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The purpose of this paper is to introduce an approach, which 
serves as initial step for the integration of adverse network 
impact information, like e.g. weather, to tactical European Air 
Traffic Flow Management (ATFM). A binary optimization 
methodology for large-scale linear problem decomposition with 
column-generation and structured variable pricing is combined 
with time-based problem segmentation to be able to dynamically 
integrate information on network impact states. The dynamic 
character of the approach is in line with SESAR 2020 objectives 
to improve the NM function in gathering benefits of short-term 
variations in network system states. A large-scale network 
scenario with a traffic sample of more than 25.000 flight plan 
data sets within European airspace is evaluated. Depending on 
the model time iteration, the Rolling Time Horizon concept 
adapts the ATFM optimization problem according to actual 
flight- and system-states. This segmentation approach shows 
improvements regarding the number of delayed flights, total 
delay sum and computation time and is suitable for future 
tactical ATFM optimization with dynamic network impact 
scenarios. 

Keywords: air traffic flow management, slot allocation, column-
generation, capacity, time horizon 

I.  INTRODUCTION 
Air Traffic Flow Management (ATFM) in Europe is the 

function to balance air traffic demand with system capacities of 
airports and air traffic control (ATC) airspaces, called ATC 
sectors. Several ATFM sub-functions exist, which are assigned 
to four time-related execution phases [6]: (i) The Strategic 
phase starts at least 6 months before the day of operation and 
ends approximately 7 days before. This phase includes flight 
plan processing, coordination actions and pre-planning in terms 
of predicting highly congested network elements caused by 
respective traffic load of e.g. public mass events. Bottlenecks 
of traffic flows within the European Air Traffic Management 
Network (EATMN) are identified. (ii) The Pre-tactical phase 
applied during the six days before the day of operation 
allocates a range of Air Traffic Flow and Capacity 
Management (ATFCM) measures, like e.g. rerouting scenarios 
to individual groups of flights [7]. Furthermore, pre-tactical 
capacity regulations are planned according to the actual 

information state. (iii) The Tactical phase conducted on the day 
of operations regularly updates traffic rates and capacities. 
Especially in the case of adverse network impact, capacity 
profiles dynamically fluctuate according to traffic complexity 
patterns. A demand-capacity-balancing (DCB) process is 
applied, which integrates dynamic airspace management and 
pre-flight departure slot allocation. Finally, during the Ad-hoc 
phase (iv), activities conducted collaboratively by controllers 
and pilots, are applied to stabilize traffic flows within impacted 
airspaces and congested airports. Figure 1 depicts the time line 
and functions of the described ATFCM phases. 

 

 
 

Figure 1.  ATFM phases and functions. 

The tactical phase is predominated by short-term slot 
allocation. In this context, ATFM slots shall not be mistaken 
with airport departure and arrival slots. Airport slots constitute 
planned time frames of 15 minutes length, negotiated within a 
slot conference on the basis of an airports capacity benchmark 
value. ATFM slots constitute tactically calculated take-off 
times (CTOTs) for which a flight departs on time within 5 
minutes before and 10 minutes after CTOT.       

During the tactical ATFM phase, Eurocontrol`s heuristic 
Computer-Aided-Slot-Allocation (CASA) algorithm performs 
assignments of ATFM slots to the set of flights being restricted 
according to demand-capacity-balancing (DCB) requirements. 
Thereby, the heuristic algorithm performs a First-Planned-



First-Served (FPFS) principle, and schedules flights according 
to their planned entry times into capacity-afflicted system 
elements, like e.g. ATC sector volumes. However, CASA 
might also restrict flights, which are originally not affected by 
capacity shortfalls, in order to comply with the First-Planned-
First-Served (FPFS) principle. Moreover, every flight 
underlying more than one ATFM restriction is assigned to be 
delayed according to its most penalizing regulation along its 
planned 4D-trajectory.  

 
 

Figure 2.  CASA-based ATFCM Slot Allocation Scheme. 
(adapted from Krebber (2001) [12]). 

Figure 2 depicts an exemplary slot allocation process of a 
flight planned to enter a regulated sector volume at an 
estimated time-over (E/TO) at 15:30z. The flight is now 
declared as ATFM-restricted with a calculated time-over at 
16:00z, introducing an ATFM delay of 30 minutes. Estimated 
off-block (EOBT) and take-off (ETOT) times are going to be 
shifted accordingly. The actual delay also reflects a share of 
unpredictable delay originated by airline scheduling, airport 
operations, etc. 

Inefficiencies of heuristic slot allocation are especially 
emerging during periods of stochastic network impacts, like 
e.g. weather. Especially convective cells with an average short 
lifetime of up to two hours are not easy to predict. Therefore, 
short-term forecasts, also called nowcasts, are not yet integral 
part of ATFCM information management in a collaborative 
manner. Stich et. al (2013) [14] and Zinner et. al (2008) [15] 
provide detailed information on nowcasting algorithms and 
utilization. 

The motivation for this study to establish a dynamic slot 
allocation architecture with rolling time horizons is to integrate 
convective nowcasts within the process of tactical ATFCM. 
Network performance increase is expected to be justified by (i) 
reducing the share of weather-impacted airspace volume during 
convective impact, (ii) minimization of impact periods 
following (i), and (iii) a high nowcasting quality and update 
rate of high-fidelity nowcasts. Therefore, Rad-TRAM is DLR’s 
same-titled radar-based tracking and monitoring algorithm [3]. 
It delivers reliable thunderstorm information by identifying and 
displaying hazardous cumulonimbus (Cb) objects (polygons) 

with a reflectivity of 37dBZ or above. Flying in these areas 
compromises flight safety, since they are characterized by 
strong hail and precipitation. 

Applying nowcasting data for tactical network management 
in a structured manner assumes requirements concerning time-
related decision deadlines and information management 
between Network Manager (NM) and the aircraft operator 
(AO). Clare and Richards (2012) [4] describe the integration of 
operational processes and requirements of both actors during 
times of uncertainty. In terms of slot allocation, an AO`s 
operational requirement is schedule stability. A means to do so 
is to swap slots within the airline fleet but also with other 
airlines at the same departure airport, if applicable. However, to 
guarantee an optimal tactical reaction on ATFM restrictions, 
CTOT assignment needs to be executed latest two hours prior 
to EOBT. To do so, flight plans need to be filed at least three 
hours prior to EOBT. However, a considerable share of CTOTs 
is assigned below two hours in advance and even short before 
off-block. These lately assigned CTOTs generally result from 
airline slot swopping, and shortly identified and coordinated 
regulations. In this context, the first step of convective 
nowcasting integration within tactical slot allocation is 
described in this article. It focusses on an operational design 
and functionality of a tactical ATFCM model, which will be 
able to regularly integrate weather updates into a dynamic slot 
allocation framework. However, the introduced model within 
this article considers system states in terms of historically 
assigned CTOTs rather than weather updates, which is part of 
future development stages. 

This article is structured as follows: chapter 2 describes the 
applied network model with the mathematical computation 
structure. Chapter 3 describes the ‘Rolling Time Horizon’ 
concept. Chapter 4 as a proof of concept provides respective 
results of an operational scenario. Chapter 5 gives a conclusion 
and outlook on future steps of effective ATFCM nowcasting 
information. 

II. MODEL IMPLEMENTATION  

A. The Network Flow Environment 
The Network Flow Environment (NFE), which is 

developed at the DLR Institute of Air Transportation Systems, 
is a tactical ATFM model suite for pre-flight re-routing and slot 
allocation [13]. It consists of several functionalities to extract 
and process different data types for large-scale ATFCM slot 
allocation within the European ATM network. Flight plan- and 
infrastructural data from different data sources is matched 
according to the considered AIRAC cycle. Thus, the ATM 
network is represented by air route, airspace and airport data. 
Figure 3 provides an impression of network complexity of the 
European air route and airspace structure, like it is represented 
in NFE. 

B.  Slot Allocation 
The slot allocation function is executed by two algorithmic 

approaches: 

1.) NFE-CASA: The heuristic algorithm for slot allocation 
calculates CTOTs with the respective ATFM delay for 



given demand and capacity profiles. The FPFS 
principle generates balanced solutions, but does not 
follow an optimality criterion. It is designed to provide 
initial solutions transferred to the mathematical 
optimization module. The static character of the 
heuristic implies fixed demand and capacity profiles 
independent from predicted network states throughout 
the duration of the considered scenario. Allocated 
CTOTs of a preceding iteration do not impact demand 
states of following iterations, since the whole scenario 
is solved within a single calculation run. Static capacity 
regulations are being applied to reproduce a most 
realistic capacity behavior throughout the duration of a 
network scenario, typically representing one day. 
During the calculation, a Slot Allocation List (SAL) is 
computed. It contains planned flights of every 
capacity-afflicted entity in ascending order considering 
their estimated entry times (ETO). Slots are allocated 
accordingly. The earliest possible departure time d > 
d0,f of a restricted flight f is assigned to satisfy the 
capacity requirement. The most penalizing regulation, 
causing the highest individual flight delay, dominates 
its calculated departure time, since a single flight might 
enter more than one regulated entity. 

 
 

Figure 3.  European air route and airspace network. Realistic airspace sectors 
and air routes are implemented within NFE, covering the whole European 
airspace. Thereby, every airspace sector volume is assigned to a maximum 

capacity value. 

2.) Large-scale optimization: The allocation of departure 
slots according to an overall system delay 
minimization is performed by a binary-integer 
optimization module, which is able to handle large-
scale ATFM problems in an acceptable amount of 
computation time. The slot allocation problem is 
implemented in MATLABTM and applies pre-compiled 

libraries of the SCIP (Solving Constraint Integer 
Programs) 3.0.1 software framework [1] together with 
the SoPlex linear programming solver. SCIP is 
interfaced within NFE`s computational workflow via 
an adaption of the OPTimization Interface (OPTI) [5].     

Capacity is defined as the maximum number of flight 
entries into an entity during one time slot. Thereby, the 
departure slot variable is the same as in Bertsimas and 
Stock Patterson (1998) [3]. It is 

 

𝑥𝑥𝑓𝑓,𝑑𝑑 =  �
1 , if flight 𝑓𝑓 obtains departure slot 𝑑𝑑,

0 , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.                                             
 

 
(1) 

 

The objective Z(x) is declared by equation 2. It is to 
minimize total delay cost with cost coefficients ωf,d   
for every restricted flight f Є F  and slot d Є D(f), 
whereas the set of possible departure slots D(f) 
complies to time segmentation settings defined for the 
model. The set is limited according to a maximum 
departure delay. 

𝑍𝑍(𝒙𝒙) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 � �   � 𝜔𝜔𝑓𝑓,𝑑𝑑 ∙ 𝑥𝑥𝑓𝑓,𝑑𝑑
𝑑𝑑 𝜖𝜖 𝐷𝐷(𝑓𝑓)𝑓𝑓 𝜖𝜖 𝐹𝐹

�. 

 

(2) 

 

Two types of constraints characterize the problem: The 
departure constraint ensures that every flight departs 
only once. This means, that every flight is assigned to 
exactly one departure slot d. 

 

� 𝑥𝑥𝑓𝑓,𝑑𝑑 = 1     ∀ 𝑓𝑓.
𝑑𝑑 𝜖𝜖 𝐷𝐷(𝑓𝑓)

 

 
(3) 

 

The capacity constraint represents capacity restrictions 
of ATC sectors and airport departure and arrival 
counts. If the calculated entry time of flight f in sector 
(or airport) s with delay according to departure slot d is 
assigned to time slot t, the coefficient a(s,t),(f,d) is 

 

𝑎𝑎(𝑠𝑠,𝑡𝑡),(𝑓𝑓,𝑑𝑑) =  �
1 , 𝑖𝑖𝑖𝑖 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠(𝑓𝑓, 𝑑𝑑) = 𝑡𝑡,

0 , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.             
 

 
(4) 

 

This coefficient serves as a transformation of departure 
times to sector entry times since the planned 
trajectories are fixed. The sum of all sector entries 
assigned to time slot t is restricted by the particular 
capacity Cs,t. 

 



�   � 𝑎𝑎(𝑠𝑠,𝑡𝑡),(𝑓𝑓,𝑑𝑑) ∙ 𝑥𝑥𝑓𝑓,𝑑𝑑  ≤  𝐶𝐶𝑠𝑠,𝑡𝑡      ∀ 𝑠𝑠, 𝑡𝑡.
𝑑𝑑  𝜖𝜖 𝐷𝐷(𝑓𝑓)𝑓𝑓 𝜖𝜖 𝐹𝐹

 

 
(5) 

The model does not assign premature departure times. 

𝑑𝑑 ≥ 0     ∀ 𝑑𝑑 𝜖𝜖 𝐷𝐷(𝑓𝑓).  (6) 

 

C. Large-Scale Problem Solving 
The initial ATFM problem typically contains a huge 

number of decision variables as a product of  

flight movements × departure slots. 

To improve computation times, NFE features a mathematical 
enumeration approach, called column generation [2]. This 
mathematical solution method for linear problems (LP) 
generates near-optimal results by dividing the original Master 
Problem (MP) to a subset of smaller Restricted Master 
Problems (RMP). Column Generation itself is well established 
in solving LPs with typically a huge number of decision 
variables, but a moderate number of constraints. This generally 
applies for an ATFM problem comprising the whole European 
ATM network, but also (pre-) tactical ATFM problems, like 
described in Kaufhold et al. (2007) [10].  

To achieve good results for this type of problem, it is 
generally not necessary to handle the complete number of 
variables. A restriction to a subset of variables within the RMP, 
which is later solved individually, delivers optimal results. 
Variables, which are not part of the RMP are treated implicitly 
within a high number of smaller so called pricing problems. To 
improve results, implicit variables are added to the RMP by 
generating new columns. In the context of this study, this 
means to consider for each flight f  a new (delayed) departure 
slot d Є D(f), leading to new not yet considered variables P

dfx , . 
This process, called variable pricing originated from 
decomposition algorithms with a polyhydral approach of 
cutting planes. Those branch-cut-price (BCP) algorithms 
dynamically add implicit variables that have negative reduced 
cost. Regarding the present delay minimization problem, 
negative reduced cost variables added to the RMP possess cost 
coefficients, which are sufficiently reduced for the variable to 
be cost-effective within the objective function. In other words, 
adding these variables to the RMP causes delay reductions to 
optimality.  

Negative reduced cost are computed by considering the 
dual prices, which correspond to the dual equivalent of the LP, 
(called the Dual Problem, DP) and especially to the linear 
constraints. Thereby, each of the linear constraints of equations 
(3) and (5) relate to individual types of dual prices: (i) the 
departure constraints (3) relate to dual prices ξf as the share of 
cost, the solution might be improved by cancelling this flight, 
and (ii) capacity constraints (5) relate to dual prices µd, 
indicating the congestion state of capacity-afflicted network 
entities (e.g. an ATC sector). Values of µd represent the 
amount of cost added to the objective value, if additional 

flights penetrate the entity. The vectorial form of the departure 
constraint with ef=1 is 

𝑮𝑮𝑮𝑮 = 𝒆𝒆  (𝝃𝝃) Є ℕ𝐹𝐹 
𝑨𝑨𝑨𝑨 ≤ 𝒄𝒄  (µ) Є ℕ𝑆𝑆,𝐷𝐷   

(7) 

(8) 

The minimization objective of the primal problem turns into 
the dual maximization objective. Primal vectors are converted 
to dual rows, meaning that dual cost coefficients are compiled 
by e and c. Since e is a unit vector, cost coefficients of ξ are 
equal to one. Cost coefficients of µ are compiled by the primal 
capacity vectors. The dual cost function is than 

𝑚𝑚𝑚𝑚𝑚𝑚 𝝃𝝃 + 𝒄𝒄Tµ.  (9) 

 

Every primal variable is associated to a dual restriction and 
vice versa. Since a variable may be restricted by two different 
restrictions, both dual variables appear in the dual restriction 

𝑮𝑮𝑇𝑇𝝃𝝃 + 𝑨𝑨𝑇𝑇µ ≤ 𝝎𝝎  (10) 

for µ≤0. G constitutes the coefficient matrix of xf,d in the 
primal constraint of equation (3) and A constitutes the 
coefficient matrix of a in the primal constraint of equation (5).    
From an operational perspective, equation (10) expresses, that 
a flight should depart at a time, when the network congestion 
state decreased, even if this implies high departure delay, 
represented by cost coefficient ω. A dual restriction for a 
specific departure time slot d  of a flight f and a column Af,d is 
as follows: 

𝝃𝝃𝑓𝑓 + 𝑨𝑨𝑓𝑓,𝑑𝑑
𝑇𝑇 µ ≤ 𝜔𝜔𝑓𝑓,𝑑𝑑  (11) 

Reduced cost are computed by solving the sub-problem of 
finding variables with corresponding violated dual restrictions 
in the form 

𝝃𝝃𝑓𝑓 + 𝑨𝑨𝑓𝑓,𝑑𝑑
𝑇𝑇 µ > 𝜔𝜔𝑓𝑓,𝑑𝑑  (12) 

  The idea is to find primal variables, for which the dual 
restriction is not yet part of the dual RMP, and therefore are not 
part of the primal problem. An added dual restriction, which is 
violated by the actual solution of the dual problem, restricts the 
dual solution space. This may lead to a reduction of the dual 
cost function. Due to the dual correlation, reduced optimal dual 
cost lead to a reduction of the corresponding primal cost. This 
correlates to an improved primal cost function by adding the 
primal variable. Therefore, reduced cost rf,d constitute (i) the 
violation value of the dual restriction, and (ii) the value, by 
which the primal cost function is improved by adding the 
correlating primal variable: 



𝒓𝒓𝑓𝑓,𝑑𝑑 = 𝜔𝜔𝑓𝑓,𝑑𝑑 − 𝝃𝝃𝑓𝑓 − 𝑨𝑨𝑓𝑓,𝑑𝑑
𝑇𝑇 µ  (13) 

 

If the reduced cost of the variable is negative, the variable may 
improve the cost function value and reduce the total system 
delay. For this reason, it is declared as negative reduced cost 
variable. Note that only flights with positive ξ may have 
departure slot variables associated with reduced cost, since sign 
restricted values of ω≥0 and aµ≤0 do not induce negative r 
of equation (13). Due to the reduced number of variables, the 
search for optimal solutions of the RMP is shorter than in the 
MP, having a positive effect on computation time.    

III. ‘ROLLING TIME HORIZON’ CONCEPT 
An ATM network underlies many different restrictions 

throughout the period of one day. The flexibility to be able to 
react on new situations constitutes one of the most important 
algorithmic features of a tactical ATFM model. The Rolling 
Time Horizon concept, implemented within NFE`s 
computational workflow considers changing system states, and 
moreover, implicates solutions of past optimization cycles. 
Every computation cycle includes a reformulation of system 
capacity and demand. Thereby, the set of flights, for which the 
departure time is not yet fixed, depending on the actual model 
time stamp, constitutes the input vector for the slot allocation. 
All other flights not yet landed represent fixed network 
demand. The combination of a macroscopic problem definition 
in terms of reducing the set of flights and the set of relevant 
network system elements for every horizon cycle, together with 
problem decomposition leads to a very efficient workflow and 
decreasing computation times. 

 
 

Figure 4.  ‘Rolling Time Horizon’ concept functionality with 4 iteration 
steps. In contrast to NFE`s iteration time granularity, which correlates to time 
slot length (default: 15 minutes), the example depicts iteration time steps of 

two hours. 

Figure 4 provides a functional example of the ‘Rolling Time 
Horizon’ concept. The horizontal axis represents the scenario 
time and runs over all time slots being part of the chosen model 
time frame. The vertical axis represents 4 exemplary iteration 
steps of the rolling time horizon. Ordinary flight profiles, 
basically indicating EOBT and ETA, are assigned to the rolling 
time horizon iteration steps. Since flight plan uncertainty is not 
represented, the total set of flights stays the same.  

Thereby, the classification of 4 different sets of flights is 
determined according to the actual horizon time (‘NOW ‘): (i) 
the ATFCM set of flights contains all flights, for which 
EOBT>NOW+2h, which satisfies the AOs operational 
requirement in terms of schedule stability and recovery, 
(ii) ATFCM restricted flights represent those flights being 
assigned to ATFCM delay at the respective iteration. It is 
possible, that a flight is restricted within successive 
iterations as an optimization result in terms of overall delay 
minimization. The third set of flights (iii) is not considered 
for tactical ATFCM, since those flights already departed. 
However, they still use network capacity and need to be 
counted for demand quantification. Flights, already landed 
(iv), and being inactive regarding ATFM activities according 
to their callsign and conducted flight leg, are not considered 
for the actual and future iterations. The process chain, 
which is executed within each iteration, is provided in 
figure 5.  

 

Figure 5.  ‘Rolling Time Horizon’ process chain constituting NFEs slot 
allocation optimization module. N depicts the number of ‘rolling’ iterations 

providing the Nth RMP for problem solution. 

 

The initial solution is provided by NFE-CASA, 
representing a possible but non-optimal solution following the 
FPFS principle.  It is used to initialize the RMP. Consequently, 
preceding solutions N>1 are used to initialize subsequent 
RMPs.  

The object-based ‘Rolling Time Horizon’ process chain 
contains three main object class functions: (i) a time object 
(Obj.HorizonData), (ii) a flight data object (Obj.FlightData), 
and (iii) a horizon (flight) data object (Obj.HorizonData). The 
capacity evaluation and the SCIP solution including the BCP 



framework and the solver complete the horizon chain. Every 
iteration N=1…Nmax includes different sets of relevant flights 
and system inputs and consequently a new solution, which 
updates the RMP. It than serves as initial solution for the N+1th 
iteration. Thereby, during the execution of the horizon loop, 
one flight may be assigned to different CTOTs, depending on 
system states in terms of network impact characteristics, but 
also to time settings and individual flight states. A final CTOT 
(which correlates the actual take-off time, ATOT) may be 
assigned latest two hours prior to EOBT. However, the flight’s 
ATOT (representing its ETOT or an assigned CTOT) is fixed 
two hours prior to its planned off-blocks. If no slot within the 
set of departure slots is identified by the solver, the flight will 
be cancelled, since the maximum ATFM delay is exceeded.  
Therefore, the flight data object class evaluates (actual) take-off 
times, evaluating the solution of the previous iteration. The 
horizon (flight) data object initiates flight sets and respectively 
used system elements for the actual SCIP solution process. 

 

IV. METHODOLOGICAL APPLICATION 

A. Scenario Specification 
An extensive scenario of a whole day is investigated, which 

has been gathered during the summer campaign of DLR`s 
project “Weather and Flying” in 2012 [9]. Table I. provides 
relevant traffic data parameters. It contains estimated flight 
plans provided by the Eurocontrol Human Machine Interface 
(CHMI) [8].  

TABLE I.  TRAFFIC DATA  

Day 
Traffic Data 

 IOBT 
from             to # flights (total) # flights (model) 

05/07/2012 00:00z 23:59z 29.732 25.988 

   

In total, the traffic sample contains 29.732 flights, of which a 
share 87% is considered within the model. These flights are 
part of the MP and constitute the initial demand structure for 
the presented large-scale solution framework. Flights not 
considered within the model, include an incomplete data set in 
terms of departure and/or arrival airport, or did not depart 
within the Initial Flight Plan Processing Zone (IFPZ).  

Table II. provides quantities of network elements. The total 
available number of airports and ATC sectors represents NFEs 
infrastructural framework, constructed according to the 
affective AIRAC. The share of network elements being part of 
the specific scenario model is lower, since they represent those 
network parts experiencing traffic demand throughout the 
scenario. 

 

 

 

 

TABLE II.  NETWORK DATA  

Day 
Network Data 

# ATC sectors # airports # ATC sectors 
(model) 

# airports 
(model) 

05/07/2012 638 3.750 620 1009 

 

Table III. provides information on ATFM regulations initiated 
by the NM throughout the day. A high number of weather 
related en-route capacity regulations is observed, since it is 
characterized by scattered thunderstorm activity with 
convective cells mainly concerning EDMM, EDUU and 
EDWW (see figure 6). On this day the highest number of 
capacity regulations was initiated throughout the summer of 
2012. Thereby capacity regulation due to ATC capacity (CAP) 
and weather (WX) dominated. The relatively high number of 
cancelled (CNL) regulations indicates weak predictions of 
these cells. This might be attributed to the embedded character, 
which complicates correct prediction of convective cells. In 
total, 25 en-route regulations could not be assigned to the static 
ATC sector model, since changing airspace configurations are 
not reproduced within NFE yet. However, the sector model is 
designed to cover as much regulations as possible. 

TABLE III.  REGULATION DATA  

Day 

Regulation Data 

concerned traffic volumes regulation 
causes 

# total # airspace #airport #CNL # CAP  #WX 

05/07/2012 197 89 42 41 29 73 

 

 
 

Figure 6.  Thunderstorm activity (Rad-TRAM objects) at 19:00z inducing a 
major share of weather related capacity regulations mainly assigned to en-

route airspace. 



 

 

Figure 7.  Comparison of network saturation before and after solution. 11 weather related en-route regulations have been initiated between 18:00z and 21:00z, 
constituting a major share of weather regulations

 

Table IV. provides information of the Time Horizon structure. 
Scenario start- and end-time references refer to EOBT of the 
earliest flight planned to depart, and ETA of the latest planned 
arrival time. Thereby, scenario start time is 

 

Timestart = EOBTfirst - 2h, 

and scenario end time is 

 Timeend = ETAlast + D(f)max, 

 

with D(f)max as the maximum delay representing the set of 
possible departure slots. Since in this case, 1590 minutes 
correspond to 02:30z next day, the latest ETA is 00:30z next 
day, since maximum ATFM delay being assigned by the model 
is set to 120 minutes. ATFM delays exceeding the maximum 
value cause flight cancellations and cost penalties in Z(x). 

 

TABLE IV.  TIME HORIZON DATA  

Day 

Time Horizon Data 
time values iterations 

start time 
[min] 

end time 
[min] 

slot length [min] 
(time frame) 

# time-
frames 

05/07/2012 0 1590 15 105 

 

B. Evaluation 
Figure 7 provides qualitative impressions of network 

saturation states before and after computational processing for 
three points in time at which a major share of en-route weather 
regulations is active. Plots a), c) and e) state the initial 
saturations of traffic demand (flight entries) compared to 
maximum nominal capacity for each ATC sector in the 
network. The most congested sector is EDUUSLN1S, 
experiencing demand rates of more than 120% between 19:00z 
and 19:30z and is regulated at a maximum capacity of 8 
entries per timeframe. Nominal base capacity is 17. The 



majority of overloads, especially over Poland, can be traced 
back to convective activity. Plots b), d), and f) present solution 
saturations. A tendency to maximum possible saturations of 
formerly overloaded sectors is visible and goes in line with the 
minimum- emerging ATFM delay target. 

TABLE V.  TIME HORIZON (OPTIMIZATION) OUTPUT 

Day 

Time Horizon Output 
flight data iterations 

# delayed 
flights # cancellations total delay 

[min] 
computation 
time [ø min] 

05/07/2012 683 1513 16.443 4.9 

 

  
Table V. provides optimization results. Compared to yearly 

averages, those results indicate the high number of regulations, 
since the number of cancelled flights is comparatively high. 
Note, that a flight is cancelled, when no (delayed) departure 
slot is found 150 minutes before EOBT. The computation time 
per time horizon, which includes the whole computation chain 
(see figure 5) decreases with each iteration and the number of 
flights being part of the actual problem. 

 
The number of flights and corresponding decision 

variables with reduced negative cost within the RMP is 
provided in figure 8. The average number of possible 
departure times per flight with reduced negative cost is four. 
Note, that only flights are counted, that need to be considered 
during optimization, i.e. flights not cancelled, fixed or already 
landed. However, we actually face infrequent instabilities 
considering N+1th solution initializations. Therefore, the 
allocation of delay shares to explicit flights occasionally 
underlies slight deviations which result in minor capacity-
demand inaccuracy. However, we validated the priced 
problems with static SoPlex optimization runs, resulting in 
correct total system cost. Close examination of individual 
demand and capacity profiles displayed no critical imbalances. 

 
It is likely, that within the next step of considering 

stochastic network impact events, the number of variables 
within the time horizon cycles fluctuates accordingly. The 
goal is to reduce the number of variables within the RMP in 
using good forecasts of system states. Therefore, the 
consistently decreasing number of variables represents perfect 
forecasts, especially in terms forecast availability and 
prediction time.           

 
 

Figure 8.  Flights and decision variables in time horizons.  

The share of assigned delay per time horizon is provided by 
figure 9. Moreover, the time period, within which major en-
route weather regulations have been active, is highlighted. 
Those en-route regulations generate delay shares over 4% per 
time horizon around three hours in advance, indicating the 
scenario specific average flight time to regulated ATC sectors. 

 

 
 

Figure 9.  Assigned delay shares per horizon.   

 

 

 

 



V. CONCLUSION AND OUTLOOK 

 This study presents an optimization framework to improve 
departure slot allocation by integrating (short-term) network 
impact information and network system states into a dynamic 
ATFM optimization framework. It is based on a ‘Rolling Time 
Horizon’ concept, which iteratively divides the static ATFM 
problem into sub-problems, which – in a second stage – are 
solved by structured variable pricing. Problem segmentation 
mainly depends on model time and respective flight- and 
network states.  

 A large-scale ATFM scenario of one of the most impacted 
days during summer 2012 is evaluated, showing the 
functionality of the concept in terms of solving such a highly 
restricted scenario within operational computation times. 
Compared to realistic CASA slot allocation, optimization 
results improve the number of delayed flights as well as the 
total delay sum. Another advantage of the approach is the 
reproducibility of the behavior of the applied mathematical 
framework. Therefore, delay sensitive flights and network 
elements can be identified.  

 Future activities will focus on an integration of 
probabilistic network impact information to validate the 
approach in terms of robustness and efficiency with changing 
forecasts of network impacts. Therefore, a concept will be 
developed, that especially focusses on short-term weather 
forecast utilization. Moreover, additional ATFM measures like 
re-routing options and dynamic airspace configurations will be 
considered.        
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