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Abstract—Network delay propagation is intimately linked with 

the challenges of managing passenger itineraries and 

corresponding connections. Airline decision-making governing 

these processes is driven by operational and regulatory factors. 

Using the first European network simulation model with explicit 

passenger itineraries and full delay cost estimations, we explore 

these factors through various flight and passenger prioritisation 

rules, assessing the performance impacts. Delay propagation is 

further characterised under the different prioritisation rules 

using complexity science techniques such as percolation theory 

and network attack. The relative effects of randomised and 

targeted disruption are compared. 

Keywords–delay propagation; percolation; network attack; 

passenger-centric; flight prioritisation; Granger causality 

I.  INTRODUCTION 

Delay is a common feature of transport networks and has 

been much studied in the specific context of air traffic 

management and more widely in aviation. Of particular interest 

is the phenomenon of delay propagation, whereby the primary 

(causal) delay of one flight results in secondary (reactionary) 

delay incurred by other flights. In air transport, the 

susceptibility of the system to such effects is driven by various 

dependencies between flights, most notably those of aircraft 

rotations (a delayed aircraft is late for a subsequent operation), 

crew dependencies (e.g. late crew on one flight are not 

available for their next duty) and passenger connectivities (e.g. 

an outbound aircraft is held awaiting delayed inbound 

passengers). Direct, aircraft-aircraft reactionary delay is known 

as ‘rotational’, whereas indirect effects between different 

aircraft (such as those due to connecting passengers) are known 

as ‘non-rotational’. 

Airlines typically have one or more contingencies in place 

to manage such eventualities, including options such as aircraft 

swaps or spare crews, or buffer times in flight schedules and 

passenger connection times. Nevertheless, these contingencies 

come at a cost, often referred to as the ‘strategic’ (opportunity) 

cost of delay and reflected through reduced utilisation, thus 

comprising a complex trade-off against the risk of incurring 

tactical delay costs on the day of operations. 

Despite the high costs associated with delays, it is perhaps 

somewhat surprising that the ratio of propagated (reactionary) 

to primary delays in Europe has remained fairly flat since 2010. 

As we shall quantify later, just under half of all delay minutes 

are still attributable to reactionary delay in Europe. A 

significant challenge remains in terms of trying to improve this 

performance without compromising other aspects of service 

delivery, such as user flexibility. 

Placing such analyses in a passenger-centric context further 

compounds the difficulty of modelling delay propagation and 

of gaining insights into potential improvements. As we shall 

demonstrate, the average delays of (delayed) flights and 

passengers are not the same. The air transport industry is 

lacking passenger-centric metrics; its reporting is flight-centric. 

Trade-offs between these metrics need to be better understood, 

as they are observed to move in opposite directions under 

certain types of flight prioritisation. With growing political 

emphasis on service delivery to the passenger, and passenger 

mobility, how are we to measure the effectiveness of 

passenger-driven performance initiatives in air transport if we 

do not have the corresponding set of passenger-oriented 

metrics or understand the associated trade-offs in the context of 

delay propagation? The generation and propagation of delay in 

the network is intimately linked with the challenges of 

managing passenger itineraries and corresponding connections. 

Airline decision-making governing these processes is, in turn, 

driven by operational and regulatory factors. In this paper, we 

explore these effects through various flight and passenger 

prioritisation rules, assessing the corresponding performance 

impacts. 

Reporting results from the ‘POEM’ (Passenger-Oriented 

Enhanced Metrics) simulation model (please see 

‘Acknowledgement’), these performance impacts are measured 

through new and existing metrics, including passenger-centric 

and flight-centric metrics based on airline delay costs. Recent 

new work on these data, drawing on complexity science 

techniques such as percolation theory and network attack, are 

used to compare the relative effects of randomised and targeted 

disruption on delay propagation. 

Whilst we focus on the European perspective regarding the 

operationalisation of our model and the specific regulatory 

drivers, we refer often to the US context – particularly in terms 

of existing research and performance data. Indeed, as will be 

demonstrated, much of the earlier research in passenger metrics 

was developed in the US, spurring the need for corresponding 

work in Europe. It is hoped that the modelling presented and 

analytical techniques will be of common value. The paper 

begins with a review of current performance, target setting and 

regulation. 



II. PERFORMANCE AND POLICY CONTEXTS 

A. Performance context 

TABLE I.  US AND EUROPEAN PERFORMANCE IN 2013 (TO 1 D.P.) 

Region 
Total 

flights a 

Arrival   Rotational 

Cancelled  reactionary 

                delay c 
On-time 

b Delayed 
b 

US 15.1m 78.3% d 19.9% d 1.5% d 42.1% 

Europe  9.6m 82.7% e, f 15.8% e ,f 1.5% g 41.9% 

a. Source: [1]. 

b. Delay c.f. schedule – US: ≥ 15 minutes; Europe: > 15 minutes. Both include early arrivals. 

c. Sources: US – “aircraft arriving late” [2]; Europe – [3] and [4] (see main text).  

d. Source: [5]; diverted flights not shown. Sample: 16 reporting carriers. 

e. Sources: on-time [3], [4]; delayed [4]. Sample: 68.6% of ECAC flights. 

f. Adjusted to correct for cancelled flights; diverted flights not shown.  

g. Approximate value [6]. 

Comparing European and US air traffic management 

contexts, the latter area is approximately 10% smaller and 

handles some 57% greater flight activity, as measured by 

operations or flight hours [1]. Despite the different operating 

settings, both in terms of internal factors such as flow 

management methods and system integration, and externalities 

such as weather, several indicators of operational performance 

are comparable between the two regions. (See [1] for a 

comprehensive comparison.) Table I offers an overview of key 

performance data for 2013 (note that variations in reporting 

exist between various sources). 

In Europe, the average arrival delay (all causes) in 2013 

was 9 minutes per flight; in the US, it was 13 minutes per flight 

(based on data from reporting airlines [4, 5]). The rotational1 

reactionary delay in 2013 is practically equal in the two 

regions, at approximately 42% of all delay. Since 2010, the 

corresponding trends are rather moderately upwards in the US 

(not plotted) and relatively flat in Europe (Fig. 1). Let us 

explore the high-level European data further, to set some 

context for the analyses to follow. Plotting average departure 

and arrival delay2, delay proportion comprised of total 

reactionary delay, and total traffic, and normalising these 

values to 2004 data (Fig. 1), demonstrates that reactionary 

delay correlates weakly with departure or arrival delay 

(r2 ≈ 0.0) and somewhat less weakly (r2 ≈ 0.5) with total traffic. 

European punctuality in 2010 was at its worst since 2001. 

Although subject to a high number of cancellations (due to the 

Eyjafjallajökull ash cloud in April and May, strikes in France 

and Spain, and bad winter weather), this had a limited effect on 

punctuality per se [7]. Nevertheless, the relative proportion of 

reactionary delay was fairly insensitive to this change in 

performance. Nor can the relative stability (or persistence) of 

the reactionary ratio be attributed to any substantial changes in 

schedule buffers over this period [3]. (Compare also 

                                                           
1 [2] reports rotational reactionary delay; for comparison, the European value 

is thus adjusted from total reactionary delay [3], of which 90% is rotational 

[4]. 
2 Minutes per flight, all flights; delays counted from first minute, earlies 

counted as zero. Arrival punctuality in Europe is mainly driven by departure 

punctuality, with relatively small variations in the gate-to-gate phase [3]. 

comprehensive US work [8] demonstrating, perhaps 

unexpectedly, that departure delay plays only a minor role in 

setting scheduled block-times.) 

 

 

Figure 1.  European high-level performance trends, 2004 – 2013. 

Source: data provided by EUROCONTROL’s Central Office for Delay Analysis and 

Performance Review Unit, and taken from Network Manager Monthly Summaries. 

 

Whilst the ratio of reactionary delay seems to weakly 

follow traffic volumes, and may thus reflect system stress to 

some extent, these correlations are far from establishing 

causality. Furthermore, whilst most reactionary delay is 

recorded as simply rotational, it is likely that this cause is 

substantially over-reported, due in large part to the difficulty of 

assigning and tracking true causality through the operational 

day. For example, an aircraft awaiting late passengers early in 

the day may be late on every subsequent rotation, with all but 

the first erroneously recorded as pure rotational from a true 

causality perspective (a subject to which we shall return later in 

this paper). From high-level data, we are thus left with a degree 

of oversight, but with a stronger conviction that we are missing 

substantial insight. 

B. Wider policy context 

Air traffic management reform in Europe (through SESAR) 

and the US (through NextGen) is set in the wider policy 

context of improving service delivery to the passenger. 

NextGen is implementing new technological and procedural 

capabilities to make the US National Airspace System (NAS) 

safer whilst mitigating impacts on the environment and 

reducing delays (e.g. targeting a 41% reduction in delays by 

2020) [9]. The FAA published a new strategic plan in 2011, 

‘Destination 2025’, streamlining strategic goals. Mindful of the 

passenger, these include goals that will “serve the needs of the 

traveling public and the aviation industry to provide 

unencumbered access to the aviation system” and “enhance 

aviation’s value to the public by improving travel throughout 

the National Airspace System, and beyond” [10]. Since the 

FAA Modernization and Reform Act came into force in 2013, 

the FAA has been required to track and report on twelve 

specific metrics in order to measure the impact of NextGen. 

These have been harmonised with existing NAS-wide 



performance metrics to ensure alignment with FAA targets and 

goals [11].  

Social and political priorities in Europe are shifting in 

further favour of the passenger, as evidenced by high-level 

position documents such as ‘Flightpath 2050’ [12] and the 

European Commission’s 2011 White Paper (‘Roadmap to a 

Single European Transport Area’, [13]). SESAR’s 

‘Performance Target’ [14] refers frequently to the concept of 

society and the passenger. The ‘societal outcome’ cluster of 

key performance areas3, is defined as being of “high visibility”, 

since the effects are of a political nature and are even visible to 

those who do not use the air transport system. The ‘operational 

performance’ cluster4 is also specifically acknowledged as 

impacting passengers. Notably, the Performance Target [ibid.] 

not only significantly refines the fifteen minute historical 

threshold for defining arrival and departure delay in Europe 

(and the US, as observed above), the new European threshold 

being ±3 minutes, but also sets a target reduction in reactionary 

delay of 50% by 2020, relative to 2010. NextGen currently has 

no reactionary delay target. 

In parallel, the Performance Scheme is a central element of 

the Single European Sky initiative. It is defined across various 

reference periods (RPs). Performance targets are set at various 

levels before each period and are legally binding for European 

Union (EU) member states. With RP2 running from 2015 to 

2019, any incorporation of passenger-centric metrics into the 

scheme would need to be considered for RP3 (2020 - 2024). 

Currently, however, neither NextGen nor SESAR has metrics 

oriented specifically to the passenger. As we shall develop 

within this paper, examination of such specific metrics is of 

particular value to performance assessment.  

C. Regulation 261 in Europe 

At the centre of established and indeed, evolving, EU 

regulation in this context, is the underpinning regulatory 

instrument for air passenger compensation and assistance 

(Regulation 261, [15]). Already a key factor in determining 

airline costs incurred due to delayed passengers, this regulation 

is currently undergoing a process of review [16], due to several 

problems with regard to its implementation and interpretation. 

There have been numerous qualifying and clarifying court 

rulings and appeals, often substantial in impact, by national 

government (e.g. [17]) and the Court of Justice of the European 

Union (e.g. [18]). Proposed changes could become law by 

2016-2017, subject to approval by member states. Key 

proposed changes are to: (i) initiate passengers’ right to care 

and assistance after two hours of delay, regardless of the length 

of the flight; (ii) require an airline to re-route passengers onto 

other carriers (already much commoner in the US) if it cannot 

re-route onto its own services within 12 hours; (iii) offer 

passengers the same rights for delays relating specifically to 

connecting flights. The impacts of such changes on the airlines 

are often considerable, e.g. not only increasing the scope (e.g. 

[18]) but also greatly extending the time period permissible for 

                                                           
3 Environment, safety, security. 
4
 Capacity, cost effectiveness, efficiency, predictability, flexibility.  

retrospective claims (e.g. [17]). Tools for exploring the (cost) 

implications of such regulatory changes are noticeable by their 

absence – a gap we have attempted to begin filling with the 

POEM model. 

III. PREVIOUS MODELLING AND DATA AVAILABILITY  

A. Previous modelling 

Using large data sets for passenger bookings and flight 

operations from a major US airline, it has been shown [19] that 

passenger-centric metrics are superior to flight-based metrics 

for assessing passenger delays, primarily because the latter do 

not take account of replanned itineraries of passengers 

disrupted due to flight-leg cancellations and missed 

connections. For August 2000, the average passenger delay 

(across all passengers) was estimated as 25.6 minutes, i.e. 1.7 

times greater than the average flight leg delay of 15.4 minutes. 

Based on a model using 2005 US data for flights between 

the 35 busiest airports, [20] concurs that “flight delay data is a 

poor proxy for measuring passenger trip delays”. For 

passengers (on single-segment routes) and flights, delayed 

alike by more than 15 minutes, the ratio of the separate delay 

metrics was estimated at 1.6. Furthermore, heavily skewed 

distributions of passenger trip delay demonstrated that a small 

proportion of passengers experienced heavy delays, which was 

not apparent from flight-based performance metrics [21, 22]. 

Using US historical flight segment data from 2000 to 2006 

to build a passenger flow simulation model to predict 

passenger trip times, [21] cites flight delay, load factors, 

cancellation (time), airline cooperation policy and flight times 

as the most significant factors affecting total passenger trip 

delay in the system (see Table II). 

An “inherent flaw in the design of the passenger 

transportation service” has been pointed out [23], in that 

service delivery to the passenger did not improve in 2008 in the 

US, despite the downturn in traffic. One in four US passengers 

experienced trip disruption (due either to delayed, cancelled or 

diverted flights, or due to denied boarding). Recovery 

mechanisms in place for disrupted passengers, such as transfer 

to alternative flights or re-routing, require seat capacity 

reserves. However, the airline industry wishes to maximise 

economies of scale, optimise yield management, maximise 

load factors, and (thus) to minimise seat capacity reserves. In 

2008, as airlines reduced frequencies to match passenger 

demand, higher load factors severely reduced such reserves 

[ibid.]. 

TABLE II.  PREDICTED PAX TRIP DELAY BY PERFORMANCE CHANGES 

Performance change 
Predicted pax trip  

delay change 

15-minute reduction in flight delay -24% 

Improved airline cooperation policy in re-booking 

disrupted passengers 
-12% 

Flights cancelled earlier in the day -10% 

Decreasing load factor to 70% -8% 

Source: [21]. 



Analysing US flight data for 2007 between 309 airports to 

estimate passenger-centric delay metrics showed [22] that the 

average trip delay for passengers over all flights was 24 

minutes, whilst for passengers on flights delayed by at least 

fifteen minutes, the average delay was 56 minutes. 

Flight-centric and passenger-centric metrics have also been 

examined [24] by comparing different rationing rules in a 

model US ground delay programme rationing rule simulator, 

exploring the trade-off between flight and passenger delay, and 

also between airline and passenger equity. (We shall return to 

these results later.) 

Turning to more recent work, [25] presents a closed-form, 

aggregate model for estimating passenger trip reliability 

metrics from flight delay data from US system-wide 

simulations. Metrics were derived from the probabilities of 

delayed flights and network structure parameters. A 

particularly appealing finding was that the average trip delay of 

disrupted passengers varies as the square of the probability of a 

delayed flight and linearly with respect to rebooking delays. 

An analytical queuing and network decomposition model – 

Approximate Network Delays (AND) – studied [26] delay 

propagation for a network comprising the 34 busiest airports in 

the US and 19 of the busiest airports in Europe. The model 

treats airports as a set of interconnected individual queuing 

systems. Due to its analytical queuing engine, it does not 

require multiple runs (as simulations do) to estimate its 

performance metrics and can evaluate the impacts of scenarios 

and policy alternatives. 

Research in this area, employing complexity science 

methods, is rather uncommon (see [27] and [28] for reviews). 

Applying such techniques to the characterisation of actual 

European passenger trip itineraries, we previously investigated 

network topologies and vulnerabilities [27] and will refer to 

this work briefly, later. 

Covering 305 US airports in 2010, an agent-based model 

reproduced [28] empirically observed delay propagation 

patterns. Estimated passenger and crew connectivities were 

identified as the most relevant factors driving delay 

propagation. The probability of such connections were 

modelled as proportional to flight connectivity levels at each 

airport. Investigating how congested airports form connected 

clusters, it was found that the same airports were not 

consistently part of such clusters, implicating daily scheduling 

differences in delay propagation patterns. It was noted that 

being in the same cluster was a measure of correlation but not 

necessarily a sign of a cause and effect relationship. Notably, 

only two major hubs, Newark and San Francisco, were present 

in the top ten for persistence in the largest congested clusters 

([ibid.]; “Supplementary information”). 

This work was later developed in the European context [29] 

for characterising and forecasting delay propagation 

(preliminary results showing promising agreement with 

empirical flight performance data) and to study large-scale 

weather disruption on US delay propagation [30]. With regard 

to the latter, by computing the evolution of the largest 

congested clusters, empirical and modelled results agreed well 

when weather impacts and cancelled flights were considered as 

input variables. The continuing value in research of identifying 

delay-multiplier airports and the role that schedule buffer and 

turnaround times play in delay propagation is also taken up in 

[31]. Here, an analytical model is used to calculate propagated 

delay using US on-time performance data for first quarter of 

2007. The optimal timing of buffers during the day and varying 

airline strategies, even within airlines across airports, regarding 

buffer application are discussed – see also [8] for a 

comprehensive US study in this field. 

Almost no current models use explicit passenger data, 

although this is planned for the AND model (ibid.) and [29]. 

Also, actual passenger transfer numbers have been used in 

numerical simulations of a major US hub, where it was 

demonstrated [32] that each metric studied – terminal transit 

times of passengers, aircraft taxi times and gate conflict 

durations – outperformed observed values through the use of a 

balancing objective function. (The ‘CASSIOPEIA’ project in 

the SESAR Exploratory Research programme is also preparing 

publications focused on actual transfer passengers at a major 

European hub.) 

B. Data availability 

Much of the data employed in the US research outlined 

above may be sourced from the US Department of 

Transportation’s Bureau of Transportation Statistics (BTS). 

Table III summarises three databases with particular relevance 

to passenger-based studies (e.g. estimating passenger itineraries 

and modelling delay propagation). These do not provide 

explicit passenger connections that are linked to flights, 

although the DB1B database provides a sample of passenger 

itineraries (see also [33]). These US databases are publicly 

available, with no comparable (free) sources available in 

Europe. 

The two principal datasets used to build the flight-specific 

passenger itineraries for the POEM model were IATA’s PaxIS 

passenger data and EUROCONTROL’s PRISME traffic data. 

Extensive data cleaning of the source traffic data was required, 

especially with regard to unreliable taxi-out data and scheduled 

times, missing taxi-in data and aircraft characteristics 

(including registration sequencing) [34]. This model is outlined 

next. 

 

TABLE III.  BUREAU OF TRANSPORTATION STATISTICS’ KEY DATABASES 

Database Summary Available 

DB1B: Airline Origin 

and Destination 

Survey 

10% sample of airline tickets from reporting airlines; 

includes origin, destination and other passenger 

itinerary details 

Quarterly 

T-100: The Air 

Carrier Statistics 

Contains domestic and international airline market 

and segment data; includes carrier, origin, destination, 

aircraft type and load factor 

Monthly 

AOTP: Airline On-

Time Performance 

Data 

Scheduled & actual departure & arrival times reported 

by major US airlines with at least 1% of domestic 

scheduled pax revenues; includes origin, destination, 

flight number, cancelled and diverted flights 

Monthly 



IV. THE POEM MODEL  

A. Model overview 

POEM comprises a European network simulation model with 

explicit passenger itineraries and full delay cost estimations. A 

baseline traffic day in September 2010 was selected as a busy 

day in a busy month – without evidence of exceptional delays, 

strikes or adverse weather. The baseline model represents a 

normative day and the simulation results reflect schedule 

robustness (e.g. with respect to passenger reaccommodation). 

The busiest 199 European Civil Aviation Conference (ECAC) 

airports in 2010 are included, having identified [34] that these 

airports accounted for 97% of passengers and 93% of 

movements in that year. Routes between the main airports of 

the (2010) EU 27 states and airports outside the EU 27 were 

used as a proxy for determining the major flows between the 

ECAC area and the rest of the world. This process led to the 

selection of 50 non-ECAC airports for inclusion of their 

passenger data. The assignment of passengers to individual 

flights, with full itineraries and calibrated load factors, was a 

fundamental component of POEM. All the allocated 

connections were viable with respect to airline schedules and 

published minimum connecting times (MCTs). Dynamically, 

the full gate-to-gate model then explicitly manages passenger 

connectivities. There are approximately 30 000 flights in each 

day’s traffic and around 2.5 million passengers distributed 

among 150 000 distinct passenger routings. Using a cloud-

computing platform, each full day’s simulation took 

approximately two minutes. As a stochastic model, 

statistically stable results were produced typically after ten 

runs (although the results presented are based on fifty runs). A 

model flow structure, overview of recursive cost optimisation 

and model calibration methods were presented in [35].  

B. Model prioritisation scenarios and rules 

Table IV summarises the prioritisation scenarios. For 

convenience, they are broadly classified according to the 

agency of the instigating stakeholder. For example, only 

airlines are currently likely to be able to estimate their own 

delay cost data in A1 and A2. Cost estimations are with respect 

to delay costs to the airline: these drive airline behaviour.  

TABLE IV.  PRIORITISATION SCENARIOS 

Type, level Designator Summary description 

No-scenario, 0 S0 No-scenario baselines: reproducing historical operations 

ANSP, 1 N1 
Prioritisation of inbound flights based on simple 

passenger numbers  

ANSP, 2 N2 

Inbound flights arriving more than 15 minutes late 

prioritised based on number of onward flights delayed by 

inbound connecting passengers 

AO, 1 A1 

Wait times and associated departure slots estimated on 

cost minimisation basis; longer wait times potentially 

forced during periods of heavy air traffic flow 

management (ATFM) delay 

AO, 2 A2 

Departure times and arrival sequences based on delay 

costs – A1 is implemented and flights are independently 

arrival-managed based on delay cost 

Policy, 1 P1 

Passengers reaccommodated based on prioritisation by 

final arrival delay, instead of by ticket type; preserves 

interlining hierarchies 

Policy, 2 P2 As P1, now also relaxing all interlining hierarchies 

TABLE V.  SUMMARY OF EXAMPLE RULES 

Rule 13 takes account of inbound passenger arrival times, MCTs and prevalent ATFM conditions 

to determine how long a flight should wait for inbound connecting passengers. The baseline rules 

are driven by implicit cost considerations (passengers’ onward haul and ticket types; percentage of 

expected passenger loading completed) in the context of ATFM slot availabilities. Under A1 and 

A2, explicit costs are traded in the wait rules (by passively running Rule 33). During heavier 

congestion, the flight either waits an extra hour, or departs. Under less heavy congestion, costs are 

calculated for increments of 15-minute waits, and the minimum cost alternative is adopted. 

Rule 26 models arrival management based on airport capacities, applying spacing from the Initial 

Approach Fix. Under baseline conditions, this is operated on a first-come, first-served basis. Under 

N1 and N2, flights are prioritised based on minimising total passenger inbound delay and onward 

flight delays, respectively. Whilst inactive under A1, under A2 Rule 26 arrival-manages flights 

based on delay costs – independently with Rule 13. 

Rule 33 governs realistic decision-making for missed passenger connections due to delays and 

cancellations. It incorporates dynamic passenger reaccommodation onto aircraft with free seats, 

using detailed fleet and load factor data, and integrates with the tail-tracked aircraft wait and 

turnaround (recovery) rules. This rule allows for the investigation of the policy-driven scenarios P1 

and P2, relaxing current airline practice to explore potential future policy outcomes. 

Costs considered are: passenger hard and soft costs to the 

airline, fuel, maintenance and crew costs [34]. The baseline 

scenario (S0) rules reflect airline costs typically imposed by 

(the current) Regulation 261 and common practice regarding 

care and rebooking during disruption [ibid.]. Under the P1 and 

P2 scenarios, current constraints on airline practice are 

successively relaxed. These policy-driven scenarios are bolder 

than the current scope of European regulations. 

Each simulated process is governed by one or more rules, 

with examples thereof above, and details in [34]. Two airline 

case studies, with on-site visits and multi-stakeholder 

workshops, focused on developing and testing specific aspects 

of these rules in an operational context. Further validation with 

stakeholders is anticipated in on-going development work.  

V. MODEL RESULTS 

A. Classical and new metric results 

Fig. 2 presents the core results across various flight-centric 

and passenger-centric metrics, by the various scenarios. The 

values indicated5 are scenario values minus the corresponding 

baseline (S0) value. Flight prioritisation scenarios (N1 and N2) 

operating during arrival management based simply on the 

numbers either of inbound passengers or on those with 

connecting onward flights, were ineffective in improving 

performance. The policy-driven scenario (P1) represents 

putative conditions not driven by current airline or ATM 

objectives but which may nevertheless benefit the passenger. 

This scenario, rebooking disrupted passengers at airports based 

on minimising delays at their final destination, produced very 

weak effects when current airline interlining hierarchies were 

preserved. When these restrictions were relaxed, under P2, 

marked improvements in passenger arrival delay were 

observed, although at the expense6 of an increase in total delay 

costs per flight, due to passenger rebooking costs. 

                                                           
5 Differences shown are statistically significant (p < 0.05; z-tests) and 

exceeded a minimum change threshold applied to avoid reporting artefactual 

results (typically set at approximately 2% of the baseline mean values; not 

applied to the ratio metrics).  
6 Trade-off results have also been observed in a US model [24]: compared to 

the traditional ration-by-schedule rule, rationing by aircraft size (three priority 

queues: ‘heavy’, ‘large’ and ‘small’ aircraft) was shown to decrease the total 

passenger delay by 10%, with a 0.4% increase in total flight delay. Rationing 

by passengers on-board decreased total passenger delay by 22%, with only a 

1.1% increase in total flight delay. 



 

Figure 2.  Summary of core results. 

 The prioritisation process A1, assigning departure times 

based on cost minimisation, markedly improved a number of 

passenger delay metrics and airline costs, the latter determined 

by reductions in passenger hard costs to the airline. One of the 

very few negative outcomes associated with A1 was an increase 

of two percentage points in overall reactionary delay. (Actual 

reactionary delay in September 2010 averaged 46%, with the 

model S0 value calibrated at 49%.) This was manifested 

through relatively few flights and was introduced purposefully 

by airlines through the cost model (i.e. waiting for late 

passengers) such that the overall cost to the airlines decreased.  

A1 also performed well when increased delay and simple 

cancellations were modelled; in contrast, A2 was generally 

unsuccessful (results not shown; see [35]). For A2, the addition 

of independent, cost-based arrival management apparently 

foiled the benefits of A1 due to lack of coordination between 

departures and arrivals. This was also reflected in that A2 

caused increased dispersion of all core metrics and the highest 

reactionary delay ratio of 58%. 

The ratio of arrival-delayed passenger over arrival-delayed 

flight minutes (both pertaining to delays of greater than 15 

minutes) was 1.5 for the S0, P1 and P2 simulations for the 

baseline traffic day and the high delay day, rising to 1.9 for S0 

on the high cancellation day. Notably, A1 for the baseline 

traffic day resulted in a minimum value of this ratio of 1.3. 

These values compare well with the range 1.6 – 1.7 cited in 

Section III(A). 

The importance of using passenger-centric metrics in fully 

assessing system performance is clearly made through the 

results shown in Fig. 2, since the changes were not expressed 

through any of the currently-used flight-centric metrics at the 

common thresholds set. Scenario A1 appears to hold particular 

promise and will be studied in particular, along with the 

corresponding baseline (S0) results, in the next sections. 

B. Delay propagation and causality 

(i) During the simulations, reactionary delays and their 

causes are determined retrospectively. If several passengers 

were connecting from different flights and all of them were 

late, we only considered the most restrictive connection (in 

actual minutes) as the reason for the reactionary delay being 

induced. In this sense, one flight can delay many others, but 

any given flight can only be delayed by one previous flight (the 

most restrictive one). This graph is thus a (propagation) tree. 

Although large airports are associated with more 

reactionary and arrival delay, there is a considerable relative 

difference between these delay types at the smaller airports. 

For some of the forty smaller airports arrival delay was 

doubled (or even tripled) into reactionary delay. This is due to 

reduced delay recovery potential at such airports, for example 

through: flexible or expedited turnarounds; spare crew and 

aircraft resources (as yet not explicitly modelled in POEM); 

and, whether a given airport has sufficient connectivity and 

capacity to reaccommodate disrupted passengers. In practice, 

the business model of airlines operating at airports also 

influences these effects. Similar findings have been reported in 

some literature [36, 37]. 

Back-propagation (where an aircraft’s outbound delay 

propagates back to an airport one or more times later in the 

day) was found to be an important characteristic of the 

persistence of delay propagation in the network. Paris Charles 

de Gaulle, Madrid Barajas, Frankfurt, London Heathrow, 

Zürich and Munich all demonstrated more than one hundred 

hours of back-propagated delay during the modelled (baseline) 

day. The prevalence of hub back-propagation has also been 

reported in the literature ([26], [37, 38]). Asymmetries of the 

general phenomenon have been reported in the US [39]. One 

minute of delay per flight in the three New York airports 

causes 0.07 minutes of delay per flight in the other (major) 

NAS airports; conversely, one such system minute generates 

0.28 minutes of delay in New York. 

(ii) After the simulations, delays were studied a posteriori 

using topological reconstructions of the flight and passenger 

networks (or ‘layers’). Such networks were constructed for the 

S0 and A1 scenario simulations of the baseline traffic day, i.e. 

four reconstructions in total. For these networks, causality 

needed to be established in a different way. Classical statistical 

instruments such as correlation analysis are only able to assess 

the presence of some common (equivalent) dynamics between 

two or more systems. However, correlation does not imply 

causality. Granger causality [40], on the other hand, is held to 

be one of the few tests able to detect the presence of causal 

relationships between different time series. (See [35] for further 

details of how this methodology was applied.) 



Comparing eigenvector centrality7 rankings through 

Spearman rank correlation coefficients showed [34] that all 

four topological networks were remarkably different from each 

other (rs: 0.01 – 0.07). These rankings demonstrated that 

different airports have different roles with regard to the type of 

delay propagated (i.e. flight or passenger delay) and that these 

were further changed under A1. Indeed, a trade-off was 

introduced under A1: the propagation of delay was contained 

within smaller airport communities, but these communities 

were more susceptible to such propagation. The absence of 

major hubs in the top five ranking list was evident. We 

previously reported similar findings in a network vulnerability 

analysis [27] and such results resonated with the findings of 

[28], reported above. These findings were explored further 

using percolation theory. 

C. Toplogical percolation analysis 

Percolation is a theme that has been extensively studied in 

complex networks, e.g. in the initial work of [41] and 

subsequent research of [42, 43]. Given an initial network, a 

percolation study involves deleting links (or nodes) at random, 

and studying how its topological properties are modified as a 

function of the fraction of links removed. Universalities are 

typically found, as for instance with phase transitions and 

various other critical phenomena [44]. Such analyses have 

often been applied to transportation and communication 

networks, in which the percolation itself represents a series of 

random attacks (or random failures) on the infrastructure. It is 

thus of interest in understanding how much change the network 

is able to absorb, before significantly disrupting its functioning. 

In our analyses, the links represent the propagation of delay 

(they are not flights). Link deletion thus represents the removal 

of propagated delay between the corresponding pair of airports. 

(Node deletion, possible in other study contexts, is thus not 

sensible in this context, as it would imply the actual removal of 

airports.) As we disrupt the network in this way, we are 

interested in disrupting its structure as soon as possible, as this 

would indicate that small changes in the system could yield 

important benefits. 

TABLE VI.  PERCOLATION METRICS 

Metric 
Mainly 

characterises 

Definition 

Maximum 

degree 

Worst element of 

the system 

Number of connections of the most connected node in 

the network 

Size of the 

giant 

component 

Size of the delay 

propagation core. 

Number of nodes comprising the largest set of nodes 

(or subgraph) in which any two nodes are connected to 

each other by at least one path, and which are not 

connected to any other node of the original graph 

Efficiency 

Information flow 

(here, delay 

propagation) 

Mean value of the inverse of the geodesic distance 

between all pairs of nodes, i.e. of the distance (length) 

of the shortest path connecting them; this represents the 

ease of information flow between pairs of nodes [45] 

Normalised 

information 

content 

Network 

organisation / 

structure 

Assesses the presence of any mesoscale structure, by 

evaluating the information lost when pairs of nodes 

are iteratively merged together; this quantifies how 

random the network is [46] 

                                                           
7 Eigenvector centrality is a metric defined such that this centrality of a node 

is proportional to the centralities of those to which it is connected. 

  

Panel A: maximum degree (flights). Panel B: giant component (flights). 

  

Panel C: efficiency (flights). Panel D: information content (flights). 

  

Panel E: efficiency (pax). Panel F: information content (pax). 

Figure 3.  Randomised network attacks. 

We start with the (initial) causality link network and 

remove links at random. It is important to remind ourselves 

that this does not imply any change in the operation of the 

model. This topological analysis is an a posteriori process in 

which delays between two given airports are ‘decoupled’. This 

may be considered de facto as generically providing more 

resources across the link (between the airports), such as might 

be effected through more aircraft or larger aircraft, thus better 

managing reactionary delays. Our main concern for now is the 

topological properties, rather than the mechanics of these 

processes. In each graph, we simulate a different strategy for 

allocating such improved resources: we variously try to 

mitigate those delay propagation links that we think are worse 

for the system as a whole. Fig. 3 depicts the evolution of four 

topological metrics (as described in Table VI), showing how 

the network evolves during this percolation process8.  

                                                           
8 The passenger analogues of panels A and B are not shown, as they are 

similar to the flight plots. The error bars reflect the repetition of the 

randomised attacks over 1 000 runs. 



As the number of links deleted increases, the maximum 

degree decreases (as would be expected; Fig. 3, panel A) 

whereas the size of the giant component (panel B) is almost 

constant until a transition point is reached – the so-called 

percolation threshold. Airports in the giant component (the 

largest set of airports through which propagation is possible) 

are thus strongly connected. It is necessary to delete 

approximately 80% of the causality links to really ‘disrupt’ the 

network (and prevent the propagation of delay). 

This is similarly reflected through the very slow falls in 

efficiency until the giant component is compromised. A1 

increases the efficiency reduction for the passenger network 

(Fig. 3, panel E): it is approximately 0.07 units below S0 at 

80% link deletion (a reduction of some 30%), whereas for the 

flight network (panel C) the two curves almost coincide by 

80%. For the passenger network, the information content is 

lower under A1 (panel F), indicating that some mesoscale 

structure is present (e.g. some modularity, or the presence of 

clusters of highly connected nodes). This somewhat more 

modular structure under A1 is better for the network, in that the 

propagation of delay is thereby reduced. We may broadly 

conclude as follows. The S0 and A1 networks are 

fundamentally similar in structure. The modest topological 

differences observed, however, are greater for the passenger 

networks, reflecting the quantitative cost savings under A1, as 

was shown in Fig. 2. 

D. Targeted attack 

The preceding analyses may be interpreted as 

uncoordinated attempts to reduce delay propagation, e.g. 

through unilateral airline action. Let us now consider, in 

contrast, the potential for coordinated, centralised action 

through the network manager, e.g. enabled through both new 

regulatory measures and new analytical tools to require certain 

stakeholders to take amelioratory action. This has been 

extensively studied in complex networks, for example when a 

communication network is subject to ‘targeted’ attack by an 

informed attacker. A large body of theoretical results is thus 

available, indicating that certain network structures are most 

vulnerable to specific strategies [47, 48]. (Such an approach 

has also been successfully applied in other scientific fields, 

such as the evaluation of the robustness of the brain to different 

lesions [49].) 

Here we report the results of disrupting the causality 

networks using different types of attack. First, we suppose that 

(generic) resources are fully allocated to the most connected 

airport, i.e. the airport with the highest degree, such that all the 

causal connections of that airport with other nodes are severed 

(see Fig. 4, panel A, for the passenger network; similar flight 

network plot not shown). Second, a greedy algorithm [50] is 

applied to airports: all airports, one at a time, are disconnected 

from the network, in order to establish the one whose 

‘removal’ yields the largest propagation improvement for the 

whole network (see Fig. 4, panel B, for the passenger network; 

similar flight network plot not shown). Finally, a third attack 

involves applying a greedy algorithm to single 

links/connections (Fig. 4, panels C and D).  

  

Panel A: Node degree-based (pax). Panel B: Greedy algorithm (pax). 

  

Panel C: Greedy algorithm (flights). Panel D: Greedy algorithm (pax). 

Figure 4.  Targeted network attacks. 

The reductions in capacity for propagating delays are 

shown as a function of the number of nodes and links (airports 

and connections) improved.  

Some general conclusions can be drawn. The efficiency 

drop is always (at least somewhat) higher in the passenger 

networks when the A1 prioritisation scenario is applied. 

Furthermore, such a difference is especially notable when a 

link-based attack is performed: note also that the gradient of A1 

at lower link deletions is greater than for S0 (for both 

networks).  

This thus suggests that targeting certain specific links, i.e. 

assigning more resources to those flights that mitigate delay 

propagation, may yield important improvements in system 

performance. 

Table VII compares the reduction of the giant component 

size as a function of A1 operating alone (first data column) and 

for the link disruptions described above combined with A1, or 

purely on S0 (values shown as positive, rounded percentages, 

relative to S0 without disruption). A1 is thus hardly improved 

by a 20% random attack, whereas a 20% targeted link attack in 

coordination with A1 has a pronounced effect. 

TABLE VII.  GIANT COMPONENT REDUCTIONS BY MODELLED CONDITIONS 

 No 

disruption 

(A1 only) 

20% disruption of … 

Network 

… random 

links, A1 

… targeted 

links, S0 

… targeted 

links, A1 

Flights   9% 9% 13% 22% 

Pax 17% 18% 36% 57% 

  



VI. CONCLUSIONS AND FUTURE RESEARCH  

Building the first explicit passenger connectivity simulation 

of the European air transport network, we have shown that 

passenger-centric metrics, including appropriate network and 

cost considerations, are necessary complements to existing 

flight-centric metrics in order to fully evaluate system 

performance. Applying complexity science techniques, with 

appropriate corresponding metrics, has afforded additional 

insights into the propagation of delay through the ATM 

network. The socio-political, regulatory and technical contexts 

of European ATM, and of the state of the art regarding current 

modelling, suggests that there is a role for the continued 

development of tools to explore the impacts of flight and 

passenger prioritisation strategies. Building on the POEM 

model’s flexibility, we plan to implement higher fidelity en-

route behaviour and ATFM modelling functionalities, and to 

use the tool to explore: future market trends (such as traffic 

levels, aircraft size, load factors, service frequencies and hub 

wave structures); robustness under disruption (including 

integration with Airport Collaborative Decision Making, A-

CDM); and, the trade-offs between various prioritisation and 

(policy) strategies. The model may be further used by 

policymakers to better assess the full impacts of future policies 

(for example changes to Regulation 261 in Europe). It could 

also be readily adapted to include impacts on emissions. These 

factors may be examined not only at the network level, but also 

for airline route clusters and airports. 

These types of analyses may help to justify the principle, 

and support the practice, of the future development of 

passenger-centric metrics. A number of examples have been 

demonstrated above. The development of such metrics may be 

considered in the context of other proposals and investigations. 

A new consumer protection metric, expected value of 

passenger trip delay, has been proposed [51] to account for: (i) 

passenger delays caused by delayed/cancelled flights; and (ii) 

both the probability of passenger trip delay and the magnitude 

of the delay. A passenger trip (gate arrival) delay metric is 

discussed in [20] and [52]. This captures passenger delays due 

to delayed flights, plus reaccommodation delays due to 

cancellations and missed connections. Three primary metrics 

are proposed in [33] to capture passenger trip reliability: annual 

total passenger trip delay, percentage of passengers disrupted 

(due to delayed/cancelled/diverted flights or missed 

connections) and average trip delay for disrupted passengers 

(expected trip delay experienced by randomly sampled 

passengers). The timing is opportune to further evaluate such 

needs in the context of on-going regulatory reform in Europe 

and of the SES Performance Scheme. 

European flight and passenger prioritisation scenarios also 

need to be considered in the context of the SESAR Concept of 

Operations. Key components thereof are Demand and Capacity 

Balancing (DCB) and the User Driven Prioritisation Process 

(UDPP). UDPP is a CDM-based process carried out for DCB 

purposes, which allows airlines to request a priority order for 

flights affected by capacity restrictions. The desired priority 

order is that which “best respects the business interests” [53] of 

the airspace users. Already aligned with A-CDM 

implementation plans, UDPP is thus a perfect vehicle for the 

inclusion of cost- (and passenger-) focused prioritisation 

mechanisms, e.g. through implicit airline cost functions. 

It is our contention that there are strong synergies to be 

exploited through the examination of ATM system 

performance through a complementary application of both 

classical and complexity science techniques. Established 

methods in other fields, such as percolation theory and network 

vulnerability, are starting to afford valuable new insights into 

the dynamics of ATM performance in general and delay 

propagation in particular. Combined, these techniques may 

open new avenues of development towards better disruption 

management strategies and improved policies. 
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