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Abstract—Half of all reported near mid-air collisions involve
at least one general aviation aircraft. More than half of NTSB
reports of mid-air collisions occur in the vicinity or in the
traffic pattern of an airport, and a majority of them occur
at non-towered airports. This paper proposes a concept for
traffic collision prevention targeted for general aviation aircraft
operating in the vicinity of non-towered airports. We envision an
autonomous air traffic control system as a non-intrusive, ground
based system with no additional requirements to participating
aircraft except for radio communication. We outline how such a
system can be modeled and solved as a Markov decision process
and present simulation results for aircraft in the traffic pattern.

Keywords: Separation; Air-ground integrated concepts; Au-
tonomous systems and operations; Air Traffic Control; Markov
decision process.

I. INTRODUCTION

The Aircraft Owners and Pilots Association (AOPA) pub-
lishes a yearly report that summarizes general aviation (GA)
accident trends and factors in the U.S. In 2000, the report high-
lighted the fact that most mid-air collisions happen within 10
miles of airports. Of the collisions that occurred in the traffic
pattern, the majority were at non-towered airports [1]. Large
aircraft benefit from the use of the Traffic Alert and Collision
Avoidance System (TCAS), but the system was not designed
for use for smaller aircraft and is prohibitively expensive. Prior
research has explored ways to extend collision protection to
GA aircraft [2]. Papers have presented modifications of both
TCAS [3], and its successor, ACAS X [4], for use in GA
aircraft. Research has largely focused on on-board systems
for detection, alert, and resolution, but solutions that require
new equipment are not likely to be adopted. Although the
availability of Automatic Dependent Surveillance-Broadcast
(ADS-B) will make collision avoidance more tractable for GA
aircraft [5], there is already resistance from the GA community
due to privacy concerns and the high costs involved [6].

A ground-based surveillance concept would eliminate the
need for specialized equipment on GA aircraft. Radar sys-
tems that measure energy pulses reflected off aircraft are
prohibitively expensive, but a system based on the TCAS
surveillance sensors may be feasible [7]. The TCAS surveil-
lance system can only detect replies from aircraft transponders,
but many GA aircraft are equipped with a transponder [8].
Recently, Lincoln Laboratory has investigated a system with

an array of ground-based TCAS antennas for use at class D
(towered) airports and high density non-towered airports [9].

This paper proposes a concept for air traffic collision pre-
vention in the vicinity of airports with a focus on GA aircraft.
The idea is inspired by the Advanced Airspace Concept, which
uplinks 4D trajectories to aircraft [10], and recent work on
an automated system for communicating between unmanned
aircraft and air traffic control (ATC) [11]. We envision an
autonomous ATC system (auto-ATC) at a non-towered airport
that is advisory in nature. The pilot would still be responsible
for maintaining separation, but the system would be able to
provide advice to participating aircraft. The system would
issue high-level recommendations to aircraft tracked through
ground based sensors in the immediate vicinity of an airport.
The system would aim to reduce collision risk with minimal
radio transmissions. The aircraft are expected to be flying
according to a model within the airport pattern that can be
influenced through recommendations over the radio.

In the following sections, we show how such a system can
be modeled as a Markov decision process (MDP). The outline
of the paper is as follows: Section II defines the notation for
MDPs and how the problem of collision prevention in the
traffic pattern can be formulated as one. Section III presents
simulations results with sensitivity analysis to some of the
parameters, and Section IV concludes with a summary and
suggestions for future work.

II. PROBLEM FORMULATION

MDPs model sequential problems where decisions need to
be made under uncertainty. They have been successfully used
in the context of aircraft collision avoidance [4], [12]. In
this section, we briefly introduce the concept of MDPs and
explain how they can be applied to developing the decision-
making component of the auto-ATC system. Because our goal
is to investigate this new concept, we make a few simplifying
assumptions in our modeling of the problem.

An MDP is defined by a state space S, action space A,
transition function T , and reward function R [13]. If the
current state of the process is s ∈ S and we execute action
a ∈ A, then the next state will be s′ ∈ S with probability
T (s′ | s, a). The reward associated with executing a from s is
given by R(s, a).



F1

GO

Runway (R) U2

LX2

RX2

LDep

RDep

LD3

LB2

F0

LD1LD2 LD0

Taxi (T)RB2

LX1

RD0RD2RD3

RB1

U1

RArr

RD1

LB1

LArr

RX1

Fig. 1: Aircraft states in the pattern.

The goal in an MDP is to select actions in a way that
maximizes the expected discounted reward:

E[
∞∑
k=0

γkrk] (1)

where rk is the reward received in step k and γ ∈ [0, 1)
is a discount factor. The discount factor decays the value of
rewards received in the future and is set to 0.95 in this paper.
A decision making policy that is dependent on the current
state is denoted π, and the action recommended at state s is
denoted π(s).

A. State Space

The state space S is composed of a discrete set of states
specifying the locations of K aircraft in the traffic pattern.
The experiments in this paper focus on K = 4. A particular
state s is represented by a tuple (s(1), . . . , s(K)), where s(i) ∈
{`1, . . . , `n} represents the location of the ith aircraft. In this
formulation, there are a set of n = 27 possible locations, e.g.,
Taxi (`1 = T) and Runway (`2 = R). Hence, if there are K
aircraft, then |S| = nK . The set of possible states that can
immediately follow a particular location `i is denoted N (`i).
Figure 1 shows a representation of the various pattern locations
along with possible transitions between them.

B. Action Space

The action space A is composed of a discrete set of actions
specifying a particular aircraft and a location. A particular
action a = (ai, al) involves commanding aircraft ai ∈
{1, . . . ,K} to transition immediately to location al. If no air-
craft is to be addressed, we use a = (0,∅). The valid set of ac-
tions depends on the current state. We denote the set of actions
available from state s as A(s). For example, if s = (R,U2),
then A(s) = {(0,∅), (1,T), (1,U1), (2,LX2), (2,RX2)}. In
this formulation, it is not possible to request an aircraft to
depart the pattern.

C. Transition Function

The transition function specifies the probability of transi-
tioning to some next state given the current sate and action
taken. The probabilities governing the aircraft transitions are
independent from each other:

T (s′ | s, a) =
K∏
i=1

T (s′(i) | s(i), a) (2)

The transition model assumes the following:

• If an aircraft is not being addressed by an action, all of
the possible next states are equally likely with probability
1/|N (s(i))|.

• If the aircraft is being addressed, the commanded state
al‘ is selected with probability α (a cooperation factor),
while other possible states are selected with probability
(1− α)/(|N (s(i))| − 1)

• A pilot will fly the pattern without detailed instructions
from the tower, but will generally take the runway only
when instructed by the system: T (R | T, (0,∅)) = 1−α.

D. Reward Functions

The reward function is designed to increase aircraft sepa-
ration while minimizing intervention. We make the following
assumptions:

• The rewards are additive over states and actions, i.e.
R(s, a) = R(s) +R(a)

• Two aircraft occupying the same state result in a cost Cc,
unless they are in one of the states considered safe (Taxi,
Departures, and Arrivals). Each aircraft in the T state
incurs a cost Ct < Cc to avoid the system grounding all
aircraft.

• There is a cost Ca for issuing an advisory.

In this paper, we set the collision cost Cc = 1000 and taxi
cost Ct = 10. The experiments vary the advisory-cost ratio
β = Ca/Cc. The reward function can be written by defining
s̃ = (s(i) ∈ s : s(i) /∈ {T,LDep,RDep,LArr,Rarr}):

R(s, a) =− Cc(|s̃| − |unique(s̃)|) (3)

− Ct|(s(i) ∈ s : s(i) = T)|

−

{
0 if a = (0,∅)

Ca otherwise

where we use the list comprehension notation (x ∈ X : F (x))
to mean the list of all elements in X that satisfy the logical
expression F (x). The notation |y| denotes the number of
elements in the list y.

E. Solution Approach

There are different approaches for finding the optimal
policy, but this paper uses a dynamic programming algorithm
known as Gauss-Seidel value iteration [13]. We define a value
function U that assigns 0 to all states. We then iterate through
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Fig. 2: Sample simulation with one collision at RD2.

all the states, updating the value function as we go along
according to

U(s)← max
a∈A(s)

[
R(s, a) + γ

∑
s′∈S

T (s′ | s, a)U(s′)

]
(4)

Gauss-Seidel value iteration sweeps over the states repeatedly
until convergence. Once converged, an optimal policy π∗ can
be extracted from U as follows:

π∗(s) = argmax
a∈A(s)

[
R(s, a) + γ

∑
s′∈S

T (s′ | s, a)U(s′)

]
(5)

The complexity of the algorithm is polynomial in the state
space size, which is exponential in the number of aircraft.
However, the transition probabilities are sparse, and we can
leverage the structure of the problem to achieve computa-
tionally tractable solutions. With K = 4, there are over
500,000 states and 100 actions, yet an optimal solution can
be computed in six minutes using a single thread on a 1.9
GHz Intel i7 CPU.

III. RESULTS

This section presents results of the MDP solution and their
sensitivity to the cooperation factor α and cost fraction β. We
then introduce a 3D simulation for the aircraft in the pattern
and present results that show how the auto-ATC leads to a
reduction in collision risk.

A. Sensitivity analysis

We initially simulate the performance of the policies using
the MDP model. Each aircraft is initialized at random positions
in the pattern. The states are then simulated forward K steps
using the optimal policy and transition probabilities. Figure 2
shows an example of such a simulation with K = 5.

We can use these simulations to determine the sensitivity of
the performance to some of the parameters. For each pair (α,
β), we ran 20 simulations with 1000 time steps. Fig. 3 reports
the average time before the first collision is encountered, while
Fig. 4 shows the expected number of collisions per 1000 steps
with error bars representing the standard errors.
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Fig. 3: Number of steps to first collision.

The first thing we notice is that as β increases, so does
the number of collision. This relationship is expected since
larger β discourage the auto-ATC from issuing commands.
As β →∞, we expect the auto-ATC to always issue (0,∅).

A surprising result is the fact that as the cooperation
factor α → 0, the performance mirrors that of α → 1 for
small values of β. At first glance this is counter-intuitive; we
expect that non-cooperating aircraft would result in the worst
performance. However, it turns out that for many states there
are only two possible states at the next cycle. If α = 0 and
we would like the aircraft to transition to one of the states to
avoid a collision, we should advise it to transition to the other
state to trick the non-cooperating pilot. In practice, this would
not be a desirable policy, but it is an interesting corner case
that arises given the modeling assumptions.

Performance is worst when α = 0.5. If we consider the
case where there are only two states at the next time step,
issuing an advisory results in the same transition probabilities
as not issuing an advisory. If issuing advisories has a non-
zero cost, we expect the optimal policy to never issue any
advisories in that scenario. Indeed, as we let β → 1, we trade-
off the mean number of collisions with the intrusiveness of the
auto-ATC. We associated a cost with this when designing the
reward function, but we can also look at the resulting policy
and define a verbosity index: |{s : π(s) 6= (0,∅)}|/|S| which
is the fraction of states where the system issues an advisory.

Figure 5 gives the verbosity index for different values of
β and the associated mean collisions per 1000 steps. For
cooperation factors that result in situations where advisories
have little effect on the outcome, the optimal policy is silent
and has zero verbosity. We also see that even if we have no
advisory cost (β → 0), the verbosity → 0.8, instead of 1,
because there are always some states where no commands are
issued since there is only one possible transition. For the case
of α→ 1, we can cut the verbosity by a factor of 2 if we let
the number of collisions increase by an order of magnitude.
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Fig. 4: Number of collisions per 1000 steps.
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All the results we have presented so far involved evaluating
policies in simulation using the same parameters that were
used for optimization. We will refer to the optimal policy
obtained from using values for α and β as πα,β . Differences
between the α used for generating the policy and the α
used for evaluation can result in degraded performance. The
cost fraction β affects the policy, but it does not affect the
simulation of policies since it does not appear in the transition
function. In order to evaluate the sensitivity of the resulting
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policies to the inaccuracy in α, we compute the number of
collisions per 1000 steps for the policies π0,0.5, π0.5,0.5, and
π0.95,0.5 for different true values of α. Figure 6 shows the
results when compared to the policies that have been optimized
using the correct α. We can see that π0.95,0.5 yields similar
performance to the policies with the correct α so long as α
is approximately greater than 0.5, and likewise for π0,0.5 so
long as α is approximately less than 0.5. The plot indicates
that the performance of the policy in terms of collisions is not
overly sensitive to knowing the correct α.



B. 3D Simulation of the Pattern

The analysis presented so far has used the simple transition
model from Section II. Although using this model is useful for
understanding the problem conceptually, it is not very realistic
when it comes to properly evaluating the performance of the
algorithm. In practice, aircraft in the pattern do not all move to
the next states at the same time, and the amount of time they
spend in each leg of the pattern depends on several factors.
Therefore, we developed a higher fidelity 3D aircraft model
that would capture some of these factors. We describe the
details and modeling assumptions we made to construct this
model.

Each aircraft is parametrized with the following states:

• x = [xN , xE , xD]
>, aircraft position in north-east-down

world coordinates,
• V , aircraft airspeed, which is assumed to be along the

aircraft longitudinal axis, and
• ψ, aircraft heading in world coordinates.

Additionally, we assume that the pilot perfectly regulates
the aircraft roll φ and its glide path angle γ. The resulting
equations of motion are:

ẋ = V

 cosψ
sinψ
− sin γ

 , ψ̇ =
g tanφ

V
(6)

The equations are integrated using the Euler method with a
time step of dt = 0.25 s. This model does not account for any
wind effects, assumes that the pilot is maintaining coordinated
flight, and neglects any dynamics associated with achieving
the necessary roll and glide path angles. These are reasonable
assumptions for this model as we are not concerned with the
details of the flight dynamics, but rather with the motion of
the aircraft in the 3D world coordinates.

In order to make the aircraft fly around the pattern, we
implemented a two-layer logic controller to emulate a pilot:

• Navigate. The pilot flies towards a waypoint in the world
coordinates by setting a desired bearing ψd and altitude
hd.

• Aviate. The pilot regulates the aircraft at hd by com-
manding γ and steers towards ψd by commanding φ. We
impose a maximum achievable climb rate γmax = 5◦

and minimum turn radius φmax = 45◦. This control is
implemented as two simple proportional controllers with
gains kp,herr = 0.1 ◦/m and kp,ψerr = 3.

We define target spatial waypoints for each of the locations
in the pattern shown in Fig. 1 with the runway fixed at (0, 0, 0).
The simulation assumes that the pilot flies from their current
waypoint to their next waypoint, and whenever the aircraft is
within 50 m of their destination waypoint, the pilot chooses
the next leg he will be flying according to the MDP model
introduced previously. A random position error with Gaussian
distribution N (0, (150 m)2) horizontally and N (0, (20 m)2)
vertically is added to the east-north-down coordinates of the
destination waypoint.

A sample of the resulting trajectories can be seen in Fig. 7.
Some states require special handling, in particular:
• Taxi. The aircraft speed is reduced to 5 m/s ≈ 10 knots

and the equations of motion are modified to no longer
assume coordinated flight. Instead, we assume that the
pilot is able to directly steer the aircraft to the desired
heading.

• Runway. When the aircraft is on the runway, it accelerates
to either its flight or taxi speed depending on whether
it is landing or taking-off. The flight speed is assumed
to be uniformly distributed between 43 m/s and 49 m/s
≈ 83 knots and 95 knots.

• Final. No navigation noise is added when the aircraft
is on the final leg, and the altitude gains for the pilot
controller model are increased by a factor of 10 to ensure
that the aircraft touches down on the runway.

• Departure state. When an aircraft is in the departure
state and transitions into departure again, we generate
a random trajectory that takes 30 seconds to execute and
remains outside of the pattern.

Unlike the MDP case, not all aircraft transition states at
the same time. In order to incorporate the ATC commands
into the 3D simulation, an approximation must be made. We
explored two different schemes to select when to issue an
ATC command: event-driven and periodic. In the event-driven
scheme, we issue a command whenever any of the aircraft
reaches its destination waypoint and is about to transition.
However, this scheme may lead to advisories being issued very
close together, which would be problematic in practice. In the
second scheme, we simply issue commands periodically (every
10 s). In both instances, we only issue a new command after
the addressed aircraft has acted on the previous command.

We use as a baseline a silent policy which issues no
advisories. A consequence of this policy is that the aircraft
eventually end in the taxi state. Hence, the silent policy has an
artificial advantage over the auto-ATC policy in long-running
simulations because collisions are not counted in the taxi state.

In the MDP simulation, the aircraft have discrete states, and
we define collisions as two aircraft occupying the same state.
However, in the 3D simulation, the aircraft have continuous
states and they might never exactly collide. We define near
mid-air collision (NMAC) events as when two aircraft come
within 150 m ≈ 500 ft horizontally or 30 m ≈ 100 ft vertically
of each other. To mirror the MDP formulation, we ignore
events between aircraft that are in the taxi, departure, or arrival
states. The 3D simulation can result in transitions that we
normally would not model in the MDP simulation. In the 3D
simulation, it is possible for one aircraft to move to the next
leg while the other one is still flying the same leg. This was
not modeled in the MDP since all aircraft changed states in the
same cycle. This could be addressed by using a continuous-
time MDP formulation [14].
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Fig. 7: 3D simulation of four aircraft in the pattern.

C. 3D Simulation Results

Similar to the MDP case, we present the results from
running Monte Carlo simulations. For each policy, a total of
1000 cases are initialized with four aircraft in a non-NMAC
configuration at random locations in the pattern and with ran-
dom airspeeds distributed with a mean of 46 m/s ≈ 90 knots.
The states are then simulated forward until either an NMAC
event occurs or 20 hours is elapsed. We use α = 0.95 for the
simulations.

Figure 8 shows the location of all the NMACs as a heat
map on the pattern for both the event driven auto-ATC with
β = 0.5 and the silent ATC. The majority of events occur
when the aircraft are turning from base to final and on the
runway. The other hotspots are other convergence points such
as when aircraft are arriving in the pattern or cutting the base
turn when following an upwind aircraft. These observations
are consistent with the analysis of actual NMAC events [5]
and is not surprising given our modeling assumptions. The
NMACs between these hotspots (e.g., on the downwind leg)
are due to faster aircraft overtaking slower aircraft. Because
the simulation horizon is relatively long, both auto-ATC and
silent ATC have roughly the same number of NMAC events
(900 and 1000 respectively). However, while the number of
events are similar and the 2D distribution of the events look
similar, there is a difference in how long it takes for each event
to occur.

Figure 9 shows the inverse cumulative density function
(CDF) of the time to first NMAC for different policies. We
can see that the difference between the event-driven and the
periodic policies is not very significant. Although it performed
well on the MDP transition model, the β = 0.01 auto-ATC
policy performs poorly in the 3D simulation and is worse than
the silent ATC. However, β = 0.5 and β = 1.0 policies
perform better than the silent ATC. This is counter to what
we observed in the MDP simulations where lower β values
(i.e., more verbose policies) lead to less collisions.
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The difference in performance between the MDP model and
the 3D simulation can be explained by the modeling errors
between the two formulations. As a reminder, while the silent
ATC allows aircraft to remain in the safe taxi state, the reward
function for auto-ATC was chosen to encourage aircraft to
leave the taxi state. Since the policy obtained with a low
β does not associate a cost to issuing ATC commands, it is
more likely to encourage aircraft to take the runway. In the
MDP simulation, the transitions follow the model assumed by
the policy, and it is therefore able to avoid most collisions.
However, when evaluated in 3D, the system does not prevent
NMACs as well and the trade-off between taxi and NMAC
is different. In contrast, the policies with larger β do not
encourage aircraft to take the runway, but they also do not
encourage them to remain in taxi as discussed later. These
policies still however intervene in flight states, and even though
they do not prevent all of the NMACs, they perform better than
the silent ATC.

A policy can increase the time to NMAC by either pre-
venting collisions or grounding the aircraft. To verify that
aircraft are not being grounded, we show in Fig. 10a the
distribution of flight hours obtained from the simulations.
We define flight hours as the total time spent in the air,
i.e., not in taxi. The auto-ATC policies with β = 0.5 and
β = 1.0 are indeed achieving more flight hours than the
silent ATC, which means the auto-ATC policies are delaying
the onset of NMAC, not grounding the aircraft in the safe
taxi state. This subtle behavior is an artifact of our modeling
assumptions regarding the transitions between the runway and
the taxi. These transitions deserve more attention in future
work, including a sensitivity analysis of taxi cost relative to
collision and alert costs.
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In the MDP formulation we defined the verbosity index
for each policy. In the 3D simulation, we keep track of the
intervention rate, the number of ATC commands issued per
minute. Figure 10b shows the intervention rate for the policies
under consideration. As expected, the silent ATC does n ot
issue any commands, while policies with smaller values for β
have larger intervention rates. The rates are on the order of
one command per minute, which seems acceptable given that
there are four aircraft in the pattern.

Given all the modeling errors and approximations that had to
be made to go from the MDP formulation to the 3D simulation,
the fact that we decrease the time before NMAC events occur
while increasing the flight hours is an encouraging result.

We are primarily interested in the performance of the
policies relative to each other. The actual probability of NMAC
events per hour obtained in these simulations are not an
accurate representation of reality. We expect a higher level
of safety as pilots’ ability to see and avoid should result in a
lower probability of NMAC events.

All simulation and analysis scripts that were used to gener-
ate the experimental results are under version control and are
available online at https://github.com/sisl/autoATC.git.

IV. CONCLUSIONS AND FURTHER WORK

We introduced a concept for an autonomous ATC that could
help reduce the risk of air traffic collisions in the vicinity of
non-towered airports. We showed how the system can be posed
as an MDP by defining the states, actions, transitions, and
rewards. Value iteration was used to compute optimal policies
for a range of cooperation levels and cost parameters. We
assessed performance in terms of safety and the verbosity of
the system using Monte Carlo simulation. In a 3D simulation
of a traffic pattern, we found a system operating point that
reduces the probability of near mid-air collision with an
acceptable intervention rate compared to a silent system.

Although the results are promising, this first formulation
makes many simplifying modeling assumptions. First of all,
the number of states in the pattern and available actions should
be extended. For example, if one aircraft is on left base and
another is on right base, they are on a collision course but
there are no actions in our formulation to prevent collision.
A possible extension would be to add commands for S turns.
In addition, our model has the taxi state acting as a sink. To
enhance realism, it is necessary to incorporate a better model
of aircraft behavior when transitioning between the runway
and taxi states.

In real life, the transitions do not all occur at the same time
as modeled by the MDP and the actions need to be taken at
potentially non-uniform time steps. This could be accounted
for by modeling the dynamics using continuous-time Bayesian
networks (CTBN). The decision making can then be posed as
a CTMDP [14].

A major assumption made in this paper was that the
positions of the aircraft are exactly known by the system.
In practice, we will need to estimate the location of each
aircraft from the ground sensors. Doing so would require an

observation model and applying Bayes’ rule to track a proba-
bility distribution over the aircraft positions. The problem can
then be reformulated as a partially observable Markov decision
process (POMDP) [15]. Additionally, the parameters for the
3D simulation (airspeeds, turning radius, controller gains, etc.)
were chosen in this paper using engineering judgment. The
parameters of a higher fidelity model could be derived from
radar data.

We envision the system issuing commands over a Common
Traffic Advisory Frequency. Hence, there needs to be a way to
identify the aircraft in the pattern. One way to achieve this is
to refer to aircraft by their position, transponder code, or their
call-sign inferred through speech recognition [11]. Finally, a
practical implementation would require the ability to handle
special cases such as varying number of aircraft in the pattern,
aircraft overflying the runway above the traffic pattern altitude,
and change of runway direction due to shifting wind.
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