrence of 
operational errors. We use two traffic measures to model these 
metrics: the natural logarithm of the daily traffic and the 
percentage of daily traffic that is listed as itinerant. The natural 
log of traffic is used so the coefficient obtained will represent 
the elasticity between OE rate and traffic. Itinerant operations 
are flights that are departing or arriving to an airport within the 
TRACON facility being observed, rather than being a through 
flight, which originates and exits the observed TRACON 
without landing. 

TABLE II.  EXPLANATORY VARIABLES 

Explanatory 

Variable 

TRACON Model – Variable 

Description 

Log_Traffic Natural logarithm of daily operations 

Percent_Itinerant Percent of operations that are itinerant 

IMC Percent of the time daily operations are in 

IMC conditions 

TempF Average daily temperature (deg F) 

WindSpd Average daily wind speed (knots) 

Vis Average daily visibility (miles) 

N90_Audit Dummy for N90 during 2005 audit 

Old_Rule Dummy for dates prior to June 25, 2007 

Spring Dummy for March, April, May 

Summer Dummy for June, July, August 

Fall Dummy for Sept., October, November 

 

 The percent of itinerant operations is used because we 
assume that controlling non-itinerant traffic is fundamentally 
different than controlling aircraft arriving or departing from 
airports within the area. The percentage of flights that are 
designated as itinerant is a proxy for the complexity of traffic 

in the sector, due to the complicated trajectories of departing 
and arriving flights. The source of the traffic data is the 
OPSNET database within ASPM. 

Another contributor to traffic complexity is the weather in 
the sector on the day the operational error occurred, which we 
obtained from ASPM as well. It would be difficult to quantify 
the weather over the airspace of the entire TRACON, so the 
largest airport within the facility’s airspace was used as a proxy 
for the entire region. For example, the weather at JFK was used 
to represent the New York TRACON and the weather at SFO 
was used to represent the weather at the Northern California 
TRACON. Although this is a somewhat crude measurement, 
the airspace around TRACONs are small with low flight levels, 
so the airport weather measurements will be used as a first 
approximation for TRACON weather.  

The weather variables obtained were hourly measures of 
temperature, wind speed, visibility, and whether the operations 
were in IMC or VMC. Because hourly weather observations 
are obtained, each metric was averaged across a day for each 
facility, weighted by the hourly operations at the airport of 
interest. Weighing the weather measurements by the hourly 
operations will give us average measures that are representative 
of the weather an average flight departing or arriving at the 
airport of interest will experience. We use this as a proxy for 
conditions throughout the TRACON. 

The dummy variable N90_Audit was set equal to 1 if the 
observation was at the New York TRACON during the time 
period of the 45 day audit in 2005. The reason this is included 
is that the audit revealed a very large number of unreported 
OEs during this time period that is not representative of the 
same reporting behavior at other facilities or at other times. 
Seasonal dummy variables were included to capture the 
variation across seasons. The Old_Rule dummy is a measure of 
policy changes in the system. We set this variable equal to 1 for 
all time periods prior to June 25, 2007, when the separation 
conformance measure went into effect. 

B. TRACON Results 

Three models were run for counts of different groups of 
OEs. The first model used the counts of all OEs, including 
proximity events. The second model did not include the 
proximity events (only A, B, and C errors), and the third model 
uses only the two most severe error types, A and Bs. The 
results from all three models are presented in Table 3 below. 

Table 3 reveals that the Log_Traffic coefficient is less than 
2 and highly significant for all three models. It ranges from 
1.31 for all OEs up to 1.48 for A & B errors. This suggests that 
the incidence of more severe errors is more sensitive to traffic 
than the less severe errors. The second thing to notice is that 
the Old_Rule coefficient is negative and significant for all three 
cases, indicating that all types of OEs have increased after the 
Separation Conformance metric went into effect. As might be 
expected, the effect is weaker when only severe OEs are 
considered, but is still highly significant even in this case. The 
seasonal dummy variables do not reveal any obvious trends, as 
most of the variables are not statistically significant. 

 



TABLE III.  TRACON MODEL REGRESSION ESTIMATES 

  All OEs 

Model 

  A,B&C 

Model 

  A&B 

Model 

 

Variable Estimate   Std. 

Error 

Estimate   Std. 

Error 

Estimate   Std. 

Error 

Intercept -15.9 ** 1.13 -16.7 ** 1.29 -16.3 ** 1.95 

Log_Traffic 1.31 ** 0.06 1.35 ** 0.07 1.48 ** 0.10 

Percent_Itinerant 2.54 ** 0.93 2.66 * 1.05 0.90  1.54 

IMC 0.80 ** 0.11 0.73 ** 0.12 0.20  0.21 

TempF 0.0015  0.002 0.011 ** 0.002 0.009 * 0.004 

WindSpd 0.056 ** 0.006 0.058 ** 0.007 0.04 ** 0.01 

Vis -0.12 ** 0.02 -0.11 ** 0.02 -0.16 ** 0.03 

N90_Audit 3.81 ** 0.11 3.76 ** 0.12 3.13 ** 0.22 

Old_Rule -0.57 ** 0.05 -0.43 ** 0.06 -0.27 ** 0.09 

Spring -0.12  0.07 -0.07  0.08 0.22  0.14 

Summer -0.32 ** 0.09 -0.16  0.11 0.12  0.18 

Fall -0.06  0.08 0.02 ** 0.09 0.32 * 0.15 

** Significant at 1% level         

* Significant at 5% level         
          

 

The weather variables that are significant in each model 
include temperature, wind speed, and visibility. Increasing 
wind speed and decreasing visibility are both likely to increase 
the number of OEs by creating a more complicated airspace to 
navigate. Temperature, which can be an indicator of overall 
good weather, has a positive sign, which indicates higher 
temperature increases the occurrence of all types of OEs. The 
IMC variable is positive, as expected, but only significant for 
the models including the least severe types of OEs.  

All three traffic coefficients are lower than we expected 
based on intuition and previous work. One consideration that 
we left out of the first set of models was the distinction 
between the consolidated TRACON facilities and non-
consolidated ones. Consolidated TRACONs effectively 
function as a group of smaller TRACONs that are located in 
the same building. The operational characteristics of these 
facilities differ enough from the smaller TRACONs to suggest 
that this model may not be capturing the true effect of traffic on 
the occurrence of OEs. 

To illustrate this concept, imagine that the number of OEs 
at an individual facility is proportional to the square of its 

traffic. Thus a doubling of the traffic at any facility should 
increase the number of OEs at that facility by a factor of four. 
Assume we have two identical facilities, with the same traffic 
and number of OEs. If we combine these two facilities into 
one, we will now have doubled the traffic, but only doubled the 
number of OEs, which is not consistent with our assumption 
that the number of OEs rises with the square of traffic. Thus, if 
the consolidated TRACONs are actually behaving like the sum 
of two or more smaller TRACONs, any quadratic or other non-
linear behavior at the facility level would be masked by linearly 
combining the traffic and OEs at each sub-TRACON facility. 

To categorize the TRACONs into consolidated and stand-
alone facilities, we used the definition of a consolidated 
TRACON from ASPM. These facilities provide approach 
control for two or more large hub airports where no single 
airport accounts for more than 60 percent of the total TRACON 
traffic count. This metric fits for four different facilities: 
Southern California (SCT), Northern California (NCT), New 
York (N90), and Potomac (PCT) TRACONs. To correct for 
this difference across facility types, we included a dummy 
variable for the consolidated TRACONs, and recalculated the 
coefficient estimates. The results are shown below in Table 4. 

 

 

 

 

 

 

 

 

 



TABLE IV.  TRACON MODEL REGRESSION ESTIMATES 

  All OEs 

Model 

  A,B&C 

Model 

  A&B 

Model 

 

Variable Estimate   Std. 

Error 

Estimate   Std. 

Error 

Estimate   Std. 

Error 

Intercept -17.0  ** 1.05 -17.8 ** 1.23 -17.5 ** 1.90 

Log_Traffic 2.04 ** 0.08 2.00 ** 0.10 1.95 ** 0.16 

Percent_Itinerant -1.75 * 0.88 -1.00  1.04 -1.40  1.55 

IMC 0.90 ** 0.11 0.82 ** 0.13 0.27  0.21 

TempF 0.0011  0.002 0.008 ** 0.002 0.006  0.004 

WindSpd 0.055 ** 0.006 0.057 ** 0.007 0.04 ** 0.01 

Vis -0.13 ** 0.02 -0.12 ** 0.02 -0.17 ** 0.03 

N90_Audit 3.83 ** 0.11 3.77 ** 0.12 3.13 ** 0.22 

Old_Rule -0.64 ** 0.05 -0.49 ** 0.06 -0.31 ** 0.09 

Spring -0.11   0.07 -0.06  0.08 0.23  0.14 

Summer -0.29 ** 0.09 -0.14  0.11 0.13  0.18 

Fall -0.05   0.08 0.02  0.09 0.32 * 0.15 

Consolidated -0.98  ** 0.08 -0.85 ** 0.09 -0.60 ** 0.15 

** Significant at 1% level         

* Significant at 5% level         
          

 

Another interesting change in this model is the sign of the 
Percent_Itinerant variable, which is now negative. The change 
is likely due to lower average percentage of operations that are 
itinerant for traffic at consolidated TRACONs compared with 
the stand-alone TRACONs. The lower percentage of itinerant 
operations at consolidated TRACON facilities is another reason 
to treat them separately from the stand-alone facilities. The 
Old_Rule remains negative and significant for all three models. 

Interestingly, the traffic coefficient is very close to 2 for 
each of the models, and is highly significant. This suggests that 
the occurrence of operational errors of all severity levels 
roughly increases with the square of traffic, all else equal. The 
Consolidated dummy variable is negative and highly 
significant for all three models, suggesting that these facilities 
have fewer OEs than the other facilities, all else equal. This is 
consistent with our argument about linearly combining 
facilities where OEs increase with the square of traffic. 

C. TRACON Model Fit 

Two common measures of goodness-of-fit for Poisson 
regression models are the deviance and the Pearson Chi-Square 
statistics. These statistics are used to provide a validation of the 
Poission regression assumption that the occurrence of OEs 
follows a Poission distribution and thus has equal mean and 
variance. If the deviance and the Pearson statistics divided by 
the degrees of freedom in the model are both close to 1, then 
the Poisson model assumption is generally accepted. If these 
statistics are greater than 1, this is an indication that the model 
is over-dispersed (e.g. the variance is actually greater than the 
mean) and the Poisson model is not valid. Typically in these 
situations a more general model, such as the Negative Binomial 
is used. 

The other case, where the statistics divided by the degrees 
of freedom are less than 1, indicating under-dispersion, is not 
as commonly seen and as a result fewer methods have been 

developed to deal with these situations. The deviance statistics 
divided by the number of degrees of freedom for our models 
range from 0.330 for the All OE model to 0.137 for the A&B 
model. The results for the Pearson statistics are 1.33 for the All 
OE model and 1.07 for the A&B model. The low deviance 
numbers suggest a poor fit due to under-dispersion but the 
Pearson numbers suggests a good fit. Thus our results rule out 
over-dispersion but are ambiguous with regard to under-
dispersion.  

Boyle and Flowerdew [7] have shown that using Poisson 
regression on very sparse data sets can lead to low deviance 
values due to the lack of asymptotic convergence of the 
deviance statistic to the Chi-Square distribution. A simulation 
method has been developed to determine if the low deviance is 
a proper indicator of lack of fit due to under-dispersion or is 
simply a result of very sparse data [8]. The simulation begins 
with using the fitted values from the original model as the 
means of a set of Poisson random variables that represent the 
true distribution of OE occurrences. These Poisson random 
variables are then used to create a new set of observed values 
by taking a random draw from each Poisson random variable 
for each observation. For each new set of observations, we run 
the same model and calculate the new deviance. If the model is 
a proper fit for the data, then the mean of these simulated 
deviances will be close to the original deviance.   

For the first model using all OEs, the simulated deviance 
mean is 8309 with a standard deviation of about 200. The 
actual deviance of 9147 is somewhat larger than the simulated 
mean, thus indicating mild under-dispersion. The A,B & C 
model has a very similar distribution to the All OEs model, 
indicating some under-dispersion as well. The model for A&B 
OEs has a true deviance of 3797 with a simulated mean and 
standard deviation of 3720 and 185, respectively. The 
similarity between the simulated mean and the actual deviance 
suggests that the low deviance value arose simply due to highly 
sparse data and is not an indication of under-dispersion. Under-
dispersion in the first two models, since it is fairly mild, does 



not necessarily invalidate our parameter estimates, but further 
work is needed to address this issue. 

D. TRACON Prediction 

The final models were used to predict the number of OEs at 
each facility over the time period studied. For each facility we 
wanted to test the null hypothesis that the observed data were 
produced by a distribution defined by the results from our 
model. If we reject the null, we can conclude that there are 
differences between the facilities that affect the incidence of 
OEs and are not accounted for in the model. A common 
method of evaluating this goodness-of-fit is to use Pearson’s 
Chi-Square statistic, shown by the following equation: 
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Where: k = number of categories 

 iO  = number of observations in category i 

iE = expected number in category i 

The test statistic is distributed Chi-Squared for large sample 
sizes. Also, the expected number of counts in each category 
should be larger than 5. However, the Chi-Square distribution 
assumption can be invalid when any category has a much 
larger observed count than expected count, which we have in 
many of our facility predictions. Rather than use Pearson’s 
statistic, we will use the G-Test for goodness of fit. The G-Test 
statistic is based on likelihood-ratio and is approximately Chi-
Square distributed with k-1 degrees of freedom. The equation 
for calculation of the G-Statistic is shown below. 
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The number of categories for some of our facilities is very 
small (2 or 3), so we will use simulation to determine the exact 
p-value of the G-Test. This method is common when the 
asymptotic behavior of the test statistic is in question. The 
method followed is to assume that the null hypothesis is true 
and draw a new set of observed data using the predicted results 
as the true distribution. A new G-statistic is calculated and the 
compared to the original G-statistic. This process is repeated 
10,000 times for each facility, and the p-value for the G-Test is 
the percentage of times the simulated G-statistic is greater than 
the original G-statistic. The simulation results for each facility 
are shown in Table 5. 

The p-values in the table above correspond to the null 
hypothesis that the model accurately predicts the distribution of 
the observed data. Thus, a good model fit will have a large p-
value in this table, because we will not be able to reject the null 
hypothesis at a high level of significance. Lack of rejection of 
the null is not the same as accepting the null, and thus we must 
be careful when interpreting these values as acceptance of a 
good model fit. For the very large p-values shown above, 
however, these at least suggest that the model fit is adequate. 

Notice that the model fit for the severe errors (A & B model) is 
much better than for all the errors together (All OE Model). 
Perhaps many of the less severe errors are caused by facility-
specific effects not included in our model. On the other hand, 
the model appears to accurately represent the random process 
generating severe OEs at most facilities.  

IV. CONCLUSIONS 

 
Operational errors in terminal radar approach control 

(TRACON) facilities were modeled using Poisson regression. 
The daily OE count at each facility was used as the dependent 
variable while operational and weather measures were used as 
the independent variables. The rate of daily OE occurrences at 
TRACON facilities was found to increase with the square of 
daily traffic, which is consistent with previous research and 
general intuition. It was also found that consolidated TRACON 
facilities behave effectively as a sum of several other, smaller 
TRACON facilities in terms of how the number of OEs is 
influenced by traffic. The rate of occurrence of all types of OEs 
at TRACONs has been found to increase after the introduction 
of the separation conformance severity metric.  

Possible under-dispersion exists for the models of the two 
least severe OE types for the TRACON facilities. The A & B 
model has a very low deviance likely because of very sparse 
data. Our Poisson regression model accurately captures the 
random process generating the most severe types of OEs. That 
is, the most severe error types are the easiest to predict. 

V. FUTURE WORK 

 
Future work could include using more information about 

each operational error than we included. Although our goal was 
to disaggregate our data as much as possible, we still have daily 
counts of operational errors, traffic, and average weather 
variables. Using the exact conditions in the sector at the time 
the OEs occurred could be more representative of the true 
causes of these rare events.  

Additional models could be used, such as zero-inflated 
Poisson regression, to more accurately model the large amount 
of zeros in the data set. Our model could also be modified to 
somehow consider the exact way the consolidated TRACONs 
are acting like the sum of a number of smaller TRACONs. 
Detailed operational characteristics of these large consolidated 
facilities would be needed to perform this analysis, however. 
Also, other effects of policy changes could be investigated if 
different time periods were used. For example, the 
implementation of the Air Traffic Safety Action Program or the 
Traffic Analysis Review Program will both affect the way OEs 
are reported in the TRACON environment. 

 

 

 

 



TABLE V.  TRACON FACILITY PREDICTIONS  

 G-Test P-Values  

TRACON Facility All OEs Model A,B, & C Model A & B Model Associated Airport(s) 

N90  0.001 0.014 0.003 LGA / JFK 

D10 0.000 0.000 0.961* DFW 

A80 0.000 0.000 0.019 ATL 

C90 0.000 0.000 0.419* ORD 

PCT 0.000 0.000 0.000 IAD / BWI 

SCT 0.000 0.000 0.092* LAX / SAN 

D21 0.000 0.000 0.195* DTW 

I90 0.000 0.000 1.000* IAH 

NCT 0.005 0.029 0.808* SFO / OAK 

D01 0.009 0.750* 0.408* DEN 

L30 0.002 0.041 0.776* LAS 

P50 0.008 0.008 0.037 PHX 

S46 0.037 0.324* 0.602* SEA 

M98 0.001 0.011 0.381* MSP 

S56 0.150* 0.056* 0.440* SLC 

A90 0.000 0.000 0.002 BOS 

All Facilities 0.000 0.000 0.000  

* Not significant at 5% level  
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