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Abstract— The MITRE Corporation’s Center for Advanced 

Aviation System Development (MITRE CAASD) recently 

completed a field demonstration at Washington/Dulles 

International Airport (KIAD) of a proof-of-concept system called 

the Closed Runway Operation Prevention Device (CROPD) to 

validate the operational feasibility of employing an emerging 

technology—automatic speech recognition—in the Air Traffic 

Control (ATC) domain during live operations for safety 

improvement. Completed on behalf of the Federal Aviation 

Administration (FAA), the demonstration and subsequent analysis 

assessed the accuracy of speech recognition in detecting clearances 

to closed runways in Local Controller transmissions and the 

overall performance of an alerting mechanism dependent on 

speech recognition. The success of applying speech recognition 

technology in a live ATC environment depends on overcoming 

domain-specific challenges, such as rapid and/or slurred speech, 

poor field audio quality, and language ambiguity (e.g., the number 

sequence one-two can appear in a call sign, speed, wind advisory, 

or runway identifier),  and stringent requirements on system 

accuracy. To address these challenges, MITRE CAASD employed 

a combination of tuning and configuration techniques to create the 

speech recognition component of the CROPD: dictionary 

customization, statistical language modeling, acoustic model 

adaptation, and robust parsing. Further, MITRE CAASD 

developed an application-specific analysis methodology, including 

performance metrics beyond the standard Word Error Rate 

(WER) measure of speech recognition performance, to better fit 

the application. This paper briefly outlines the challenges and 

considerations for applying speech recognition in the ATC domain 

and describes the CROPD as a particular application to exemplify 

how the challenges and considerations are addressed via tuning 

techniques used to adapt the speech recognition system. 

Performance results from the field test demonstration are 

presented to illustrate the value of these tuning techniques and 

identify where future research can target further improvement.  
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I.  INTRODUCTION 

In the Tower/Surface domain, runway incursions are a major 

safety concern and, consequently, the primary metric for 

evaluating surface safety. A runway incursion is defined as the 

incorrect presence of an aircraft, vehicle, or pedestrian on a 

surface designated for the arrival or departure of aircraft [1]. 

However, despite existing mechanisms in place to prevent and 

reduce the severity of such incidents, severe runway incursions 

continue to occur. On behalf of the Federal Aviation 

Administration (FAA), the MITRE Corporation has been 

investigating the potential for applying automatic speech 

recognition technology to help prevent a specific type of 

runway incursion: a closed runway operation, defined as an 

aircraft landing on or taking off from a runway that is 

designated as closed. Automatic speech recognition offers a 

unique potential for this purpose because it can convert 

controller-pilot voice communications into information that can 

be used to produce a safety alert. Because controllers and pilots 

use voice communication to coordinate their intentions for 

future movements on the airport surface, automatic speech 

recognition can be used to infer that intent and feed an alert 

logic system that identifies the potential danger of the intent. In 

the case of preventing closed runway operations, automatic 

speech recognition can be used to detect Local Controller (LC) 

clearances to land, take off, or line up and wait on runways, and 

this intent information can be passed to a straightforward logic 

that triggers an alert if the runway is designated as closed. This 

system is called the Closed Runway Operation Prevention 

Device (CROPD).  

There are several aspects of Air Traffic Control (ATC) 

speech transmissions that make applying automatic speech 

recognition difficult, but other aspects of ATC communications 

can be leveraged to improve speech recognition performance. 

Further, to develop and improve a system that uses automatic 

speech recognition on ATC communications, it is critical to 

define appropriate metrics. With the definition of performance 

metrics and an understanding of the ATC communications 

domain, a variety of speech recognition tuning techniques can 

be applied to develop a system that best achieves the 

performance required for the application to be effective.  

This paper describes the development and evaluation of the 

speech recognition system that is central to the CROPD 

performance. In the context of the CROPD application, speech 

recognition performance measures are identified and several 

techniques for improving speech recognition performance on 

ATC communications are described and presented with 



performance results from a field test demonstration conducted 

at Washington/Dulles International Airport (KIAD). These 

techniques are applicable to other applications of speech 

recognition on ATC communications, and the paper concludes 

with a discussion of the possible future applications of speech 

recognition based on the demonstrated (and expected near-

future) performance.  

II. BACKGROUND 

This section provides an operational context for the CROPD 

and a background discussion on the application of automatic 

speech recognition to ATC communications. 

A. Runway Safety and Closed Runway Operations 

LCs at an airport are responsible for all activity on the 

airport’s runways, particularly the use of the runways for 

operations (i.e., arrival or departure). The use of runways is 

typically dictated by the particular airport configuration at the 

time, but any open runway can be used for arrival or departure 

if authorized by the LC. Any unauthorized presence on a 

protected area of the surface is classified as a runway incursion, 

which is a metric used by the FAA for measuring runway safety. 

However, if the runway is closed, it may not be used for arrival 

or departure. Thus, one type of runway incursion occurs when 

an aircraft lands on or takes off from a runway that is designated 

as closed.  

Runways may be closed for a variety of reasons, including 

runway inspections, snow removal, grass mowing, and 

construction. Because of the potential for equipment, vehicles 

or personnel to be present on a closed surface, aircraft 

operations are restricted or altogether prohibited on runways 

that are designated as closed. Closed runway operations are a 

particular type of runway incursion.  

When a runway is closed, a series of procedures, outlined by 

the facility’s Letters of Agreement (LOAs) and Standard 

Operating Procedures (SOPs), is followed to inform all relevant 

personnel of the runway status. Controllers in the Tower use 

flight strips or placards as a memory aid and automation 

systems that provide airport information to pilots—the 

Automatic Terminal Information Service (ATIS) and Notices to 

Airmen (NOTAMs)—are updated. The flight strips or placards 

are placed within the controller’s typical field-of-view, intended 

to be passive memory aids that remind the controller that the 

runway is closed. Some Towers have additional surface safety 

system technology to help prevent closed runway operations by 

utilizing surveillance information. These systems, such as 

Airport Surface Detection Equipment Model X (ASDE-X), 

accept user input about runway status and use surveillance 

information about the location and movement of aircraft on the 

airport surface to determine when a closed runway operation 

may be about to occur. However, these surface safety systems 

require aircraft to reach certain kinetic parameters for an alert 

to be triggered, which can result in alerts issued too late for 

corrective action to be taken.  

Though not a frequently occurring type of incursion, closed 

runway operations do continue to occur, despite the presence of 

the existing prevention mechanisms. The FAA conceived the 

CROPD to help prevent these incursions using automatic 

speech recognition. 

B. Applying Speech Recognition to ATC Communications 

Voice communication between controller and pilot over a 

radio frequency is the primary means for the two parties to 

communicate the current and near-future state of the operational 

environment. Consequently, the controller-pilot voice 

communications contain a wealth of information that could be 

used by automation systems for a variety of purposes.  

Research on ATC voice communication and applying 

automatic speech recognition in the ATC domain has included 

analysis of controller-pilot voice communications, call sign 

confusion by humans, and the role of voice communications in 

aviation accidents [2] [3] [4] [5].  

There are five types of speech recognition applications in 

the broad Air Traffic Management (ATM) domain [6]. 

 Training – Automatic speech recognition is used to 

simulate pilot behavior (clearance readback and 

execution of commands) during controller training. [7]  

 Human-in-the-Loop (HITL) Simulation Support – 

Similar to how it is used for controller training, 

automatic speech recognition can be used to simulate 

pilot behavior during HITL simulations for ATM 

research purposes.  

 Safety Benefit in Live Operations – Automatic speech 

recognition can be used on live, real-world ATC 

communications to provide real-time safety alerts to 

controllers. Speech recognition is particularly suitable 

for live safety applications because of the fact that 

controller clearances (and subsequent pilot readback) 

almost always precede the movement of the aircraft. 

The CROPD falls in this category of application.  

 Efficiency Benefit in Live Operations – Automatic 

speech recognition can also be used on live, real-world 

ATC communications to help automate routine tasks or 

to provide the automation system with information 

about human intent. [8] 

 Research and Analysis – Automatic speech recognition 

can be performed on recorded audio to support post-

operations analysis. The recognized speech can be 

associated with track data to provide a more complete 

flight record, as in the case of MITRE’s National Voice 

Archive. [9] 

As described in [6], the variety of applications for automatic 

speech recognition are differentiated by several important 

characteristics, such as the operational environment (i.e., real 

life or lab/simulated operations), processing timeframe (i.e., 

real-time or post-processed recognition), information needs, 

and the availability of external context information.  

Some systems have been developed to take advantage of 

dynamic context information from other automation in the ATC 

environment (such as call signs) to improve the speech 

recognition performance for simulation [10] and training [7] 



applications. Helmke et al. demonstrated both the value of 

context information to improving speech recognition and the 

value of using speech recognition to inform an Arrival Manager 

(AMAN) system [8]. 

Because of the differences in these characteristics, 

applications differ in both the level of speech recognition 

performance required for success and the level of speech 

recognition performance achievable. When speech recognition 

is applied in a lab/simulated environment, such as for controller 

training, the systems can take advantage of high quality audio 

through the controlled lab environment and context information 

available through the simulation platform. Further, the 

application itself defines what type of and how much 

information the speech recognition system needs to identify for 

the application to be successful. For example, a system to 

simulate pilot behavior needs to identify the call sign and all 

instruction information in order to execute aircraft maneuvers 

and deliver a correct readback.  

The information needs of the system then drive the 

definition of metrics that can be used to evaluate speech 

recognition system performance. Because ATC 

communications commonly contain words that do not 

contribute to the meaning of the transmission, not all words are 

equally important to recognize. Furthermore, not all meaningful 

words are essential to capture a particular objective.  

Consequently, Word Error Rate (WER), the common metric for 

measuring speech recognition accuracy that attributes equal 

importance to all words in a spoken utterance, is not an 

appropriate performance measure for speech recognition on 

ATC communications. Rather, each transmission typically 

contains a series of ‘concepts’ (such as the call sign or a 

particular clearance), a subset of which are important to identify 

correctly, depending on the application [8]. As described in 

Section IV, the performance metric for the CROPD is the 

identification of controller intent to use a particular runway for 

arrival or departure. The efficacy of the entire system will 

ultimately be judged by how the speech recognition result is 

used in conjunction with other information. An alerting system, 

for example, would be judged by the number of missed and 

false alerts, but correct speech recognition performance does 

not directly correspond to correct system alert performance.  

The controller intent metric provides a more direct method of 

measuring speech recognition performance, independent of the 

other variables that may impact overall system performance.   

Successfully capturing relevant concepts in ATC 

transmissions requires handling several characteristics of ATC 

voice communications that make automatic speech recognition 

more challenging, as well as taking advantage of several aspects 

that support the speech recognition process. One challenge to 

applying speech recognition in the ATC domain is audio quality 

of the transmissions, which is determined by the acoustic 

characteristics of the facility audio system, such as the voice 

switch. Further, acoustic characteristics of the speakers—rate of 

speech, pronunciation, annunciation, and differing accents—are 

more challenging because of the inconsistency in the phonemes 

present in the speech. Another challenge is that, while ATC 

communications are prescribed by the ATC Handbook, JO 

7110.65, controllers do not always follow the phraseology 

exactly, making language model matching more difficult [11] 

[7]. Additional language modeling challenges come from 

differences in the types of transmissions required in each ATC 

domain (Tower, Approach Control, etc.) and the colloquialisms 

that vary by facility or region.  

On the other hand, there are some aspects of ATC 

communications that are conducive to automatic speech 

recognition because they help tell the system what to ‘expect.’ 

The first is the prescribed phraseology, which, although not 

always followed precisely, can be leveraged to produce 

domain- and application-specific language models. For 

example, the fact that specific phrases are designated only for 

giving takeoff and landing clearances (e.g., “cleared for 

takeoff” and “cleared to land”) reduces the potential variation 

in the speech and specifies what the system needs to detect. 

Further, the standard phraseology is generally designed to 

reduce ambiguous sounds for the benefit of the human listeners 

(such as ‘niner’ instead of ‘nine’ to reduce ambiguity with 

‘five’), which also benefits the speech recognition system. 

Additionally, by modeling previously observed ATC speech, 

systems can be tuned with custom pronunciation dictionaries, 

which prepare the speech recognition system for common 

pronunciation variations (such as “clear da lan”). Speech 

recognition systems can also be adapted to the acoustic 

characteristics of the audio, including speaker- or group-

specific traits and impacts from the audio equipment. Finally, 

both static (e.g., the runway numbers at a particular airport) and 

dynamic (e.g., the call signs in the airspace at a given time) 

context information can further refine what the system expects 

to hear on a given transmission.  

Section IV describes in detail how these characteristics are 

handled in the CROPD system via a variety of automatic speech 

recognition tuning techniques.  

III. THE CLOSED RUNWAY OPERATION PREVENTION 

DEVICE 

This section describes the functional components of the 

CROPD, how it is intended to be used, and the role of its speech 

recognition system. More detail on the design of the system can 

be found in [12].  

A. System Description 

The purpose of the CROPD is to detect (and alert) when the 

LC gives a clearance indicating intent for an aircraft to land on 

or take off from a runway that is designated as closed. To 

determine if an alert should be generated, the two pieces of 

information that need to be compared are a) the clearance and 

associated runway spoken by the controller to the pilot, and b) 

the closed/open status of that runway.  

The closed/open status of each runway is displayed on a 

small Graphical User Interface (GUI) in the Tower, which the 

controllers and/or supervisors would keep up to date as part of 

the checklist followed for closing and opening runways. Other 

sources of information could be used to provide the closed 



runway status, such as ASDE-X or NOTAMs, but the current 

version of the CROPD has been designed to minimize the 

number of interfaces with other automation systems.  

The automatic speech recognition component of the 

CROPD receives controller audio from the voice switch, but 

does not connect to other systems for context information. The 

speech recognition component feeds input to the alert logic, 

which compares the recognized clearance and runway to the 

closed runway status to trigger an alert. Fig. 1 illustrates the 

functional components of the CROPD.  

 

FIGURE 1. CROPD Functional Components 

When the system detects a clearance to a closed runway, it 

triggers an auditory and visual alert in the tower, through the 

GUI and a set of loudspeakers. In response to an alert, the 

controllers in the tower will determine if the alert requires a 

response (i.e., if it is a true alert or a false/nuisance alert) and 

issue corrective instructions if necessary. Because the controller 

instruction almost always precedes the aircraft movement, and 

because the alert can be triggered almost immediately after the 

controller finishes the clearance, the CROPD alert will in theory 

give the controller the maximum possible amount of time to 

respond to the situation.  

B. The Role of Speech Recognition  

To identify controller intent to use a runway for an 

operation, the speech recognition component of the CROPD 

works to detect two specific pieces of information in a 

controller transmission: the clearance and the runway 

associated with that clearance. At a minimum, the clearance 

phrases include “cleared to land”, “cleared for takeoff”, and 

“line up and wait”. If the CROPD is installed at a small airport 

with sufficient general aviation traffic, then other clearance 

phrases such as “cleared for the option” would also be included. 

The runway numbers are limited to the names of the runways at 

the particular airport. Ultimately, as described in Section IV, the 

speech recognition system is configured to “expect” the 

clearance phrases and runway numbers that are typically spoken 

at the airport.  

ATC transmissions typically contain other concepts, such as 

call signs, wind information, and traffic advisories, but the 

speech recognition system for the CROPD only needs to detect 

the clearance phrase and associated runway. Recognizing the 

runway number can be particularly challenging because a 

transmission will contain many numbers as part of the other 

content. The name of another runway at the airport may be 

present in another context or as part of a traffic advisory. Table 

1 presents an example clearance and the variety of concepts (or 

pieces of information) the system must differentiate.  

TABLE 1. Example Clearance and Number Recognition 

 

The system may identify several different numbers, some of 

which may be part of mentioning another runway, but the 

system must determine which number is associated with the 

runway clearance. Because of the variety of numbers that may 

be present in a transmission, and because each physical runway 

has two names (one from each direction, such as 12 and 30), it 

is possible for the speech recognition system to identify that the 

LC spoke intent for an arrival or departure, but associate the 

wrong runway number with the clearance phrase. 

Consequently, there are five types of results needed to assess 

the speech recognition system’s ability to identify controller 

intent: correct intent, incorrect intent, false intent, missed intent, 

and correct rejection of intent. Table 2 presents a matrix of the 

possible outcomes based on examples.  

TABLE 2. Matrix of Speech Recognition Performance Outcomes 

 

In the first example of the actual transmission (Truth) in 

Table 2, the controller gives a takeoff clearance (“cleared for 

takeoff” [CFT]) for runway three zero (RWY 30). In this case, 

the system identifying RWY 30, CFT is correct intent 

recognition. The system identifying a different intent in the 

transmission—RWY 19L, cleared to land (CTL)—is incorrect 

intent recognition. In other words, the system correctly 

identified intent to use a runway, but it identified the wrong 



clearance phrase and wrong runway. Note that the system could 

also identify the correct clearance phrase but the wrong runway 

(for example, RWY 19L, CFT), or the correct runway but the 

wrong clearance phrase (for example, RWY 30, CTL).  Thirdly, 

the system could not identify intent when intent is actually 

present, which is classified as missed intent (see Table 2).  

The second example in Table 2 is if the controller gives a 

transmission but does not speak intent to use a runway for an 

operation (“No Intent” in the right-hand column). In this case, 

regardless of which runway and clearance phrase (e.g., RWY 

30, CFT) is detected, the system performance is classified as 

false intent. If the speech recognition does not recognize intent 

in the transmission, performance is classified as correct 

rejection of intent.  

Finally, to evaluate the performance of the CROPD overall, 

intent recognition results must be correlated with the actual alert 

performance. For a variety of reasons—number of runways, 

different types of runway closures, and that each runway has 

two names (one for each direction)—incorrect speech 

recognition results do not necessarily lead to incorrect CROPD 

alerts. For example, if the speech recognition detects a takeoff 

clearance for runway 12, but the controller actually gave the 

clearance for runway 30, then the system would still alert 

correctly, assuming the runway is closed to departures in both 

directions. CROPD system alert performance also depends on 

having the GUI set correctly.  

While alert performance is the system performance measure 

that will directly impact safety and user acceptance of the 

system, an appropriate measure for evaluating the speech 

recognition component is the detection of controller intent to 

use a runway for arrival or departure. Better performance in 

recognizing controller intent in the transmission is the means 

for engineering a system that provides better alert performance 

to the user.  

C. Field Test Demonstration 

In the summer of 2014, at the request of and working 

collaboratively with the FAA, MITRE prepared for and 

executed a field test demonstration of the CROPD at KIAD. The 

objectives were to demonstrate the CROPD as part of the 

National Airspace System (NAS), evaluate the speech 

recognition performance on live controller audio, and to elicit 

feedback from operational personnel on the design and 

proposed use of the system. With respect to the analysis results 

presented in this paper, the field test demonstration serves as 1) 

the source of the audio data used for the analysis, and 2) 

validation that the performance results presented are applicable 

to the live operating environment.  

When hosted in the field during live operations, the CROPD 

included a pre-processing component before the speech 

recognition component that performed automatic identification 

and delimitation of controller transmissions from the 

continuous stream of incoming audio. The component was built 

around the speech classifier components in Sphinx4, Carnegie 

Mellon University’s open-source automatic speech recognition 

system. Because automatic speech identification and 

delimitation is itself a probabilistic process with inherent 

uncertainties and error, this component can contribute to overall 

system error. For clarity within the context of this paper, the 

results presented in subsequent sections focus only on the 

speech recognition performance of the CROPD, independent of 

any speech delimitation error. The tuning that could be 

implemented to reduce errors associated with speech 

segmentation is a separate topic not discussed within the scope 

of this paper.  

The following three sections describe the performance 

measures, tuning techniques, and analysis results from the field 

test demonstration of the CROPD at KIAD. 

IV. PERFORMANCE MEASURES AND EVALUATION DATA 

This section describes the performance metrics used to 

measure performance of the CROPD’s speech recognition 

component and summarizes the data set used to tune the speech 

recognition system and the data set used to evaluate its 

performance during live operations in the field.  

A. Performance Metrics 

As mentioned previously, WER is not an appropriate 

accuracy metric for applications in which some words are 

inherently more meaningful to the end objective of the overall 

system than others. In the case of the CROPD, runway and 

arrival/departure clearance phrases are more relevant than other 

phrases that may be present in the LC transmission, such as the 

aircraft call sign, weather advisories, courtesies, etc., to the 

deduction that the controller has expressed intent to use a 

particular runway for arriving or departing traffic. Thus, an 

alternate accuracy measure that only takes into account words 

that affect the overall system performance and does not penalize 

the system for failing to decipher words that are irrelevant to the 

application’s purpose would provide a better evaluation of the 

system’s performance with respect to the application objective. 

In the case of the CROPD, its accuracy measures are based 

on intent, defined as the presence of both a clearance phrase, for 

arrival or departure, and an associated runway phrase in a single 

transmission, and closely mirror the five outcome types 

described in Table 2. Equations (1) through (5) describe how 

the intent-based performance metrics are calculated for the 

CROPD.  

 𝑃𝑇𝑟𝑢𝑒 𝐼𝑛𝑡𝑒𝑛𝑡 
𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

=
𝐼𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑢𝑛𝑤𝑎𝑦 𝑎𝑛𝑑 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒

𝑇𝑤𝑖𝑡ℎ 𝐼𝑛𝑡𝑒𝑛𝑡
  (1) 

 𝑃𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝐼𝑛𝑡𝑒𝑛𝑡 
𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

=
𝐼𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑢𝑛𝑤𝑎𝑦,   𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒,   𝑜𝑟 𝑏𝑜𝑡ℎ

𝑇𝑤𝑖𝑡ℎ 𝐼𝑛𝑡𝑒𝑛𝑡
 (2)  

𝑃𝑀𝑖𝑠𝑠𝑒𝑑 𝐼𝑛𝑡𝑒𝑛𝑡 
𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

=
𝑁𝐼𝑤𝑖𝑡ℎ 𝐼𝑛𝑡𝑒𝑛𝑡

𝑇𝑤𝑖𝑡ℎ 𝐼𝑛𝑡𝑒𝑛𝑡
 (3)  

 𝑃𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑁𝑜𝑛−𝐼𝑛𝑡𝑒𝑛𝑡 
𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

=
𝑁𝐼𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝐼𝑛𝑡𝑒𝑛𝑡

𝑇𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝐼𝑛𝑡𝑒𝑛𝑡
  (4) 

 𝑃𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑁𝑜𝑛−𝐼𝑛𝑡𝑒𝑛𝑡 
𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

= 1 − 𝑃𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑁𝑜𝑛−𝐼𝑛𝑡𝑒𝑛𝑡
𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

  (5) 



In the equations, Twith Intent denotes the total number of 

transmissions with intent, Twithout Intent denotes the total number 

of transmissions without intent, Icorrect runway and clearance denotes 

the number of transmissions that were identified with intent and 

the correct runway and clearance, Iincorrect runway, clearance, or both 

denotes the number of transmissions that were identified with 

intent but with an incorrect runway, clearance, or both, NIwith 

Intent denotes the number of transmissions that were not 

identified with intent but actually contained intent, and NIwithout 

Intent denotes the number of transmissions that were not 

identified with intent and did not actually contain intent.  

B. Tuning Data Set 

To build the CROPD demonstration system, MITRE 

assembled and tuned its speech recognition component using 

recorded operational audio from KIAD. The audio was 

collected by the FAA over several weeks in the spring of 2013, 

from an analog patch panel interface on the Enhanced Terminal 

Voice Switch (ETVS) in the KIAD equipment room. Portable 

digital recorders were used to digitize and store the audio at 8 

kHz with 16 bits per sample. All LC radio transmissions from 

the three LC frequencies at KIAD were recorded during the 

audio collection process. In total, over 360 hours of audio were 

collected. A subset of this audio data, 144 hours, was selected 

as a representative data set for transcription, analysis, and 

tuning of the CROPD speech recognition component. When 

analyzed and transcribed, the 144 hours of audio yielded 12,834 

distinct radio transmissions and corresponding transcriptions.  

One sixth of this data set was reserved for evaluation and 

benchmarking during the tuning process, and the remaining 

data were used for tuning and automatic training.  

C. Field Demonstration Data 

From the field test demonstration at KIAD, a subset from 

the audio and system logs archived by the system during its 

demonstration was randomly selected for performance analysis. 

Out of over 1,100 hours of archived audio data, 125 hours were 

selected as the evaluation data set and manually transcribed and 

analyzed. The audio yielded 13,804 distinct controller 

transmissions and corresponding transcriptions. Within this 

data set, just over forty percent of the data, 5,822 transmissions, 

contained intent to use a runway (as previously defined). The 

human-generated transcriptions and identifications of intent in 

the audio set were designated as the ground truth and used to 

validate the speech recognition results from the CROPD 

system. 

V. SPEECH RECOGNITION TUNING 

The CROPD is built around the Loquendo automatic speech 

recognition engine, a commercial speech recognition system. 

Before the CROPD was fielded at KIAD for evaluation in a live 

ATC environment, the speech recognition component was 

configured and tuned using the tuning data set described earlier. 

This configuration and tuning process was required because the 

performance accuracy of a speech recognition system is largely 

dependent on how well the target audio being recognized 

matches the system’s internal models of speech and language 

patterns. Most commercial speech recognition systems are sold 

with generalized internal models that are optimized for 

recognition of conversational speech from a large population of 

speakers. A number of factors—environment and acoustic 

characteristics, speaker accents, speech rate, non-standard 

vocabulary, and context ambiguity—that are specific to ATC 

applications make these generalized models less optimal for 

application in the ATC domain. This section outlines tuning 

techniques for improving recognition accuracy, specifically for 

use in the ATC domain, and describes how each was 

implemented in the CROPD with the observed benefit from the 

implementation of each technique. 

A. Language Modeling 

Language modeling, in the context of speech recognition, 

defines the universe of word sequences that the automatic 

speech recognition system can recognize and models the 

probability or likelihood of occurrence of that word sequence. 

There are typically two methods of language model definition: 

(1) finite-state grammars and (2) statistical language models 

(SLMs). The first is a manually-defined list of word sequence 

rules, frequently referred to as a grammar, which encapsulates 

the logical and conceivable phrases that may be encountered 

during the recognition process. Fig. 2 depicts an example of a 

grammar rule for runways 1L/19R, 1C/19C, and 1R/19L. A full 

grammar could comprise of multiple rules such as the one 

depicted as well as a root rule that specifies the interconnection 

of rules.  

 

FIGURE 2. Grammar Rule for Runways 1L/19R, 1C/19C, and 1R/19L 

Defined well, these language models can yield near-perfect 

recognition in applications where speakers adhere strictly to the 

expected phraseology. However, grammars have low tolerance 

for speech that deviates from its predefined patterns. Previously 

unseen patterns can lead to a dramatic drop in accuracy.  

The SLM method of definition results in a machine-

generated probability model of word sequence occurrences 

created through analysis of a set of transcriptions (also known 

as a corpus) from the target speech environment, perhaps mixed 

with a more general training corpus. SLMs bias recognition 

toward words and combinations of words that have been 

previously observed in the automatic training corpus, but do not 

enforce strict conformance to a finite set of predefined word 

combinations as grammars do. This behavior makes SLMs 

more robust to speech variation and disfluencies such as 

hesitation, stuttering, and coughs but can also make their results 

less accurate or illogical, in poor recognition conditions such as 

significant background noise, unforeseen acoustic variations, 

and atypical speaker accents.  



The CROPD uses both types of language models. The finite-

state grammar was manually crafted to contain only word 

sequences relevant to the CROPD application, which are the 

commonly used variations of clearance and runway phrases. 

These variations included word substitutions such as “clear” for 

“cleared”, additions such as “immediate”, and omissions such 

as absence of the word “runway”. Table 3 depicts examples of 

the variations included for clearance and runway phrases. Note 

that letters and words in the square brackets are optional 

alternatives.  

TABLE 3. Examples of Variations on Clearance and Runway Phrases 

Original Phrase Possible Variations 

cleared for takeoff 

clear for takeoff 

clear[ed] to takeoff 
clear[ed] for immediate takeoff 

runway one niner left one nine[r] left 

runway three zero [runway] tree zero 

The SLM was created and trained on all transcriptions in the 

tuning data set described earlier. Note, the tuning data set 

contained transcriptions from all positions at KIAD and time 

periods throughout the day, offering a reasonable distribution 

of the facility’s runway usage during the data collection period. 

Selection of a representative data set for automatic SLM 

training is important, especially with small data sets, because 

this data determines the language model’s bias during 

recognition. If the training data was selected from time periods 

during which the facility used one particular runway 

configuration and set of runway names, these runway names 

could be over-represented in the SLM while other runway 

configurations and runway names would be under-represented. 

During recognition time, this unrealistic bias could lead to false 

recognition of the over-represented runway names and missed 

recognition of the under-represented runway names. 

With the language models, the speech recognition 

component of the CROPD was able to identify clearance and 

runway phrases that were present in the evaluation data set 

fairly well. However, in some instances, recognition accuracy 

was offset by a high percentage of false detections—that is, 

identification of phrases of interest when none were actually 

present in the speech. The two language models were a good 

complement to each other and each introduced performance 

benefit that would not have been present with only the other. 

An initial benchmark of the system taken after both language 

models were in place showed that true intent detection was just 

less than 70 percent and false intent detection was over 50 

percent. 

B. Acoustic Modeling 

Acoustic models define the statistical signatures that 

identify sub-components of a spoken language, known as 

phonemes, and specify the combinations of these phonemes that 

                                                           
1 Coarticulation is the action of a speaker to anticipate the next sound in 

speech, carrying over and merging speech sounds from preceding or 
subsequent speech segments to the current sound being vocalized [14]. 

form words in the language. Most commercial speech 

recognition systems come pre-configured with a default 

acoustic model, generalized for performance on conversational 

speech from a large speaker population. Because controller 

speech can differ significantly from conversational speech in 

the general population, these acoustic models are not optimal 

for use in the ATC domain.  

There are two standard methods for modifying and tuning 

the acoustic model: (1) pronunciation dictionaries and (2) 

acoustic model adaptation (AMA). The first method is a means 

of supplementing the existing acoustic model’s word 

pronunciation definitions, also known as lexicons, with custom 

word pronunciations specific to the application. These custom 

pronunciation dictionaries can be crafted to target known 

pronunciation variations of existing words and to introduce new 

words and phonetic sequences. This capability is useful in the 

ATC domain, where there are many recurring, non-standard 

words such as fix names, route names, and aircraft call signs. 

Furthermore, rapid rate of speech and repetitive phraseology 

frequently lead to coarticulation 1  and assimilation 2  in ATC 

speech, resulting in truncation and distortion of well-known 

word pronunciations; a pronunciation dictionary can be 

modified in response to these observations. For example, in 

some of the speech samples analyzed for the CROPD 

application, the phrase “cleared to land” was sometimes 

truncated to sound like “clea da lan” or “cland” and the phrase 

“cleared for takeoff” was distorted to “clea fa taguv”. Although 

custom user dictionaries can be a powerful tuning tool, entries 

must be judiciously selected because each entry expands the 

search criteria, increasing sensitivity of the system to the 

defined lexicon. Over-expansion can lead to unintentional 

overlap with other word lexicons resulting in erroneous 

detection of a confusable alternative rather than correct 

identification of the actual word.  

The second method of acoustic model tuning, AMA is an 

automated means of modifying a general acoustic model to 

better match observed acoustic channel characteristics and 

speech patterns within a particular set of speakers. Similar to 

SLMs, AMA relies on analysis of representative data—both 

audio and transcriptions—from the target speech environment 

and speaker set to adjust the default acoustic signatures of 

phonemes in the acoustic model. This method can be utilized to 

account for speaker-dependent characteristics, such as speech 

rate and accents, with a fairly limited training data set. With a 

large training data set, this method can also account for non-

speaker specific characteristics, such as audio channel 

properties and bandwidth limitations. 

The CROPD uses both a custom pronunciation dictionary 

and AMA. The custom dictionary was manually created with 

unique ATC pronunciations (such as “niner”) as well as custom 

words that defined entire clearance phrases (such as “cleared to 

land”) and runway phrases (such as “one niner left”) as single 

2 Assimilation is the change performed on an isolated speech sound to make it 

more like a neighboring speech segment [14]. 



word entries. The latter variation on phrases was added to allow 

for better handling of coarticulation and assimilation observed 

between words in these frequently spoken phrases. When added 

to the speech recognition configuration alongside the two 

language models, the custom pronunciation dictionary 

dramatically boosted recognition accuracy for several keyword 

phrases. However this performance gain was also accompanied 

by an increase in the number of false detections across all the 

keyword phrases. A benchmark of the system taken after the 

dictionary was implemented alongside the language models 

showed that true intent detection increased to 85 percent but 

false intent detection increased to 61 percent. 

Acoustic model adaptation was implemented next and 

trained on all audio and corresponding transcriptions in the 

tuning data set. The goal of implementing this technique was to 

shift the default acoustic model closer to the speaker set at 

KIAD and account for some of the acoustic characteristics 

unique to the facility voice switch. The addition of the acoustic 

model adaptation improved the correct recognition rate 

minimally and significantly decreased the false detection rate 

observed on keyword phrases. A third benchmark of the system 

taken after language modeling and acoustic modeling were in 

place showed true intent detection increased to 89 percent and 

false intent detection dropped to 18 percent. 

C. Semantic Interpretation 

Semantic interpretation is a form of text processing that can 

be used to derive logical concepts from the potentially error-

filled raw text output, or hypotheses, of the speech recognition 

system. The process of translating words or groups of words to 

logical concepts can vary across applications, even within the 

same domain, and is dependent on the quality of the 

transcriptions being processed, the complexity of the concepts 

being derived, as well as the relation between concepts within 

the same transcription. In addition to deducing logical concepts, 

semantic interpretation techniques can also reduce errors by 

skipping over words that are not relevant.  

In the CROPD, the semantic interpretation component is 

responsible for sifting through the hypotheses from the two 

language models for relevant runways and clearances of 

interest, resolving conflicts between recognition hypotheses if 

differing clearance or runway phrases were recognized within 

the same time segment, correlating the correct runway to the 

clearance if multiple runways were identified, and arriving at a 

final intent-to-use-a-runway hypothesis, if one was present.  

The semantic interpretation component accepts word-level 

confidence scores, which are machine-generated measures of 

accuracy likelihood from the speech recognition system, per-

word start and stop times, and the recognized transcription 

hypotheses for each interpretation task. During the mediation 

process, the algorithm prioritizes recognized phrases based on 

phrase length (that is, the number of words in the phrase), 

phrase-level confidence score, phrase proximity to other 

phrases, and identifying text qualifiers (such as the word 

“runway”), which if present could disambiguate the meaning of 

numerical sequences. The addition of the semantic 

interpretation component to the CROPD did not improve 

recognition of the individual keyword runway or clearance 

phrases but did improve overall intent detection performance of 

the system because it introduced a more intelligent method of 

disambiguating runway concepts from other confusable 

numerical phrases and correlating the correct runway with a 

clearance when multiple runways were mentioned and 

recognized. A final benchmark of the system taken after 

language modeling, acoustic modeling, and semantic 

interpretation were all implemented showed true intent 

detection to be 95 percent and false intent detection less than 17 

percent. 

D. Confidence Thresholding 

As mentioned briefly earlier, speech recognition systems 

commonly produce confidence scores as a measure of the 

likelihood of accuracy in its speech-to-text translation. Most 

commercial speech recognition systems provide both word-

level and hypothesis-level confidence scores as a means of 

discriminating between multiple hypotheses and between 

correct recognition and erroneous identification of specific 

words. High confidence scores from the system indicate that it 

believes its recognition hypothesis is most likely accurate, 

while low confidence scores could indicate that segments of 

uncertainty or error exist within the translation.  

Confidence thresholding is a methodology that exploits the 

availability of these system-generated scores to bias the overall 

system towards a specific balance of missed and false 

detections. This process does not affect the accuracy of the 

underlying speech recognition system; rather, it advises the 

system on whether to accept a recognition based on its own 

certainty of accuracy. Confidence thresholding establishes the 

minimum system confidence, or confidence threshold, that 

must be met in order for a hypothesis of true detection to be 

accepted. In the signal detection theory framework, this 

confidence threshold is the decision criterion that determines 

the response bias or response criterion [13]. If the confidence 

threshold is set with a liberal response bias, then it leans the 

overall system toward accepting false detections so that missed 

detections are minimized. If the confidence threshold is set with 

a conservative response bias, then it leans the overall system 

toward accepting missed detections so that false detections are 

minimized. The actual selection of the confidence threshold, 

and thus the response bias, is usually determined by the 

application context and the application users. 

In the CROPD, the capability to adjust the confidence 

threshold on the system is implemented at two different levels. 

The first threshold is within the semantic interpretation 

algorithm, during the mediation between clearance and runway 

phrases from across multiple recognition hypotheses. This 

threshold eliminates phrases with low likelihoods of accuracy 

early in the selection process, before they introduce conflict 

with much higher-scoring phrase hypotheses. The second 

threshold is implemented on the outcome of the semantic 

interpretation algorithm—the final intent determination. This 

threshold discards final intent determinations that have a low 

aggregate confidence across all the phrases and words used to 



determine the intent. The confidence threshold is set to balance 

the trade-off between missed alerts and false alerts.  

VI. ANALYSIS AND RESULTS 

All of the speech recognition tuning techniques described in 

the previous section were implemented using the tuning data set 

from KIAD and then benchmarked using a subset of the tuning 

data that was set aside for evaluation and not used for tuning 

nor automatic training. Thus the benchmark results from the 

tuning process were generated on previously “unseen” data and 

acted as predictors of how the system would perform in the 

field, when it was exposed to new data during live operations. 

This section describes the observed speech recognition 

performance of the tuned CROPD on the demonstration data set 

described earlier, which was processed during the field 

demonstration at KIAD. 

A. Speech Recognition Performance 

For the 13,804 transmissions that were selected for analysis 

from the collected demonstration data, the CROPD was able to 

correctly detect over 92 percent of the transmissions containing 

intent to use a runway. Of the remaining transmissions without 

intent, less than 10 percent were incorrectly identified as 

containing intent (i.e., false intent). Table 4 depicts all five 

performance measures calculated per the metric definitions 

specified earlier.  

TABLE 4. Performance Measures 

Transmissions with Intent Transmissions without Intent 

True  

Intent 

Incorrect  

Intent 

Missed  

Intent 

Correct  

Non-Intent 

False  

Intent 

92.70% 4.77% 2.53% 90.33% 9.67% 

The performance percentages listed above were calculated 

with the overall system confidence threshold set to zero. Fig. 3 

depicts the receiver-operating characteristic (ROC) curve 

capturing the full range of confidence score threshold 

alternatives and their subsequent impact on the balance between 

correct and false intent detection.  

 
FIGURE 3. ROC Curve for Different Confidence Thresholds 

In Fig. 3, 0.9 is the highest confidence score threshold 

depicted. At this threshold, zero false intent detections were 

observed but also zero true intents were accepted by the system. 

At the opposite end of the scale, 0.1 is the lowest confidence 

score threshold depicted. At this threshold, over 92 percent of 

intent present were accepted but simultaneously almost 10 

percent of transmissions not containing intent triggered a false 

intent detection. 

The selection of a “best” confidence score threshold is 

dependent on the desired tradeoff between missed and false 

detection, which is informed by operational preference. The 

ROC curve can aid in this selection by elucidating the tradeoff 

between missed and incorrect intent detection. For example, 

based on the ROC curve, if the requirement is for at least 90 

percent correct intent detection (i.e. no more than 10 percent 

missed intent detection), a confidence score threshold can be set 

at t=0.3 to limit the incorrect intent detection (i.e. false intent 

detection) to three percent.  

B. Observations 

The performance results documented here suggest that 

speech is a feasible and usable information source for deriving 

intent that can provide potential benefit in a safety application. 

However the results also indicate that there is still room for 

improvement in the speech recognition component. Analysis of 

the error cases in the evaluation data set revealed some patterns 

that highlight areas for future research and tuning.  

In Table 4, incorrect intent detections, in which intent was 

detected but either the clearance type, the runway associated 

with the clearance, or both were incorrect and did not match the 

true intent details, comprise nearly 75 percent of the total error 

in intent detections for transmissions containing intent. Delving 

into these error cases showed that incorrect runway 

identification or association with the intent caused the majority 

of these errors; further, in many of these cases, the correct 

runway to associate with the intent was recognized by the 

speech recognition, but disregarded by the semantic 

interpretation algorithm for another recognized runway. This 

analysis indicates that the semantic interpretation algorithm 

could be improved to better correlate clearances with their 

related runways. 

A more detailed analysis of the 10 percent of false intent 

detections showed that a notable fraction of the error cases were 

caused by the incorrect matching of a runway concept to a 

correctly recognized numerical phrase. For example, number 30 

actually appeared as a part of a call sign, an altimeter reading, a 

radio frequency, a wind advisory, or a flight level in a number 

of error cases but it was incorrectly tagged as a runway by the 

semantic interpretation algorithm. Similarly, the number 12 

frequently appeared as a part of a radio frequency (although it 

also appeared in call signs, altimeter readings, or wind 

advisories to a lesser degree); the semantic interpretation 

algorithm would incorrectly tag the correctly recognized 

numerical phrase as a runway. This result suggests that the 

semantic interpretation algorithm could be improved, but it also 

suggests that additional keyword phrases may need to be 

recognized in order to provide more intelligent context cues for 

the semantic interpretation algorithm.  



VII. IMPLICATIONS AND FUTURE EXTENSIONS 

The metrics presented in the previous section are 

appropriate for measuring improvement in speech recognition 

performance, but they do not directly translate to system alert 

performance, which ultimately dictates user experience. If the 

CROPD is to be implemented in the field, the ultimate system 

alert performance must first be validated as acceptable to 

operational users. 

The speech recognition performance observed during the 

field test demonstration at KIAD demonstrates both the 

feasibility of applying automatic speech recognition on live 

ATC transmissions, and the value of the various tuning 

techniques on improving performance. While there is still room 

for speech recognition performance improvements, those next 

steps would involve algorithm refinements targeted at specific 

situations to improve performance in small incremental steps. 

Further, the tuning techniques used are transferrable to speech 

recognition in other ATC domains, such as Approach Control 

operations.  

The performance demonstrated also lends support to the 

concept of using speech recognition for other applications in the 

ATC domain. Future applications may involve using the same 

detected clearances for different purposes, or they may involve 

detecting other controller instructions, such as “cross” or “hold 

short”. Speech recognition could be extended to Ground 

Controller clearances, perhaps for the purpose of providing 

automation systems with controller-issued taxi route 

clearances. Finally, speech recognition could potentially be 

applied to pilot transmissions as well, for the purpose of 

detecting readback errors or for supplementing the information 

derived from the controller clearance.  

Depending on the application, the level of speech 

recognition performance required for application success may 

be even higher than what has been demonstrated so far. One 

technique that has been shown to improve speech recognition 

performance is the inclusion of dynamic context information. 

In a Tower/Surface environment, this information could come 

from a tower automation system, such as ASDE-X or a terminal 

radar system. Further, the speech recognition results could be 

fed back into the surface safety logic to improve safety alert 

performance.  

Ultimately, although the CROPD is a relatively simple, 

isolated application of speech recognition in the Tower/Surface 

domain, its development helps to lay the foundation for other, 

more sophisticated applications of this transformative 

technology to enhance ATM system performance. As speech 

recognition tuning techniques evolve to produce improved 

performance, particularly with the integration of dynamic 

context information, automatic speech recognition can be used 

more extensively on ATC communications to provide benefits 

to both safety and efficiency.  
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