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Abstract— Decision support capabilities that provide flight-

specific reroutes around constraints can enable more flexible and 

agile management of the airspace. For this benefit to be realized, 

automation must reliably provide operationally-acceptable 

alternatives to traffic managers. This paper proposes an approach 

for generating a small number of diverse, feasible solutions for 

further evaluation by traffic managers. Using a variation on 

Dijkstra’s shortest path algorithm, reroutes are designed for one 

or more flights, where multi-flight problems promote the active 

design of reroute flows. A multi-objective genetic algorithm is 

employed to evaluate trade-offs between multiple criteria of 

operational acceptability, removing the need to pre-define relative 

metric weightings. Finally, a combination of Principal 

Components Analysis and Spectral Clustering is used to identify 

distinct groups of solutions and representative reroutes that 

capture different trade-offs between metrics of operational 

acceptability.  Results are generated for a historical convective 

weather event and evaluated for their characterization of the 

trade-space. 

Keywords- Traffic flow management; decision support; 
dynamic rerouting; weather avoidance 

I.  INTRODUCTION 

In today’s operation, if a flight’s route is blocked by 
convective weather or other severe constraints, a traffic manager 
must manually identify, coordinate, and communicate an 
alternate route. Developing individualized solutions is time-
consuming; if a high number of flights are expected to be 
impacted, large-scale traffic management actions (e.g., airspace 
flow restrictions, adherence to published routes, etc.) are issued 
instead. To capture all targeted flights, these large-scale actions 
must be issued well in advance of the predicted constraints. 
Given the uncertainty in both traffic and constraint forecasts, 
these restrictions may ineffectually or even unnecessarily impact 
flights. To make the best use of available capacity, a more 
dynamic and agile traffic management response is needed. 

Decision support capabilities that reliably provide traffic 
managers with viable alternatives can attain the benefits sought. 
Reliability is key for successful deployment – traffic managers 
must trust that the automation will identify alternatives for most, 
if not all flights. Furthermore, these alternatives must be 
operationally acceptable, providing traffic managers with real 
options. However, as automation may not fully capture the 
operational environment, returning multiple, distinct solutions 
increases the likelihood that at least one option is viable.  

The challenge is that operational acceptability is determined 
by numerous factors which are often difficult to express and vary 

based on the overall environment. Published routes are pre-
coordinated to ensure their acceptability; however, these routes 
provide few options for avoiding large-scale constraints. Given 
the dynamic nature of the constraints, research has focused on 
generating larger option spaces, trading increased reliability of 
returning a solution for potential loss in operational acceptability 
of the solution.  

Route-based approaches extend the option space to include 
historically-flown routes, as these solutions are more likely to be 
operationally acceptable and are fast to construct and evaluate. 
However, the challenge of finding constraint-free solutions 
using this approach persists [1]. Extending the option space to 
include alternatives constructed by modifying established routes 
can work well within restricted airspaces, such as the terminal 
area [2, 3], but these are not readily extensible to all airports or 
airborne flights.  

In contrast, “free space” approaches provide the greatest 
degree of flexibility as they are not constrained to conform to 
airspace structures (i.e., fixes, waypoints, routes). Generally, 
approaches in this category overlay a grid of nodes with 
connections defined between adjacent points.  Weather or other 
airspace constraints can be captured by removing affected nodes 
or penalizing impacted arcs [4]. One advantage of these 
approaches is that efficient graph-based optimization algorithms 
(e.g., Dijkstra’s Shortest Path (DSP) Algorithm [5]) can be used 
to generate the least-cost reroute, where factors other than 
distance can be used to compute arc costs [6, 7]. However, 
graph-based optimization approaches are limited to direct 
evaluation of arc costs; path-dependent evaluation criteria must 
be measured post-optimization. Iterative post-optimization of 
shortest path reroutes can improve the viability of these reroutes 
[8].  

An intermediate approach proposed in our previous work [9] 
defines a network constructed from historically-flown fix-pair 
segments.  The network creation was inspired by terrestrial 
routing research [10], where any existing roadway can be 
considered as a possible segment of a reroute. Extending this 
concept to air traffic rerouting implies that any previously-flown 
segment can be included in a reroute, even if it is not normally 
used by traffic travelling between the origin and destination pair 
of the flight.  

Formal optimization approaches can be applied to these 
networks, but enhancements are required to increase the 
operational acceptability of the reroutes generated.  In Reference 
[9], a K-shortest path algorithm is used to generate multiple (top 
K) paths through the network. Returning multiple paths 
overcomes the limitations associated with generating only a 
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single option, as the reroute is constructed based on a limited set 
of criteria.  However, we found only modest improvements were 
realized as there was little variation among the reroutes returned.  

This paper builds upon previous research, employing a 
combination of algorithms that can generate a small number of 
distinct, operationally-acceptable solutions. The solution 
process begins with a Problem Set, a group of flights which are 
encountering a common constraint (typically weather) and 
should logically be considered for coordinated rerouting.  Using 
a variant of DSP, termed DSP-M, a larger and more diverse set 
of candidate reroutes are generated for each flight from the fix-
pair segment network. Advisory Sets, which define the 
coordinated set of reroutes for the multi-flight problem, are 
constructed using a Multi-Objective Genetic Algorithm 
(MOGA). 

The MOGA evaluates each Advisory Set against a number 
of metrics which characterize different aspects of operational 
acceptability.  The MOGA returns the trade-space of good 
solutions without requiring that the relative importance of each 
metric be pre-specified. A combination of Principal Components 
Analysis (PCA) and clustering reduces the number of Advisory 
Sets while maintaining the desired diversity.  Figure 1 depicts 
the proposed solution approach. 

This paper begins with a brief overview of the operational-
acceptability metrics that define the solution trade-space. 
Section III describes the process of generating flight-specific 
reroutes using DSP-M and the coordinated reroute Advisory 
Sets using MOGA. Section IV introduces PCA and discusses 
how the principal components can be used to identify a reduced 
number of diverse Advisory Sets. 

Section V illustrates the proposed approach using a historical 
convective weather example involving nine (9) flights.  The 
analysis shows that first, DSP-M can reliably generate reroutes 
for tactical constraint avoidance and that PCA can capture 
critical trade-offs within a multi-metric space.  The reroutes 
corresponding to three selected Advisory Sets are visualized, 
highlighting the ability to naturally identify coordinated reroute 
flows for multi-flight problem. This section finishes with a 
discussion on the extensibility of the approach and continuing 
work.  Section VI summarizes the contributions of the paper. 

II. EVALUATING OPERATIONAL ACCEPTABILITY 

The operational acceptability of a reroute is determined by a 
number of factors, where the relative importance of each factor 
may vary based on the current operational environment. 
Drawing on previous work, this paper evaluates reroutes based 
on ten metrics, which are grouped into five categories for 
convenience. The metrics are outlined qualitatively here due to 
space limitations, but full detail can be found in the references 
[1, 9, 11, 12]. We readily acknowledge that the metrics 
considered are by no means exhaustive, but posit that the 
groupings characterize the set of important considerations and 
trade-offs and as such, the value of the proposed approach can 
be demonstrated regardless of the specific metric calculations 
used.   

A. Measures of Design Acceptability 

Design acceptability metrics characterize the geometric 
properties of the route with respect to airspace geometry and 
nominal operating procedures. In this paper, we define two 
metrics to characterize design acceptability; distance and flow 
conformance.  

The distance metric penalizes the additional distance added 
by a reroute, as compared to the original route, and rewards 
reductions.  The penalty/reward is proportional to the original 
route’s distance but a higher penalty is assessed for active flights 
(within 20 minutes of departure or airborne) regardless of an 
increase or decrease in distance as the flight has already been 
fueled.  

Flow conformance calculates the relative (directional) usage 
of route segments, and is weighted by the normalized segment 
length. This enables reroutes to briefly use non-traditional 
segments for constraint avoidance, yet still captures the 
preference for routing in alignment with nominal airspace 
operations.   

B. Measures of Management Acceptability 
Metrics of management acceptability capture challenges 

associated with issuing a reroute.  In this paper, we define three 
metrics of management acceptability: coordination, return to 
original route, number of segments. 

The coordination metric penalizes reroutes that transit 
through different facilities (as compared to the original route) as 
these reroutes require traffic managers to obtain approval prior 
to rerouting the flight. Similarly, if a reroute doesn’t return to the 
original route prior to arrival at the destination airport, additional 
coordination is required to ensure conformance with the airport’s 
arrival configuration. The final metric, number of segments, 
penalizes reroutes that are overly complex in that they have an 
excessive number of maneuvers and are therefore more difficult 
to coordinate and execute. 

 

Figure 1.  Flow Diagram of Proposed Approach 

 



C. Measures of Constraint Avoidance 
En route constraints arise when there is a reduction or loss in 

airspace capacity. Frequently, convective weather is the driving 
constraint for a reroute; however, flights planning to fly through 
congested sectors or restricted airspace regions may necessitate 
that a reroute be issued. 

As weather and the associated forecast uncertainty is the 
most frequent constraint, we define two metrics:  route blockage 
and blockage probability. The route blockage metric penalizes 
reroutes that intersect predicted weather areas with discounted 
penalties for incursions further in the future, to account for 
forecast uncertainty.  

Blockage probability, on the other hand, measures the 
relative likelihood of constraint incursions as compared to the 
original route. The goal of this metric is to encourage reroutes 
that reduce the likelihood of using constrained areas, even if the 
existence or severity of the constraints is uncertain. We note that 
the blockage probability metric can be readily extended to 
capture predicted interactions with non-weather constraints. 

The final metric in this category measures whether a reroute 
increases or decreases overall sector congestion, as compared to 
the original route, where increases are penalized and decreases 
are rewarded. Closed sectors can be viewed as having no 
capacity and reroutes using this airspace can be penalized or 
even removed from consideration. 

D. Metrics of Flight Operator Acceptability 
Flight Operator acceptability metrics represent typical 

considerations of airline operators when assessing the impact of 
a reroute. The airline schedule disruption metric captures the 
non-linear impact that delay can have on an airline’s operation.  
Although individual flight operators have different operational 
plans, it is reasonable to assume that longer delays have a more 
significant impact. Similarly, the impact on the schedule 
depends on the flight’s departure time, where delays incurred 
earlier in the day are likely to disrupt the schedule more than 
those incurred in the evening. 

E. Flights in Flow Metric 

The final metric, flights in flow, is distinguished from the 
above metrics as it applies to the coordination between reroutes 
within the Advisory Set. Generating flights with common 
consecutive segments is valuable to traffic managers as it 
reduces the coordination effort required for rerouting subsequent 
flights. In addition, generating reroute flows creates structure in 
the airspace, a benefit when operating in an off-nominal 
environment. 

This paper proposes the flights in flow metric to reward 
Advisory Sets which contain reroutes that share consecutive 
common segments.  Note that no artificial constraints are 
imposed – the algorithm does not specify which flights will form 
flows nor does it constrain where flows begin and end.  Instead, 
the metric computes the Longest Common Segment (LCS) 
between each pair of reroutes in the Advisory Set. The LCS does 
not measure physical distance, as we are interested routes that 
use the exact same segments, as opposed to nearby routes; 
instead it calculates the number of consecutive shared fixes 
between two path. The LCS is the length of the longest sequence. 

Recall that candidate reroutes are generated for each flight 
using the DSP-M algorithm.  For a given flight f, we define the 
candidate reroute transiting through the specified intermediate 

node 𝑚 as 𝑝̂𝑚
𝑓

. If we define 𝐿𝑓𝑖,𝑓𝑗  to be the LCS between 𝑝̂𝑚
𝑓𝑖

 

and 𝑝̂𝑚̅
𝑓𝑗

, then the similarity of the Advisory Set is defined as 

𝐿 =  ∑ ∑ 𝐿𝑓𝑖,𝑓𝑗

𝑖𝑗≠𝑖

∀𝑖, 𝑗 ∈ 𝑭 1 

The where 𝑭 refers to the set of flights defined in the Problem 

Set. Note, the notation  𝑚̅  in 𝑝̂𝑚̅
𝑓𝑗

 simply implies that the 

intermediate node m need not be the same as in 𝑝̂𝑚
𝑓𝑖

. 

F. Evaluating Reroute Acceptability 
A common approach for evaluating a solution against 

multiple metrics is to compute the weighted sum, resulting in a 
single measure of reroute acceptability. This approach requires 
the set of weights, which capture the relative importance of each 
metric in the overall decision, be pre-specified.  These pre-
specified weights would need to be validated for such an 
approach to be used within real operations. 

The alternate approach proposed in this paper is to compute 
the Pareto Set of solutions. The Pareto set is defined as the set of 
non-dominated solutions, where one solution is said to 

‘dominate’ another if at least one of the metrics is better than the 
corresponding metric from a second solution, and if none of the 
other metrics is worse than those of the second solution. Put 
another way, the Pareto set includes all the “best” solutions, in 
that any solution not in the Pareto set is inferior to any solution 
in the set. 

Figure 2 depicts a simple example of a Pareto Set, 
representing the trade-off between metric A and metric B. Note 
that in this example, we seek to minimize metric A but maximize 
metric B. The “Utopia Point” (which is hypothetical and not a 
potential solution) refers to the desired performance direction, 
namely lowest values of metric A and highest values of metric 
B. Viewing Figure 1, the four solutions in the Pareto Set are 
represented as colored circles while the other dominated 
solutions are shown as smaller, un-filled circles. 

This section defined 10 metrics, each of which will create a 
dimension in the Pareto Set.  The first nine metrics defined in 
Sections II.A-II.D can be evaluated against a flight’s individual 
reroute, where the goal is to minimize the value returned.  The 
Pareto Set evaluates the total score for each of these metrics 

 

Figure 2.  Description of Pareto Front 

 



across all solutions in the Advisory Set.  The corresponding 
Advisory Set score for each metric is the sum of the scores for 
the individual flight reroutes.  Again, the goal is to minimize 
these values. The final metric, flights in flow, is evaluated for 
the entire Advisory Set.  For this metric, we seek solutions that 
maximize value. 

III. GENERATING CANDIDATE ADVISORY SETS 

This section describes the approach for generating reroutes 
and subsequent Advisory Sets that provide a small number of 
diverse solutions for further evaluation by traffic managers.  
First, reroute candidates are defined for each flight using a 
variation of the DSP algorithm.  The MOGA evaluates how 
combinations of these reroutes produce Advisory Sets that 
characterize useful trade-offs between the multiple metrics 
generated.  For example, one set might produce the lowest 
additional flying time across flights, while another would group 
most of the flights along a common route segment to promote 
operational acceptability. 

A. Network Optimization 

The first step in the proposed approach generates a candidate 
pool of reroutes for each flight. The flights are generated as paths 
through a network constructed from fix-pairs [9].  This section 
briefly describes the steps required to create the network and 
generate flight-specific reroutes using the DSP-M algorithm. 

1) Constructing the Network 
The original route of flight 𝑓 is deconstructed into the route 

string – the set of fixes from the current position to the 

destination airport.  The deviation point, 𝑑𝑒𝑣𝑓, is the first fix on 
the original route from which the reroute can diverge and will 
correspond to the departure airport if the flight is not yet active. 

Similarly, the rejoin point, 𝑟𝑒𝑗𝑓 , is the final fix on the original 
route at which the reroute can reconnect, nominally at the 
destination airport. 

Using the method proposed in [9], the geographic boundary 
of the network is calculated as an ellipse encompassing the 
original route between the deviation and rejoin points. The 

reroute network for flight 𝑓, denoted as 𝑵𝒇 , is defined as the 
subset of fix-pair segments drawn from a database of 
historically-flown reroutes (denoted as FF) contained within the 
ellipse.  The fix-pair segments or arcs are defined as 

𝑨𝒇 = {𝑎𝑖𝑗}      𝑠. 𝑡. 𝑖, 𝑗 ∈ 𝑵𝒇, 𝑖, 𝑗 ∈ 𝐹𝐹. 2 

The original route is included in the network to ensure 
connectivity and provide increased flexibility for diverging from 
and reconnecting to the original route. 

2) Measuring Costs in a Network 

Each arc in the network 𝑨𝒇  has an assigned cost 𝑐𝑖𝑗
𝑓

≥ 0, 

which may be different for each flight using arc 𝑎𝑖𝑗 . The arc cost 

can represent a weighted sum of multiple measures; however, all 
measures must be defined solely based on the arc and not the 
path that may include the arc (as many different paths can 
contain the same arc in a different sequence). Based on previous 
analyses, we define three arc cost measures:  normalized great-
circle distance, flow conformance and weather avoidance [9], 
which are assumed to be weighted equally in the computation of 
arc costs.  

3) Generating Reroute Candidates 

The candidate set of reroutes for each flight is generated 
using a variation of the DSP algorithm, referred to here as DSP-
M, where the “M” represents the inclusion of a specified 
intermediate node through which the shortest path is constrained 
to pass. Although DSP-M does not generate shortest paths, it 
produces a more diverse set of candidates, potentially resulting 
in solutions with higher operational acceptability. 

For every flight f, the sub-network 𝑴𝒇 ⊆  𝑵𝒇; however, for 
computational efficiency, it is beneficial to further constrain this 
relationship.  To encourage reroute flows within the multi-flight 

context, the selection of 𝑴𝒇 can be constrained to identify nodes 
common to multiple networks. As such, we define that for every 

node 𝑚 ∈ 𝑴𝒇 there exists some pre-specified number of flight-

specific networks such that 𝑵𝒇 ∋ 𝑚.  
DSP-M generates candidate reroutes using the following 

approach.  Given a node 𝑚 ∈ 𝑴𝒇, the shortest path from 𝑑𝑒𝑣𝑓to 
𝑚 is computed using DSP. DSP also computes the shortest path 

from 𝑚  to 𝑟𝑒𝑗𝑓 . The two paths are concatenated and the 
repetitive 𝑚 is removed. The process repeats until all nodes 𝑚 ∈
𝑴𝒇 have been evaluated. 

B. Multi-Objective Genetic Algorithm 

Each flight can have as many as |𝑴𝒇|  paths, potentially 

resulting in ∏  |𝑴𝒇|𝑓  unique Advisory Sets. Given the 

exponential growth of the design space, enumeration of all 
possible sets is prohibitive. Instead, a MOGA is employed to 
conduct an intelligent search and identify optimal trade-offs 
between the operational acceptability metrics. 

1) Algorithm Overview 
A Genetic Algorithm (GA) is a heuristic optimization 

approach that emulates biological evolution [13]. Each 
individual or chromosome corresponds to a candidate Advisory 
Set and the genes in the chromosome specify which DSP-M 
generated reroute is selected for each flight.  The fitness of each 
individual (Advisory Set) is calculated using the operational 
acceptability metrics described in Section II.  For the first nine 
metrics, the MOGA computes the sum of each metric as 
evaluated against the individual reroutes specified in the 
chromosome. The final metric, flights in flow, is evaluated using 
the definition provided in Section II.E.  

Based on their individual fitness, pairs of individuals are 
selected to populate the successive generation. A pair of ‘parent’ 
solutions swap portions of their chromosomes (i.e. sections of 
their design vectors) via a ‘cross-over’ operation to generate 
‘offspring’ for the subsequent generation. The GA introduces 
random changes to individual genes (single parameter values) 
during a ‘mutation’ operation to maintain parameter diversity 
and search the design space beyond local minima.  This process 
continues until the specified termination criteria is met, 
nominally a fixed number of generations. 

2) Creating the Pareto Set 
For multi-objective genetic algorithms—which evaluate 

multiple criteria to define the fitness of individuals—we instead 
consider the set of non-dominated solutions.  To obtain the 
Pareto Set of solutions, we use the non-dominated sorting 
genetic algorithm II (NSGA-II) [14].  The NSGA-II selects 
parents in a generation based on their non-dominance rank and 
crowding distance.  The non-dominance rank of a solution 
roughly evaluates how “close” to the Pareto front the solution is.  
Specifically, if we assign a non-dominance rank of 1 to the 



global Pareto front, then the set of non-dominated solutions after 
removing the global Pareto front has non-dominance rank of 2, 
and so on.  The algorithm then sorts solutions within each non-
dominance rank based on their crowding distance, or the average 
Euclidian distance from each solution to its nearest neighbors 
with the same non-dominance rank.  Solutions farther from their 
nearest neighbors are more desirable for selection in order to 
promote more uniformly spaced fronts. 

The set of non-dominated solutions consists of Advisory Sets 
that provide the best trade-offs between the multiple metrics 
considered. The MOGA populates the Pareto front with 
solutions from every generation, if qualified. Therefore, the 
result may contain more solutions than the population of a single 
generation. 

IV. GENERATING REPRESENTATIVE ADVISORY SETS 

The Pareto Set identified by the MOGA is likely to contain 
many more solutions than can be evaluated and therefore 
clustering approaches are typically used to identify a smaller 
number of distinct solutions [15, 16, 17]. However, for large-
dimensional trade-spaces, direct evaluation is likely to obscure 
the key trade-offs sought. As such, this paper proposes to use 
PCA to identify correlations within the trade-space, reducing the 
dimensionality of the problem. Spectral clustering is performed 
on the reduced dataset and representative solutions that 
characterize critical trade-offs that persist can be readily 
identified for further evaluation. 

A. Principal Components Analysis 

PCA is a mathematical approach for identifying the rotation 
matrix of the axes such that the primary axis (first Principal 
Component, PC1) captures the maximum variation within the 
Pareto Set. Each subsequent axis is orthogonal and aligns with 
the next highest direction of variation. Each solution in the 
Pareto Set corresponds to a point in the objective space, defined 
by its value for each metric, and therefore, solutions can be 
expressed as linear combinations of metric values.  The 
correlation matrix, which characterizes the relative co-variation 
between these metrics, can be readily computed.   

Using matrix algebra, the correlation matrix is then 
transformed into its diagonal components, or eigenvalues. The 
corresponding eigenvectors provide new directions for the 
coordinate axes.  The directions are ordered by the magnitude of 
the eigenvalues, where the largest eigenvalue defines the first 
principal component.  

The number of principal components is the same as the 
original dimension (10, in this case). However, as the variation 
captured by later components is often quite small, these 
dimensions can be ignored with little loss in representation.  As 
a general rule, only components with corresponding eigenvalues 
greater than one are needed to adequately represent the trade-
space. 

B. Clustering the Pareto Set 

Clustering can now be done using the remaining principal 
components. Specifically, a modified spectral clustering 
algorithm [18] iteratively partitions a group of solutions into two 
until the stopping criteria are reached.  This algorithm does not 
require that a number of desired groups be determined a priori. 
Rather, it employs scale factors for the number of nearest 
neighbors considered to define the mean and variance of a given 

cluster, which can be tuned to produce a reasonable number of 
clusters.  

C. Selecting Representative Solutions 

Within each cluster, a single Advisory Set is selected to 
represent that corresponding portion of the trade-space.  As such, 
it is desirable that the Advisory Set contains the reroutes most 
common among these solutions. To evaluate the relative 
importance of each flight’s reroute to the cluster, we calculate 
the central design for each cluster using the approach developed 
in [19]. 

The central design of a cluster is defined by the most 
common reroutes selected for each flight. Specifically, if we 

consider 𝐶𝑘 to be the set of design vectors in cluster 𝑘, then we 
can compute the probability mass function for the values of each 

design attribute 𝑚, denoted as 𝑓𝑚(𝐶𝑘). Using the probability 
mass function, we can then define the most common value for 
each design attribute as well as its frequency of occurrence for 
the specified attribute across the cluster of design vectors.  

𝑣𝑚
𝑘 = arg max( 𝑓𝑚(𝐶𝑘)) ∀ 𝑚 3 

𝑓𝑚
𝑘 =  

max( 𝑓𝑚(𝐶𝑘))

|𝐶𝑘|
 ∀ 𝑚 4 

As the design vector 𝑣𝑚
𝑘  may not correspond to an existing 

Pareto Set solution, we seek the closest Pareto solution to this 
vector. The distance between a Pareto solution and the central 
design measures whether two attributes have the same value. As 
such, the most prominent attributes of the cluster, (in our 
example reroute candidates) will be part of the representative 
solution. 

To compute categorical distance, we use the weighted 
Jaccard distance [20], where the weights are defined by the 

frequency of the most common value.  If each solution in 𝐶𝑘 is 

described by a design vector, 𝑥𝑖 , consisting of 𝑚  design 

attributes, the Jaccard distance, 𝐷𝑖,𝑣
𝑘  is defined as shown in 

Equation 5. 

𝐷𝑖,𝑣
𝑘 = 1 −

∑ 𝑓𝑚
𝑘 ∗ (𝑚 𝑥𝑚

𝑖  ∧ 𝑣𝑚
𝑘 )

∑ 𝑓𝑚
𝑘 ∗ (𝑚 𝑥𝑚

𝑖  ∨ 𝑥𝑚
𝑗

)
 5 

Here, ∧  represents the logical ‘and’, and ∨  represents the 
logical ‘or’. The representative solution for the cluster 
corresponds to the design with the lowest Jaccard distance to the 
central design. 

V. RESULTS AND ANALYSIS 

A historical example used to evaluate the proposed approach 
involves nine flights requiring reroutes around convective 
weather, as illustrated in the snapshot shown in Figure 3. 



 

Figure 3. Snapshot of Convective Weather Blocking 

Routes for Nine Flights on 20 April, 2009 at 20:30 

Using DSP-M, reroute candidates were generated for each of 
the nine flights, showing the reliability of the approach. Table 1 
lists the origin and destination of each flight and the number of 
candidates generated. The final column in Table 1 lists the color 
used to display each flight’s reroute, in the figures at the end of 
this section.    

Table 1. Flight Origin, Destination, Number of Options 

and Reroute Color 

 
 Viewing Table 1 we note that the number of candidates 

varies by flight which has implications for the diversity in Pareto 
Set solutions. However, this candidate pool still results in 1.8 x 
10^17 possible Advisory Sets. Due to the size of the design 
space and to ensure that the 10-D trade-space is adequately 
populated, the MOGA returns 5000 Pareto-optimal solutions. 

A. Application of Principal Components Analysis 

The Principal Components of the Pareto Set are shown in 
Figure 4. Figure 4a (left) displays, in descending order, the ten 
eigenvalues of the correlation matrix which indicates the 

variation captured in each corresponding direction. The line to 
the right of the bars indicates the cumulative variation captured 
by each subsequent principal component, revealing that over 
80% of the variation is captured by the first two components. 
As subsequent components have eigenvalues less than one, the 
remainder of this analysis focuses on these first two principal 
components, referred to as PC1 and PC2, respectively. 

Figure 4b (right) lists the correlation of each original metric 
to these first two directions. PC1, which accounts for 64% of 
the variation in the Pareto Set, has a strong correlation with all 
but 2 metrics of operational acceptability. These metrics, Route 
Blockage and Schedule Disruption, are instead correlated with 
the second direction, PC2, which accounts for an additional 
18% of the variation. 

To understand these correlations intuitively, we refer back 
to the metric categories described in Section II. The first 
category, design acceptability, is defined by two metrics, 
distance and flow conformance, where low values of each 
indicate higher acceptability. The correlation between these 
metrics and PC1 is 96% and 71%, respectively, implying that 
solutions with low PC1 values have higher design 
acceptability. Similarly, the metrics defining management 
acceptability, namely coordination, return to route and number 
of segments have correlations of 79%, 98% and 91%, 
respectively, with PC1. Again, as low values in the original 
metrics indicate better management acceptability, solutions 
with low values of PC1 will exhibit better management 
acceptability. 

The flights in flow metric is also highly correlated with 
PC1; however, the positive correlation here is misleading. 
Recall from Section II.E, that the flights in flow metric 
computes the number of consecutive common segments 
between reroutes in the Advisory Set. As such, Advisory Sets 
with high values in PC1 will have more reroutes organized into 
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Figure 4.  Principal Components:  left (a) displays 

eigenvalues and cumulative variation, and right (b) 

displays eigenvectors of first two principal directions 

 



flows. This relationship indicates the first critical trade-off for 
this example. 

The final two metrics with high correlations to PC1 are sector 
congestion (81%) and blockage probability (91%). Recall that 
PCA characterizes the variations exhibited by solutions in the 
Pareto Set, which is problem-specific. In this example, little 
variation in blockage probability is exhibited by any of the 
candidates listed in Table 1 and the small variations that exist are 
due to differences in the underlying reroutes in the Advisory Set, 
and thus can be correlated with the other metrics, for example 
distance.  

For sector congestion, the lack of variation is due to the 
selection of reroutes included in the Pareto Set of solutions. 
Although the original candidates show variations in performance 
with respect to sector congestion, the Advisory Sets defined by 
the MOGA include only reroutes that exhibit the lowest (best) 
sector congestion. By capturing these relationships explicitly, 

PCA readily identifies the critical trade-offs that exist in the set 
of candidates returned. 

The remaining two metrics, route blockage and schedule 
disruption are inversely correlated with each other and highly 
correlated with PC2. The inverse relationship implies that 
Advisory Sets which perform better in schedule disruption 
(lower values) will be represented by solutions with low values 
in PC2, while solutions that perform better in route blockage 
(lower values) will be represented by solutions with high values 
in PC2. This inverse relationship identifies the second critical 
trade-off in the Pareto Set for this example. 

Figure 5 displays the Pareto Set of solutions as points in the 
two-dimensional space defined by PC1 and PC2.  Figure 5 is 
annotated to include the relationship between the principal 
components and the original ten metrics. In Figure 5, we see four 
distinct clusters of solutions. These clusters clearly capture the 
correlations between the original metrics represented in PC1, but 
which would likely have been obscured in a higher dimension 
space. 

B. Comparison of Pareto Set Clustering 

To illustrate the benefits of reducing trade-space 
dimensionality, we employ the clustering procedure described in 
Section IV.  Figure 6 shows the clusters and representative 
solution generated when clustering the solutions based on their 
similarity in the two principal components.  Thirty-nine (39) 
clusters are generated and are distinguished by color in Figure 6.  
Within each cluster, the representative solution is shown as a 
rectangle.  Viewing Figure 6, we see that the clusters and 
representative solutions are well distributed throughout the 
points as viewed in the PC1 verses PC2 space. 

To evaluate the benefits of clustering using PCA, the Pareto 
Set was also clustered by comparing values of all ten metrics.   
Using the same approach, 35 clusters were generated and a 
representative solution was identified for each cluster.  Figure 7 
displays both sets of representative solutions; the representatives 
identified from clustering the principal components are shown 
as “green rectangles” and the representatives identified from 
directly clustering the ten metrics are shown as “pink x’s”. 

Figure 7 compares these solutions within the critical trade-
space defined by distance (as a representative for all correlated 
design and management acceptability metrics), schedule 
disruption, route blockage and flights in flow.  To capture all 
four dimensions on a single plot, categories of route blockage 
(displayed across the top of Figure 6) show the associated 
distance verses schedule disruption trade-offs and flights in flow 
is shown by marker size, where larger (higher) values indicate 
more Advisory Sets that create more flows.  

Examining Figure 7, we see the general trend between the 
trade-offs defined by PCA, namely that distance varies inversely 
with flights in flow and that route blockage varies inversely with 
schedule disruption.  However, this trend is not universal, and 
solutions exist that balance these objectives.  Specifically, the 
middle panel in Figure 6 captures solutions that have different 
levels of schedule disruption for the same route blockage cost.  
Almost all representatives in this category were generated by the 
PCA-defined clusters; directly clustering the 10 metrics fails to 
capture this critical region in the trade-space. 

Figure 5.  Principal Components of Pareto Set 

Solutions 

 

Figure 6.  Clustering using Principal Components 

 



C. Comparison of Representative Advisory Sets  

The gray circles in Figure 7 correspond to three Advisory 
Sets from different regions of this trade-space.  These three 
solutions were selected to illustrate how the reroutes within these 
Advisory Sets characterize the associated trade-offs. Table 1 
lists the color corresponding to each flight’s reroute.    

Figure 8 shows the reroutes for Advisory Set 1, representing 
a solution that performs well in distance and route blockage, 
moderately in schedule disruption, but poorly in flights in flow. 
Viewing Figure 8, we see that the reroutes move around the 
weather shown in Figure 3 (corresponding to the airspace south 
of the south of the Washington-areas airports).  As flights-in-
flow is not a priority for reroutes in this areas of the trade-space, 
the reroutes do not generate flows. 

Figure 9 shows the reroutes for Advisory Set 2, drawn from 
the critical trade-space identified in Figure 7.  Viewing the 
reroutes in Figure 7, we see that a number of reroutes overlap for 
portions of their new route, forming the flows prioritized by 
solutions in this region of the trade-space.  The most prominent 
flows are located in the NY-area region (top right of the figure), 
which is a particularly important area for adding structure. 

Figure 10, displays the reroutes for Advisory Set 3, which 
prioritizes schedule disruption above all else.  As expected, the 
reroutes are fairly direct; however, the high route blockage costs 
indicate that they do not avoid the primary constraint of the 
problem. 

D. Discussion 

The results generated by the proposed approach provide the 
reliability sought while also characterizing the critical trade-

 

Figure 7.  Comparison of Representative Solutions Across Critical Trade-Space Metrics.  (Marker size corresponds to 

Flights in Flow values) 
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space available to traffic managers for consideration.  The above 
analysis highlights the value of PCA in reducing the size of the 
trade-space and identifying the critical trade-offs that exist.  The 
resulting clusters show the benefit of reducing the design space 
in this manner, namely that critical trade-offs are better 
represented than through directly clustering all metrics, where 
the latter approach can overlook regions of the trade-space 
containing diverse solutions.  

However, both approaches still produce too many clusters 
for a traffic manager to evaluate and further reduction is needed. 
Although this is an area of continuing research, a few promising 
directions have been identified.  First, PCA can be directly 

included within the MOGA, as suggested by Reference [21]. 
This approach would limit the size of the Pareto Set produced by 
the MOGA and could significantly reduce the computation 
effort required; however, additional analysis is required to 
ensure that the solutions generated would provide diverse and 
viable options to traffic managers. 

An alternate approach is to use PCA in order to identify 
persistent correlations between the multiple metrics considered, 
potentially identifying a set of relative weightings that can be 
used to rank solutions.  As opposed to a single static 
prioritization between metrics, this approach could propose 
multiple weightings, resulting in multiple solutions being 
returned. Furthermore, the selection of potential weightings 
could be influenced by problem-specific parameters.  For 
example, if congestion isn’t a major consideration, then weights 
that emphasize congestion-avoiding solutions could be replaced 
by weights which vary the importance of other metrics. 

In either case, additional testing on multiple examples is 
required.  Although this problem is representative of a 
convective weather situation, flights were limited to those that 
can be captured on a fix-pair segment network, an assumption 
that would need to be relaxed for more general applications. 
Furthermore, the computation time associated with the MOGA 
is relatively fast but not fast enough for real-time.  However, 
MOGA computation time is directly related to the size of the 
Pareto Set sought – insights gained through additional analysis 
can identify appropriate methods for reducing the Pareto Set and 
the associated computation requirements of the MOGA. 

VI. CONCLUSIONS

This paper describes an approach for generating a set of 
weather/constraint avoidance reroutes for tactical traffic flow 
management applications.  In this approach, multiple flights are 
considered in a coordinated way, and several feasible sets of 
reroutes (Advisory Sets) are produced that offer meaningful 
tradeoffs among important performance metrics.  This will 
provide traffic managers with multiple, distinct options for 
resolving constraints, making it more likely that an operationally 
acceptable solution can be found quickly.  The approach 
leverages multi-objective optimization, principal component 
analysis, and spectral clustering to characterize and search huge 
design spaces, and to isolate the critical design trade-offs that 
must be considered.  
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