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Abstract—A method for description of structural characteristics
of air traffic situation based on the theory of complex network
was proposed. This method characterizes the air traffic situation
from three dimensions, including single aircraft, local sector, and
overall sector. This work provides a new clue for precise
description of air traffic situation complexity. We selected the
routinely-recorded flight data in an air traffic control sector
within China's airspace in 2013. With the aircraft in the sector
regarded as node, and with the between-aircraft proximity
relations as edge, we constructed an undirected and unweighted
aircraft network. The air traffic situation network under three
thresholds were statistically analyzed using network topology
indices including degree, edge, connection rate, clustering
coefficient, and network structure entropy. The results show that
network node degree can distinguish the key aircraft in the sector;
the network connection rate reflects the proximity of aircraft; the
clustering coefficient identifies the presence of high-density
aircraft group; the network structure entropy reflects the
homogeneity of aircraft node degrees.
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I. INTRODUCTION
The basic task of the air traffic management system is to

guarantee the safety of air traffic. When two or more aircraft
are approaching, the controller must observe the proximity
between them, understand the danger degree of air traffic
situation, and take corresponding solutions immediately. Thus,
description of this between-aircraft proximity relation,
quantitative analysis of air traffic situation, and description of
the difficulty brought by different traffic situations to
controllers are all very important. Currently, the concept of air
traffic complexity is usually used to describe the air traffic
situation.

In the existing air traffic control (ATC) systems, the
airspace is divided into several sectors, and each controller is
responsible for the flight safety in the sector. Thus,
characterization of air traffic situation based on air traffic
complexity should be founded on assessment of the controller's
work load. The number of aircraft in a sector as the basic
characteristic of air traffic is the basis for studying and
assessment of the controller's work load, and is also the first
accepted indicator that reflects air traffic complexity1-3. Besides
the number of aircraft in a sector, many other indicators are
correlated with a controller's work load, such as airspace

structure and traffic flow characteristics4. The airspace
structure covers the physical structure of airspace, including
terrain structure, number of air routes, and number of
intersections. Traffic flow characteristics include type mixing
degree of aircraft, proportion of climbing aircraft, proportion of
declining aircraft, and proportion of convergent aircraft. These
spatial structure and traffic flow factors jointly interact to form
the overall air traffic complexity5-8. The complexity of air
traffic systems has been intensively studied from the
perspective of complex systems. Based on aircraft tracking
information (e.g. location and velocity), the basic intrinsic
characteristics of air traffic situation (e.g. relative distance and
relative velocity) can be computed. Then the mathematical
description of between-aircraft influence relations is formed,
and the complexity of single aircraft pair could be computed.
Then indicators such as fractal dimension and Lyapunov
exponent are used to describe the irregularity of between-
aircraft influence relations, which serve as a measure of air
traffic complexity9,10. Based on aircraft approaching effect and
conflict effect, two algorithms for computation of sector
complexity were proposed11. Regarding the impacts of abrupt
disturbance on the between-aircraft relation in the original
region, a complexity model based on traffic flow disturbance
was proposed, which defined the complexity degree as a
measurement reflecting the control activities needed by a
controller in response to emergency12-14. Targeted at the
characteristics of future ATC systems, the air traffic
complexity based on flight path movement was analyzed15-17.
Moreover, a dynamic model about the evolution of air traffic
situations was built on basis of between-aircraft influence
relations, and by describing the irregularity of traffic
organization as topological entropy, a novel standard for
measurement of air traffic complexity was built18,19.

The above studies focus on the complexity of air traffic
situations from different perspectives, but ignore the between-
aircraft proximity from the perspective of structure. In fact, the
structural characteristics of air traffic are the basic
characteristics of air traffic situations, and can more delicately
describe the proximity relations between two or more aircraft
in a sector. Figure 1 illustrates three air traffic situations with
different network structures, with 5 aircraft under each
situation. Specifically, the between-aircraft distances in Figure
1(a) are large, without too close proximity relations; the
between-aircraft distances in Figure (1b) are small, which will
interfere with the allocation of beforehand conflicts by the
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controller. The between-aircraft distances in Figure (1c) are
smaller with some ring-like structures, which further
complicates the controller in formulation of appropriate
solutions to conflicts. Thus, despite the same air traffic density
in the three situations in Fig. 1, the actual control difficulties
for the controller largely differ, but such structural differences
cannot be well reflected by the existing air traffic complexity
indicators.

Figure 1 Air traffic situations with different network structures

Numerous complex systems in the nature can be described
as networks. Complex networks are a method for abstraction
and description of complex systems, and highlight the
topological characteristics of system structures. Generally, any
complex system containing abundant component units can be
regarded as a complex network when the component units are
abstracted into interrelated and abstract lines between nodes
and units20-22.

In this study, based on the theories and research methods of
complex networks, the network models corresponding to air
traffic situations at different time points were constructed.
Abundant data were used as validation to investigate the
structural properties of air traffic, aiming to probe into the
characteristics of air traffic situations from a systematic
perspective. Section 2 will introduce the air traffic network
modeling methods and the data used in this study. Section 3
will analyze the structures of air traffic networks from multiple
perspectives, including network degree, edge, clustering
coefficient, and structure entropy, and will discuss the
characteristics of air traffic situations reflected by these
structural indicators. In this study, the theories and methods of
complex networks were used to statistically analyze the air
traffic situations. This study provides a new perspective for
investigation into air traffic complexity, and helps to reveal the
nature of air traffic situations.

II. METHODS AND DATA

Complex systems are widespread in the nature, society,
organisms, engineering technology, and many other fields. The
numerous complex systems in the real world can all be
described as networks, such as traffic networks,
communication networks, and cooperation networks. A
complex network is an abstraction of abundant real complex
systems, and thus can reflect the various interactions and
relations inside the complex systems. The basis of complex
networks is graph theory. A network can be defined as a graph
G(V, E) composed of a node set V(G) and edge set E(G). Each
edge ei in E(G) corresponds to a pair of nodes(u, v). Each node
in graph G represents an individual in the real network, and
each edge represents the interaction between two individuals.
The corresponding adjacent matrix in graph G is A=[ai,j]. If
node i and node j are connected, then ai,j=1; otherwise ai,j=0.

An air traffic system is essentially a complex system and

thus can be abstracted and described from the perspective of
complex networks23. In this study, with aircraft regarded as
node, the spatial proximity relation between aircraft is
expressed as undirected edge, and thereby, a corresponding air
traffic situation network that represents the air traffic
operation situation is constructed. If at time t, the horizontal
distance between aircraft i and j is smaller than the preset
threshold D, then it is considered that nodes i and j are
connected via an edge, which is undirected and unweighted.
As aircraft start to move, the between-aircraft distance
relations also gradually change, and some aircraft will fly into
or depart from the sector, indicating that the air traffic
situation network is a dynamic relation network changing with
time.

In this study, a sector controlled by an air traffic control
station ZSAMAR02 from Civil Aviation Administration of
China (CAAC) was selected. This is a medium- and low-
altitude controlled sector, with altitude range of 5400-7800 km
and horizontal separation minima of 10 km. The routinely-
recorded radar data from 09:00 to 23:59 October 1, 2013 were
collected, and the latitudes and longitudes of aircraft were
computed. Then based on the information about the positions
of aircraft, an air traffic network every 1 min was built, with a
total of 900 networks. The number of nodes in a network is the
total number of aircraft in the sector at that time. Under the
limitation of the controller's work load, the scale of air traffic
networks is not very large, and the numbers of nodes are
generally smaller than 15. The change of traffic volume during
specified time period is showed in Fig. 2. To characterize the
structures of networks from different perspectives, we set three
thresholds: 10, 30, and 60 km.

Figure 2. The change of traffic volume

III. NETWORK TOPOLOGICAL CHARACTERISTICS AND
ANALYSIS

A. Degree
Degree is an important attribute for single nodes in a

network. We set the total number of nodes in a network as N,
and the degree of node i, marked as k(i), is defined as the
number of edges connected to node i. In an air traffic network,
degree represents the number of aircraft close to an aircraft and
thus reflects the accessibility of this aircraft. A larger degree
indicates a higher possibility that this aircraft may experience
conflict, which should be paid high attention to. In the air
traffic situation 1 in Fig. 3, the distances of aircraft P2 from
aircraft P1/P3/P4 are all small. At the threshold D=60 km,



k(P2)=3. On the contrary, the distances of aircraft P7 from
other aircraft are all large, and then k(P7)=0.

Figure 3. Air traffic situation 1

In most existing studies, the airspace congestion degree is
defined as the number of aircraft in unit area or volume, and a
larger such number indicates a higher congestion. This method
is simple and applicable, but cannot differentiate the
congestion degrees of different air traffic situations with the
same number of aircraft. In this study, the congestion degree
of air traffic situation at a time point was evaluated using the
average degree, which is defined as the mean of degrees of all
nodes in a network and reflects the average number of
neighbors of nodes in the network. In air traffic, a larger
number of neighbors indicates a smaller average distance
between aircraft, and thus a larger airspace congestion degree.
The curve of number of nodes corresponds to the average
degree per hour was plotted and showed in Fig. 4. When the
number of nodes is fixed, the hour-averaged means of degrees
are not the same, which reflects the dynamic evolution of air
traffic systems and indicates that the internal structures of air
traffic situations with the same number of aircraft will be
completely different. Moreover, at some periods, the network
average degree with a small number of nodes is unexpectedly
larger than that with a larger number of nodes. For instance, at
09:00, the mean of network average degrees with 6 nodes is
1.8, while the result with 7 nodes is 1.4. Similar situation
occurred at 13:00, 14:00, 16:00 and 20:00. These results
indicate that in some air traffic situations, a small number of
aircraft unexpectedly results in a higher congestion degree
than in the situation with a large number of aircraft. Thus, the
network average degree can more finely describe the
congestion degree of air traffic. As showed in Fig. 5, generally
(though with some specific cases), the network average degree
increases with the increasing number of nodes. Meanwhile,
the network average degree is closely correlated with the
preset threshold, since a too large threshold may induce more
edges, which impacts the precision of determination, while
with a too small threshold, some very important edges may be
ignored. In practice, the threshold can be set as an appropriate
multiple of the between-aircraft horizontal separation minima
in that airspace.

Figure 4. Curve of network average degree changing with time

Figure 5 Growing curve of network average degree with the number of
nodes

B. Edges, connection rate, and growth rate of edges
If the distance between two aircraft is smaller than the

preset threshold, one edge exists between the nodes in the
corresponding network. Thus, the number of edges in a
network reflects the number of close aircraft pairs in the real air
traffic. Connection rate also called network density is defined
as the proportion of real edges accounting for the number of
potential edges and thus describes the overall connectiveness of
a network. Connection rate is computed as follows:
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where El is the number of edges in a network, and N is the
number of nodes.

Similar to the network average degrees, the number of
edges per unit time and connection rate can also be used as
indicators for determination of between-aircraft proximity. A
larger connection rate indicates higher interconnection degree
between nodes. In real air traffic, a larger connection rate also
indicates that a larger proportion of aircraft are distributed in
small distances. At this moment, the possibility of potential
conflicts is also high, and thus the controller should undertake
more work load.



Fig. 6 shows the curve between the number of edges and
the number of nodes in a network. Clearly, the number of
edges increases with the increased number of nodes, which
conforms to the real situation. Fig. 7 shows the distribution of
connection rate. At D=60 km, the connection rate obeys a
normal distribution with mean about 0.12. Under most
situations, the connection rate is < 0.19, which is far smaller
than that in the tree-like networks (about 0.3). Thus, under
normal conditions, the number of connections in a network is
within a specific range, and the minima and maxima account
for a very small proportion. Moreover, a smaller threshold D
means a smaller number of edges and a smaller connection rate
(Fig. 6 and Fig. 7).

Figure 6. Relation between number of edges and number of nodes

Figure 7 Distribution of connection rate

As reported, the key indicators reflecting the air traffic
complexity include the level of convergence and divergence of
many aircraft 10-12. To reflect the between-aircraft convergent
effect from the perspective of air traffic network structures, we
propose an indicator of "growth rate of edges" in this study.
This indicator means the increasing number of edges per unit
time, which can be computed as follows:
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Fig. 8 and Fig. 9 show two air traffic situations, and the
aircraft with green marks were observed, where the red
arrowhead indicates the moving direction of aircraft. Then the
number of corresponding edges and the growth rate of edges in
different situations were computed, and the results are showed
in Table I. Situation 2a contains 6 edges: (P1,P2), (P1,P3),
(P2,P3), (P2,P4), (P3,P4), and (P4,P5). After 1 min, as the
aircraft start to move, the distances of P1/P3, P2/P3, and P2/P4

all exceed the preset threshold D, only leaving 3 edges (P1,P2),
(P3,P4), and (P4,P5). Then the growth rate of edges in scene 2b
was computed to be -0.5. Situation 3a contains 2 edges:
(P1,P2), and (P4,P6). After 1 min, as the aircraft start to move,
the distances of P1/P3, P2/P3 and P4/P5 are all smaller than the
preset threshold D, increasing the number of edges to 5. Then
the growth rate of edges in situation 3b was computed to be 1.7.
During the transitions from situation 2a to situation 2b, and
from situation 3a to situation 3b, the growth rate of edges
macroscopically reflects the level of convergence of an aircraft
in the sector. A positive increasing rate indicates that the
number of convergent aircraft in the sector is increasing;
otherwise, the number of diverging aircraft is increasing.

Figure 8. Two traffic situations with 7 aircraft (a): situation 2a , (b):
situation 2b

Figure 9. Two traffic situations with 6 aircraft (a): situation 3a, (b):
situation 3b

TABLE I. GROWTH RATE OF EDGES IN DIFFERENT SITUATIONS

Situation No Time Numb
er of
nodes

Number of edges
(D=60 km)

Growth rate of
edges (D=60

km)
Situation 2a 23:25:00 7 6 /
Situation 2b 23:26:00 7 3 -0.5
Situation 3a 20:07:00 6 2 /
Situation 3b 20:08:00 6 5 1.7

C. Clustering coefficient
Some aircraft groups will appear in real air traffic, when

the distances among several aircraft are small. In situation 4
showed in Fig. 10, the distances among nodes P1/P2/P3 are all
small, forming a high-density aircraft group. Then control of
any aircraft in the group may interfere with other aircraft,
which is unfavorable for the controller to resolve the multi-
aircraft conflict. In this study, a concept of clustering
coefficient was introduced to analyze the between-aircraft
clustering from the perspective of aircraft network structures.

Clustering coefficient describes the clustering of nodes in a
network, or namely the proximity in the network. A larger
clustering coefficient indicates that the nodes are closer. In an



air traffic network, the clustering coefficient of an aircraft
represents the proximity of this aircraft from other nearby
aircraft. A larger clustering coefficient indicates a high-density
aircraft group with this aircraft as the center. A smaller
clustering coefficient indicates a small number of aircraft
around this aircraft. Thus, clustering coefficient
macroscopically reflects the high proximity between aircraft.

Figure 10. The example of clustering coefficient: air traffic situation 4

Clustering coefficient is computed as follows: if node i is
connected via ki edges to other ki nodes, there are probably up
to ki(ki-1)/2 edges formed by these ki nodes, and the ratio of
"the real number of edges", Ei, to ki(ki-1)/2 is called the
clustering coefficient Ci of node i:
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The clustering coefficient C of the whole network is the
means of Ci from all nodes:
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The clustering coefficients of air traffic networks under 3
thresholds were computed. The results show that the clustering
coefficients were 0.339, 0.09 and 0.01 respectively, which
were all small and indicated no proximity relations between
aircraft in this sector. The probability distribution of clustering
coefficient is showed in Fig. 11. This distribution conforms to
the real situation, since in real life, the controllers always try to
avoid the occurrence of high-density aircraft groups and keep
the controlling and commanding difficulty within specific
ranges.

Figure 11. Probability distribution of clustering coefficient

Figure 12. Curve of clustering coefficient with the number of nodes

Fig. 12 shows the changes of clustering coefficient with the
number of nodes. When the number of nodes is fixed, a larger
threshold D is more likely to generate proximity between
aircraft, and thus, the corresponding clustering coefficient is
larger. Moreover, the clustering coefficient increases with the
increasing network scale, and stabilizes when the number of
nodes exceeds 12. Coincidentally, the maximum number of
airplanes controlled by controllers in the medium- and low-
altitude air traffic control sector is 12, provided by CAAC. In
other words, network clustering coefficient is an indicator
measuring the airspace service ability. Compared with the
number of aircraft describing quantify the congestion in an air
sector, the clustering coefficient also reflects the occurrence of
high-density aircraft group.

D. Network structure entropy
During airborne traffic operation, some aircraft are at high-

density space, and thus, slight adjustment to the aircraft will
induce a new flight conflict. On the contrary, some aircraft are
at low-density space and very far from other aircraft, the
possibility of inducing conflict is very small within short time.
In other words, the aircraft will impact the overall air traffic
situation to different degrees. From the perspective of networks,
this fact also reflects the different importance degrees among
nodes, which is called a non-homogeneous network.

In an air traffic network, the importance degree of a node
can be computed as follows:
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where Ii is the importance degree of aircraft i; N is the number
of aircraft; ki is the number of aircraft adjacent to aircraft i.

Then network structure entropy is introduced to measure
whether the influence degrees of aircraft on the whole traffic
situation are homogeneous. The network structure entropy is a
macro-indicator measuring the topological nature of a network
and describes the homogeneity or not of node degrees:
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where Er is the structure entropy of an air traffic network; N is
the number of aircraft; Ii is the importance degree of aircraft i.

A larger structure entropy indicates higher homogeneity of
node degrees. For a regular network with fixed node degrees,
the structure entropy is assigned with the maximum lnN. Fig.
13 shows two air traffic situations, where the green marked
aircraft belong to the sector ZSAMAR02 studied here. This
sector under two situations both involved 6 aircraft. In situation
5, however, the between-aircraft distances are very
homogeneous, and the between-node differences are very small.
In situation 6, the distances of P1/P2/P5/P6 are very large, and
only the distance of P3/P4 is small. Thus, the structure entropy
in situation 5 is larger than that in situation 6, and the results of
structure entropy in the two situations are showed in Table II.

Figure 13 Two traffic situations with 6 aircrafts (a): situation 5, (b):
situation 6

TABLE II. NETWORK STRUCTURE ENTROPY UNDER TWO SITUATIONS

Situation
No

Number
of nodes

Network structure entropy

D=60
km

D=30
km

D=10
km

Situation 5 6 1.91 1.79 1.79
Situation 6 6 1.56 0.69 0

The relations between structure entropy and number of
nodes with different thresholds are illustrated in Fig. 14.
Clearly, network structure entropy is enhanced along with the
increased number of nodes, indicating that with a larger
number of aircraft, the influence degrees of aircraft on the
overall traffic situation will be homogeneous. Considering the
effects of thresholds on structure entropy, with the same
number of nodes, a larger threshold corresponds to a larger
structure entropy (Fig. 14), indicating that the effect of aircraft
on the overall situation is smaller. Moreover, the evolution of a
network can also be reflected by the increasing rate of network
structure entropy, which is defined as the variation of structure
entropy with a same increased number of nodes. As showed in

Fig. 14, at D=60 km, the increasing rate of structure entropy is
clearly divided into two stages: Stage 1 corresponds to the
period when the number of nodes is < 7, or namely in the
sector, the number of aircraft instantaneously is < 7. This is the
non-peak traffic stage, and the air traffic density is low and
heterogeneous, with unstable network structures and large
variation of structure entropy. When the number of nodes
increases from 1 to 7, the structure entropy is improved by 30%
from 0 to 1.8. Stage 2 corresponds to the period when the
number of nodes is > 7. This is the peak stage of air traffic,
when the air traffic density is very large and homogeneous. As
the network scale is enhanced, the network is gradually mature,
the network structure is also stabilized, and the increasing rate
of network structure entropy is decreasing. When the number
of nodes increases from 7 to 15, the structure entropy is
improved by 10% from 1.8 to 2.6. When the number of nodes
is 14, the increasing rate of structure entropy stabilizes to 0.

Figure 14. Relation between network structure entropy and number of
nodes

IV. CONCLUSION

Air traffic situation can be mapped into a network structure,
whose structural characteristics are significant for describing
the air traffic complexity in a sector. We selected the routinely-
recorded radar data in an air traffic control area within China's
airspace in 2013. With the aircraft in the sector as node, and
with the between-aircraft distance closeness as edge, we
constructed an undirected and unweighted aircraft network.
The thresholds would differently affect the network structures,
and in this study, the thresholds were set at 60, 30 and 10 km.
The air traffic situation networks under dissimilarity distance
thresholds were statistically analyzed using network topology
indices including more degree, number of edge, connection rate,
clustering coefficient, and network structure entropy. The
results show that node degree and node clustering coefficient
reflect whether or not a single aircraft is within a high-density
aircraft group, and the key aircraft from the sector can be
identified from the perspective of airspace congestion. Network
average degree, number of edge, connection rate, and network
clustering coefficient reflect the proximity of aircraft within the
sector from different perspectives. The clustering coefficient
also indicates whether or not a high-density aircraft group
exists in the sector. The growth rate of edges reflects the
evolution of proximity of air traffic, or namely the convergence
or divergence of traffic situation in the sector. Network
structure entropy macroscopically reflects the homogeneity of
aircraft congestion degree in a sector, and can identify whether



some aircraft are at very high-density or very low-density
airspace. Thus, the analysis of topological structural
characteristics of air traffic situation networks shows that
though air traffic systems are very complex systems, there are
internal development laws and characteristics. However, we
only statistically analyzed the data of a sector from only one
day. In the future, data from more sectors and covering longer
periods will be collected and applied into analysis of relations
between network structural characteristics and air traffic
situations.
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