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Abstract—Air traffic control uses Arrival Managers (AMANs) to 
schedule an inbound stream of aircraft. As these systems use 
predicted arrival times to optimize the planning for capacity and 
flight efficiency, the accuracy of these predictions is an important 
parameter in arrival planning. While prediction capabilities have 
improved, and are likely to improve more, it is unlikely that 
prediction error will disappear altogether. Especially in future 
scenarios with longer planning horizons, techniques will have to 
be found to support planning in the presence of prediction 
uncertainty. To enable working with uncertainty on a predicted 
arrival time, that uncertainty needs to be predicted itself. This 
paper proposes and tests a method to predict arrival time 
uncertainty based on historic prediction accuracy using currently 
available arrival time estimates. 

Keywords- Air Traffic Control, Arrival Manager, Arrival Time 
Uncertainty, Queue Management, Trajectory Prediction 

I. INTRODUCTION 
Many Air Navigation Service Providers (ANSPs) 

nowadays use AMANs to plan the arrival times of inbound 
aircraft and thereby balance the demand to the available 
capacity. These systems provide support to the sequence 
manager (US: Traffic Management Coordinator) in deciding 
how to best modify the arrival time of inbound aircraft when 
these are predicted to arrive with too little spacing between 
them. When aircraft are assumed to fly the optimal trajectory 
from an Airspace User (AU)’s perspective, deviations in the 
4D path from these trajectories should be kept to a minimum. 
However when deviations are required, earlier decisions allow 
for smaller deviations, which increases flight efficiency. For 
example, a smaller speed increase over a longer flight time is 
more fuel efficient than a larger speed increase over a shorter 
time, while achieving the same difference in time.  

Currently, the horizons at which AMAN are used to 
monitor and influence traffic are limited by three factors: 

1) the availability of information on the predicted arrival 
time of aircraft, for example the limit of radar surveillance, 

2) the authority to influence the aircraft, for example 
beyond the boundaries of Flight Information Regions (FIRs), 
and, 

3) the reliability of the predicted arrival times. 

These factors currently limit the use of AMAN to a horizon 
of typically 20 to 30 minutes (or 150-200 NM) [1]. Future 
operational concepts, such as those proposed in Single 
European Sky ATM Research (SESAR) and Next Generation 
Air Traffic Management System (NextGen) foresee an increase 
in the planning horizon to increase the long-term efficiency and 
predictability of operations. Depending on the concept, the 
future horizons are expected to be at 200-500 NM, or about 2 
hours of flying time [2], [3]. To achieve these increases, the 
three limitations on the current AMAN horizon need to be 
overcome. 

The first two of these constraints are being addressed in 
current developments: System Wide Information Management 
(SWIM) is foreseen to enable continuous sharing of all relevant 
information concerning a flight between all involved actors [4], 
[5]. And, through SWIM, different ANSPs are expected to be 
able to share their requirements on a trajectory (such as an 
arrival time planned by AMAN) as well as their capabilities to 
provide for such requirements. While these developments 
resolve the first two limitations on the planning horizon, the 
third problem – prediction uncertainty – is expected to reduce, 
but is unlikely to disappear altogether. Since uncertainty is not 
expected to be eliminated, increasing the AMAN horizon will 
require ways to perform arrival planning in the presence of 
uncertainty. 

Any such process that make the uncertainty part of the 
decision making process will require a sufficiently accurate 
estimate of that uncertainty. This paper will propose a method 
to predict the uncertainty on an Estimated Time of Arrival 
(ETA) based on readily available information on flight 
progress.  

The next section discusses current methods to predict 
uncertainty. Section III will then analyse the prediction errors 
in Eurocontrol’s Flight Update Message (FUM) messages that 
ANSPs currently use to report flight progress. This analyses 
will use flight data for Amsterdam Aircraft Schiphol (AAS) in 
2013. Based on the analysis, and the different modelling 
techniques, Section IV will then describe a method to predict 
uncertainty by estimating distributions using historic data. The 
method is validated in Section V. Finally, Section VI will 
discuss the results of this validation and the applicability of the 
method to other airports and to other data sources.  



II. A REVIEW ON MODELLING ARRIVAL TIME UNCERTAINTY 
The accuracy of arrival time predictions strongly depends 

on the remaining time to arrival. The foreseen arrival 
management process starts at 2 hours before landing, and 
continues up to typically 10 minutes before landing when 
tactical Air Traffic Control (ATC) takes over. Research on 
prediction accuracy has been performed for both strategic flow 
management as well as tactical Medium Term Conflict 
Detection (MTCD). From this research, the different causes of 
prediction error and their relative effect on the prediction 
uncertainty with respect to the horizon may be described. 

A. Prediction Accuracy 
Current operational prediction capabilities depends strongly 

on the phase of flight. Typical standard deviations for airborne 
flights are 30 seconds at 20 minutes before an arrival point 
when airborne, e.g., Flight Management System (FMS) 
predictions as analysed by Bronsvoort [6]. These standard 
deviations increase to 15 minutes when the aircraft is still on 
the ground, e.g., the departure accuracies of several airports in 
the US found by Mueller and Chatterji [7]. 

Prior research on prediction of uncertainty in the Air 
Traffic Management (ATM) domain typically focuses on short 
horizons (i.e., 20 minutes) for tactical tools, or very long 
horizons (i.e., multiple hours) for flow management and 
strategic purposes [8]–[11]. For AMAN, a continuous 
prediction will be required that provides an estimate of the 
uncertainty in arrival time, starting at a horizon of two hours 
until shortly before landing. 

At short horizons, the aircraft is airborne, and its current, 
up-to-date, state is available through surveillance such as radar 
and Automatic Dependent Surveillance-Broadcast (ADS-B). A 
study of FMS prediction, shows a typical standard deviation of 
60 seconds at 30 minutes before arrival, and 120 seconds at 60 
minutes to arrival [6]. Ground based prediction systems are 
likely to have less information on the actual state of the 

aircraft, and therefore increase the potential for errors [12]. 
Similarly, however, the airborne system may be unaware of 
future ATC decisions that affect its trajectory. 

For European airports, many of their busiest connections lie 
within a 2 hour flight horizon. For example, the 20 busiest 
connections to Amsterdam Airport Schiphol are within this 
horizon (Fig. 1) [13]. When the prediction horizon is more than 
the flight time, the errors associated with taxiing, boarding, and 
the previous rotation of the aircraft are added to the set of 
disturbances. The proximity of departure airports makes flight 
status an important factor in determining prediction 
uncertainty. The effects of flight status on prediction error have 
been demonstrated by, for example,  research of Solveling  
[14], and Tobaruela [11]. 

Since a future system should provide support in continuous 
decision-making during the tactical phase, the uncertainty 
associated with an ETA needs to be updated continuously as 
well. This will require an approach that can be executed on-line 
during operation[14]. Concluding, a method of predicting 
uncertainty is required that allows for fast calculation while at 
the same time modelling the different uncertainties in the 
different phases of a flight. 

B. Predicting Uncertainty 
To predict the uncertainty for a particular flight, the 

iFACTS and CARE projects employ methods based on 
calculation using propagation of the uncertainty of the input 
components [8, 9]. This allows for a detailed, and fast 
prediction over the tactical horizon of approximately 20 
minutes. To use this approach in the AMAN context, the added 
sources of error at longer horizons would require knowledge on 
the uncertainty associated with those errors. This would both 
require a far more complicated algorithm, and elaborate 
research in all contributing components. At longer horizons, 
this would become impracticable. 

To support research into the effects of airspace changes, a 
monte-carlo approach has been developed that uses empirical 
information on the outcomes of predictions to model this 
uncertainty [15]. The authors suggest that such an approach 
could possibly be used in tactical operation given the 
availability of sufficient computing power but is currently 
unsuitable for real-time applications. 

It should be noted that, in both described techniques, the 
uncertainty is calculated for the 3D path as well as the flight 
time. Since AMAN is used to form an arrival planning based 
on the arrival time, only the flight time is of importance. At the 
same time, ANSPs nowadays receive regular updates on the 
ETA of a flight, both when on the ground as well as in the air. 
In future scenarios, this capability is expected to be expanded 
with the advent of SWIM and the Business Trajectory concept. 
The focus on arrival time only and the availability of ETA 
estimates provides a means to develop a method to predict 
uncertainty. 

C. Using Emperical Information 
Tobaruella et al. [11] used an experience-based approach to 

predict sector occupancy given predictor uncertainty. This  
Figure 1. The 20 busiest connections to Amsterdam Airport Schiphol in 

2013 according to [13]. The range rings indicate 400 and 800 NM 
distance, or 1 and 2 hours flight time, respectively.  



method estimated errors on ETFMS Flight Data (EFD) 
messages provided by the Network Manager Operations Centre 
(NMOC) using historical error patterns. Such a method directly 
relates prediction error to the actual information available on 
the flight and the properties of the prediction in particular. This 
will allow for an uncertainty predictor sensitive to all relevant 
aspects and fast enough for real-time application. If a 
distribution can be captured in a small set of parameters, a 
look-up table with those parameters, based on information in 
the arrival time prediction, may provide a fast way of 
predicting error distributions. 

The analysis in this paper is based on AAS. Since EFD data 
is only recently made available, Air Traffic Control the 
Netherlands (LVNL) currently does not have a large recording 
of such data, which precludes an analysis of prediction error. 
However, the key information that is provided in EFD 
messages is also available in FUMs. The FUM is a message 
that provides downstream ANSPs with information on the 
expected arrival time of a flight at its airspace boundary, 
therefore supporting planning [16]. These messages are 
currently provided by the NMOC over the Aeronautical Fixed 
Telecommunication Network (AFTN) and are therefore 
available. Through using this available information, the 
technique is readily applicable in current operations. 

The FUM is sent whenever one of three conditions occur: 
First of all, an update is provided three hours before predicted 
landing. Secondly, the NMOC monitors progress of the flight 
with respect to their own prediction, if the flight deviates more 
than 5 minutes, an update is broadcasted. Finally, updates are 
provided at important changes of the flight status, such as when 
the aircraft takes off [16].  

III. ANALYSIS OF FUM ESTIMATES 
In this research, all data for the year 2013 for AAS have 

been used. A full log of all received AFTN messages has been 
parsed and filtered for relevant messages on inbound flights. 
These messages were correlated to a flight based on the 
callsign, date of flight, departure airport, and arrival airport, 
and stored in a database. 

A. Filtering 
Initial filtering of the messages applied the following rules 

to reduce erroneous, or ambiguous data: 

• Messages should be formatted according to the 
standardized formats. 

• Messages should contain all elements required for 
association to a particular flight (callsign, departure 
date, origin, destination). 

• A flight plan message, containing essential information 
on the flight must have been received before any other 
messages on that flight are accepted. 

• Flights that have been cancelled or diverted are 
rejected. 

• Flights that have errors of more than 12 hours are 
removed, as analysis showed that these are mostly 
incorrectly correlated flights of the following day using 
the same callsign. 

• Five days with excessive disruption (due to wind, fog, 
or industrial action) where removed as the planning 
process is altered to accommodate the uncertainty on 
such days. These days were determined by comparing 
the mean and standard deviation of delay with respect 
to the scheduled arrival time to weather reports and 
posterior reports on disruptive events published by the 
NMOC [20]. 

The removal of accidentally duplicated flights removed 
9,707 flight records; Removal of disruptive events lead to a 
removal of 4,106 flights. For the remaining 195,759 flights, 
657,093 FUMs were received. The number of messages per 
flight varied around a median of 3 (Fig. 2). 

B. Determining Error Distributions 
To determine the prediction error for each message, the 

Estimated Landing Date and Time (ELDT) of the last received 
message of a flight was assumed as truth data for that flight. In 
all cases, these messages where termination messages with 
which the NMOC informs the ANSPs that the flight has been 
assumed as landed. This message is provided after a 
confirmation of arrival has been received from the destination 
airport, or 20 minutes after the ELDT [19]. In the first case, the 
actual landing time is known; in the second case, it is assumed 
to be equal to the last ELDT. Since the FUM is only updated 
when the prediction error is found to be larger than five 
minutes, the truth data have an inherent error potential of five 
minutes. 

Using the truth data, the prediction error for each message 
can be calculated. Subtracting the message timestamp from the 
landing time, each message can also be assigned the actual 
value for the remaining time before arrival. 

To determine the error distribution, the errors of 
comparable messages for different flights have to be grouped. 
In the available data, the following properties for a message are 
available and have been considered for grouping: 

 
Figure 2. Distributions of the number of messages per flight. 



• Flight callsign: Each flight may have particular 
objectives and therefore punctuality requirements. 
However, flights are only operated once a day at 
maximum, and would therefore provide a very low 
number of samples per group. 

• Flight operator: Similar to the callsign, punctuality 
requirements may depend on the AU’s business model. 
Again however, some operators only have one flight 
per day, and therefore a small sample set. 

• Flight status: The flight status indicator shows progress 
of the flight from filing the flightplan up to termination 
of the flight. Only the four most prevalent have been 
considered: When a flightplan is filed (indicated by the 
acronym FI), when the NMOC has applied a regulation 
and set a slot time (SI), when NMOC assumed the 
flight to have departed (i.e., the estimated departure 
time passed) (TA), and when the flight is reported 
airborne by ATC (AA). 

• Origin airport: Variation in airport operating 
procedures may well influence punctuality. More 
importantly, the origin airport determines length of the 
flight, and therefore whether an aircraft may still be on 
the ground within the horizon, thus generating the 
associated additional uncertainty. However, this would 
be a large subset for the most frequent connections 
only. Also, the flight status indicator provides similar 
information on the progress of the flight. 

• Date of flight: The date of the flight may account for 
seasonal disruptive weather effects, such as de-icing 
during winter for example.  

• Planned date and time of arrival: The arrival date 
provides a similar indicator as the departure date. The 
arrival time may show daily effects due to airport and 
airspace congestion. 

• Aircraft type: Different aircraft may be more flexible 
in achieving punctuality; similarly, modern flight 
systems may provide more support in punctuality. 
Again however, only a small number of types would 
generate most of the traffic. Other types would 
therefore have a small sample. 

• Remaining time before arrival: As already indicated, 
the prediction horizon is the most important parameter 
in prediction uncertainty. 

Selection of the criteria and the width of resolution for 
those criteria (bin width) is a compromise between detailing of 
the model and availability of data. Based on an initial analysis 
of the available information, the following grouping criteria 
were selected: Horizon (in bins of 10 minutes), flight status, 
and arrival time of day (in bins of 3 hours). 

C. Interpolating errors 
Fig. 3 shows a distribution of the messages over the 

(predicted and actual) remaining time to arrival. The graph 
shows how, toward the horizon, more and more airborne 
reports are provided and less messages with a flight status on 

the ground. The graphs also show the peak in updates at 3 
hours before expected arrival, which represents the publishing 
of the flight plan by NMOC. This peak is much more 
distributed when plotted against the actual time of arrival due 
to the prediction errors (compare Fig. 3a to Fig. 3b).  

The histograms indicate that the number of messages varies 
by prediction horizon. Since the NMOC only provides an 
update when the ETA deviates more than 5 minutes from the 
expected plan, accurately predicted flights are actually under-
reported. Determining the accuracy based on the messages at a 
certain horizon would overestimate the uncertainty, especially 

(a) Message count with respect to predicted time to fly  
 

 
(b) Message count with respect to actual time to fly 

 
Fig. 3. Distribution of messages and different flight 

statuses over the prediction horizon. The acronyms indicate 
the flight status: FI – Filed, SI – Slot Issued, TA – Assumed 

Departed, AA – Confirmed Airborne) 

 



at horizons close to arrival. To more accurately represent the 
more accurate flights, the errors need to be interpolated. 

When aircraft are airborne, it is likely that the error 
gradually reduces, as less deviation is possible in the smaller 
remaining flight time. However, a flight status change is a 
discrete event, and interpolation between these changes is not 
straight-forward. Delaying events on the ground are more 
likely to be discrete, such as for example a report of a missing 
passenger. 

In this work, the errors for reports of airborne flights are 
assumed to be decreasing over time, and are therefore linearly 
interpolated. Errors for messages with other flight statuses are 
assumed to be constant up to the next report. The following 
analysis is performed on the interpolated values. 

D. Prediction Accuracy 
Fig. 4 shows the accuracy of the messages versus actual 

remaining time to fly and flight status. In general, the 
predictions are biased toward delay. The bias is smallest for the 
predicted arrival time in the filed flightplan (FI) and 
particularly strong when the NMOC assumes the aircraft to 
have departed, but no radar-based report has been received 
(TA). Finally, when radar reports come in, the predicted time 
starts approaching the actual time. 

The small bias in the mean error of the flightplan suggests 
that AUs tend to try and achieve their scheduled arrival time 
even when departing later than scheduled. While this behaviour 
is seen at other airports, the effect may be exacerbated by the 
relatively high amount of transfer passengers at AAS, 
combined with the most prevalent AU (KLM) that operates a 
hub-and-spoke network from this airport. 

The spread of the prediction errors for the filed flightplans 
appears to be fairly constant, confirming that deviations mainly 
primarily depend on events occurring when the aircraft is on 
the ground. Such events do not depend on the time to fly and 
will therefore not affect the spread of the error with respect to 
the remaining time. In the other flight statuses, the spread 
decreases for smaller prediction horizon, with airborne reports 
showing considerably more precision than other predictions. 

Finally, the accuracy and precision at 20 minutes for the 
non-flying status (FI and SI) is far less than any prediction at 
larger horizons. These reports may come from local flights, 
which are cleared for departure in direct coordination with the 
arrival controller. More likely, they constitute flights for which 
no progress information was made available to the NMOC, or 
data were erroneous for other reasons. 

Fig. 4 provides the information with respect to the actual 
arrival time, which has been determined posterior. However, in 
the operational context, only predicted arrival time is available, 
any estimate of uncertainty will need to be determined on that 
predicted value. Fig. 5 provides the same information, but now 
plotted against the predicted arrival time. 

The first notable observation is the enlarged deviation of 
the non-airborne prediction just before arrival. Secondly, the 
decreasing spread seen in the SI, and TA status in Fig. 4 is less 
pronounced. Both are an effect of erroneous predictions being 

distributed over the prediction horizon (i.e., the error of a flight 
with a prediction error of 20 minutes at 40 minutes before 
actual landing is counted at 20 minutes before predicted 
landing). The graph shows that the remaining time to fly – by 
itself – provides very little information on prediction error. 

Air traffic during daytime is considerably more busy than 
during night time. During daytime demand for departure, en-
route and, at the arrival airport regularly reaches available 
capacity. Departure capacity limits cause delays at the 
departure airport, en-route, and arrival. Demand is balanced by 
applying restrictions through the NMOC. These delays affect 
the accuracy of the expected arrival time, in particular before 
departure. Fig. 6 shows this effect, as the spread of predictions 
for flights that have not been confirmed airborne (FI, SI, and 
TA) increases considerably for flights predicted to arrive 
during peak traffic. 

E. Shape of the Distributions 
Figs. 5 and 6 show the median and the spread of the data. 

However, due to the high number of data points, the exact 
shape of the distribution is not very clear. To better understand 
the effects of different flight parameters on the actual 
distribution, Figs. 7 and 8 plot the distributions of the errors as 
function of the different properties for a subset of these 
measurements. 

The precision of predictions, and therefore small spread for 
airborne flights (AA, seen Fig. 5) is confirmed in Fig. 7: The 
spread of the data is smaller than 20 minutes. For the other 
flight statuses, the spread is in the order of 1 hour. 

When not yet airborne, a skew towards delay (left) is 
visible. Explanation for this error lies in the fact that aircraft 
have a maximum speed, but more importantly, passenger and 
cargo considerations make it impractical to depart before the 
scheduled departure time. 

As the prediction horizon increases, the spread of the error 
for flights that are airborne (AA), or assumed to be airborne 
(TA), increases as well, as was visible in Figure 5. The error of 
the filed flightplan (FI) does not depend on the prediction 
horizon, except for very short horizons. Here a limited sample 
set of likely highly erroneous flights, give a false suggestion of 
inaccuracy. 

When compared to the scheduled time of arrival in Fig.8, 
the number of flightplans scheduled to arrive in the middle of 
the night with a flight time of less than 60 minutes is very 
small. The lack of data does not warrant analysis of non-
airborne flights within this group. The accuracy of the airborne 
flights at night is very high, most likely because low traffic 
levels allow flights to follow their filed route since ATC will 
not need to vector them to provided sufficient spacing. 

Especially during the morning peak, the error spreads 
considerably. Flights which are assumed to be airborne without 
a confirmation from an ANSP show an increased skew. 

IV. MODELLING DISTRIBUTIONS 
One way to develop a fast modelling technique is to make 

the model as simple as possible. For error distributions, such a 



simple model is a normal distribution. Figs. 7 and 8 show a 
normal distribution based on the data in each sample. The 
graphs show that the normal distribution only provides a 
reasonable fit for flights that have been confirmed to be 
airborne (The bottom row). 

The variety of different shapes in the distributions makes 
the versatile Johnson distribution a suitable candidate for the 
dataset [18]. This distribution actually consist of a flexible set 
of 4 distributions which in turn are transformations of the 
standard normal distribution. The resulting curve can describe 
any distribution regardless of mean, standard deviation, skew, 
or kurtosis. 

The Johnson-curves can be defined by five parameters. 
When those parameters have been estimated for different 
conditions, a hypothetical table-based system could be 
developed which provides these parameters as a function of the 
properties of a received prediction. Subsequently the 
distribution could be generated from the parameters. 

A. Fitting Data 
By applying the algorithm developed by Hill et. al. [19] a 

Johnson curve was fitted to each dataset with at least 100 
samples using moments [20]. For the available datasets, only 
the unbounded (SU) and bounded (SB) variants were fitted, 
with the unbounded variant being the larger majority. The 
fitted curves are shown in Figs. 7 and 8. The graphs show that 
the fitted distributions are close to the histograms of the 
dataset. 

Subsequently, the goodness-of-fit was measured using the 
Kolmogorov-Smirnov statistic (i.e., the maximum absolute 
difference between the Cumulative Density Functions (CDFs)). 
However, the Kolmogorov-Smirnov test assumes 
independence of the two distributions under consideration, 
which is clearly not true for the fitted distribution. While the 
test value serves as an indicator of goodness-of- fit, it cannot be 
compared to a critical value to test significance.  

To determine the significance level of the difference 
between the CDFs, the Kolmogorov-Smirnov statistic was 
determined by applying a bootstrap resample process. From 
each subset, a random sample of 1,000 points was selected with 
replacement. From this sample, the Kolmogorov-Smirnov 
statistic with respect to the CDF of the Johnson distribution 
was calculated. The process was then repeated 10000 times to 
determine the confidence interval for the statistic. Typically, 
the 95% confidence interval of the statistic reaches a maximum 
around 2.0 with 1.95 being the cut-off value to statistically 
reject the hypothesis that the distributions match at a 0.001 
confidence level. An exception is flight status AA at a 20 
minute horizon where the parameter can be up to 15. This is 
most likely due to the fact that the discretisation is relatively 
large compared to the width of the distribution. 

The statistical tests show that the fitted function is often 
statistically different from the dataset. However, the difference 
in the CDF, which is not multiplied by the square root of the 
number of sample points, will be in the order of 1%. Making 
decisions based on the CDF likely to be accurate. 

V. VALIDATION 
Since the Johnson distributions have algebraic equations for 

both the Probability Density Function (PDF) and the CDF, a 
look-up table with the parameters provides a fast way of 
calculating these distributions as needed. The suitability of the 
method then depends on the robustness of the fitting technique, 
and the effects of the discrete bins on the continuously 
changing distributions. 

To test the robustness of this technique, a process akin to 
the bootstrap process was applied in testing the goodness-of-fit 
of an estimated Johnson curve. A subsample of 4/5th of the 
dataset was selected at random and used to fit a Johnson-curve. 
Subsequently, goodness-of-fit was determined with respect to 
the complementary sub-sample. This process was repeated 50 
times to determine the confidence bounds for each subset of 
data. The (unscaled) Kolmogorov-Smirnov statistic varies 
between up to 0.02 for the FI and AA flight statuses, and 0.1 
for SI and TA . This shows that, while sampling has an effect, 
the effect on the CDF is unlikely to be large. 

If uncertainty is to be used in an on-line display, gradual 
changes are preferable to discrete changes. While the change of 
a flight status will always present a discrete change, the change 
of prediction horizon is a continuous process. A discrete 
change will occur at the transition of one horizon bin into the 
next. The selection of bin width for such continuous parameters 
then is a compromise between sufficient data points to generate 
an accurate distribution, and the magnitude of the step change 
of the shape of distribution at the bin transition. 

 

TABLE I.  WIDTH, AND CHANGE IN WIDTH, OF THE PDF AT BIN 
TRANSITION 

STA 
Horizon (min) 

60 50 40 30 20 

01:30-04:30 21 14 (-7) 12 (-2) 9 (-3) 8 (-1) 

04:30-07:30 21 19 (-2) 17 (-1) 16 (-3) 12 (-1) 

07:30-10:30 19 16 (-3) 15 (-1) 13 (-2) 12 (-1) 

10:30-13:30 17 15 (-2) 13 (-2) 12 (-1) 11 (-1) 

13:30-16:30 17 15 (-2) 13 (-2) 12 (-1) 11 (-1) 

16:30-19:30 19 17 (-2)  15 (-2) 14 (-1) 12 (-1) 

19:30-22:30 16 15 (-1) 13 (-1) 13 (0) 11 (-2) 

22:30-01:30 10 10 (0) 11 (1) 13 (2) 14 (1) 
value is width of 95% confidence interval 

In a proposed display, the main visual feature of uncertainty 
is the width of a flight’s arrival time PDF[21]. To investigate 
the effect of the transitions, the width of the 95% confidence 
interval is analysed in each transition. Table I provides the 
width of the PDF for a number of Scheduled Time of Arrival 
(STA). It also shows the change at each moment that the 
predicted time to fly crosses a horizon bin. 

At an interval of 10 minutes, the step size can be up to a 
third of its width (e.g. from 30 to 20 minutes in the first row). 



In a visual context, these would cause relatively large visual 
changes for an otherwise continuous process. 

VI. DISCUSSION 
A method of predicting arrival time uncertainty using 

available estimates is demonstrated in this paper. However, the 
use of FUMs implies that prediction errors included in those 
messages are inherited by the proposed method. Two of the 
most important error sources are the influence of the arrival 
airspace, and the effective resolution of the estimate.  

Since the reported landing time was taken as the truth data, 
any difference between the assumed arrival route and the actual 
route will result in a prediction error. In predicting, the NMOC 
assumes that the aircraft follow published approach routes. At 
AAS, aircraft follow these published routes only during night 
time. During day time, Air Traffic Controllers (ATCOs) will 
direct the traffic. The resulting uncertainty in landing time is 
not meaningful in the context of AMAN as the controllers, 
amongst others, will use AMAN as an input in directing the 
traffic. Future concepts may address this inaccuracy by 
comparing times over particular waypoints. 

Since NMOC provides an update only when the actual 
progress of the aircraft deviates more than five minutes from 
the prediction, errors below this limit are not taken into 
account, and are therefore not presented in the data. This 
problem is partially addressed by the interpolation, thus 
generating sampled errors of the accurate predictions between 
the first prediction and the arrival. 

A. Other airspaces 
Since the data demonstrate that departure uncertainty is the 

primary cause of uncertainty on the arrival time, both the 
airline departure accuracy, and the delays at airports generate 
the larger part of the uncertainty. These two factors account for 
20-40% and 5-10% of arrival time deviation respectively, and 
depend on the airline and the origin airport [17]. This effect is 
exacerbated through reactionary delay, which is the delay 
caused by the delay of the inbound aircraft or inbound transfer 
passengers. These will cause airlines with numerous rotations 
between two airports, or with large numbers of connecting 
passengers, to have extra arrival time uncertainty. The arrival 
time accuracy of the flights are therefore strongly dependent on 
the city pairs and thus the arrival airports. Therefore, a model 
estimated for one airport will not necessarily be applicable to 
another airport, and will require an estimate for each particular 
case. 

B. Other data sources 
The FUM was selected since it is currently available and 

recorded at LVNL. Secondly, only the three most common 
flight statuses in those messages were used. The NMOC 
currently provides a more detailed report in the form of the 
EFD message. This message uses the same data source, and is 
provided under the same conditions. However, the message 
provides more detailed routing information, and therefore more 
possible truth data to determine the prediction error. 

Collaborative Decision Making (CDM) provides more 
details on the progress of the flight toward take-off. Since the 
data show high uncertainty mainly on departure, inclusion of 
CDM information might allow to receive more detailed flight 
states. Unfortunately, the number of origin airports that provide 
CDM information was too low to provide sufficient data for 
this research.  

C. Bin selection 
The parameters of interest, and their respective bin widths 

were based on the amount of available data points. The current 
selection of properties was based on an initial analysis, 
combined with the likelihood that those properties would have 
an influence. Section III describes a further set of parameters 
that may be selected. The potential list of properties, as given 
in Section III provides further options for investigation. For 
example, it may be worthwhile to distinguish between 
departure airports by separating flights from the most common 
airports, and grouping the remainder together. This would 
enable modelling of the uncertainties due to specifics at those 
departure airports. Further detailing can come from information 
available in other predictions, such as CDM messages or EFD. 

For simplicity, bin sizes were selected at regular intervals. 
Section V describes these bin widths and shows that the 
transition of a bin limit can joined by a relatively large 
reduction of the width of the PDF. Especially in visual 
presentation, such instability may be an issue in acceptance by 
ATCOs. To reduce this problem, the size of bins may well be 
adjusted based on the other criteria. For example, uncertainty 
as a function of STAs is likely to be more variable during 
daytime then during night time, in particular for airports with 
wave-like traffic densities such as AAS. 

VII. CONCLUSION 
This paper presents a method for predicting uncertainty in 

arrival time at longer horizons using readily available data at 
AAS. By fitting Johnson curves to errors derived from FUMs, 
a model is generated that is able to more precisely describe the 
shape of the distribution, in particular skew and kurtosis of the 
uncertainty. By using the Johnson distribution from tabulated 
data based on a number of parameters on the received 
prediction, an error distribution can be calculated fast and is 
therefore suitable for on-line applications such as displays for 
ATCOs. 
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Fig. 4. Accuracy of predictions versus remaining time to fly. Boxplots indicate quartiles, whiskers indicate extreme value within 1.5 IQR from 

the quartile. Due to the high amount of data points outliers do exist, but have been omitted from the graph for clarity. 
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Fig. 5. Accuracy of predictions versus predicted time to fly.  

 
Fig. 6. Accuracy of predictions versus the scheduled arrival time. 



 
 

Fig. 7. Distribution of predicted error (in minutes) as function of flight status and predicted time to arrival for flights scheduled to arrive between 10:30 and 
13:30. The annotation show the number of samples, the type of Johnson curve applied (SU for unbounded, SB for bounded) and the Kolmogorov-Smirnov test 

statistic scaled by the number of samples. 
 

 
 

Fig. 8. Distribution of predicted error as function of flight status and planned time of arrival at a prediction horizon of 60 minutes. 
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