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Abstract—Starting from traffic data on flights trajectories —
planned and actual ones — in Europe, we build a navigation
point network. We study this network which exhibits different
features for different European countries. In particular, some
countries uses a high number of navpoints, facilitating the
planning of the flight plan by air companies at the cost of
higher concentrations of traffic in few nodes. Making use of the
deviations from the planned trajectories, we find that once again
different countries have different control procedures with respect
to traffic management. Interestingly, we find that some countries
tend to make more deviations when the traffic conditions are
low. Moreover, they tend to concentrate the deviations in a few
number of nodes, especially during daytime. Finally, the position
of these key navigation points are sometimes stable over the days,
which shows a consistent use of some navpoint for the same kind
of rerouting operations.

Network science — statistical model — navigation point network
— traffic flow management

I. INTRODUCTION

The structure of Air Traffic Management (ATM) as it is
known today will undergo major changes both in Europe (the
SESAR program) and in the USA (the NextGen program).
These initiatives aim to radically change the existing trans-
portation system, by intervening on technologies, procedures,
role of human actors and organizational aspects.

One of the key innovation drivers of both SESAR and
NextGen is the shift from a structured route network to a
trajectory-based network, where users (i.e. single flights) will
be able to fly their selected trajectory, instead of following
a predetermined route grid (made of airways and navigation
points) across the sky [1], [2]. Trajectory-based operations will
increase the flexible use of the airspace, but they will not
result in a totally unstructured airspace. It is reasonable to
expect that most characteristics of the current situation (e.g.
bottlenecks, main traffic flows and crossing points, boundary
points, etc.) will also emerge in the future scenario, resulting in
a different structure, probably a highly flexible and changing
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one. Another key organization change is the progressive in-
tegration of the European airspace into Functional Airspace
Blocks (FABs). The Commission Implementing Regulation
(EU) No 390/2013 states that performance has to be monitored
at the level of FABs, also indicating a set of Key Performance
Indicators (KPI) in the Annex 1 [3].

The increase of the complexity degree will cause changes
that will be hardly understood by relying on the analysis of
single elements and will instead require the understanding of
how all the new elements will interact together. The scenario
envisioned by SESAR and NextGen entails a system with a
bottom-up organisation (the flight structure emerges out of
the single trajectories) and increased interconnections (less
predefined boundary zones, information being shared by all the
actors). Compared to the fixed route scenario, the structure and
properties of the future aviation network system will emerge
from the interactions among many elements, among which
we may quote: users’ decisions and actions (i.e. pilots and air
traffic controllers), trajectory-based operations, organizational
changes, and the temporary deployment of different arrays
of resources/tools to manage specific situations, weather and
other environmental factors.

The research topic addressed by this contribution concerns
the identification of analysis methods to capture the above
describe phenomena, i.e. emerging network properties. This
contribution focuses on hidden statistical patterns like time
fluctuations or local operational practices. The aim of this work
is to be able to:

o Monitor differences between the planned use of the
network and its actual use, as determined by either
controllers or pilots,

« Employ methods that can capture system-level regular-
ities, but that can provide entry points to “drill down”
and identify the local causes creating such patterns. The
identification in time and space of outliers and unexpected
patterns would be the typical example of such an appli-
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Fig. 1.

Navigation point network for French airspace. The nodes are navigation points, with a size proportional to their strength (local traffic). Edges are

drawn between nodes linked by at least one flight. The width of the edge is proportional to the number of flights in the time interval. One month of data has
been used to generate this network. Trajectories have been cut below flight level 240.

cation.

A further requirement for this study is to develop methods
that can be applied to the processing of large amounts of data.
The ATM system is a typical multi-layer, multi-scale system,
so there is a requirement for analysis methods that can be
applied across these layers.

To deal with this challenge, in the last years many papers
have applied network science to air traffic issues (for a recent
review, see [4]). Many studies have focused on the topological
aspect of the airport network [5]-[12], but the same techniques
can be used to study subjects more related to air traffic
management [13]. In particular, one can consider different
elements of the airspace like sectors and navigation points
and build some networks which present interesting features
[14]. On the contrary of the airport network, these networks
are more related to air traffic management and safety. In this
communication, we present a study of the navigation point
network. Navigation points are fixed two dimensional points
in the airspace specified by a latitude and a longitude.

In the following, we will highlight the main features of the
navigation point network based on planned traffic data and
how the actual trajectories are modified by the controllers in
relationship with local traffic.

II. DATA & METHODS

In order to do this, we used for this communication a
set of data composed by all flights crossing the European
airspace during 1 month. For each flight, we have access to
the “last filed flight plan” and to the radar-updated trajectory.
The first one is prepared by the air company a few hours
before departure, whereas the second one can be thought as

the “real” trajectory actually flown by the aircraft, up to a finite
spatial and temporal resolution. The flight plan is typically a
sequence of waypoints, or navigation points — or navpoints —
as we call them in the following, together with time stamps
and altitudes. This data allows to rebuild all the trajectories in
four dimensions.

Moreover, we have access to data concerning the struc-
ture of the airspace. We can rebuild in three dimensions
the geometrical extent of the different hierarchical levels of
the airspace, including the sectors. In this communication,
we mainly use the two dimensional boundaries of national
airspace.

In the following, we define a “traffic network™ of navigation
points by:

« aset of nodes: navigation points crossed by a set of flights
in a certain area (like the Italian national airspace),

a set of edges between nodes: two nodes are attached
if one flight has flown from one to the other during the
time interval. We put a weight on the link corresponding
to the number of flights flying this segment during the
time window.

This traffic network is as much a product of the traffic as it is
of the airspace structure.

Note that in principle we can build two kinds of traffic net-
work: one based on the planned trajectories and the other one
based on the updated trajectories. In the following, we consider
only the first one and we study the difference between planned
and actual trajectories in relationship with the characteristics
of the planned network.
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Fig. 2. Left panel: cumulative and normalized distributions of degree for different countries. Right panel: cumulative and normalized distributions of strength

for different countries.

III. NETWORK CHARACTERISTICS

This network is represented on figure 1 for France. It can
be studied under with the tools and methodologies of network
theory. In particular, we are interested in the “degree”, which
is, for a given node, the number of its neighbours, and the
strength, which is the sum of the weights of the edges attached
to the node, hence the traffic flowing through the node. The
degree, on the other hand, can be thought as a measure of
the complexity of the node, since a high degree implies many
intersecting trajectories at the same point.

For further analysis, we define some non-standard metrics
on this network, which are related to the differences between
the planned and actual trajectories. Specifically, for each flight,
we record the last common navigation point between planned
and actual trajectory. At this point, a “fork’ happens: the flight
should have gone to a given node according to the flight plan,
but went to another one for some reason. By counting the
number of flights which are deviated from this point with
respect the total number of flights flying through it in the
time period (the strength), we have an idea of how much the
navigation point is a “source” of disturbances for the traffic.
We call this metric “fork”. It varies between 0 and 1 and
is attached to a particular node, just like the degree and the
strength.

All the following results have been obtained with a filter
on the data which roughly selects only commercial flights and
cuts their trajectories below flight level 240 (24000 feet) —
keeping only the en-route phase. In the following, we focus
on six countries: France (ICAO code LF), Italy (LI), United
Kingdom (EG), Spain (LE), Germany (ED), and Belgium
(EB).

In this section we briefly summarize the main features of
the traffic network and make a comparison between different
countries. Here we build the traffic networks by considering
the whole month of data, from the 6th of May 2010 to the
2nd of June 2010. On figure 2, we show the distributions

of degree and strength for each country. All of them are
displaying exponential behavior, which signs the existence of
a typical degree or strength and a fairly small number of high
degree/strength nodes. In other words, it means that network
does not have any “hubs” which support most of the traffic
while most of the other nodes are supporting very little traffic.
In this network, the traffic is quite well spread between nodes
— navigation points. This ultimately comes from a requirement
from the airspace managers which enforce the fact that a
flight cannot plan to use a “shortcut” between two faraway
points, but instead has to go through (nearly) all intermediate
navigation points.

Even if the distributions are fairly similar for all countries,
there are some interesting differences. The relevant ones are
summarized in table I. Interestingly, some countries seem to
have a preference for a high number of navpoints (France for
instance), reducing the mean degree and hence the local com-
plexity at each node'. This could be due to a decision taken
to allow more navigation points as well as some geographical
peculiarities.

The second striking feature is the strength of the nodes.
Looking at the table I, it seems that UK is spreading its traffic
on a much higher number of nodes than other countries like
France, hence having a much lower local traffic at individual
nodes (almost one fifth of the traffic in Belgium). This may be
due to the airspace design strategy, but can also be influenced
by geographical constraints. For instance, Belgium has a
limited geographical space available which leads to a few
number of nodes and hence a high traffic per node.

These differences of structure in the networks have a
very important impact on the air companies. Even without
mentioning the difficulty to find a valid route for a flight, on
which we do not have any information, the efficiency of the
trajectories depends on the network. The “efficiency” of the
trajectory is defined here by the length of the best trajectory

But obviously not the overall complexity.



[ Country (ICAO code) ][ Nodes [ Deg. | Max Deg. [ Str. [ Max Str. [ Efficiency ]

Italy (LI) 468 52 24 2586 22757 0.94

France (LF) 663 3.8 22 3590 25828 0.954

UK (EG) 1754 5.2 62 732 12087 0.955

Spain (LE) 394 4.3 29 2780 21235 0.947

Germany (ED) 771 3.8 21 3242 36075 0.938

Belgium (EB) 85 3.0 17 4320 25900 0.98
TABLE I

TOTAL NUMBER OF NODES, AVERAGE DEGREE, MAXIMUM DEGREE, AVERAGE STRENGTH, AND MAXIMUM STRENGTH FOR NETWORKS OF DIFFERENT
COUNTRIES. HERE WE BUILT THE NETWORK BY USING A WHOLE MONTH OF DATA FOR EACH (MORE PRECISELY AN AIRAC CYCLE, L.E. 28 DAYS).

[16] — the straight line, or the grand circle more precisely
— over the actual length of the flight. For instance, without
considering the altitude, an efficiency of 95% means that the
consumption of fuel could be lowered by roughly 5% if the
straight line was to be taken. Hence, the efficiency of the
trajectories, directly linked to the structure of the network,
is of tremendous importance for air companies. As one can
see, the efficiency in different countries can vary significantly,
from 93.8% to 98%.

All these results have been obtained with the planned traffic
network. Thus, they are intrinsic to the strategic phase of
air management, where the air navigation service providers
(ANSPs) deploy different strategies to handle the traffic based
on past data and air companies use the network as it is
structured. In the following section, we are interested in
the way in which the controllers are actually changing the
trajectories in response to changing conditions of air traffic.
For this, we will compare for each flight the planned trajectory
and the actual one.

IV. DEVIATIONS
A. Aggregated values

In this section, we use the metrics we already presented in
section II. In particular, in the horizontal plane we record for
each flight the last common navpoint between the planned and
actual trajectories. This gives a measure of how much a given
navigation point is a “source” of disturbances. In table II, we
report some values for different airspaces.

The first value is the absolute relative difference between
the length of the actual trajectory and the real one. The
absolute values are significant for all of them (more than
9%) — denoting an overall change of efficiency which can
be important to air companies — and some differences appear
between countries. More specifically, trajectories in Spain and
Germany seem to undergo some pretty heavy deviations, above
15% in relative terms, whereas controllers in France modifies
much less the length of the trajectories. Note also that the
non-absolute values are usually positive (non displayed here),
which means that the real trajectory is longer that the planned
one, except for Italy. This reveals also different practices
in the air traffic management, as Italian controllers seem to
give much more “directs” than the others. As a consequence,
the average delay is very negative for Italy, whereas other
countries have a better punctuality — meaning they tend to
adhere to the flight plan — like UK, which has less than a tenth

of second of delay per kilometre. Germany is undergoing the
heaviest negative delay, close to one second per kilometre and
is also experiencing a very poor predictability — meaning that
delay can vary a lot between flights — superior to 4 seconds
per kilometre. On the other hand, as expected from the relative
difference in length, France has a good predictability compared
to other countries. Note also the case of Spain, which despite
having a big difference in length of trajectories, has a quite
good predictability. This could be due to systematic errors in
the planning phase, for instance because the CFMU (Central
Flow Management Unit) is not estimating the velocity properly
in this area.
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Fig. 3. Scatter plots of fork against strength (local traffic) for every navpoints
of France hour by hour.

B. Daily pattern

We are now interested in how these measures vary during
the day with different traffic conditions, or, in other words,
how controllers react to traffic.

For this, we record hour by hour the “fork™ value for each
navpoint as well as the other metrics (degree, strength). We
present on figure 3 a scatter plot between fork and strength —
representing the local traffic at the node. We clearly see that
there is a correlation between fork and the traffic, mainly due
to the intra-day pattern. Surprisingly, this correlation is neg-
ative, which means that higher traffic conditions imply fewer
deviations from the planned trajectory. This might be counter-
intuitive because higher conditions are usually associated to



[ Country (ICAO code) [[ [l —Ip[/l, | fork [ En-route delay [ A En-route delay |

Ttaly (LI) 0.13 0.012 -0.69 2.50

France (LF) 0.09 0.014 -0.21 1.58

UK (EG) 0.15 0.018 -0.04 2.03

Spain (LE) 0.18 0.010 -0.23 1.86

Germany (ED) 0.16 0.013 -0.73 4.22

Belgium (EB) 0.13 0.014 -0.59 3.40
TABLE 11

THIS TABLE PRESENTS DIFFERENT METRICS RELATED TO HOW CONTROLLERS MANAGE FLIGHTS. FROM LEFT TO RIGHT: RELATIVE ABSOLUTE
DIFFERENCE OF LENGTH OF TRAJECTORIES BETWEEN PLANNED AND REAL TRAJECTORIES, AVERAGE FRACTION OF FLIGHTS DEVIATED AT NAVPOINTS,
AVERAGE EN-ROUTE DELAY IN SECONDS PER KILOMETRE OF FLIGHT, STANDARD DEVIATION OF DELAY IN SECONDS PER KILOMETRE OF FLIGHT.

higher risks of collisions, which turns into further controllers’
actions. It seems that the contrary is happening, and the most
obvious reason would be that controllers actually stabilize the
horizontal trajectories during high traffic, while they give more
directs when the low traffic creates less constraints on their
actions.

It is also fruitful to compare different countries. Indeed,
as reported in table III, different countries display different
values of the correlation coefficients. This shows that they
have different responses to changing traffic conditions — or
that the initial structure of the network leads to different way
of controlling. Hence, the analysis of the deviations reveal
the different operational practices which exists in Europe
concerning traffic management. Enriching these data with
follow-up studies — concerning for instance safety — could give
interesting insights on the underlying mechanisms at play.

[ Country [[ Pearson corr. coeff. |

LI -0.01
LF -0.64
EG -0.68
LE -0.36
ED -0.56
EB 0.036

TABLE III

PEARSON CORRELATION COEFFICIENTS BETWEEN TRAFFIC AND “FORK”
FOR DIFFERENT COUNTRIES.

C. Over-expressed nodes

The previous results lead us to think that the controllers
react in a non-trivial way to traffic, although it is not clear
from aggregated values like the previous ones if some portions
of the airspace play a major role in determining these patterns.
In order to investigate this point, we use a statistical model
to reveal which are the nodes which support the heaviest
deviations with respect to their local planned traffic.

For this, we consider a null hypothesis whose statistical
predictions can be expressed in terms of the hypergeometric
distribution. We call N = S N NP where Ny is the
number of the active flights in the considered time-window,
NP is the number of navpoints crossed by the i-th aircraft
in the considered time interval and NV, the total number of
rerouting operations (fork).

Hence, knowing that n y flights crossed a given navpoint, the
probability to have n, rerouting operations (fork) by chance
at this navpoint is given by the hypergeometric distribution:
() G2 )

(n))

In other words, all flights have an equal probability to be
deviated at any navigation point. Hence, by setting a p-
value, we are able to test the null hypothesis of randomness
according to which the number of flights deviated at any
node is following the hypergeometric distribution. The nodes
which reject the null hypothesis are special nodes that we
call “overexpressed”: we do not expect to have such a high
number of flights deviated at this point only by chance. As
p-value, we choose 1%, which is considered as conservative,
and that we need to correct since we are doing multiple tests.
Indeed, performing multiple statistical tests might yield high
numbers of false positives. In order to correct this, we choose
the Bonferroni correction, which is the most conservative one
(see [15] for other possible corrections), i.e. we use 1%/ N, s
for the p-value, where IV, is the total number of navigation
points in the area at this time — thus, the number of tests.
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Fig. 4.  Number of overexpressed nodes in the Italian airspace during the
different hours of the day.

Since we perform the analysis hour by hour, the number and
places of overexpressed nodes are changing over time. Figure
4 shows the number of overexpressed nodes during the day.
The first remark is that there are some overexpressed nodes,



i.e. some nodes whose deviations cannot be understood by
chance (the null model). These navpoints can be special for
two non-independent reasons:

« cither because the traffic is naturally very concentrated is

some areas,
« or because the controllers themselves direct the traffic on
these navpoints for some specific operational reason.

The exact reason cannot be revealed with the data we have,
since we lack the exact actions of the controllers which lead
to this situation. However, identifying these special points
could be the starting point to carry out in-depth studies, by
performing a task analysis or by interviewing experts.

Another insight on the behaviour of air controllers is pre-
sented in figure 5. We show on this figure the distribution of
fork at different hours of the day. Strikingly, the patterns are
very similar for hours during the day and for hours during
the night. More precisely, we find that during the night,
controllers are using less nodes, with an overall value of
deviations, including the maximum, but no “special nodes”.
On the contrary, during the day, controllers use more navpoints
and spread the deviations on more nodes, but they keep a few
nodes which bears high deviations with respect to their traffic.
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Fig. 5. Semilog plot of cumulative distributions of fork in the French airspace
gathering the values during during the day (7am—11pm) and during the night.
A Kolmogorov-Smirnov test indicates that the probability that both samples
(night and day) are drawn from the same distribution is around 10~ 12,

At this point, it is still not clear if the controllers use always
the same special points which concentrate the deviations. To
investigate this, we use the plot of figure 6. On this figure,
each vertical line represents a distinct navigation point, and
the y-axis represents the time of the day. The color codes
the frequency in which the given node is overexpressed at
this given hour for all days of the dataset. When a red dot
appears, it means that this navpoint is always overrexpressed
at this hour. If a straight red vertical line appears, it means
that this navigation point consistently exhibited a high rate
of deviations for several hours throughout the days. As one
can see, there are half a dozen of lines. Some of these lines
are interrupted during the night, while there are a couple of
lines which are only present during the night. This means that
controllers do not choose the same “special nodes” through

the day. Hence, this diagram is a snapshot of the (over-)usage
of some navigation points.

Some of these overexpressed navpoints are shown on figure
7. Hence, this procedure is able to produce maps which can
be analysed by experts in order to detect potential issues in
the design of the airspace.

V. CONCLUSION

By using only traffic, we revealed some important features
about:

o how the airspace is designed an used in the strategic
phase,
o how the trajectories are modified by controllers.

Concerning the first point, we saw that different countries
have different characteristics concerning the navigation point
network. This choice impacts the local traffic and complexity
at each navigation point, which will impact in return the
controllers’ workload. On the other hand, these choices have
also an impact on the efficiency of the trajectories, i.e. how
straight they are, which in turn impacts the air companies.

We saw that, maybe because of the previous differences,
the controllers in different countries have different behaviours.
They tend to modify the trajectories in different ways, thus
impacting the punctuality and the predictability of flights as
well as the fuel consumption. More importantly, they react
differently to traffic. Some countries tend to decrease the
number of deviations when the traffic is high, whereas others
are less sensitive to traffic.

We showed that the controllers tend to modify the spatial
distributions of deviations during nights and days. In particular,
at night, they tend to use fewer nodes with a higher number of
deviations. On the other hand, during day, they use more nav-
igation points but choose among them some nodes which will
support most of the deviations. These “overexpressed” nodes
— in terms of deviations — can be spatially and temporally
tracked. In particular, some of them seem to be used during
long periods of times, denoting special conditions of traffic
or special rerouting operations. These special points can be
spotted spatially and subject to more in-depth analysis.

The analyses presented in this work may bring benefits to
the ATM community by supporting a data-driven approach to
monitoring and managing the airspace. Network of Operations
and ANSPs may use them to detect hidden problems, or
regularities over different time periods (from one single day
to months, or a whole year).

In particular, the analysis of correlation between safety
occurrences and network metrics [17] has been recognized
by ATM safety experts (ENAV and MUAC Safety teams,
EUROCONTROL DNM Safety Unit) as already mature. It
can be proposed as a tool for Safety Monitoring [18], [19]
that could already be introduced into operations, to identify
and investigate the most dangerous areas in the airspace.
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Fig. 6. Stability diagram of overexpressed navpoints for the French airspace. Each vertical line represents a different navigation point, the y-axis represents
the time of the day and the color is the frequency of the overexpression of the node during the time interval conditioned on the hour. 1 (red) means that the
point is always overexpressed at this hour during the 28 days of the time interval, 0 (blue) means that it is never overexpressed.
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Fig. 7. Zoom on the French airspace displaying the most stable navpoints (in red) as discovered by the plot of figure 6. We display the network based on
the actual trajectories, only for one day of data (6th of May). Note that some of the stable points are clearly the source of many very small edges, which are
part of some deviations from the planned trajectories.
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