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Abstract—There is no technology that provides effective support 

for procedural consideration of the effect of strategic programs 

on tactical Traffic Management Initiatives (TMIs) and vice versa. 

A key challenge in the design and use of Air Traffic Management 

(ATM) decision support tools is to determine how much control 

should be applied to the flow of traffic and at what point in the 

flow should it be applied. This challenge has significant impact on 

the resulting effectiveness of any ATM control program that is 

applied, because inefficiencies can be caused by either under or 

over-control of the flow. This paper presents a new analytical 

approach based on a Brownian Motion (BM) formulation, which 

quantifies the interactions between TMIs. The proposed General 

Brownian Motion (GBM) model takes as input uncertain and 

dynamic demand and capacity and provides an estimate of the 

delay distribution associated with the TMI controlling the 

demand. The obtained delay distribution can be used to estimate 

the probability of over-controlling or under-controlling the flow 

for the selected TMI parameters. Interactions between TMIs can 

be characterized by evaluating the probability that one TMI 

over-/under-controls the flow seen by a down-stream TMI. The 

delay prediction performance of the model is evaluated using 

actual Time-Based Flow Management (TBFM) data for PHL, 

and three case studies including multiple days of data are 

presented to demonstrate operational uses of the GBM model 

over two different TMIs and three airports. 

Keywords-TMIs interaction; demand/capacity uncertainty; 

stochastic analytical approach; Brownian Motion; delay modeling 

I. INTRODUCTION 

An integrated decision support capability is needed to provide 

Air Traffic Management (ATM) specialists and flight 

operators with information to support planning and decision-

making about tactical and strategic Traffic Management 

Initiatives (TMIs). The significant challenge that exists in 

providing this capability is the uncertainty of prediction of 

both demand and capacity.  This paper addresses this shortfall 

by presenting an innovative analytical approach, which uses a 

Brownian Motion (BM) [1] formulation to translate uncertain 

demand and capacity into a delay distribution. 

There are a number of key aspects of any traffic flow situation 

that drive the appropriateness of any particular TMI that could 

be used. The aspects include: 

• The efficiency of the impact of the TMI (i.e., is there any 

excess delay?) 

• The equity of the effects of the TMI across flights, flight 

operators, geographical regions, etc. 

• The temporal range of the impact of the TMI (i.e., 

strategic or tactical) 

• The uncertainty of demand and capacity predictions 

The ideal solution to these computational problems would be 

the identification of a closed-form stochastic (i.e. including 

demand and capacity uncertainty) analytical solution that 

could be used to evaluate TMIs, without the need of running a 

Monte Carlo simulation. Our focus in this research effort is on 

the formulation and application of an analytical approach to 

modeling the impact of individual TMIs and the modeling of 

interactions between TMIs. 

Significant work has been done previously on related issues. 

For example, Grabbe [2] performed a detailed study of the use 

of a Ground Delay Program (GDP) procedure intended to 

coordinate the strategic GDP with the more tactical use of 

Traffic Management Advisor (TMA, now called TBFM) time-

based metering and associated internal departure scheduling. 

Grabbe’s work identified the complexity of matching the 

tactical and strategic delay through the use of ‘coordinated’ 

strategic and tactical flow management techniques. Recent 

work has been performed by Wanke [3] addressing the 

interrelated impacts of multiple TMIs, and means to compute 

and visualize the decision space for Traffic Management 

Coordinators (TMCs). Wanke’s work utilizes a simulation 

approach in which individual fast-time simulations are 

performed of each of a discretized set of points in the search 

space of possible TMI combinations. They explored 

combinations of: one GPD, one AFP, and two re-route 

advisories in the Atlanta Center (ZTL).  

The research community has developed a wide range of 

models to evaluate the effects of demand and capacity 

uncertainty on traffic flow. Queuing models capturing demand 

uncertainty were proposed in [4-6]. Yan and Roy’s work [7-8] 

introduce a saturation model and the use of Markov-chain 

models to facilitate the systematic analysis of queue’s 

transient dynamics. Uncertainty has also been addressed by 

using multiple scenarios in [9, 10], where capacity uncertainty 

is modeled by considering the most likely scenarios.  

The proposed General Brownian Motion (GBM) delay model 

differs from the above models by providing a closed-form 

stochastic analytical solution, and including both uncertain 

and dynamic demand and capacity. A key aspect of our model 

is that its output is a delay distribution, which allows us to 

easily obtain the probability of over-control (wasted capacity) 



 

or under-control (excessive delay) of the flow. It is also 

important to highlight that the delay distribution is calculated 

in a short computational time thanks to the analytical 

formulation.  

A stochastic analytical solution to the characterization of the 

impact of TMIs on traffic flow and delays is a significant 

advancement in the state-of-the-art in traffic flow modeling 

and analysis, and could accelerate the successful development 

of a decision support tool that can provide NAS-wide system 

impact assessment.  

The remainder of the paper is organized as follows. Section II 

describes the GBM model formulation. Section III evaluates 

the performance of the model in its accuracy of prediction of 

both the delay and the true distribution of the delay. Section 

IV demonstrates operational uses of the GBM model through 

three case studies. Section V closes the paper with conclusions 

and next steps. 

II. BROWNIAN MOTION DELAY MODEL 

A. Introduction 

This section introduces the BM delay model assuming 

constant demand with uncertainty and constant capacity 

without uncertainty. Subsequent sections will expand the 

model equations for varying demand and capacity, and 

uncertainty in both demand and capacity. 

The delay at a resource, �����, can be model as a function of 

demand, �����,	and capacity, 
����, as follows: 

 ����� =  ����� − 
����
����
�

�
d� (1) 

Assuming that there is uncertainty only in the demand and 

both demand and capacity are constant, we can write:	����� =� + ���� and 
���� = 
, where ���� is the demand error or 

uncertainty term, and we can rewrite equation (1) as follows: 

 ����� =  � + ���� − 


�

�
d�	 

 = �� + ���� � + �� � ������ d� 
(2) 

  

As such, the delay as a function of time consists of three 

components: some initial delay, ��, a component that grows 

linearly in time, 
���� , and a component involving the 

integration of the demand error term, ����. If we assume that 

this demand error is a zero-mean, Gaussian random variable, 

we can compute a closed-form form for �����: 
����� = �� + � − 

 � + �
W�t� (3) 

where ���� is the standard BM process generated by the 

integration of the Gaussian error term, and �����	is a BM 

process with drift [1, 10]. Consequently, the PDF of ����� is 

given by: 

 ��� ��, !� = 1�
 √2%� &
��'� (������ ���)*�+/��)�  (4) 

The approach uses the statistical characteristics of delay as 

computed using (4) to determine the probability of under-

control and of over-control of the flow. The probability of 

over-control of the flow is represented by the portion of the 

PDF that is less than zero, indicating that negative delay 

would need to be applied to the flow to utilize the full 

available capacity: 

 ��-.&/ − 0-1�/-2���� = 3 ��� ��, !��
�4 d! (5) 

And the probability of under-control is modeled as the 

probability that the delay on the flow will exceed some 

threshold delay, �5: 

 ��617&/ − 0-1�/-2���� = 3 ��� ��, !�4
 8 d! (6) 

B. Time-Varying Demand and Capacity 

We model time-varying demand and capacity as a piece-wise 

constant function. At each step both demand and capacity are 

modeled as normal random variables: 

 ����, �����, 
���, �����
=
9:
; ��, ��( , 
�, ��( : �� ≤ � < ����, ��? , 
�, ��? : �� ≤ � < �*. . .�A��, ��BC? , 
A��, ��BC? : �A�� ≤ � < �A

 

 

(7) 

where ��D~FG0, ��D* I	and ��D~FG0, ��D* I. This formulation 

allows us to decompose the integral in (1) and we will be able 

to write ����� as a sum of integrals with constant terms. See the 

next section for details. The normal approximation of demand 

and capacity uncertainty was validated in the error analysis 

presented in Section III. 

C. General Brownian Motion Delay Model 

In this section we present the general formulation of the BM 

delay model, which we denote as the GBM model. The GBM 

model includes time-varying and uncertain demand and 

capacity, defined as a piece-wise constant functions as shown 

in (7). For  �J ≤ � < �JK�, we can rewrite (1) as follows: 

 ����� =  ���� + ����� − G
��� + �����I
��� + �����
�

�
dL

= 3 ���� + �����
��� + �����
�
� dL − �	

=  �� + ��(
� + ��(
�?

�
dL

+ �� + ��?
� + ��?
�)

�?
dL+. . . + �J + ��M
J + ��M

�
�M

dL − � 

(8) 

In (8) the integral is decomposed in sub-integrals where the 

different parameters are constant. The distribution of the terms �DKNOD�DKNPD  is approximated by a Gaussian distribution using a 

second order Taylor approximation (TT2) [12]. This 

approximation leads to the integral of normally distributed 



 

variables in (8), which allow us to model	����� as a BM 

process. See Section II.D for details about the TT2 

approximation. The approximated distribution of  
�DKNOD�DKNPD  is 

given by FGQ5D , �5D* I	with: 

 Q5D = �R
R + �R��D*
RS  

�5D* = ��D*
R* +
��D*�R*
RT + 2��DT�RT
RU  

(9) 

The approximated distribution of each of the terms 

3 �DKNOD�DKNPD
�DV?
�D dL is a BM process with drift and distribution: 

F�Q5D��RK� − �R�, �5D* ��RK� − �R��. By applying the additive 

property of the Gaussian distribution for independent normal 

distributions (F�Q�, ��*� + F�Q*, �**� ∼ F�Q� + Q*, ��* + �**�), 
and including the term −� present in (8) in the mean of the 

BM process, we have that the approximated distribution of �����  is the following BM process: ����� = �� + Q��� + �������� 
Q��� =XQ5DC?��R − �R��� + Q5M�� − �J�	J

RY� − �		 
�*��� =X�5DC?* ��R − �R��� + �5M* �� − �J�				J

RY�  

�J ≤ � < �JK� 

(10) 

D. Taylor Approximation Error Analysis 

We are interested in evaluating the effect of the Taylor 

approximation on �����. Figure 1 compares the approximated 

Gaussian (blue) and the empirical distribution (red) of the 

integral of the nonlinear term 
�DKNOD�DKNPD . The empirical 

distribution was obtained using the trapezoidal approximation 

of the integral and different number of integration steps, F = 2,3,5,10 (step size =1). The approximated Gaussian 

follows the empirical distribution, and the difference between 

the distributions decrease as N increases. 

 

Figure 1.  Taylor Approximation Error, empirical distribution in red, 

Gaussian approximation in blue. � = 40, 
 = 50, �] = 10, �� = 5 

In this example 
+P� = 0.2. Larger approximation errors were 

identified for large ��/
 ratios (i.e. >0.4). However, ��  

denotes capacity uncertainty in both directions, and in our 

problem it is unlikely that a large change in the capacity value 

is likely in both directions. For this reason the Gaussian 

approximation is a valid approximation for our problem. 

E. Regulated Brownian Motion 

We are modeling the distribution of ����� as a BM process. A 

BM process can take any positive or negative value. However, 

we are not interested in modeling negative delays. Negative 

delay accumulation represents "stored" capacity that can be 

used in the future. In reality in the Air Traffic Control (ATC) 

environment, flights would have to be accelerated to a speed 

beyond their performance envelope in order to take advantage 

of this available capacity. In practice, negative delay does not 

occur with any degree of significance, and thus, negative delay 

in the GBM model indicates that capacity is actually being 

lost. However, this loss of the available capacity is not 

properly represented by the BM model alone.  

The Regulated Brownian Motion (RBM) [1] is a BM process 

with boundaries. The cumulative distribution function (CDF) 

of a RBM process bounded below zero is given by: 

 

 ��^ ≤ _� = ` a_ − Q����/* b − &��*cd/+)�` a−_ − Q����/* b (11) 

with Q ≥ 0. By modeling �����   as a RBM we would ensure 

that �����  is always greater or equal to zero. However, for a 

RBM process the probability of over-control is always zero, 

since there is no probability density for negative delay values. 

For this reason, in the GBM model the probability of over-

control is evaluated for a BM process with the mean truncated 

at zero below. This leads to a maximum over-control value of 

0.5 because only at most half of the Gaussian distribution can 

be below zero since the mean is forced to remain at or above 

zero.  

Even though it is not appropriate to assume that capacity can 

be stored in the GBM model, and thus negative delay is 

disallowed, the degree to which the delay in the BM model 

would go negative is a measure of the true amount of over-

control that is predicted. Future research will address methods 

to include this consideration in the calculation of the over-

control probability without allowing future traffic the ability to 

use the stored capacity. For the remainder of this paper, to 

avoid confusion and to facilitate the comparison between 

over-/under-control probabilities, the over-control probability 

is multiplied by a factor of 2. 

III. EMPIRICAL IDENTIFICATION OF PREDICTION ERRORS 

This section presents an analysis of the delay prediction error 

of the GBM model. Note that the GBM model is used to 

predict both the delay and the distribution of the delay. Thus, 

our analysis of the accuracy of the model addresses both the 

mean delay predicted as well as the predicted distribution of 

the delay. The results were obtained using data from the 

TBFM system for PHL, and actual delay from surface data. 

The next three subsections describe the capacity and demand 

parameters used in the error analysis. The remainder of this 
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section then presents a detailed evaluation of the GBM model 

performance. 

A. Arrival Capacity Estimation (PHL) 

The GBM model approximates capacity as normally 

distributed variables. We empirically identified the parameters �Q, �) for the PHL arrival capacity distribution, differentiating 

between West and East configuration.  

We collected 15-minute arrival counts for 5 months of 2014 

data (April, May, August, September and October). The 

arrival rates were obtained by processing actual arrival times 

from ASDE-X data. We selected 15-minute time intervals in 

which PHL was operating at full capacity, defined as time 

intervals where demand exceeds capacity. Demand was 

obtained using the ETAs available 50 minutes before the 

actual arrival times. 

For the selected time intervals the mean of the distribution for 

West configuration was 14.5, and the standard deviation was 

2.5. If we translate the 15-minute rates to 1-hour rates we have 

that the interval [Q − �, Q + �] is given by [50.7, 60.7]. These 

values are consistent with the arrival rates published in the 

Operational Information System (OIS) website
1
 for PHL. In 

West configuration, the preferred arrival rate is 60 fl/h (VMC, 

arrivals on 27R/35/26), and the wind or fleet mix affected rate 

is 52 fl/h (VMC).  

B. Demand Estimation - From ETA to Demand Distribution 

In ATM systems, demand estimation is often generated 

through a deterministic count of ETAs in an interval. 

However, the GBM delay model requires a distribution of 

demand. In this section we solve the following problem: 

Given a set of flights with an assumed arrival time 

distribution, find the equivalent count distribution within a 

given time interval, denoted by [�g, �h]. This is a necessary 

step to run the GBM delay model, since it provides the terms �R 	and ��D  in (7) which are obtained as the counts distribution 

in the �R ≤ � < �RK� time intervals. 

Monte Carlo simulations in [13] showed evidence that 

trajectory control time errors follow a bell-shape distribution. 

We assume that the time of arrival for a given flight, jJ, is 

Gaussian with a mean value of QJ and a standard deviation, �J.  As such, we assume we have complete knowledge of the 

probability density function for each aircraft.  Given this 

density, we can empirically compute the probability that the k�l aircraft arrives within the specified interval, [�g, �h] by 

integrating the area under the probability density function 

within this interval. The Waring's theorem [14] gives the 

probability that exactly / out of 1 possible events should 

occur.  Denoting the events m�, m*,…, mA the required 

probability is: 

 X�−1�� n/ + �� o pqK�r�q
�Y�

 (12) 

where p� = 1, p� = ∑ p�Av�v 	, and, in general, pJ  represents the 

sum of the probability that any k events occur, regardless of 

whether the �1 − k� events occur. To compute these 

                                                           
1 OIS System web. http://www.fly.faa.gov/ois/. 

probabilities, we implemented an efficient recursive algorithm 

as presented in a technical report by Radke and Evanoff [15].  

As an example, we calculate the distribution of the count of 

aircraft arriving at SFO in a 15-minute interval (9:45GMT to 

10GMT) on July 25
th

 2012. Figure 2 depicts the distribution of 

the flight counts, and we can see that the counts distribution is 

approximately normal. This allows us to use the counts 

distribution as input to our GBM model, which requires input 

variables to be normally distributed. 

 

Figure 2.  Waring Counts distribution. SFO arrivals 07/25/2012 

C. Demand Estimation (PHL) 

The demand distribution was obtained using the ETA to 

Demands Distribution methodology described in the previous 

section with a 15-minute aggregation interval and using 

TBFM arrivals data. Regarding the uncertainty (�) associated 

with the ETAs, we assumed the following values: 

• For flights in the air, which have a Scheduled Time of 

Arrival (STA) assigned by the TBFM system, we assume 

1 minute as the standard deviation of delivery time error 

for the flights to the meter fix. This will only apply to 

flights outside of the meter fix. We also include an 

additional terminal standard deviation of 2 minutes. The 

terminal error reduces linearly with ETA to the runway 

from 2 minutes at the meter fix to zero error at the 

runway. 

• For flights on the ground, the standard deviation includes 

the “in the air” standard deviation (i.e. 3 minutes, 

including meter fix compliance and terminal error) plus 3 

minutes of departure compliance error [16]. 

Note that the � values above are an educated guess based on 

previous analysis. A detailed empirical analysis and fine 

calibration of these parameters is a subject of future research. 

D. Prediction Errors 

The goal of this section is to evaluate the performance of the 

GBM model predicting delay and its associated uncertainty. 

We collected data from 30 snapshots of the TBFM system for 

PHL (August and October 2014) at about 30 minutes before 

an arrival push, and we used this data and the GBM model to 

predict delays up to 90 minutes after the snapshot. The 

predicted delays are compared with actual arrival times 

obtained from ASDE-X data. 

Figure 3 shows the prediction error for all flights scheduled to 

arrive up to 90 minutes after one of the snapshots. The 

prediction error is calculated as the difference between the 

actual delay and the expected value of the predicted delay 
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distribution. Figure 3 differentiates between flights on the 

ground, in blue, and in the air, in red. The error for flights in 

the air is lower than for flight on the ground. The errors (or 

residuals) need to be distributed around zero, otherwise the 

GBM model would be consistently over-/under-predicting 

delays. For flight in the air, the errors are fairly well 

distributed around zero. On the other hand, the GBM model 

has a tendency to under-predict delays for flights on the 

ground. 

To better understand the error distribution we generated 

histograms including flights in the air and on the ground 

(Figure 4). We can see that the error for flights on the ground 

is skewed to the right, leading to a mean error of 14.3 minutes. 

On the other hand, the histogram for flights in the air is 

symmetric, with a mean error of 2.7 minutes. Flights in the air 

have an STA assigned by the TBFM system, they are in closed 

loop, and the chances of flights arriving before or after the 

assigned STA are comparable, leading to a symmetric 

distribution. However, the actual arrival time for flights on the 

ground is more often a later time rather than an earlier time, 

and this leads to skewness. 

 

Figure 3.  Individual Flight Delay Prediction Error. All Data 

  

Figure 4.  Prediction Error Histograms.  

As denoted above, the mean prediction error for flights in the 

air is 2.7 minutes. This value indicates that our estimate of the 

capacity may be higher than the actual capacity, leading to 

delay predictions that are more often under than over the 

actual delay. If the mean value of the capacity is decreased 

from 14.5 to 13, the mean error for flights in the air is reduced 

to 0.17 minutes and for flights on the ground is reduced to 9.7 

minutes. The maximum of the histogram for flights on the 

ground is actually close to 0, but the skewness of the 

distribution pushes the mean value up to 9.7 minutes. We are 

modeling capacity with a constant mean and sigma. The 

results indicate that the methodology used to estimate PHL 

capacity may be over-estimating the available capacity. Future 

research will include a more detailed model of the capacity, 

where the capacity mean and sigma vary according to the 

specific conditions at the airport. In addition, predicted delays 

are lower than actual delays because the GBM model is only 

estimating delays due to excess demand at the destination. 

There are other causes of delay not included in the GBM 

model, for example, delay at the departure airport, airspace 

congestion, or passenger connectivity. Future research will 

include additional modeling of out-time prediction error and 

other effects (e.g., surface congestion, de-icing) to address 

skewed delay distributions to better model flights on the 

ground. 

Next, we look more in detail at the error of the expected value 

of the delay distribution predicted by the GBM model. The 

actual value of the expected delay is not a magnitude we can 

directly measure. By looking at a flight realized delay we are 

only looking at a sample of the distribution, and actual delays 

for successive flights are highly correlated and do not provide 

a good measure of the actual delay distribution. To obtain an 

estimate of the actual value of the expected delay, we define 

buckets for the expected delay provided by the GBM model, 

and calculate the mean of the actual arrival times for flights 

which predicted delay falls in each of the buckets. Figure 5 

shows the mean of the actual delay for data points with an 

expected delay value within the defined buckets (x-axis) for 

two different values of the capacity mean. The size of the 

buckets was adjusted to make sure that at least 50 flights fell 

in each bucket. Figure 5 shows that the actual delay  increases 

as the predicted delay increases, and the actuals are over the 

predicted values, which is consistent with the results presented 

before for the aggregated histograms. Figure 5 also shows the 

actual and predicted delay for the reduced capacity we 

evaluated previously, 13 fl/15 minutes. The lower capacity 

increases the predicted delay values, leading to actual delay 

values closer the predicted delays. 

 
Figure 5.  Actual vs Predicted Expected Delay. All flights  

We are also interested in evaluating the error of the predicted 

standard deviation of the delay. As we did for the expected 

delay we also defined buckets, in this case for the predicted 

standard deviation. This allow us to identify data points with 

similar values of the predicted standard deviation. To obtain 

the actual sigma for each bucket we need the actual mean 

delay of the distribution for each data point. Because this 
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value is not directly measurable, we used the expected delay 

predicted by the GBM model as an estimate. Figure 6 depicts 

the predicted standard deviation versus the actual standard 

deviation estimate. For the empirically estimated capacity 

uncertainty value, 2.5, the actual standard deviation is 

consistently larger than the predicted deviation. The prediction 

error can be reduced by increasing the standard deviation of 

the capacity. Figure 6 shows the error reduction  caused by 

increasing the capacity uncertainty from 2.5 to 3. The GBM 

model standard deviation does not have a lower limit, and 

starts at zero; however, as Figure 6 shows, the actual standard 

deviation is limited at around 3 minutes. Future research will 

study how to define a lower limit for the standard deviation in 

the GBM model formulation. 

 

Figure 6.  Actual vs Predicted Standard Deviation of the Delay. All flights 

IV. CASE STUDIES 

In this section we present details for three case studies. The 

first two case studies show how the GDP and TBFM problems 

can be modeled using the GBM model. Results for these two 

case studies are for individual days. The third case study 

analyzes the interaction between GDP and TBFM metering. 

This is done by analyzing 30 days of data and comparing the 

GBM model output (expected delay, over-/under-control 

probabilities) for the GPD and TBFM metering problem. 

A. TBFM Modeling IAH 

In this case, we want to consider TBFM metering as the TMI 

and estimate the probability of under-control and over-control 

of the TBFM metering program that is being contemplated. 

The results presented in this analysis are for IAH arrivals. 

For our model of TBFM, the demand term in (1) will represent 

the demand after the application of the STAs at the arrival 

meter fix. The idea here is to evaluate the TBFM metering 

program to see if it will work as intended based on the 

uncertainties in the system. We can also evaluate the TBFM 

metering program with only the airborne flights to calculate 

the probability of under-control as a function of time, which 

will provide an indication of the likelihood that inbound 

departure flights will be held for a long period of time on the 

ground before a slot is available due to high delay in the 

airborne flow.  

We took a snapshot of the TMA system 30 minutes before an 

arrival push, i.e. 15:26 GMT, on May 18th 2014. While 

metering was active, the airport was in East configuration with 

two arrival runways: 08L and 08R. Metering started at around 

16:00 GMT and lasted 8 hours.  

The demand distribution was obtained using the STAs and 

ETAs in the TBFM system snapshot and the same 

methodology and parameters described in Section III.B.  We 

computed the expected capacity based on the expected aircraft 

mix and the active separation matrix, following the same 

approach that TBFM uses. At some point in our work, we will 

add some additional factors to the capacity calculation that 

TBFM does not use – like dependence with departure demand. 

But, for our initial work, we computed the expected capacity 

based on the expected aircraft mix and the active separation 

matrix. We also applied uncertainty to the capacity. For the 

capacity uncertainty, we will eventually empirically measure 

the variance for IAH arrivals. But, in this initial evaluation we 

assume a standard deviation of 0.5 slots per 10 minute 

interval. Figure 7 depicts the mean of the demand and capacity 

for the selected time period. 

 

Figure 7.  Demand vs Capacity 

Figure 8 shows the over-/under-control probabilities for the 

data in the TMA snapshot and selected parameters. The 

maximum of the under-control probability for a 5-minute 

threshold is 0.6. The maximum is reached at the end of the 

second interval where demand exceeds capacity (Figure 7). 

The input demand was obtained using the assigned STAs, and 

ETAs for flights with no STA assigned, which are typically 

flights on the ground. The results indicate that competing 

inbound departures would not cause significant issues, since 

the probability of delay is low even when including inbound 

departures: the probability of 5 minutes of delay or more is 

only over 0.5 for 8 minutes (Figure 8). 

 

Figure 8.  Under-/Over-control probabilties.  
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B. GDP Modeling – SFO 

In this section we address the problem of understanding the 

nature of the delay distribution which results under the action 

of a GDP when the time at which the actual capacity will 

change is uncertain. We specifically study the case where the 

marine stratus layer at SFO reduces the effective rate of 

arrivals.  Let the capacity of the airport when the weather is 

clear be denoted by 
]whxq, typically 60 fl/h, and when the 

runway usage is constrained by the marine stratus as 
yz{, 

typically 30 fl/h. 

The weather forecast is provided in the form of a probability 

distribution function that describes the likelihood that the fog 

will clear at a given time.  We refer to the time that the fog 

clears as �]whxq . This distribution is provided by the Empirical 

Cumulative Distribution Function (ECDF) of the difference 

between the actual and forecast clearing times (errors), for 

data from 1996 to 2011.  

The nominal demand into SFO is assumed to exceed the 

constrained capacity, 
yz{, to a degree that some TMI is 

required to avoid excessive airborne delays.  We evaluated 

two different approaches to model the capacity profile defined 

by 
yz{, 
]whxq, and different �]whxq times and associated 

probabilities.  Both approaches allow us to run the GBM 

model for the SFO GDP problem and evaluate the over/under-

control probabilities.  

The necessary demand and GDP parameters were obtained 

from NAS data for July 25th 2012. The GDP parameters were 

published at 12:45 GMT. The GDP was scheduled to start at 

15:15 GMT and end at 21:14 GMT.  

The capacity distribution input to the GBM model needs to be 

a single curve defined by a set of normally distributed 

variables, each of them associated with a time interval. The 

more direct approach to modeling the stratus clearing capacity 

profile is to have a set of 1-step curves defined by 
yz{, 
]whxq 

and �]whxq and an associated probability linked to �]whxq. This 

is the basis of the Pseudo-Monte Carlo (PMC) approach where 

the GBM model is run for each of the capacity profiles and the 

over-/under control probabilities are obtained as the weighted 

sum of the over-/under control probabilities calculated for 

each capacity profile, and the weights are the probability of 

occurrence of each profile. The second approach is the 

analytical approach, in which a single curve captures the 

uncertainty around the expected clearing time. As an example, 

Figure 9 shows the capacity profile for July 25
th

 2012. Both 

the slope and uncertainty are adjusted using the ECDF of the 

clearing time prediction errors. The larger the errors the 

slower the transition from 
yz{ to 
]whxq. The uncertainty 

increases from its nominal value as we get closer to the 

clearing forecast time where it reaches its maximum. The 

PMC methodology was used to validate and calibrate the 

analytical approach curves, due to space limitation results 

included in this section are for the analytical approach only.  

With respect to the demand distribution, the arrival demand at 

SFO was generated using ETAs and Control Time of Arrivals 

(CTAs) available in the NAS data snapshot taken when the 

GPD parameters were first published. Regarding the 

uncertainty associated with the arrival times needed to 

calculate the demand counts distribution input to the GBM 

model, we assumed the following �  values: 

• For flights in the air we assume a standard deviation of 5 

minutes [17]. 

• For flights on the ground the standard deviation includes 

the in the air component, 5 minutes, and additionally one 

of the following departure compliance error values: 15 

minutes of departure compliance error [16] for flights 

with an EDCT assigned, 20 minutes for flights for which 

an airline CDM message with a predicted runway arrival 

time was received, 28 minutes for flights for which the 

departure time was estimated using their PTIME [16]. 

 

Figure 9.  Capacity Profile. Analytical Approach. July 25th 2012 

Figure 10 depicts the expected demand counts before the GDP 

was published, and the capacity profile obtained using the 

analytical approach. We see that demand exceeds capacity 

before the fog is expected to clear, and consequently a GDP 

was necessary to avoid large airborne delays. 

  
Figure 10.  Arrival Demand (before GDP was implemented) vs Capacity. 

For the GDP solution (i.e. including controlled times) the 

maximum expected delay value for July 25th 2012 is 12 

minutes. This translates in a probability of under-control 

reaching only 0.25 for a 15-minute threshold as depicted in 

Figure 11. The published GDP parameters make delays over 

15 minutes unlikely. However, if we reduce the under-control 

threshold to 5 minutes, as shown in Figure 12 we see that there 

is a high chance of a 5-minute delay at around 300 minutes. 

This is 30 minutes before the expected clearing time forecast 

(shown in magenta in Figure 10). 
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C. GDP-TBFM Interaction - SFO 

In this section we analyze the interaction between two TMIs: 

GDP and TBFM arrival metering. The goal is to characterize 

how the implementation of the more strategic TMI (i.e., GDP) 

affects the down-stream TBFM arrival metering. We do this 

by comparing the under/over-control probabilities provided by 

the GBM model for the different initiatives. We look at two 

 

Figure 11.  Over-control, Under-control (15-minute threshold) probabilities  

 

Figure 12.  Over-control, Under-control (5-minute threshold) probabilities  

different aspects of TBFM. On the one hand, we are interested 

in comparing the arrival flow constrained by the GDP solution 

with the arrival capacity seen by the TBFM decision support 

tool. This comparison will allow us to answer questions like: 

Is the GDP solution over/under-constraining the arrival flow 

seen by TBFM metering? On the other hand, we want to 

evaluate how the Call for Release (CFR) procedure is affected 

by the GDP solution. In the CFR procedure the Tower must 

call the Center to coordinate a release time prior to allowing 

the flight to depart [18]. A GDP solution that did not apply 

enough ground delay will lead to scarce en route slots, and 

either large delays for inbound departures ("double delay") or 

airborne delay. 

To obtain meaningful results we processed 30 days of NAS 

data (2011, 2012 days), and compared the value of the 

different metrics output of the GBM model over the 30 days. 

1) TBFM vs GDP Modeling 

The TBFM problem is approximated using the demand in the 

NAS data. The key difference between GDP modeling as 

described previously in Section IV.B and TBFM modeling in 

this case study is the definition of the capacity profile. In the 

TBFM problem the 
]whxq and 
yz{values are calculated using 

the published separation matrices and expected flight mix, and 

not the rates published in the NAS data. This leads to a more 

accurate capacity profile, and will allows us to evaluate the 

expected delays and over-/under-control probabilities from 

TBFM’s perspective.  

2) Results 

a) Uncontrolled Case 

In the uncontrolled case the arrival demand is generated using 

ETAs from a NAS data snapshot taken right before the GDP 

parameters were published. Figure 13 and Figure 14 show the 

mean and one standard deviation of the under/over-control 

curves for the 30 days of data (using the forecast clearing time 

as time reference) for the GDP capacity profile. As expected, 

these figures show high probability of a 15-minute delay or 

higher, indicating that the implementation of the GDP was 

justified. From all the days included, the day with the lowest 

maximum of the under-control probability was May 27th 

2012, with a maximum value of 0.918. 

 
Figure 13.  Under-control. Uncontrolled case GDP’s view. 30 days of data 

 
Figure 14.  Over-control. Uncontrolled case GDP’s view. 30 days of data 

These figures can be used to identify when the GDP program 

should start or end. A good starting time for the GDP program 

is right before the under-control probabilities spike or the 

over-control probabilities drop. Figure 13 and Figure 14 

denote that somewhere around 200 minutes before the forecast 

clearing time is typically a good time to start the GDP 

program. 

b) Controlled Case 

In the controlled case the arrival demand is generated using 

ETAs and CTAs available in the NAS data snapshot taken 

when the GPD parameters are first published. 

Under/over-control probabilities for the controlled case and 

the GDP problem (i.e. using the GDP capacity profile) are 
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displayed in Figure 15 and Figure 16. The probability of delay 

reaches its maximum at about 40 minutes before the forecast 

clearing time. The under-control probability drops before the 

forecast clearing time. This indicates that capacity increases 

faster than the arrival rate. Traffic managers are using the 

clearing forecast time plus a buffer to determine when the 

arrival flow can be increased to normal levels. The decreasing 

trend of the under-control probability slows down about 50 

minutes after the forecast clearing time, denoting a buffer of 

about 50 minutes. 

 

Figure 15.  Under-control. Controlled case GDP’s view. 30 days of data 

 
Figure 16.  Over-control. Controlled GDP’s view. 30 days of data 

To study the interaction between GDP and TBFM metering, 

we run the GBM model for the controlled case using the 

TBFM capacity profile as described in Section IV.C.1.  Figure 

17 and Figure 18 depict the under/over-control probabilities. 

The over-control curve clearly shows that the GDP solution 

leads to high over-control and most likely to unused capacity. 

The GDP is typically over-controlling at the TBFM level. The 

increasing trend in the under-control probability is caused by 

the increase in uncertainty with time, and the fact that the 

actual TBFM capacity rate after the fog lifts is typically lower 

than the rate defined in the NAS data in the GDP context. This 

is consistent with the published acceptance rates for SFO. For 

example, for July 25
th

 2012 the post-fog acceptance rate in the 

NAS data was 60 fl/h and SFO actual published acceptance 

rate was 52 fl/h. 

A day with especially high delay, and where the GDP solution 

did not over-control the flow was July 27th 2012. The actual 

total airborne delay for July 27th was 1617 minutes, which is 

significantly over the average delay for the 30 days included 

in this study; the average delay was 373 minutes. 

 

Figure 17.  Under-control. Controlled case TBFM’s view. 30 days of data 

 

Figure 18.  Over-control. Controlled case TBFM’s view. 30 days of data 

c) Controlled Case – Internal Departures Excluded 

In this case, the arrival demand is generated using ETAs and 

CTAs available in the NAS data snapshot taken when the 

GPD parameters are first published and excluding internal 

departures. Internal departures are defined as flights which 

departure airport is less than 300nm away from SFO. This 

case is related to the CFR problem, if the probability of under-

control is low and the probability of over-control is high, then 

we would want to recommend that inbound departures find an 

open slot, rather than competing with airborne flights. 

The goal is to evaluate the likelihood of internal departures 

finding an open slot in the arrival stream in the CFR 

procedure. On average, the percentage of internal departures 

for the 30 days included in our study is 21.4%. 

Figure 19 and Figure 20 show the under/over-control 

probabilities for the TBFM capacity profile. The differences 

between the probabilities including internal departures (Figure 

17 and Figure 18), and the probabilities excluding internal 

departures (Figure 19 and Figure 20) indicate how much 

additional delay airborne flights would need to accommodate 

if no control action (additional ground delay) is applied to 

inbound departures. As these figures show, releasing internal 

departures does not have a major impact on airborne flights 

delay, leading to only slightly larger under-control probability, 

and slightly lower over-control probability. 

 
Figure 19.  Under-control. Controlled case internal departures excluded, 

TBFM’s view. 30 days of data 
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Figure 20.  Over-control. Controlled case internal departures excluded, 

TBFM’s view. 30 days of data 

V. CONCLUSIONS & NEXT STEPS 

The GBM delay prediction model provides an innovative 

stochastic analytical approach to assess the probability that 

NAS constraints will over-control or under-control the flow.  

Case studies demonstrate operational occurrences of over-

control that could be addressed using the GBM model.  The 

evaluated case studies include two different TMIs, GDP and 

TBFM, at SFO, IAH and PHL. The analytical GBM model 

can be used not only to quickly evaluate a single TMI under 

uncertainty, but also to study interactions between TMIs by 

evaluating the likelihood of a TMI (e.g. GDP) over/under-

controlling the flow seen by a different TMI (e.g. TBFM 

metering). Additional work is needed to determine the best 

approach for integration and display of the GBM model results 

to operational specialists.  

A detailed prediction error analysis was performed on 30 

snapshots of the TMA system, including 2,349 flights. The 

results depicted a mean error of 2.7 minutes in the expected 

delay for flights in the air, and 14.3 minutes for flights on the 

ground. These errors were reduced to 0.17 and 9.4 minutes, 

respectively, by calibrating the arrival capacity. Next steps to 

improve the GBM model performance include: 

• A more detailed characterization of demand and capacity 

uncertainty parameters: improvements in model accuracy 

by differentiating among more flight states and 

uncertainty levels, or detailed capacity modeling, where 

the capacity Q and �	vary over time according to the state 

of the capacity constrained resource. 

• Additional modeling of out-time prediction error and 

other effects (e.g., surface congestion, de-icing) to address 

skewed delay distributions to better model flights on the 

ground. 

• Further development of downstream propagation of 

demand uncertainty. For example, there could be a sector 

traveled by some SFO arrivals, which has a chance of 

being affected by convective weather and its capacity may 

be reduced. This phenomenon would add additional 

uncertainty to SFO arrival demand. 
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