
Eleventh USA/Europe Air Traffic Management Research and Development Seminar (ATM2015) 

A micro view to en-route delays 
Seddik Belkoura, Massimiliano Zanin 

INNAXIS Foundation & Research Institute 
Madrid, Spain 

{sb, mz}@innaxis.org 
 
 

Abstract—The analysis and characterization of delays is one of 
the most important research topics in ATM, mainly due to their 
implications in the cost-efficiency and safety of the system. In 
spite of this, little attention has been devoted to the assessment 
and study of non-ATFM delays, and specifically of en-route 
delays. In this contribution, we present a methodology for 
comparing the planned and real trajectories of a flight, aimed at 
identifying those events generating both positive and negative 
delays. This methodology is then applied to an historical data set 
representing flights crossing the European airspace during 
several key days of 2011. Among the results obtained, of special 
relevance are the characterization of the resilience of the 
European ATM system, measured by the amount of delays 
generated and absorbed in en-route segments; and the 
geographical distribution of events, which is characterized by a 
high heterogeneity. From a more general perspective, this 
methodology would allow shedding light on the mechanisms 
involved in the appearance of en-route delays, thus enabling a 
better systemic performance. 

Keywords-en-route delays; resilience; performance metrics; 
data science 

I. INTRODUCTION 
The analysis of the causes beyond the appearance and 

propagation of delays is one of the major topics inside Air 
Transport Management research. Implications of delays are 
far-reaching: in terms of costs, both for the airlines and the 
passengers [1,2], and of safety, especially when delays are not 
handled through ground programs [3]. Most of the research 
works have been focused on the study of two phenomena: the 
generation of delays due to Air Traffic Flow Management 
regulations, as the ones applied in Europe to cope with 
capacity and demand imbalances, both because of airports [4] 
and airspace [5] limited capacity; and the propagation of 
delays, in which one flight is delayed as a consequence of the 
late arrival of the preceding flight, an effect also known as 
“reactionary delay” [6,7]. 

Significant less attention has been devoted to the study of 
the mechanisms governing the generation and absorption of 
delays in the en-route phase. Back in year 2000, 
EUROCONTROL firstly recognized that non-ATFM delays 
were not properly understood, and that: 

"… there is insufficient reliable data to enable the 
causes, locations and origins of all air transport 
delays to be clearly identified and analysed." [8] 

“en-route delay statistics and causal information” were 
then  explicitly included in the list of areas that would require 
improvements in the future [9]. Nevertheless, the last CODA 
report on delays still does not include such an analysis, with 
en-route delays being simply represented as an average “Delay 
Difference Indicator” [10]. 

This lack of research on en-route delays may be due to the 
complexity associated with their assessment and analysis. 
Specifically, their analysis presents both theoretical and 
computation challenges. First, it is necessary to compare 
expected and executed trajectories, in order to reliably 
understand the place where they generate, and their evolution 
through time. Second, one ought to devise ways for scaling 
such analysis to handle the thousands of flights daily crossing 
the European airspace, thus for analyzing huge amount of 
data. 

In this contribution, we make a first step towards the 
understanding of en-route delays, by presenting a 
computational framework for their assessment in historical 
data. Specifically, by comparing planned and executed (radar) 
trajectories, we show how it is possible to detect all delay-
generating events, i.e. events that affect the delay of a flight, 
both in a positive and negative way. This requires merging 
different disciplines, e.g. data science [11] and statistics [12]. 
Such methodology is then used for tackling specific aspects of 
the ATM system, like its resilience and its evolution through 
spatial and temporal dimensions. 

This contribution is organized as follows. Section II 
presents the computational algorithms behind the 
identification of delay-generating events from planned and 
real aircraft trajectories. Afterwards, Section III reports on the 
application of such framework to an historical data set 
representing European flights in 2011, and presents some 
initial analyses that the framework enables. Finally, Section 
IV draws some final conclusions and future lines of research.  

 

II. EXTRACTING DELAY INFORMATION FROM AIRCRAFT 
TRAJECTORIES 

In this Section, we present a general methodology for 
extracting the delay-generating events that have affected the 
flight of a given aircraft, provided both planned and real (e.g. 
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radar track) trajectories are available. By “delay-generating 
events”, we hereby refer to any event that has supposed a 
change in the course of an aircraft with respect to the planned 
trajectory. They can be both positive, i.e. when they introduce 
an unexpected delay, and negative, e.g. when an ATC 
controller assigns a direct route that reduces the travel time1. 

Such methodology is composed of three parts: 

1. Obtain synchronized planned and real trajectories. 
2. Calculate the evolution of the distance to destination. 
3. Select events in which the derivative of the distance goes 

above (or below) a given threshold. 

A pseudo-code of the methodology is presented in Fig. 1. 

As a first step, it is necessary to address the fact that the 
planned and real trajectories of a flight may not be 
synchronized, i.e. the planned and real position is not reported 
at the same time, nor with the same frequency. It is thus 
necessary to synchronize them, that is, obtain a set of positions 
corresponding to the same time steps. Both planned and real 

                                                             
1 Positive and negative thus refer to the delay, and not to the benefits/problems 
generated. 

2D trajectories2 are then interpolated, in order to complete the 
positions that are respectively missing, thus enabling a direct 
position comparisons (see lines 4 and 5 of the algorithm in 
Fig. 1). Specifically, each aircraft trajectory, both planned and 
real, can be written as a vector with m components:   

 
𝑓!
! = [(𝑖!, 𝑥!

! , 𝑦!
!) ! , (𝑖!, 𝑥!

! , 𝑦!
!) ! ,…    , 𝑖!, 𝑥!

! , 𝑦!
! ) ! ,  (1) 

 
being 𝑖! , 𝑥! , 𝑦!  the time stamp and position of aircraft l at 
observation point k. 𝑓!

! encodes the planned and real position 
of the aircraft l respectively when 𝑗 = 1 and 𝑗 = 2. Thanks to 
this first step, the vector length m (i.e. the number of 
observations available) can vary across flights, but is constant 
across the planned and real trajectories of a single flight. 
Furthermore, all the {𝑖}! are the same for 𝑗 = [1, 2]. Fig. 2 
illustrates the process for a single flight, where the top and 
bottom panels respectively represent the two original 2D 
trajectories, and the trajectories after the interpolation. It can 
be appreciated how both the planned and real interpolated 
trajectories now include new points, each one of them 
corresponding to a symmetric point in the other route. 

The second step requires converting the position of the 
aircraft, as obtained in (1), into an absolute measure. It should 
be noticed that the position of an aircraft and its deviation 
from the expected trajectory are not absolute measures, in that 
a deviation may be beneficial or negative in terms of delay, 
and that no a priori rule can be used to discern between both 
situations. Nevertheless, it is straightforward to realize that a 
deviation that implies an increase (or a reduction) of the 
distance to the flight destination is connected to a positive 
(respectively, negative) delay-generating event. Positions as 

                                                             
2 Flight’s altitude has been neglected, as it is seldom used as a way of 
recovering delay and, except for the Continuous Descend Approach [13], has 
little influence in the delay of a flight. 

 

 
 

Figure 2. Example of a trajectory synchronization process. The original 
planned and real trajectories (top panel) have been interpolated, in order 
to guarantee that a point in one of them always correspond to a point in 

the other. See main text for further explanations. 

Algorithm: Event Identification Algorithm 
1:  def PlannedTrajectory(i∈ 𝐼,x,y);  
2:  def RealTrajectory(j∈ 𝐽,x,y); 
3:         RealTrajectory(:,1) = RealTrajectory(:,1) –        
RealTrajectory(1,1) + PlannedTrajectory(1,1);  
            % same time report for first observation 
4:         interpolation( 𝑘 ∈ 𝐼 ∪ 𝐽 , PlannedTrajectory); 
5:         interpolation( 𝑘 ∈ 𝐼 ∪ 𝐽 , RealTrajectory);  
6:         conversion (latitude, longitude) to distance; 
7:  def PlannedDistanceToArrival ;       
8:  def RealDistanceToArrival ; 
9:  def  DifferenceDistance ;  
10:def  D = Derivative(DifferenceDistance) ; 
11:def  D = MovingAverage(D) ;  
12:       #PositiveEvent = function of (Threshold >0, D)   
13:       c = count( intersection(Threshold, D) ) 
14:       if c mod 2 = 1 
15:             #PositiveEvent = ( c + 1 ) / 2 
16:       else 
17:             #PositiveEvent = c  / 2 
18:       end 
19:      #NegativeEvent = function of (Threshold <0, D) 
20:      c = count( intersection(Threshold, D) ) 
21:      if c mod 2 = 1 
22:       #NegativeEvent = ( c + 1 ) / 2 
23:      else 
24:       #NegativeEvent = c  / 2 
25:      end 
 
Figure 1. Pseudo-code of the methodology for assessing the presence of 

delay-generating events. Refer to the main text for further details. 



defined in (1) are thus converted to distances to the arrival 
airport, by means of a Haversine formula [14] (see line 6 of 
Fig. 1), thus yielding a new distance vector: 

𝑑!
! = [(𝑖!,𝑑!

!) ! , (𝑖!,𝑑!
!) ! ,…    , 𝑖!,𝑑!

! ) ! .                        (2) 
 
Distances to destination for the flight depicted in Fig. 2 are 

reported in Fig. 3 (two top panels). 

Finally, by looking at the evolution of the difference 
between planned and real distances to arrival (Fig. 3, middle 
panel), we can identify the time windows in which the aircraft 
is lagging behind (or is ahead of time with respect to) the 
scheduled trajectory. For the rest of the paper, we suppose that 
we the planned distance to arrival is subtracted from the real 
distance. A positive value thus implies a bigger distance to 
arrival than planned, hence a loss of time and a positive 
delay3. On the other hand, a decreasing difference indicates a 
gain of time (i.e. delay recovery). Note that doing the 

                                                             
3 Under the hypothesis that aircrafts’ velocity is constant throughout their 
flight, which is usually fulfilled in the en-route phase. Even if this 
simplification can be restrictive, it is worth noticing that this is equivalent to 
studying the increment (or decrement) in the distance travelled by aircraft, and 
thus to assess the efficiency of the system. 

opposite, i.e. subtract the real distance from the planned one, 
just reverses the conclusions. 

As previously introduced, the appearance of positive (or 
negative) delays is indicated by a growth (respectively, a 
decrease) in the distances’ difference, which can easily be 
detected as peaks if one considers the derivative of the 
difference function (fourth panel in Fig. 3). Given the noisy 
behavior of the derivative, which may lead to the detection of 
false peaks, it is convenient to smooth it by calculating a 
short-window moving average (see Fig. 3, bottom panel). 

Given a threshold 𝜏, whose choice will be discussed in the 
next Section, one can look at the intersections of the smoothed 
derivative function with the horizontal line of height equal to 
the chosen threshold. The last panel of Fig. 3 represents such 
process. Two thresholds are considered, a positive and a 
negative one, in order to account for both positive and 
negative delay-generating events. 

We note that when the derivative of the distance function 
is bigger than the chosen threshold, it means that a delay of a 
magnitude superior or equal to the threshold is generated (or 
recovered, in the case of negative 𝜏s). Hence the number of 
delay-generating events is a function of the number of 
intersections between the constant function representing the 
threshold, and the smoothed distance function derivative (see 
lines 11 – 25 in Fig. 1). In concrete, each continuous time 
window in which the smoothed derivative is above a positive 
threshold counts as a positive event (i.e. an event that 
generates a positive delay). Conversely, each continuous time 
window in which it is below a negative threshold counts as a 
negative event (i.e. an event that generates a negative delay or, 
in other worlds, a recovery of delay). In the example presented 
in the last caption of Fig. 3, we can count two positive events 
and three negative ones.   

 

III. APPLICATION TO THE EUROPEAN TRANSPORT NETWORK 

In this Section, the proposed methodology has been 
applied to a data set describing real flights crossing the 
European airspace during year 2011. Results will be used to 
discuss three applications of the methodology: a descriptive 
analysis (Subsection B), assessment of the resilience of the 
system (Subsection C), and analysis of the geographical 
distribution of delays (Subsection D). 

 

A. Data set description 
Flights information has been extracted from the Flight 

Trajectory (ALL-FT+) data set as provided by the 
EUROCONTROL PRISME group. It includes information 
about planned and executed trajectories for all flights crossing 
the European airspace, with an average resolution of 2 
minutes. The data set covers the period from 1st March to the 

 
 

Figure 3. Example of the delay-generating events detection algorithm. 
From top to bottom: evolution of the distance to the destination airport, 
for the planned and real trajectory; evolution of the difference between 

real and planned distances; derivative of the difference function; 
smothered derivative, and application of a threshold (dashed gray lines). 

Refer to the main text for further details on the procedure. 



31st December 2011, including a total of 10.3 million flights 
[15,16]. 

All flights have been pre-processed, and those presenting 
abnormal behaviors in their radar trajectories have been 
filtered out. Reasons for discarding a flight included, among 
others, the absence of complete radar trajectories, separation 
between radar points greater than 20 minutes, or the presence 
of segments with higher-than-sound speeds. 

Furthermore, a conventional measure of en-route delay has 
been calculated for each flight, as the difference between the 
real and the planned landing time. As such, this delay only 
represent en-route and arrival inefficiencies, and does not 
include the effect of regulations issued before take-off.  

 

B. Descriptive analyses 
The methodology presented in Section II will here be 

applied to the previously described data set, with the aim of 
providing some descriptive statistics, and thus starting 
shedding light on the mechanisms underlying en-route delay 
generation. Since the average delay at landing is the metric of 
choice for evaluating the performance of the system, a 
comparison will also be made between them. 

The algorithm, as depicted in Fig. 1, calculates the number 
of delay-generating events as a function of the threshold 𝜏. In 
other words, it counts the number of occurrences in which the 
delay generated is superior or equal to the threshold. 
Conversely, in the case of a negative threshold, it counts the 
number of occurrences in which the delay generated is lower 
or equal to 𝜏  (i.e. the recovered delay is greater than 𝜏 ). 
Dividing these two values by the total number of flights yields 
two pseudo complementary cumulative distribution functions 
(ccdf), or tail distributions, representing the probability 
distribution of the delay magnitude generated by a single event 
per flight. As positive and negative events are computed 
separately, one must be careful reconstructing the overall 
distribution:  

 

𝐹 𝜏 =   𝑃 𝐷 ≥ 𝜏 =    𝑓! 𝑡 𝑑𝑡,          𝜏 > 0,
!!

!
      (3) 

 
and, 

𝐹 𝜏 =   𝑃 𝐷 ≤ 𝜏 =    𝑓! 𝑡 𝑑𝑡,          𝜏 < 0.
!

!!
(4) 

 
A discretization of this distribution, by choosing thresholds 

𝜏 uniformly spaced in [-m, m]4, yields:  
 

                                                             
4 m has empirically been chosen in order to include every possible event. It 
has been calculated as the maximum height of the derivative of the distance 
function between real and planned trajectories from a subset of 1000 flights. 
Its value here is 0.852. 

𝑃 𝐷 = 𝜏 =   𝐹 𝜏 −    𝑝 𝜏!
!!!!

,      𝜏 > 0                                  (5) 

and, 
𝑃 𝐷 = 𝜏 =   𝐹 𝜏 −    𝑝 𝜏!

!!!!

,      𝜏 < 0                                  (6) 

 
As previously mentioned, the threshold values correspond 

to the delay values generated by an event. Hence, for every 
delay value in [-m, m], the probability of this delay to happen 
per flight is obtain as follow:  
 

𝑝 𝜏! =
#𝑒𝑣𝑒𝑛𝑡(𝜏!) − #𝑒𝑣𝑒𝑛𝑡(𝜏!!!)  

#𝐹𝑙𝑖𝑔ℎ𝑡𝑠
,                              (7)   

 
with 𝑖 ∈ {𝜏! > 0, 𝜏! > 𝜏!   ∀  𝑗 > 𝑖} and #𝑒𝑣𝑒𝑛𝑡(𝑑!!!) = 0; 
and: 
 

𝑝 𝜏! =
#𝑒𝑣𝑒𝑛𝑡(𝜏!) − #𝑒𝑣𝑒𝑛𝑡(𝜏!!!)  

#𝐹𝑙𝑖𝑔ℎ𝑡𝑠
,                                (8) 

 
being 𝑖 ∈ {𝜏! < 0, 𝜏! < 𝜏!   ∀  𝑗 < 𝑖} and #𝑒𝑣𝑒𝑛𝑡(𝑑!!!) = 0. 

 
 

 
 

Figure 4. Example of different fits of the delay magnitude distribution 
function. Top and bottom panels respectively correspond to the flights of 

the 4th of April 2011 and of the 6th of August 2011. 



 
Once the delay magnitude distribution has been 

reconstructed, the first descriptive analysis involves 
characterizing the nature, i.e. the shape of it. Five probability 
functions have been considered. First, the normal distribution, 
due to its generality. Additionally, as heavy tails can be 
noticed in the reconstructed distribution, and these are usually 
associated with extreme (unexpected) conditions and 
processes, Extreme Value (EV) or Generalized Extreme Value 
(GEV) distributions have been included. Finally, one ought to 
consider the possibility of encountering extreme values that 
are the result of other causes, e.g. emergent phenomena: 
logistic and t-location-scale functions are therefore potentially 
valid model. 

The goodness-of-fit of the model is assessed using the 
Bayesian Information Criteria (BIC), also known as the 
Schwarz criterion [17]. While there is no objective criterion to 
define when two models are significantly different, a common 
rule states that a difference in BIC of more than 10 is large 

enough for most purposes. 

Using this methodology, the delays corresponding to a set 
of 55 days, as extracted from the data set described in Section 
IIIA, has been analyzed. Throughout the set, the t-location-
scale distribution is the parametric function that yields the best 
fit. This is confirmed by Fig. 4, which depicts the fit for two 
different days: it can be appreciated that the tails are best 
modeled by a t-location-scale distribution (blue solid line). 

A relevant question that may arise is whether the presented 
event magnitude distribution provides more information than a 
simple analysis of the average landing delay; or, in other 
words, whether there is a strong correlation between a micro-
scale, as here presented, and a macro-scale vision, as currently 
used in delay analyses [10]. 

Fig. 5 addresses this issue by presenting the global delay 
histogram (top panel) and the delay per event histogram 
(bottom panel) for two different days randomly chosen. The 
differences in the global delay histograms are evident, while 
the same does not hold in the latter case. This is also 
confirmed by the low correlation (Pearson’s r = 0.19) between 
the average delay at landing and average delay per event (Fig. 
6). By generalizing these results, one can conclude that the en-
route part presents a behavior that is uncorrelated with the 
behavior of the whole system. A decrease in the apparent 
global delay (i.e. at landing) does not thus imply an 
improvement in all the phases of the flight. This confirms the 
importance of having a better understanding of the dynamics 
of the system, throughout all the flight phases. 

 

C. Delays and en-route resilience 
Resilience is a concept that has extensively been studied in 

different scientific fields, among which the most important are 

 
 

 
 

Figure 5. Probability distribution functions of the global delay at 
landing (top panel) and of the events’ magnitude (bottom panel), for two 

different days of 2011. 

 

 
 
Figure 6. Scatter plot of the expected events’ magnitude, as defined in (9), 

as a function of the average delay at landing. The dashed gray line 
represents the best linear fit of the data set. 

 



material science and ecology. Specifically, in ecology, 
resilience represents the fundamental property of a natural 
ecosystem to recover after the incurrence of disturbances, may 
it be abnormal weather or the introduction of a new species 
[18]. Only in 2006 this idea was introduced in engineering and 
management: the so-called “resilience engineering” focuses on 
the human and organisational aspects enabling a good design 
of safety-critical, socio-technical systems, by helping people 
coping with complexity when exposed to pressure [19]. 

This last idea has been adopted by EUROCONTROL in 
2009, fostering the investigation of resilience and aimed at 
deriving means to mitigate negative impacts on the ATM 
system’s performance [20]. It is well known that a large 
number of disturbances deteriorate daily the performance of 
the system: from adverse weather, to equipment failures. Yet, 
in order to start designing means for mitigate negative 
impacts, it is firstly necessary to define a method for 
numerically assessing the resilience of the system, such that 
different scenarios can then be compared [21]. 

Here we propose the use of the presented micro-scale 
delay analysis for assessing the resilience of the system in its 
en-route part, i.e. not accounting for delays generated or 
managed on the ground. Specifically, the basic idea is to see if 
the system is able to compensate with negative events to the 
appearance of positive (or delay generating) events. In other 
words, the ATM system can be defined as resilient if, for each 
event creating a positive delay, the system reacts creating an 
event recovering that perturbation.  

Towards this aim, it is necessary to define the first moment 
of the distribution considering respectively its right and left 
sides:  

µμ! =    𝜏 ∗   𝑝 𝜏 ,                                                                   9
!!!

 

and 

µμ! =    𝜏 ∗   𝑝 𝜏 ,                                                             10
!!!

 

 
If, for a given period of time, 𝜇! and 𝜇! are of the same 

order of magnitude, the system can be considered as resilient; 
on the other side, if 𝜇! > 𝜇!, the system is not able to 
compensate for all positive events, i.e. it is not able to fully 
recover en-route delays, and thus is not resilient. 

Fig. 7 presents the result of plotting 𝜇!as a function of 𝜇!, 
in which each point represents the behavior of the system in a 
different day: first Monday (black squares) and Saturday (blue 
circles) of every month, thus representing days respectively 
with high and low traffic levels; and a selection of days 
presenting the highest (red triangles) and lowest (green 
triangles) average delay at landing. 

It can be appreciated that all points lie above the main 
diagonal (gray dotted line): one can then conclude that the 

ATM system is perfect resilient in its en-route phase, 
independently on the characteristics of the day considered. 

D. Geographical distribution of delays 
As a final application of the proposed methodology, here 

we present how it can be applied to perform a spatial analysis 
of the appearance and recovery of en-route delays. 
Specifically, we aim at identifying the European airspace 
sectors most problematic in terms of positive delay-generating 
events, and at comparing their respective resilience.  

To achieve this, the European airspace has been divided 
into regions of 10º longitude by 10º latitude. Different 𝜇! and 
𝜇! have been calculated for each one of them, by only 
considering those positive and negative delay-generating 
events occurring inside each region. 

Given two regions, if their 𝜇!s are not of the same order of 
magnitude, one of those regions is then more prone to generate 
delays than the other5. In a similar way, comparing the ratio 
between 𝜇! and 𝜇! across different regions allows to compare 
their respective resilience. Specifically, and as previously 
presented in Fig. 7, if 𝜇! 𝜇! > 1 for a given region, then that 
region can be considered resilient; conversely, 𝜇! 𝜇! < 1 
suggests that the system is not able to absorb delays within 
those boundaries. 

Fig. 8 (left panel) presents the geographical evolution of 
𝜇! throughout the European airspace, with blue and red colors 
respectively indicating low and high values of 𝜇!. In the left 
panel of Fig. 8 a similar plot if presented for the resilience 

                                                             
5 Such comparison is possible due to the fact that both 𝜇! and 𝜇! are 
calculated over the probability distribution of events, and are thus independent 
on the number of flights. 

 

 
 

Figure 7. Resilience of the en-route part of the ATM system. Points 
represent the value of the first moment of positive and negative events - 
see (9) and (10) in main text. The dashed gray line divides the plane into 

resilient (top) and non-resilient (bottom) regions. 



metric (𝜇! 𝜇!). These results have been obtained using the 
same days as the ones in Fig. 7.  

It can be appreciated that the worst region, in terms of 
positive delay-generating events, lies above continental 
Portugal and Spain. At the same time, this same region is 
associated to a low resilience metric: more delays than average 
are generated, and the system is not able to cope with them. 
The reader may also notice that sea regions are characterized 
by a low resilience; this can be explained by the absence of 
alternative (or straight) routes to recover delays, as aircraft are 
usually already flying the most direct course.  

From this analysis, a general conclusion can be drawn. 
While the ATM system is globally resilient in its en-route 
phase, important differences can be found when the spatial 
dimension is included, both in terms of quantity of delays 
generated, and of recovery capacity. Furthermore, from a 
methodological point of view, it is worth noticing that the 
micro-delays study yields a measure of the en-route resilience 
of the system, but it does not provide clues on the causes 
behind such values. Shedding light on the reasons behind the 
lack of resilience of some air spaces would require cross-
referencing these results with other data sources, e.g. 
procedures implemented in reach sector and weather 
conditions, which are beyond the scope of this contribution. 
 

IV. DISCUSSION AND FUTURE OUTLOOK 
Back in year 2000, EUROCONTROL recognized the 

importance of understanding and assessing delays beyond the 
one produced by ATFM regulations, like for instance those 
appearing in the en-route phase of a flight. 15 years later, there 
is yet no consolidated methodology for their characterization 
and analysis. In this contribution, we take a first step towards 
this aim, and propose a set of algorithms enabling the 
detection of events that contribute to the appearance of 
positive and negative delays in the flight of an aircraft. It is 

based on the comparison of planned and real trajectories, 
through the detection of deviations of the latter with respect to 
the former in terms of the remaining distance to the 
destination airport. 

General properties of these delay-generating events have 
been presented, like their independence from the global delay 
of the flight. We further presented two applications of this 
methodology, namely the assessment of the resilience of the 
system, and an analysis of the geographical distribution of 
these events. This, in turns, allowed us to extract some 
interesting information about the system, as for instance the 
existence of regions of the airspace in which delays can hardly 
be recovered. 

Beyond what has here been presented, this methodology 
for studying en-route delays on a micro-scale opens new doors 
towards the understanding and measurement of where and 
how delays are generated and absorbed. Future works will 
thus be aimed at studying the temporal sequences of delays, 
that is, the relationships between positive and negative events, 
as for instance the number of negative events needed to 
counteract a single positive one; and their causal relations, i.e. 
if negative events generate randomly, or if they are 
intentionally triggered by positive ones. Additionally, causal 
spatio-temporal patterns in the distribution of delay-generating 
events could be linked to specific procedures enforced in each 
air spaces, yielding clues about the most efficient ways for 
managing air traffic. Finally, this methodology will be applied 
to the analysis of systems in which most of the delays are 
handled in the air, like the US airspace, with the benefit of 
reducing the influence of the European ground delay program. 
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Figure 8. Spatial analysis of en-route delays. Left and Right panels respectively represent the spatial distribution of µμ!  and of the resilience metric µμ! µμ!⁄ . 
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