
1

Machine Learning Applied to Airspeed Prediction
During Climb

R. Alligier, D. Gianazza, N. Durand
ENAC, MAIAA, F-31055 Toulouse, France

Univ. de Toulouse, IRIT/APO, F-31400 Toulouse, France

Abstract—In this paper, we apply Machine Learning methods
to improve the aircraft climb prediction in the context of ground-
based applications. Mass and speed intent are key parameters for
climb prediction. As they are considered as competitive parame-
ters by many airlines, they are currently not available to ground-
based trajectory predictors. Consequently, most predictors today
use reference parameters that may be quite different from the
actual ones.

In our most recent paper ([1]), we have demonstrated that
Machine Learning techniques provide a mass estimation signif-
icantly more precise than two state-of-the-art mass estimation
methods.

In this paper, we apply similar techniques to the speed intent.
We first build a set of examples by adjusting CAS/Mach speed
profile to each climb trajectory in our database. Then, using the
adjusted values (ĉas, M̂) in this database, we learn a model able
to predict the (cas,M) values of a new trajectory, using its past
points as input.

We apply this technique to actual Mode-C radar data and
we consider 9 different aircraft types. When compared with the
reference speed profiles provided by BADA, the reduction of
the speed RMSE ranges from 36 % to 79 %, depending on
the aircraft type. Using the predicted mass and speed profile,
BADA is used to compute the predicted future trajectory with a
10 minute horizon. When compared with BADA used with the
reference parameters, the reduction of the future altitude RMSE
ranges from 45 % to 87 %.

Keywords: aircraft trajectory prediction, speed intent,
BADA, Machine Learning

INTRODUCTION

Trajectory prediction is a key feature to most Air Traffic
Management and Control (ATM/ATC) operational concepts.
The role of trajectory prediction is even more important in
the future concepts and decision support tools envisioned in
the European SESAR program ([2]) and its U.S. counterpart
NextGen ([3]).

With the implementation of a data-link between aircraft
and ground-based systems, one could think that the on-board
trajectory prediction could be downloaded to the ground-
based system. However, for some applications the ground-
based trajectory prediction is still more relevant. Some of the
most recent algorithms designed to solve ATM/ATC problems
do require to test a large number of alternative trajectories and
it would be impractical to download them all from the aircraft.

As an example of such algorithms, in [4] an iterative quasi-
Newton method is used to find trajectories for departing
aircraft, minimizing the noise nuisance. Another example is [5]
where Monte Carlo simulations are used to estimate the risk

of conflict between trajectories in a stochastic environment.
Some of the automated tools currently being developped for
ATM/ATC can detect and solve conflicts between trajectories
(see [6] for a review). These algorithms may use Mixed
Integer Programming ([7]), Genetic Algorithms ([8], [9]), Ant
Colonies ([10]), or Differential Evolution or Particle Swarm
Optimization ([11]) to find optimal solutions to air traffic
conflicts.

To be efficient, all these methods require a fast and accurate
trajectory prediction, and the capability to test a large number
of “what-if” trajectories. Such requirements forbid the sole
use of on-board trajectory prediction, which is certainly the
most accurate, but which is not directly available to ground
systems.

Most trajectory predictors rely on a point-mass model to
describe the aircraft dynamics. The aircraft is simply modeled
as a point with a mass, and the second Newton’s law is
applied to relate the forces acting on the aircraft to the
inertial acceleration of its center of mass. Such a model is
formulated as a set of differential algebraic equations that
must be integrated over a time interval in order to predict the
successive aircraft positions, knowing the aircraft initial state
(mass, current thrust setting, position, velocity, bank angle,
etc.), atmospheric conditions (wind, temperature), and aircraft
intent (thrust profile, speed profile, route).

Unfortunately, the data that is currently available to ground-
based systems for trajectory prediction purposes is of fairly
poor quality. The speed intent and aircraft mass, being con-
sidered competitive parameters by many airline operators, are
not transmitted to ground systems. The actual thrust setting
of the engines (nominal, reduced, or other, depending on the
throttle’s position) is unknown. Weather and Radar data are
uncertain. The problem of unknown parameters such as the
mass, thrust law, and target speeds, is of particular importance
when predicting the aircraft climb. Figure 1 illustrates the
climb prediction problem, when using a physical model of
the aircraft dynamics.

Some studies ([12], [13], [14]) detail the potential benefits
that would be provided by additional or more accurate input
data. In other works, the aircraft intent is formalized through
the definition of an Aircraft Intent Description Language ([15],
[16]) that could be used in air-ground data links to transmit
some useful data to ground-based applications. All the neces-
sary data required to predict aircraft trajectories might become
available to ground systems someday. In the meantime, by
applying Machine Learning techniques, we propose to learn

2

Aircraft state at t0:

Aircraft intent:

Physical model

(Position,Speed)

Speed Profile: ?

Mass: ?

Thrust setting law: ?

Future
trajectory

Past
points

Figure 1: The ground-based aircraft climb prediction problem.

some of the unknown parameters of the point-mass model
from the data that is already available today, typically from
the observed radar tracks of past and current flights.

Applying Machine Learning techniques on the trajectory
prediction problem is not a new idea. A decade ago, [17]
has applied artificial neural network on this problem. It has
also been investigated more recently using different Machine
Learning techniques ([18], [19], [20]). With these approaches,
the obtained model directly predicts the trajectory. It is a black-
box hiding what comes from the aircraft performances and
what comes from the airline procedures, i.e. the way it is
operated. In this context, the originality of our work is that
we keep the physical model in the loop. The physical model
describes the aircraft performances and the data-driven models
describe how the aircraft is operated i.e. the mass and the speed
intent.

In current operation, the trajectory is predicted by using the
reference mass and the reference (casref,Mref) values from
the Eurocontrol Base of Aircraft Data (BADA) (see Figure 2).
These values describe the speed profile of a climbing aircraft.
The aircraft climbs at constant CAS (Calibrated Airspeed)
equals to cas till the transition altitude is reached, then it
climbs at a constant Mach M . Although BADA associates
one (cas,M) value to each aircraft type, these values might
be different among aircraft of the same type due to different
cost-index for instance. In this paper, using all the information
available, we want to predict a (cas,M) value specific to the
considered aircraft.

Figure 3 describes the approach developed in this paper
to improve trajectory prediction using Machine Learning
techniques. Using these techniques allows us to build the
predictive models hm, hcas and hM. In previous paper [1], we
describe how the model hm predicting the mass is obtained. We
demonstrated that the model hm was significantly more precise
than two mass estimation methods previously compared in
[21]. In the current paper, we want to predict the speed
profile. To do so, we build a set of examples by adjusting
a
(
ĉas, M̂

)
speed profile to each trajectory of a recorded set

of trajectories. Then, using Machine Learning techniques on

this set of examples, we learn a model able to predict (cas,M)
values from the past points of a new input trajectory.

Aircraft state at t0:

Aircraft intent:

Physical model

(Position,Speed)

Speed Profile: (casref,Mref)

Mass: mref

Thrust setting law: max,climb

Future
trajectory

BADA files BADA: Base of Aircraft Data

max,climb
(casref,Mref)

mref

Past
points

Figure 2: Baseline method : the BADA prediction of the future
aircraft climb

Aircraft state at t0:

Aircraft intent:

Physical model

(Position,Speed)

Speed Profile: (hcas(x), hM(x))

Mass: hm(x)

Thrust setting: max,climb

Future
trajectory

Predictive models h

x

Past
points

Figure 3: This figure describes how the future trajectory is
predicted by applying Machine Learning techniques. When a
fresh trajectory is observed, the input variables x are computed
from the observed points and the predictive models hm, hcas
and hM are used to predict the mass and the speed profile.

The rest of this paper is organized as follows: Section I
presents some useful Machine Learning notions that help
understanding the methodology applied in our work. Section II
details the data used in this study. The application of Machine
Learning techniques to our speed profile prediction problem
is described in section III, and the results are shown and
discussed in section IV, before the conclusion.

I. MACHINE LEARNING

This section describes some useful Machine Learning no-
tions and techniques. For a more detailed and comprehensive
description of these techniques, one can refer to [22], [23].

As explained in the previous section, we want to predict
a variable y, here the adjusted ĉas and M̂ values of a given

3

trajectory, from a vector of explanatory variables x, which
in our case is the data extracted from the past trajectory
points and the weather forecast. This is typically a regression
problem. Naively said, we want to learn a function h such
that y = h(x) for all (x, y) drawn from the distribution
(X,Y). Actually, such a function does not exist, in general.
For instance, if two ordered pairs (x, y1) and (x, y2) can be
drawn with y1 6= y2, h(x) cannot be equal to y1 and y2 at the
same time. In this situation, it is hard to decide which value
to give to h(x).

A way to solve this issue is to use a real-valued loss function
L. This function is defined by the user of function h. The value
L(h(x), y) models a cost for the specific use of h when (x, y)
is drawn. With this definition, the user wants a function h
minimizing the expected loss R (h) defined by equation (1).
The value R (h) is also called the expected risk.

R(h) = E(X,Y) [L (h(X), Y)] (1)

However, the main issue when choosing a function h minimiz-
ing R (h) is that we do not know the joint distribution (X,Y).
We only have a set of examples of this distribution.

A. Learning from examples

Let us consider a set of n examples S = (xi, yi)16i6n
coming from independent draws of the same joint distribution
(X,Y). We can define the empirical risk Rempirical by the
equation below:

Rempirical(h, S) =
1

|S|
∑

(x,y)∈S

L (h(x), y) . (2)

Assuming that the values (L(h(x), y))(x,y)∈S are independent
draws from the same law with a finite mean and variance,
we can apply the law of large numbers giving us that
Rempirical(h, S) converges to R(h) as |S| approaches +∞.

Thereby, the empirical risk is closely related to the expected
risk. So, if we have to select h among a set of functions
H minimizing R(h), using a set of examples S, we select
h minimizing Rempirical(h, S). This principle is called the
principle of empirical risk minimization.

Unfortunately, choosing h minimizing Rempirical(h, S) will
not always give us h minimizing R(h). Actually, it depends on
the “size”1 of H and the number of examples |S| ([24], [25]).
The smaller H and the larger |S| are, the more the principle of
empirical risk minimization is relevant. When these conditions
are not satisfied, the selected h will probably have a high R(h)
despite a low Rempirical(h, S). In this case, the function h is
overfitting the examples S.

These general considerations above have practical conse-
quences on the use of Machine Learning. Let us denote hS
the function in H minimizing Rempirical(., S). The expected
risk using hS is given by R(hS). We use the principle of

1The “size” of H refers here to the complexity of the candidate models
contained in H , and hence to their capability to adjust to complex data. As
an example, if H is a set of polynomial functions, we can define the “size”
of H as the highest degree of the functions contained in H . In classification
problems, the “size” of H can be formalized as the Vapnik-Chervonenkis
dimension.

empirical risk minimization. As stated above, some conditions
are required for this principle to be relevant. Concerning the
size of the set of examples S: the larger, the better. Concerning
the size of H , there is a tradeoff: the larger H is, the smaller
min
h∈H

R(h) is. However, the larger H is, the larger the gap

between R(hS) and min
h∈H

R(h) becomes. This is often referred
to as the bias-variance tradeoff.

B. Accuracy Estimation

In this subsection, we want to estimate the accuracy ob-
tained using a Machine Learning algorithm A. Let us denote
A[S] the prediction model found by algorithm A when mini-
mizing Rempirical(., S)2, considering a set of examples S.

The empirical risk Rempirical(A[S], S) is not a suitable
estimation of R(A[S]): the law of large numbers does not
apply here because the predictor A[S] is neither fixed nor
independent from the set of examples S.

One way to handle this is to split the set of examples S
into two independent subsets: a training set ST and another
set SV that is used to estimate the expected risk of A[ST], the
model learned on the training set ST . For that purpose, one
can compute the holdout validation error Errval as defined by
the equation below:

Errval(A, ST , SV) = Rempirical(A[ST], SV). (3)

Cross-validation is another popular method that can be used
to estimate the expected risk obtained with a given learning
algorithm. In a k-fold cross-validation method, the set of
examples S is partitioned into k folds (Si)16i6k. Let us denote
S−i = S\Si. In this method, k trainings are performed in order
to obtain the k predictors A[S−i]. The mean of the holdout
validation errors is computed, giving us the cross-validation
estimation below:

CV (A, S) =

k∑
i=1

|Si|
|S|

Errval(A, S−i, Si). (4)

This method is more computationally expensive than the
holdout method but the cross-validation is more accurate than
the holdout method ([26]). In our experiments, the folds
were stratified. This technique is said to give more accurate
estimates ([27]).

The accuracy estimation has basically two purposes: first,
model selection in which we select the “best” model using
accuracy measurements and second, model assessment in
which we estimate the accuracy of the selected model. For
model selection, the set SV in Errval(A, ST , SV) is called
validation set whereas in model assessment this set is called
testing set.

C. Hyperparameter Tuning

Some learning algorithms have hyperparameters. These hy-
perparameters λ are the parameters of the learning algorithm

2Actually, depending on the nature of the minimization problem and
chosen algorithm, this predictor A[S] might not be the global optimum for
Rempirical(., S), especially if the underlying optimization problem is handled
by local optimization methods.

4

Aλ. These parameters cannot be adjusted using the empirical
risk because most of the hyperparameters are directly or
indirectly related to the size of H . Thus, if the empirical risk
was used, the selected hyperparameters would always be the
ones associated to the largest H .

These hyperparameters allow us to control the size of
H in order to deal with the bias-variance tradeoff. These
hyperparameters can be tuned using the holdout method on
a validation set for accuracy estimation. In order to find λ
minimizing the accuracy estimation, we used a grid search
which consists in an exhaustive search on a predefined set
of hyperparameters. The Algorithm 1 is a learning algorithm
without any hyperparameters. In this algorithm, 20% of the
training set is held out as a validation set.

function TUNEGRID(Aλ,grid)[T]
(TT , TV)← split(80%,20%)(T)
λ∗ ← argmin

λ∈grid
Errval(Aλ, TT , TV)

return Aλ∗ [T]
end function

Algorithm 1: Hyperparameters tuning for an algorithm Aλ and
a set of examples T (training set).

II. DATA USED IN THIS STUDY

A. Data Pre-processing

Recorded radar tracks from Paris Air Traffic Control Center
are used in this study. This raw data is made of one position
report every 1 to 3 seconds, over two months (July 2006, and
January 2007). In addition, the wind and temperature data from
Météo France are available at various isobar altitudes over the
same two months.

The raw Mode-C altitude3 has a precision of 100 feet.
Raw trajectories are smoothed using splines. Basic trajectory
data is made of the following fields: aircraft position (X ,Y
in a projection plane, or latitude and longitude in WGS84),
ground velocity vector Vg = (Vx, Vy), smoothed altitude (Hp,
in feet above isobar 1,013.25 hPa), rate of climb or descent
dHp

dt . The wind W = (Wx,Wy) and temperature T at every
trajectory point are interpolated from the weather datagrid. The
temperature differential ∆T is computed at each point of the
trajectory.

Using the position, velocity and wind data, we compute the
true air speed Va. The successive velocity vectors allow us
to compute the trajectory curvature at each point. The aircraft
bank angle is then derived from true airspeed and the curvature
of the air trajectory.

Along with these quantities derived from the Mode-C radar
data and the weather data, we have access to some quantities
in the flight plan like the Requested Flight Level for instance.

With the weather datagrid, we have also computed the
temperature differential ∆T (weather grid) and the wind along
Walong(weather grid) at each altitude of the grid. This is done
by using the VaXY , the time, the latitude and the longitude

3This altitude is directly derived from the air pressure measured by the
aircraft. It is the height in feet above isobar 1013.25 hPa.

of the considered point. Walong is the wind along the true air
speed in the horizontal plane VaXY .

All the computed quantities are summarized in Table I.

quantities description
Hp geopotential pressure altitude
Vg Ground Speed
Va True Air Speed

VaXY True Air Speed in the (X,Y) plane
dair distance flown w.r.t. the air
dground distance flown w.r.t. the ground
∆T temperature differential (cf. [28])
W wind

Walong wind along VaXY
Wacross wind across VaXY
WZ vertical wind
θc drift angle

CAS Calibrated Air Speed
Mach Mach number
1/rsol curvature w.r.t. the ground
1/rair curvature w.r.t. the air
φ bank angle

e = Va
dVa
dt

+ g0
T

T−∆T

dHp

dt
specific energy rate

ew = e+
−̇→
W.
−→
Va specific energy rate corrected from

the wind effect
∆T (weather grid) temperature differential on a grid of

different Hp
Walong (weather grid) wind along VaXY on a grid of dif-

ferent Hp
m̂LS estimated mass from past points us-

ing least square method [21]
eLS root mean square error obtained on

the past points using the least square
method

m̂AD estimated mass from past points us-
ing adaptive method [29]

RFL Requested Flight Level
Speed requested speed

distance distance between airports
AO aircraft operator

DEP departing airport
ARR arrival airport

Table I: This table summarizes the quantities available in our
study.

B. Filtering Climb Segments

Our dataset includes all flights departing from Paris-Orly
(LFPO) or Paris-Charles de Gaulle Airport (LFPG). Needless
to say, this approach can be replicated to other airports.

The trajectories are filtered so as to keep only the climb
segments. An additional 80 seconds is clipped from the be-
ginning and end of each segment so as to remove climb/cruise
or cruise/climb transitions. It is worth noticing that the trajec-
tories have not been filtered on the speed profile but only on
the rate of climb and the altitude.

C. Building the Sets of Examples

The climb segments are sampled every 15 seconds. From
these sampled segments, we build examples containing exactly
51 points. In these examples, the first 11 points (past trajec-
tory) are used to predict the mass and the speed profile. The
remaining points (future trajectory) are used to compute the
error between the predicted and actual trajectory.

From one sampled climb segment we build as many exam-
ples as we can. For instance, from a sampled climb segment

5

containing 54 points, we can build 4 examples containing
exactly 51 successive points. These 4 examples share the
48 points in the middle of the climb segment. Once these
examples are built, we only keep the examples with the 11th

point at an altitude superior to 15,000ft for the B744 aircraft
type and 18,000ft for all the other aircraft types. Using this
method, we have considered 9 aircraft types and we have
built one set of examples for each aircraft type. Some of the
chosen aircraft types are very different: the E145 is a short haul
aircraft with a 18,500 kg reference mass while the B744 is a
long haul aircraft with a 285,700 kg reference mass. Looking
at Table II we see the size of the different sets.

type number of climbing segments number of examples
A319 1863 15702
A320 5729 65514
A321 1866 21789
A332 1475 28629
B737 344 2178
B744 350 2750
B772 910 8525
E145 851 8310
F100 660 7430

Table II: Size of the different sets. Only the climbing segments
generating at least one example in our final examples set are
counted here.

D. Adjusting the Speed Profile to Observed Points

We want to learn the future speed profile. x is all the
information we have at t0 and before. The future speed intentis
y. From a set of examples (x, y), we learn a model h predicting
the speed profile from x. The predicted speed profile h(x) will
be hopefully equal to the actual speed intent y.

However, the actual speed intent y is not available in our
data, thus we do not have the set of examples (x, y), yet. We
have to extract it from the observed trajectory. In BADA, the
speed intent is characterized by two values, the cas and the
M . The aircraft climbs at a constant CAS equals to cas till
the transition altitude Hptrans (cas,M) is reached. Then, the
aircraft climbs with a constant Mach M . The parametrized
speed is given by the equation below where f is a function
given by [28], T is the temperature, R and κ are physical
constants.

Va(cas,M,Hp, T) =

{
f(cas,Hp, T) if Hp 6 Hptrans (cas,M)

M
√
κRT otherwise

In this subsection, we describe how we have adjusted the
parameters (cas,M) in order to have the parametrized speed
profile fit the observed speed. To do so, we find the parameter(
ĉas, M̂

)
∈ Ω = R+∗ × R+∗ minimizing the function Φ

defined below.

Φ(cas,M) =

n∑
i=1

(
Va(cas,M,Hpi, Ti)− Vai

)2
=

∑
i/Hpi6Hp,trans(cas,M)

(
f(cas,Hpi, Ti)− Vai

)2
+

∑
i/Hp,trans(cas,M)<Hpi

(
M
√
κRTi − Vai

)2
As the aircraft is climbing, the Hpi is an increasing se-

quence of altitude. In order to solve this, we split the domain
in sub-domains specified below.

Ω =OM ∪Ocas ∪
n−1⋃
k=1

Ok ∪
n⋃
k=1

Fk

with OM = Hptrans
−1 (]0;Hp1[

)
Ocas = Hptrans

−1 (]Hpn; +∞
[)

Ok = Hptrans
−1
(]
Hpk;Hpk+1

[)
Fk = Hptrans

−1 (Hpk

)
The minimum

(
ĉas, M̂

)
on the domain Ω is also a minimum

of one sub-domain. Then
(
ĉas, M̂

)
is the minimum among

the minimum of each sub-domain.
The minimum on Fk can be easily found because we have

the constraint Hptrans = Hpk allowing us to compute M
as a function of cas. The other sub-domains are open sets,
consequently the minimum on each sub-domain has to satisfy
OΦ (cas,M) = 0.

Finally, if we want to learn the future speed intent, our y
will be the

(
ĉas, M̂

)
adjusted on the 41 future points of one

example.

III. APPLYING MACHINE LEARNING TO OUR PROBLEM

We want to learn the speed intent
(
ĉas, M̂

)
. To do so, we

apply a Machine Learning method separately on ĉas and then
on M̂ giving us a model hcas predicting cas and another model
hM predicting M . The final predictive model h is h(x) =
(hcas(x), hM (x)).

A. The Explanatory Variables

The explanatory variables x is a tuple composed of all the
known variables at t0 and before. We consider the derivatives
dHp

dt , d2Hp

dt2
, dWalong

dt , dVg

dt , dVa

dt , dWZ

dt , dCAS
dt and dMach

dt . The
latter quantities and the quantities in Table I between Hp

and ew are computed on the 11 past points. Thus, these 27
quantities gives us 297 variables. However dair11 and dground11
are always equal to zero, then only 295 are included in
x. The other quantities in Table I are also included in x.
∆T (weather grid) and Walong (weather grid) are computed
on the last point of the past trajectory. These quantities are
computed at the 10 different altitudes of the weather grid
giving us 10 explanatory variables for each quantity. The 9
remaining quantities in Table I are not point-wise quantities,
they are associated to the example giving us 9 variables to add

6

to x. The variables AO, DEP and ARR given by the flight
plan are categorical variables whereas all the other variables
in x are numerical.

Finally, the tuple x is composed of 324 explanatory vari-
ables.

B. Gradient Tree Boosting

The stochastic gradient boosting tree algorithm was intro-
duced in [30]. It applies functional gradient descent ([31] using
regression trees [32].

The functional gradient descent is a boosting technique. The
model h is iteratively improved. At each iteration we consider
the gradient of the loss gi = ∂L(ŷ,yi)

∂ŷ (h (xi) , yi). A Machine
Learning algorithm is applied to a modified Machine Learning
problem where the set of examples is (xi, gi)16i6n. Then the
model g obtained is used to update the model h: the updated
model is h+1(x) = h(x) − ρg(x), where ρ is a constant
minimizing the empirical risk. In the next iteration we consider
h+1 instead of h.

In the Gradient Tree Boosting, the Machine Learning algo-
rithm used in the functional gradient descent is a regression
tree algorithm [32]. The model obtained by this algorithm is a
binary tree representing a binary recursive partition of the input
space. At each node, the input space is split in two according to
a condition xj 6 s. Though, the J leaves describe a partition
(Rj)16j6J of the input space. Each region Rj is associated to
a constant γj and when x falls into Rj , then γj is predicted.
Regression trees have some advantages. This regression tree
algorithm is insensitive to input monotonic transformations.
Using xj , log(xj) or exp (xj) leads to the same model. As a
consequence, this algorithm is robust to outliers. It can easily
handle categorical variables and missing values. However it is
known to have a poor performance in prediction.

The latter drawback is very limited when used in combi-
nation with functional gradient descent as it is done in the
gradient tree boosting algorithm. In our experiments we used
the gbm package ([33]) in the R software. This algorithm op-
timizes the risk given by a quadratic loss L(ŷ, y) = (ŷ − y)

2.
Let us note GBM(m,J,ν) this algorithm, where m is the number
of boosting iterations, J is the number of leaves of the tree
and ν is the shrinkage parameter. The obtained model is a
sum of regression trees. J allows us to control the interaction
between variables, as we have J −1 variables at most in each
regression tree. ν is the learning rate. The hyperparameters
grid used for this algorithm is presented in Table III.

method hyperparameter grid

GBM(m,J,ν)

m = {1000, 1500, 2000}
J = {3, 5, 10, 15}
ν = {0.001, 0.0025, 0.005, 0.01, 0.025, 0.05}

Table III: Grid of hyperparameters used in our experiments.

IV. RESULTS AND DISCUSSION

All the statistics presented in this section are computed
using a stratified 10-fold cross-validation embedding the hy-
perparameter selection. Figure 4 illustrates how the data is
partitionned, denoting λ the hyperparameter vector. Our set

of examples S is partitioned in 10 folds (Si)16i610. The
hyperparameters used to learn from S−i are selected using
20% of the fold S−i as a validation set. The model learned
with these hyperparameters on S−i is then used to predict
the mass on the test set Si. Obviously, the intersection of
the training set S−i and the test set Si is empty: they do
not share any example trajectory. Overall, our set of predicted
values (masses or altitudes) is the concatenation of the ten
TuneGrid(Aλ, grid)[S−i] (Si) (see algorithm 1). Therefore,
all the statistics presented in this section are computed on test
sets.

For the 9 aircraft types, each set of examples S was split in
10 folds (Si)16i610 in a particular way. This split was made
using the climbing segments. Thus, all the examples generated
by one climbing segment are only in one fold Si. It guarantees
that the fold Si have examples independent from the ones in
S−i = S\Si.

Select Valid

Test set forTraining set for

Figure 4: Cross-validation for model assessment, with an
embedded holdout validation for hyperparameter tuning.

A. Prediction of the speed profile (cas,M)

The results obtained with the Machine Learning algorithm
are reported in Table IV. In this table we compare the speed
profile Va

(
cas,M,Hpi, Ti

)
to the observed speed Vai on

points i with ti > 0. We have tested different settings:
“adj” denotes the adjusted values

(
ĉas, M̂

)
, “ref” denotes the

baseline values given by BADA (casref,Mref), “mean” denotes
the values given by the mean of the adjusted values

(
ĉas, M̂

)
and “GBM” denotes the predicted values (casGBM,MGBM). The
“adj” setting result of the adjustment described in II-D. It is
the lowest RMSE we can get using a CAS/Mach speed profile.

According to this table, using the baseline, the RMSE is
around 20 kts for all the aircraft types except for the B744, the
E145 and the F100. For these two aircraft types, the RMSE is
reduced by at least 41 % with the “mean” method. With this
method, the RMSE reduction is less spectacular for the six
other aircraft types with nearly no reduction for some aircraft
types. This indicates that the reference speed parameters are in
accordance with mean parameters of the observed trajectories
for these aircraft types. However, even for these aircraft types,
the prediction can still be improved by predicting a (cas,M)
value specific to the considered aircraft. This is what is done
when a GBM model is used. When compared to the “mean”
method, the GBM method reduces the RMSE by at least 21 %.

B. Computing the Predicted Trajectory Using Machine Learn-
ing and BADA

In order to actually predict a trajectory using the BADA
model and assuming a max climb thrust, one still has to specify

7

type speed mean stdev mean abs RMSE max abs
A319 ref 3.77 20.7 15.8 21 123
A319 mean 1.19 20.4 14.7 20.5 119
A319 GBM 0.412 12.5 8.2 12.5 103
A319 adj 0.0259 7.85 5 7.85 102
A320 ref 2.34 21 15.3 21.2 134
A320 mean 1.1 21.2 14.9 21.2 129
A320 GBM 0.57 12.6 8 12.6 114
A320 adj 0.0262 7.71 4.68 7.71 124
A321 ref 3.16 22.9 17.7 23.1 115
A321 mean 1.09 23.1 17.6 23.1 112
A321 GBM 0.546 13.5 9.02 13.5 117
A321 adj 0.0285 7.83 4.87 7.83 94.6
A332 ref -8.71 17.6 16.4 19.6 115
A332 mean 0.118 16.4 11.7 16.4 115
A332 GBM 0.648 11.6 7.4 11.6 103
A332 adj 0.0233 7.03 4.37 7.03 81.7
B737 ref 8.56 17.5 13.7 19.4 110
B737 mean 0.739 16.5 12.1 16.5 109
B737 GBM 0.391 12.4 8.17 12.4 112
B737 adj -0.00503 6.82 4.54 6.82 93.4
B772 ref -14.4 16.7 19.2 22.1 83.5
B772 mean 0.298 14 9.97 14 91.1
B772 GBM 0.66 11 7.18 11 83.6
B772 adj 0.0429 7.17 4.33 7.17 78.2
B744 ref -28.7 21.2 32.2 35.6 76.2
B744 mean 1.01 20.8 16.1 20.8 90.7
B744 GBM 0.705 14.7 9.94 14.7 71
B744 adj 0.121 10.9 6.32 10.9 71.1
E145 ref 69.2 31.7 69.2 76.1 166
E145 mean 1.82 29 24.1 29 93.3
E145 GBM 1.12 16.2 12.2 16.2 81.2
E145 adj -0.0446 8.26 5.85 8.26 65.3
F100 ref 36.8 19.5 36.9 41.6 168
F100 mean 0.646 19.4 14 19.4 132
F100 GBM 0.654 12.7 8.44 12.7 91.1
F100 adj 0.0178 5.78 3.64 5.78 71

Table IV: These statistics, in knots, are computed on the
differences between the predicted speed and the observed
speed Va

(
cas,M,Hpi, Ti

)
− Vai for i such as ti > 0 (i.e.

i > 11).

a mass and a speed profile. Both are usually unknown from
ground systems. In our experiment, we want to evaluate the
impact of the predicted mass and the predicted speed profile
on the trajectory prediction. The prediction of the mass was
introduced in a previous paper [1] using a similar approach:
a mass m̂ is adjusted on future points and a model predicting
this adjusted mass m̂ from known variables is learned using
GBM. This approach has been demonstrated more accurate
than mass estimation methods introduced in [34], [21]. In the
current paper, we adjust a CAS/Mach speed profile, and we
learn two GBM models predicting the adjusted values ĉas
and M̂ . The overall process to predict the future trajectory
is described in Figure 5. The mass and the speed profile are
specified using the three predictive models hm, hcas and hM.

C. Prediction of the Future Altitude

The results obtained with our methods are described in
Table V. The “ref” parameter is the BADA reference param-
eter. The “GBM” parameter for the mass is obtained by using
the model hm. The line with “GBM” for the mass and “adj”
for the speed cannot be used in an operational context as it

Aircraft state at t0:

Aircraft intent:

Physical model

(Position,Speed)

Speed Profile: (hcas(x), hM(x))

Mass: hm(x)

Thrust setting: max,climb

Future
trajectory

Predictive models h

x

Examples set

︸ ︷︷ ︸
y=(m̂,ĉas,M̂)

x︷︸︸︷
Machine Learning

Past
points

Figure 5: This figure describes how the future trajectory
is predicted by applying Machine Learning techniques. The
examples set is used to build predictive models (hm, hcas, hM).
When a fresh trajectory is observed, the input variables x are
computed from the observed points and the predictive models
are used to predict the mass and the speed profile.

uses adjusted values. This line is only used for comparison
purpose. All the other lines can be used in an operational
context. The baseline method, referred as BADAref, is the
line with “ref” for the mass and the speed. Our approach,
referred as BADAGBM, is the line with “GBM” for the mass
and the speed. These two setups can be used in an operational
context: they use only the information available at the time
the prediction is computed.

When compared with the baseline BADAref, the use of
the predicted mass and the reference speed profile reduce the
RMSE on the altitude by at least 29 % for any aircraft type
except the E145. Note that for this latter, the gap between the
reference speed profile and the observed speed profile is fairly
high with a RMSE of 76.1 kts while it is around 20 kts for
the other aircraft types (see Table IV).

If we consider the “mean” speed, the RMSE on the altitude
is noticeably reduced only for the E145 and the F100. This
was expected because these two aircraft types have the largest
RMSE on the speed when using the “ref” parameter.

Using the predicted speed profile, we consider the
BADAGBM. If we compare this latter to the BADAref setup,
the RMSE on the altitude is reduced by at least 45 % for all
the aircraft types, including the E145. This reduction reaches
87 % for the B772.

8

A319 A320 A321

A332 B737 B744

B772 E145 F100

−2000

−1000

0

1000

2000

3000

−2000

−1000

0

1000

2000

−2000

0

2000

0

2000

4000

−2000

−1000

0

1000

2000

3000

0

2000

4000

6000

8000

0

2000

4000

−2000

0

2000

4000

−2000

0

2000

0 150 300 450 600 0 150 300 450 600 0 150 300 450 600
t [s]

(H
p(p

re
d)

−
H

p(o
bs

))
(t

)
[ft

]

method

BADAGBM

BADAref

Figure 6: This figure portrays the error on the altitude obtained by BADAref and BADAGBM for nine different aircraft types. Each time step, a boxplot shows the 5 %,
25 %, 50 %, 75 % and 95 % quantiles. The whiskers (resp. box) of the boxplot contains 90 % (resp. 50 %) of the data.

9

However, the reduction obtained on the altitude by using the
predicted speed profile is large only for the E145 and the F100.
The impact of the speed error reduction is hidden by other
sources of error. Firstly, the weather model and the BADA
model are not perfect. Secondly, we have assumed a max climb
thrust setting which might not be a relevant assumption for all
the climb trajectories. Thirdly, the mass used is a predicted
mass. Even if the

(
ĉas, M̂

)
values were perfectly predicted,

the trajectory prediction will not be perfect. The error made
in this perfect case can be read at the line with “GBM” for
the mass and “adj” for the speed. Thus, even with an RMSE
around 8 kts on the speed profile, the RMSE on the altitude
is reduced but not greatly reduced.

type mass speed mean stdev mean abs rmse max abs
A319 ref ref 274 1472 1176 1497 5315
A319 GBM ref 237 772 605 808 5350
A319 GBM mean 47.1 767 575 769 5478
A319 GBM GBM 42.1 725 532 726 5529
A319 GBM adj 19.6 607 452 608 5720
A320 ref ref 290 1420 1165 1449 5753
A320 GBM ref 187 715 553 739 6815
A320 GBM mean 45.3 718 534 719 6707
A320 GBM GBM 23.5 681 490 681 7193
A320 GBM adj -0.895 523 389 523 6202
A321 ref ref 863 1683 1588 1891 6154
A321 GBM ref 33.1 783 571 784 4627
A321 GBM mean 37 782 570 783 4642
A321 GBM GBM 22.1 774 554 774 4418
A321 GBM adj -15.8 584 421 584 5569
A332 ref ref 2622 1820 2783 3192 6769
A332 GBM ref -107 673 479 682 5217
A332 GBM mean 66 664 469 667 4997
A332 GBM GBM 70.4 651 460 654 4934
A332 GBM adj 40.7 572 393 574 4795
B737 ref ref 606 1750 1619 1852 4157
B737 GBM ref -40.8 796 616 797 3672
B737 GBM mean -51.7 796 617 797 3667
B737 GBM GBM -52 804 629 805 3645
B737 GBM adj -86.6 814 616 818 4216
B744 ref ref 5558 1646 5580 5797 10183
B744 GBM ref 12.4 844 649 844 3495
B744 GBM mean 100 842 646 848 3372
B744 GBM GBM 142 778 586 790 3342
B744 GBM adj 103 748 547 755 3656
B772 ref ref 3728 1413 3750 3987 7145
B772 GBM ref -80.2 534 425 540 3513
B772 GBM mean 99.5 502 379 512 3647
B772 GBM GBM 112 500 385 512 3446
B772 GBM adj 65.7 453 334 458 3316
E145 ref ref 1623 1801 1909 2425 7428
E145 GBM ref 1667 2064 2032 2653 8280
E145 GBM mean 548 2115 1741 2185 7289
E145 GBM GBM 190 1314 1010 1327 5378
E145 GBM adj 68.7 750 562 753 5858
F100 ref ref 556 1879 1616 1959 6539
F100 GBM ref 642 1229 1166 1387 4940
F100 GBM mean 193 1209 993 1225 5425
F100 GBM GBM 102 1022 793 1027 4490
F100 GBM adj 43.3 732 543 734 4587

Table V: These statistics, in feet, are computed on the differ-
ences between the predicted altitude and the observed altitude(
H

(pred)
p −H(obs)

p

)
at the time t = 600 s.

Figure 6 portrays the error on the altitude at different time
horizons. More specifically, boxplots are presented at each

time step. The whiskers (resp. box) of the boxplot contains
90 % (resp. 50 %) of the data.

CONCLUSION

To conclude, let us summarize our approach and findings,
before giving a few perspectives on future works. In this article
we have described a way to predict the future speed profile.
Using Machine Learning and a set of examples, we have
built models predicting the values (cas,M) of a CAS/Mach
speed profile. Using real Mode-C radar, this approach has
been tested on the 9 different aircraft types. In order to
evaluate the accuracy of the Machine Learning method, a
cross-validation is used. When compared to the reference
speed profiles provided by BADA, the RMSE on the speed is
reduced by at least by 36 % using GBM, a Machine Learning
method. Concerning the E145, this RMSE is reduced by 79 %.

In order to predict the future trajectory, this approach is used
in conjunction with a similar approach described in [1]. This
latter is used to predict the mass. Then using the predicted
mass and speed profile, the BADA physical model is used
to compute the predicted future trajectory with a 10 minutes
horizon. The RMSE on the future altitude is reduced by at
least 45 %. This reduction reaches 87 % for the B772.

From an operational point of view, the resulting improve-
ment in the climb prediction accuracy would certainly benefit
air traffic controllers, especially in the vertical separation task
as shown in [34]. Furthermore, even if it was not computed
in our study, the proposed method probably reduces the along
track error and the Top Of Climb prediction error.

We only have considered a CAS/Mach speed profile. How-
ever, as said before, the climbing trajectories in our data does
not always follow a CAS/Mach speed profile. In order to
improve the trajectory prediction, we might consider other
climb procedures. For future work, we might consider a
procedure in which the aircraft climbs at a constant CAS cas1
till the altitude Hpcas, then accelerates/decelerates till the CAS
reaches cas2 and finally follows a (cas2,M) CAS/Mach speed
profile. However, in order to use this, we would have to adapt
our method to predict

(
cas1, Hpcas, cas2,M

)
.

REFERENCES

[1] R. Alligier, D. Gianazza, and N. Durand. Machine learning and
mass estimation methods for ground-based aircraft climb prediction.
Intelligent Transportation Systems, IEEE Transactions on, submitted.

[2] SESAR Consortium. Milestone Deliverable D3: The ATM Target
Concept. Technical report, 2007.

[3] H. Swenson, R. Barhydt, and M. Landis. Next Generation Air Trans-
portation System (NGATS) Air Traffic Management (ATM)-Airspace
Project. Technical report, National Aeronautics and Space Administra-
tion, 2006.

[4] X. Prats, V. Puig, J. Quevedo, and F. Nejjari. Multi-objective optimi-
sation for aircraft departure trajectories minimising noise annoyance.
Transportation Research Part C, 18(6):975–989, 2010.

[5] G. Chaloulos, E. Crück, and J. Lygeros. A simulation based study of
subliminal control for air traffic management. Transportation Research
Part C, 18(6):963–974, 2010.

[6] James K Kuchar and Lee C Yang. A review of conflict detection and
resolution modeling methods. Intelligent Transportation Systems, IEEE
Transactions on, 1(4):179–189, 2000.

[7] Lucia Pallottino, Eric M Feron, and Antonio Bicchi. Conflict resolution
problems for air traffic management systems solved with mixed integer
programming. Intelligent Transportation Systems, IEEE Transactions
on, 3(1):3–11, 2002.

10

[8] J. M. Alliot, Hervé Gruber, and Marc Schoenauer. Genetic algorithms
for solving ATC conflicts. In Proceedings of the Ninth Conference on
Artificial Intelligence Application. IEEE, 1992.

[9] N. Durand, J.M. Alliot, and J. Noailles. Automatic aircraft conflict
resolution using genetic algorithms. In Proceedings of the Symposium
on Applied Computing, Philadelphia. ACM, 1996.

[10] Nicolas Durand and Jean-Marc Alliot. Ant colony optimization for air
traffic conflict resolution. In 8th USA/Europe Air Traffic Management
Research and Developpment Seminar, 2009.

[11] C. Vanaret, D. Gianazza, N. Durand, and J.B. Gotteland. Benchmarking
conflict resolution algorithms. In International Conference on Research
in Air Transportation (ICRAT), Berkeley, California, 22/05/12-25/05/12,
page (on line), http://www.icrat.org, may 2012. ICRAT.

[12] Study of the acquisition of data from aircraft operators to aid trajectory
prediction calculation. Technical report, EUROCONTROL Experimental
Center, 1998.

[13] ADAPT2. aircraft data aiming at predicting the trajectory. data analysis
report. Technical report, EUROCONTROL Experimental Center, 2009.

[14] R. A. Coppenbarger. Climb trajectory prediction enhancement using
airline flight-planning information. In AIAA Guidance, Navigation, and
Control Conference, 1999.

[15] J. Lopez-Leones, M.A. Vilaplana, E. Gallo, F.A. Navarro, and C. Quere-
jeta. The aircraft intent description language: A key enabler for air-
ground synchronization in trajectory-based operations. In Proceedings
of the 26th IEEE/AIAA Digital Avionics Systems Conference. DASC,
2007.

[16] J. Lopes-Leonés. The Aircraft Intent Description Language. PhD thesis,
University of Glasgow, 2007.

[17] Y. Le Fablec. Prévision de trajectoires d’avions par réseaux de
neurones. PhD thesis, Thèse doctorat informatique de l’INPT, 1999.

[18] K. Tastambekov, S. Puechmorel, D. Delahaye, and C. Rabut. Aircraft
trajectory forecasting using local functional regression in sobolev space.
Transportation Research Part C: Emerging Technologies, 39(0):1 – 22,
2014.

[19] M. Ghasemi Hamed. Méthodes non-paramétriques pour la prévision
d’intervalles avec haut niveau de confiance: application à la prévision
de trajectoires d’avions. PhD thesis, Thèse doctorat informatique de
l’INPT, 2014.

[20] Marko Hrastovec and Franc Solina. Machine learning model for aircraft
performances. In Digital Avionics Systems Conference (DASC), 2014
IEEE/AIAA 33rd, pages 8C4–1. IEEE, 2014.

[21] R. Alligier, D. Gianazza, and N. Durand. Ground-based estimation of
aircraft mass, adaptive vs. least squares method. In 10th USA/Europe
Air Traffic Management Research and Developpment Seminar, 2013.

[22] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical
Learning. Springer Series in Statistics. Springer New York Inc., New
York, NY, USA, 2001.

[23] C. M Bishop. Pattern recognition and machine learning, volume 1.
springer New York, 2006.

[24] Vladimir N. Vapnik and Alexey Ya. Chervonenkis. The necessary and
sufficient conditions for consistency of the method of empirical risk
minimization. Pattern Recogn. Image Anal., 1(3):284–305, 1991.

[25] Vladimir N. Vapnik. The nature of statistical learning theory. Springer-
Verlag New York, Inc., New York, NY, USA, 1995.

[26] Avrim Blum, Adam Kalai, and John Langford. Beating the hold-out:
Bounds for k-fold and progressive cross-validation. In Proceedings of
the twelfth annual conference on Computational learning theory, pages
203–208. ACM, 1999.

[27] R. Kohavi. A study of cross-validation and bootstrap for accuracy
estimation and model selection. pages 1137–1143. Morgan Kaufmann,
1995.

[28] A. Nuic. User manual for base of aircarft data (bada) rev.3.9. Technical
report, EUROCONTROL, 2011.

[29] C. Schultz, D. Thipphavong, and H. Erzberger. Adaptive trajectory
prediction algorithm for climbing flights. In AIAA Guidance, Navigation,
and Control (GNC) Conference, August 2012.

[30] Jerome H. Friedman. Stochastic gradient boosting. Computational
Statistics Data Analysis, 38(4):367 – 378, 2002.

[31] J. H. Friedman. Greedy function approximation: A gradient boosting
machine. Annals of Statistics, 29:1189–1232, 2000.

[32] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classifi-
cation and Regression Trees. Statistics/Probability Series. Wadsworth
Publishing Company, Belmont, California, U.S.A., 1984.

[33] G. Ridgeway. Generalized boosted models: A guide to the gbm package.
Update, 1:1, 2007.

[34] C. Schultz, D. Thipphavong, and H. Erzberger. Adaptive trajectory
prediction algorithm for climbing flights. In AIAA Guidance, Navigation,
and Control (GNC) Conference, August 2012.

BIOGRAPHIES

Richard Alligier received his Ph.D. (2014) degree in Com-
puter Science from the "Institut National Polytechnique de
Toulouse" (INPT), his engineer’s degrees (IEEAC, 2010) from
the french university of civil aviation (ENAC) and his M.Sc.
(2010) in computer science from the University of Toulouse.
He is currently assistant professor at the ENAC in Toulouse,
France.

David Gianazza received his two engineer degrees (1986,
1996) from the french university of civil aviation (ENAC) and
his M.Sc. (1996) and Ph.D. (2004) in Computer Science from
the "Institut National Polytechnique de Toulouse" (INPT).
He has held various positions in the french civil aviation
administration, successively as an engineer in ATC operations,
technical manager, and researcher. He is currently associate
professor at the ENAC, Toulouse.

Nicolas Durand graduated from the Ecole polytechnique
de Paris in 1990 and the Ecole Nationale de l’Aviation Civile
(ENAC) in 1992. He has been a design engineer at the Centre
d’Etudes de la Navigation Aérienne (then DSNA/DTI R&D)
since 1992, holds a Ph.D. in Computer Science (1996) and got
his HDR (french equivalent of tenure) in 2004. He is currently
professor at the ENAC/MAIAA lab.

	Machine Learning
	Learning from examples
	Accuracy Estimation
	Hyperparameter Tuning

	Data used in this Study
	Data Pre-processing
	Filtering Climb Segments
	Building the Sets of Examples
	Adjusting the Speed Profile to Observed Points

	Applying Machine Learning to our Problem
	The Explanatory Variables
	Gradient Tree Boosting

	Results and Discussion
	Prediction of the speed profile (cas,M)
	Computing the Predicted Trajectory Using Machine Learning and BADA
	Prediction of the Future Altitude

	References

