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Abstract—This paper develops a functional analysis of the 
operations that represent the aircraft flow through the airport-
airspace system. In this analysis, we use a dynamic spatial 
boundary associated with the Extended Terminal Maneuvering 
Area (E-TMA) concept, so inbound and outbound timestamps 
can be considered. The aircraft flow is characterized by several 
temporal milestones related to the Airport Collaborative Decision 
Making (A-CDM) method, which allows us to study the 
successive hierarchical tasks. By considering the accumulated 
delay across the different processes and its evolution, different 
metrics are proposed to evaluate the system’s state and its ability 
to ensure an appropriate aircraft flow in terms of time-
saturation. The objective is to establish a taxonomy that classifies 
the system’s capacity to “receive and transmit” the expected 
aircraft flows. Finally, the relationships among the factors that 
influence the aircraft flow are evaluated to create a probabilistic 
graphical model, using a Bayesian Network approach. This 
model predicts outbound delays given the probability of having 
different values at the causal control variables. The methodology 
is developed through a case study at Adolfo Suárez Madrid-
Barajas Airport (LEMD): a collection of 1,500 turnaround 
operations (registered at the peak month of 2015) is used to 
statistically determine the aircraft flow characteristics. The 
contribution of the paper is twofold: it presents a new 
methodological approach to evaluate the system state at the 
rotation stage and it also provides insights on the 
interdependencies between factors influencing performance. 

Keywords- aircraft processes, system saturation, performance 
indicators; delay propagation; Bayesian Networks 

I. INTRODUCTION 

Air transport depends on a complex network architecture, 
where several facilities, processes and agents are interrelated 
and interact with each other [1]. In this large-scale and dynamic 
system, airports represent the interconnection nodes that 
facilitate aircraft distribution through the network and transport 
modal changes for passengers [2]. 

Potential incidents, failures and delays (due to service 
disruptions, unexpected events or capacity constraints) may 
propagate throughout the different stages of the system, making 
the network vulnerable [3]. This situation has led to system-
wide congestion problems and has worsened due to the strong 
growth in the number of airport operations during the last 
decades [4]. 

The economic cost of congestion in this interconnected and 
sometimes overscheduled network of airports and aircraft is 
enormous: direct costs due to flight delays in Europe reached 
€1,250 million during 2010, according to [5]. In the United 
States, during 2007, the directly or indirectly costs originated 
by delays were around $40,700 million [6]. Furthermore, 
delays have also a substantial impact on the schedule adherence 
of airports and airlines, passenger experience, customer 
satisfaction and system reliability [7] [8]. 

A significant portion of delay generation occurs at airports, 
where aircraft connectivity acts as a key driver for delay 
propagation [9]. During 2015, in the EUROCONTROL 
Statistical Reference Area, the share of reactionary delay (due 
to the late arrival of the aircraft on its previous leg) was 44% of 
total delay minutes (4.6 minutes of the 10.4 average delay per 
flight) and airline related delays (a category that includes crew 
connections) accounted for another 29% of delay minutes [10]. 
Moreover, 33% of all delayed flights in the United States in 
2015 where due to reactionary delays (40% of total delay 
minutes), while airline delay was the cause for another 28% of 
delayed flights and 32% of total delay minutes [11]. “Rotation” 
(flight cycle through the airport and its surrounding airspace, 
from inbound to outbound processes) is therefore the stage that 
has the greatest influence on punctuality within the entire air 
transport network and accumulates its impact over the day [3]. 
Hence, this paper focuses on the rotation stage and analyzes the 
aircraft flow through the airport operational environment, 
which is the dominant mechanism by which delays propagate 
through the air transport network [12]. 



The evolution of a flight can be described as a flow of 
events or processes [13]. Each of these events occurs before the 
next, and if any of them gets delayed, this may result in 
subsequent processes also being delayed (unless certain buffers 
or “slacks” are added into the times allocated to the completion 
of certain events). In order to analyze the evolution of the 
aircraft flow and the potential delays in the successive phases, 
this paper follows a “milestone approach” by assigning 
completion times to each event. This view, in line with the 
Airport Collaborative Decision Making (A-CDM) method [14] 
allows us to understand the operational performance and the 
potential saturation of the system. Saturation is here understood 
as the capacity of the airport-airspace system to “receive and 
transmit” aircraft flows in an appropriate time. 

In the analysis we use a dynamic spatial boundary 
associated with the Extended Terminal Maneuvering Area (E-
TMA) concept, which allows us to consider inbound and 
outbound timestamps. This management boundary (airport 
centric limit of 200-500 NM) has already been implemented at 
multiple airports, with a horizon that varies from around 190 
NM for Stockholm to 250 NM for Rome and 350 NM for 
Heathrow [15]. The E-TMA (and not just the basic on-ground 
turnaround path in the airport that connects inbound and 
outbound flights) is selected in order to integrate delay 
propagation in the airport system with global delays in the air 
traffic network. This approach reflects the interaction between 
airport and airspace integrated processes. In time, we restrict 
actions to a tactical phase (day of operations) in order to 
consider the primary and initial inefficiencies at the system. 

The main objectives of the study are: (a) to analyze the 
aircraft flow of processes, in order to define metrics and 
indicators that enable airport operators to assess the system 
state (in terms of time-saturation); and (b) to generate a 
practical probabilistic model that predicts the outbound delay 
given different explanatory variables. 

II. BACKGROUND 

This paper revises three main topics: the airport-airspace 
integrated flow of an aircraft, the propagation of delays through 
the E-TMA processes and the evaluation of the system 
efficiency in terms of time-saturation. 

A review of the literature about airport-airspace integration 
illustrates that several prior studies have deal with the 
importance of connectivity at airports [16] [17] [18] [19] [20]. 
This paper revises the linkage between inbound and outbound 
flights by assessing the aircraft operational flow (turnaround 
integration in the air transport network). This approach is in 
line with past studies [13] [21] [22] and with the SESAR’s 
“Airport Transit View” concept [23]. Our main contribution in 
this field is the construction of a business process model that 
shape the airport-airspace integration, by extending the spatial 
scope to the E-TMA boundaries. The statistical characterisation 
of the different processes enables us to understand the 
particularities of the rotation stage. 

Regarding delay propagation through the air transport 
system, a large number of studies deal with the complexity of 
the network [24] [25] [4] and the potential impact of delays on 
the system’s reliability [26] [27] [28] [29]. Delay propagation 
is a global process fostered by relationships inside the network: 
disruptions in one part of the system can propagate to many 

others [7] [9]. Therefore, network analysis provides a global 
view of the propagation process [30]. Nevertheless, a 
significant portion of these propagations (44% in 2015 
according to [10]) occurs at airports (i.e. the nodes of the 
system): “rotation” (delayed flight cycles) is the stage that has 
the greatest impact on punctuality within the entire air transport 
network. Delay propagation affecting internal E-TMA and 
airport processes has received little attention [31] [21]. The 
contribution of our study relies on adjusting the spatial scope of 
the problem to the rotation stage and the potential effects of its 
congestion. 

The inherent complexity of the delay propagation problem 
and the inherent challenges in predicting system behavior 
explain the use of different modelling techniques: queuing 
theory [4] [32], stochastic delay distributions [33], propagation 
trees [8] [34] [35], periodic patterns [36], chain effect analysis 
[37], random forest algorithms [12], statistical approaches [38], 
non-linear physics [39], phase changes [40] and dynamic 
analysis [9]. In this paper, delay propagation patterns and 
influence variables are characterized using a Bayesian Network 
(BN) approach, including stochastic parameters to reflect the 
inherent uncertainty of the performance of the aircraft flow at 
the E-TMA. Several studies [41] [42] demonstrate the utility of 
BNs as a methodology for modelling the diffusion of events 
and incidents from a node-level to a system-level 
(interdependence of multiple factors). Moreover, [43] [44] 
confirmed that BNs can explain how subsystem-level causes 
propagate to provoke system-level effects, specifically focusing 
on how delays at an origin airport propagate to create delays at 
a destination airport. 

Regarding time performance metrics and efficiency 
indexes, [45] established the foundations with regard to 
punctuality and predictability indicators in aviation. The 
generally accepted key performance indicator (KPI) for 
operational air transport performance is ‘punctuality’, which 
can be defined as the proportion of flights delayed by more 
than fifteen minutes compared to the published schedule [7]. 
The fifteen-minute threshold for defining arrival and departure 
delay has historically been common to both Europe and the US 
[46] [47]. SESAR’s Performance Targets [48] significantly 
refined this approach to delay measurement, by developing 
new parameters, indicators and targets. References [30] [46] 
showed that, although delay propagation remains a significant 
and costly operational challenge to ATM (Air Traffic 
Management), there is a significant absence of metrics that 
specifically measure this problem. Findings settled by [30] [49] 
developed a framework for complexity and new metrics as 
regards ATM. 

Moreover, [50] analyzed the applicability of a series of 
network connectivity and concentration indexes, in order to 
typify complex airline network configurations. Other studies 
have proposed performance indicators for airports operations 
[51], delay model calibration [52] and delay propagation 
networks [40]. For the purposes of this paper, different metrics 
are formulated to evaluate the system’s state and its ability to 
ensure an appropriate aircraft flow in terms of time-saturation. 
Therefore, our main contribution in this field is a taxonomy 
that classifies the system’s capacity to “receive and transmit” 
the expected aircraft flows. 



III. METHODOLOGY & DISCUSSION 

The analysis is divided into two steps: 

Firstly, we develop a theoretical appraisal of the aircraft 
operation within the E-TMA, characterizing the processes and 
structuring the different time-milestones. This provides us with 
a conceptual framework (a business process model) for the 
practical analysis of the rotation flow. 

The second part of the analysis is developed through a case 
study at Adolfo Suárez Madrid-Barajas (LEMD) Airport. We 
assess the system state and saturation by evaluating time 
efficiency performance (through the processes previously 
recorded in the first section), and also by defining metrics, 
indexes and performance indicators that represent the delay 
behavior. After that, a probabilistic model is assembled 
considering the interactions among the different delay 
explanatory variables. This model offers information about the 
system state, by predicting outbound delays. The method is 
applied to a practical case study to validate its contribution. 

Fig. 1 shows the logic behind the analysis. 

 

Figure 1.  High level methodology for the analysis 

A. Model for airport-airspace integrated operations 
(rotation stage) 

The aircraft rotation stage is usually the critical node for the 
air transport network: incoming aircraft continue on the 
subsequent legs of their planned itineraries and crew members 
and passengers may connect to other flights or other transport 
modes [9]. 

The aim of the study is the description of the "visit" of an 
aircraft to the E-TMA, as an extension of the SESAR’s 
“Airport Transit View” concept. This “visit” consists basically 
of three separate sections [23]: 

 The final approach and inbound ground section of the 
inbound flight. 

 The turnaround process section in which the inbound 
and the outbound flights are linked. 

 The outbound ground section and the initial climb 
segment of the outbound flight. 

Developing the conceptual structure of the aircraft flow 
within the E-TMA requires input from various sources and 
consists of four main steps [53] [54]: 

1. The first step is a review of relevant literature and 
existing aircraft flow models [23] [55]. 

2. Next, a hierarchical task analysis is developed [56]. 
This appraisal follows a top-down approach that incorporates 
several sources of information in order to give a detailed 
understanding of the processes: 

a) Analysis of operations manuals [57] [58], standards 
and procedures [59] [60] [61] [62] [63]. 

b) Observations at Adolfo Suárez Madrid-Barajas 
Airport (LEMD) during 2015. 

c) Structured communications with relevant stakeholders 
(Table I). 

3. The previous steps leads to an initial process model. 
4. Finally, the initial model is refined and validated with 

the help of subject-matter experts (Table I). 

TABLE I.  LIST OF INFORMANTS, INTERVIEWEES AND CONTRIBUTORS 

Organization Stakeholder 
AENA - Spanish Airport Authority and 
Airport Manager. 

Airport operator 

IBERIA - Member of International Airlines 
Group (IAG). 

Airline 

ENAIRE - Spanish Air Navigation Service 
Provider. 

Air Navigation Services 
Provider (ANSP) 

IBERIA Airport Services. Ground Handling Agent 
DGAC – Spanish General Directorate of Civil 
Aviation. This is a public body answerable to 
the Ministry of Public Works. 

Policy maker - Regulator 

AESA - Spanish Aviation Safety and Security 
Agency. 

Policy maker - Supervisor 

Fig. 2 depicts the methodology for creating a Business 
Process Model (BPM) of the aircraft flow at the E-TMA 
(rotation stage). 

 
Figure 2.  Methodology for creating the BPM of the aircraft flow 



We employ Unified Modelling Language (UML) to 
graphically represent the BPM. UML is a visual modelling 
language that enables a pattern of a system to be created [64]. 
The designed conceptual structure for the airport-airspace 
integrated operations is basically a UML sequence diagram 
(Fig. 3). This model is now confronted to the operational 
milestones defined by the A-CDM methodology. A-CDM aims 
at improving the overall efficiency of airport operations by 
optimizing the use of resources and improving the 

predictability of events. It focuses especially on aircraft 
turnaround and pre-departure sequencing processes [14]. The 
milestones approach main goal is to achieve common 
situational awareness by tracking the progress of a flight from 
the initial planning to the take off. It describes the progress of a 
flight from the initial planning to the take off by defining 
“timestamps” to enable close monitoring of significant events 
[14]. Fig. 4 and Table II show the set of selected milestones 
along the progress of the flight at the A-CDM concept.

 

Figure 3.  UML for the BPM of the aircraft flow (airport-airspace integrated operations) 



 

Figure 4.  Milestones reflecting the progress of the flight (A-CDM concept) 
[14] 

TABLE II.  SELECTED MILESTONES ALONG THE PROGRESS OF THE FLIGHT 
AT THE A-CDM CONCEPT [14] 

Number Milestone 
M1 EOBT (Estimated Off-Block Time)-3hrs 
M2 EOBT (Estimated Off-Block Time)-2hrs  
M3 Take Off from Outstation 
M4 Local Radar Update 
M5 Final Approach 
M6 ALDT (Actual Landing Time) 
M7 AIBT (Actual In-Block Time) 
M8 Actual Ground Handling Starts 
M9 TOBT (Target Off-Block Time) 
M10 TSAT (Target Start-Up Approval Time) 
M11 Boarding Start 
M12 ARDT (Aircraft Ready Time) 
M13 ASRT (Actual Start-Up Request Time) 
M14 ASAT (Actual Start-Up Approval Time) 
M15 AOBT (Actual Off-Block Time) 
M16 ATOT (Actual Take Off Time) 

By combining the BPM and the milestone approach, Fig. 5 
shows a conceptual diagram for the E-TMA (airport-airspace 
stage). This diagram allows us to: 

 Determine significant events in order to track the 
progress of the flight (arrival, landing, taxi-in, 
turnaround, taxi-out and departure) and the 
distribution of these key events as milestones. 

 Ensure linkage between arriving and departing flights. 
 Assess time efficiency performance, which is 

measured for each milestone or between two 
milestones. 

 Enable early decision making when there are 
disruptions to an event. 

B. Evaluation of the system level of saturation 

The analysis of the system level of saturation is developed 
through a case study at Adolfo Suárez Madrid-Barajas Airport 
(LEMD). The methodology can be nevertheless applied to 
other airports, by adjusting the model to the infrastructure 
characteristics, the operational situation and the available data. 

Fig. 6 shows the structure of LEMD, with four runways 
(36L-18R, 36R-18L, 32L-14R, 32R-14L), two terminal areas 
(T123 and T4T4S) and 163 parking spaces [65]. 

 

 

 

 

Figure 5.  Combination of the BMP for the airport-airspace integrated operations and the A-CDM concept) 



 

Figure 6.  Madrid Airport (LEMD) functional structure [65] 

LEMD is a large airport in terms of passengers and aircraft 
movements (50,420,583 passengers and 378,150 aircraft 
movements in 2015, according to [66]). Therefore, there were 
sufficient operations (and a continuous demand) during the 
observation period: the first week of July, which was the peak 
month in terms of traffic (2,997,408 passengers and 25,516 
aircraft movements, according to [66]). 

The operational preferential configuration at LEMD is 
called north configuration, with arrivals from runways 
32L/32R and departures from runways 36L/36R. The non-
preferential configuration (south) presents arrivals from 
runways 18L/18R and departures from runways 14L/14R. 
Night flights (between 23:00 and 07:00 local time) use 32R 
(arrivals) – 36L (departures) for north configuration and 18L 
(arrivals) – 14L (departures) for south configuration [65]. 

Regarding registered delays at LEMD, as a departure 
airport it ranked number 13 among the top 20 delay affected 
departure airports in Europe during 2015, with 10.1 minutes of 
average delay per departure (an increase of 19% since 2014), 
25.7 minutes of average delay per delayed departure and 39.3% 
of delayed departures [10]. As an arrival airport, LEMD ranked 
number 10 among the top 20 delay affected arrival airports in 
Europe during 2015, with 9.6 minutes of average delay per 
flight (an increase of 16% since 2014), 27.3 minutes of average 
delay per delayed arrival and 35.3% of delayed arrivals [10]. 

A collection of 1,500 turnaround operations at LEMD is 
used to describe the aircraft flow characteristics, through a 
statistical analysis of the processes. The size of the sample 
allows us not only for post analysis but also for developing 
reliable predictions and for studying interdependencies 
between the turnaround processes and schedule adherence. The 
observation period corresponds to the first week of July 2015. 
Data include information about processes milestones, delays, 
route origin and destination, runway and stand use, airline and 
aircraft characteristics (type and registration number). This 
allows us to link the inbound and outbound flights, assessing 
their “turnaround” operation. Although the dataset is rather out 
of date, we mainly use it to calibrate the model and trace the 
airport-airspace integrated operations. 

Fig. 7 shows the demand profile for the 1st of July 2015 
(baseline day scenario) against the practical capacity of the 
airport. Fig. 8 depicts the accumulated hourly delay for arrival 
and departure operations against the demand profile. Departure 
delay is defined by the sum of arrival upstream delay and the 

aggregated delay at the rotation stage. Delays can be positive or 
negative, as they are defined in relation to scheduled times. 
Finally, Fig. 9 shows the hourly number of turnaround 
operations against the airport total capacity and the hourly 
accumulated final departure delay. 

 
Figure 7.  Demand profile (01//07/2015) 

 
Figure 8.  Arrivals/departures profile (01//07/2015) 

 
Figure 9.  Turnaround operations profile (01//07/2015) 

These figures show that arrival delay increases and 
accumulates its impact over the day, due to the network effect. 
But departure delay does not follow this pattern, which implies 
that the airport-airspace system is somehow capable of 
absorbing a fraction of the arrival delay across the rotation 
stage. We analyze this aptitude by studying the different 
processes that were previously identified with the BPM and the 
milestone approach. It is the evaluation of the system level of 
saturation. Time efficiency performance is measured for each 
milestone (when scheduled and actual timestamps are 
available) or between two milestones (to assess the process 
length). 



Table III illustrates the steps that are appraised (given the available data for the case study). It contains the definition of the step, 
its importance and influence over the analysis and the statistical data, which allows characterization and modeling of processes (by 
fitting the duration or the starting time accuracy of the process to a statistical distribution). 

TABLE III.  LIST OF INFORMANTS, INTERVIEWEES AND CONTRIBUTORS 

Measure Importance 
Statistical data 
(mean and standard deviation) 

AIBT-SIBT. Arrival delay 
It represents the upstream arrival delay (reactionary delay), by assessing if the In-Block 
operation (timestamp) is developed as scheduled, with delay or in advance. 

μ = 9.8 min (σ = 28.9 min) 

ALDT-AIBT It represents the Taxi-In process length. μ = 8.8 min (σ = 16.7 min) 
Actual turnaround time (AIBT-
AOBT) against Scheduled 
turnaround time (SIBT-SOBT). 
Turnaround delay. 

It represents a measure for evaluating if the turnaround operation at the airport is 
developed as scheduled, with delay or better than expected (absorbing delay). It allows 
assessing the relationship among the arrival delay and the departure delay for the 
different operations, i.e. the ability of the airport to absorb the arrival delay. 

μ = 4.7 min (σ = 27.2 min) 

AIBT-AOBT It represents the turnaround process duration. μ = 151.9 min (σ = 168.6 min) 

ASRT-ASAT 
It allows assessing the difference in time between the aircraft operator request for start-
up and the actual start-up approval permission by the Air Traffic Controller (ATC). 

μ = -1.5 min (σ = 6.7 min) 

ASAT-AOBT 
It allows assessing the difference in time between the actual start-up approval permission 
by the Air Traffic Controller (ATC) and the Off-Block operation. 

μ = -1.3 min (σ = 40 min) 

TSAT-ASAT 
It allows to understand if there is some delay between the target time for start-up and the 
actual one. 

μ = 0.9 min (σ = 33.1 min) 

AOBT-SOBT 
It represents a measure for evaluating if the Off-Block operation (timestamp) is 
developed as scheduled, with delay or better than expected (absorbing delay). 

μ = 14.7 min (σ = 6.7 min) 

AOBT-ATOT It represents the Taxi-Out process duration. μ = 15.8 min (σ = 25.5 min) 
Actual Taxi-Out duration 
(AOBT-ATOT) against 
Scheduled Taxi-Out duration 
(SOBT-STOT). Taxi-Out delay 

It represents a measure for evaluating if the Taxi-Out operation at the airport is 
developed as scheduled, with delay or better than expected (absorbing delay). 

μ = 9.9 min (σ = 29.2 min) 

Departure delay Departure delay = Arrival delay + Turnaround delay + Taxi-Out delay μ = 18.5 min (σ = 24.8 min) 

 

We then assess the system time efficiency performance and 
its level of saturation by evaluating three mutually exclusive 
stages: arrival (including Taxi-In), turnaround and Taxi-Out. 

Fig. 10 shows the delay pattern for the total delay (sum of 
the accumulated delay in each of the stages) through the first 3 
days of July 2015, while Fig. 11 shows the delay pattern at 
each stage. 

 
Figure 10.  Total delay for each operation 

Fig. 12 represents the accumulated hourly delay for each of 
these stages (arrival, turnaround, Taxi-Out and total) against 
the number of operations at the observed hour. It can be seen 
that there is not a clear relationship between delay and the 
amount of operations for the partial stages. Nevertheless, this 
relationship does appear when assessing total delay. There is 
also a correlation between arrival delay and turnaround delay: 
the turnaround step is partially absorbing the arrival delay. 

 
Figure 11.  Delay pattern through the first days of July 2015 

 
Figure 12.  Accumulated hourly delay at each stage against the hourly number 

of operations 
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fundamental when assessing the system ability to absorb 
delays. Fig. 13 illustrates the histogram of the actual 
turnaround time. Although the sample is rather heterogeneous, 
almost 70% of turnaround operations last for less than 120 min. 
36% of operations are in the range between 30 and 60 min. 
This allows revising the system operational behavior and the 
demand characteristics. 

 
Figure 13.  Histogram for the turnaround stage duration 

Delay at the turnaround stage can adequately be represented 
by a Normal distribution (μ = 4.7 min, σ = 27.2 min), being 
expressed with the following probability density function: 

 
  (1) 

 

The fitting of delay turnaround data to a Normal 
distribution is achieved with a chi-square test at 95% 
significance level (confidence interval) and with 7 degrees of 
freedom (Fig. 14). This procedure was already found efficient 
in [21]. Fitting delay to a statistical distribution may help in the 
definition of an operational buffer or “slack”, with the final 
objective of absorbing arrival delay. 

 
Figure 14.  Turnaround delay fitting to a Normal distribution 

The delay behavior at each stage and the system level of 
saturation is evaluated by the definition of several indexes and 
performance indicators. 

1) Ki: delay evolution indicator (applied to the total and to 
each of the three partial stages) 

With this indicator, we seek to measure the system 
operation during a flight turnaround, considering the system 
behavior over the last flights. To calculate the value of this 
indicator, we use two parameters: the average delay over the 
last 20 operations and the delay generated for that operation. 

(2) 
 

The average delay of the last 20 flights can be calculated as 
a basic average (Fig. 15) or by weighing the operations to 
assign a greater impact on the latest (moving average). Data 
obtained from the average delay over the last 20 flights also 
provides a diagram of delay concentration throughout the day 
(an application of the Gini index [67]). 

The evolution of this indicator (Fig. 16) evaluates the 
system level of saturation. It enables us to judge the efficiency 
of the actions that have been taken to solve the congestion 
problems at the different elements involved in the turnaround 
process. For this purpose, it will be necessary to study both the 
time it takes to improve the situation and also the level of 
suitability of the actions (percentage of Ki variation obtained). 

 
Figure 15.  Average total delay over the last 20 flights (01/07/2015) 

 
Figure 16.  Ki (total) evolution throughout the day (01/07/2015) 

2) Hourly delay index based on the aircraft type (an 
application of the Herfindahl-Hirschman Index [68]) 

Each type of aircraft, according to its wake-turbulence 
category (H, M, L) [69], requires different operational 
procedures (with different levels of complexity) that may have 
an impact on the final delay. To calculate the value of this 
indicator, we use two parameters: the weight of each aircraft 
wake-turbulence category (βi) and the average delay of the 
aircraft operation at the system (Di). We have two ways of 
defining the index: 

(3) 

 

(4) 
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This index allows measuring the concentration of delays 
within each hour, referring to the type of operations served. 
The aircraft classification could be changed to reflect the 
influence of different variables: the engine category (turbofan, 
turboprop), the aircraft size (narrow body, wide body) or the 
flight type (regional, national, international). 

3) Hourly performance indicator (total operations) 

This indicator evaluates the level of saturation that presents 
each hour in reference to the overall situation of the airport 
throughout the day. By using the average daily total delay at 
the airport, a global situation can be established through a 
gradation (e.g.: absorbing delays, normal operation, congested, 
saturated). That allows us to assess the saturation level at each 
hour compared to the daily average. 

(5) 

 
If δi is between 0% and 100%, the system is generating less 

delay at this hour than in the average day (the airport is less 
congested or has been operating in a better way). Values 
greater than 100%, will indicate a congestion level at that time 
greater than the average, or a lower performance of operations. 

This indicator can be used at an “a posteriori” analysis, by 
considering the overall day operations as the timeframe 
(denominator); or as a “real-time” evaluator, by considering the 
average delay of the previous hours as the denominator. The 
latter option allows us to appraise how the airport situation is 
evolving across time in terms of saturation. 

4) Hourly performance indicator (contribution of each 
stage) 

We have defined three stages within the total performance 
of the system: arrival, turnaround and Taxi-Out. This indicator 
allows us to assess the saturation level that presents each of 
these processes throughout the day. 

(6) 

This indicator provides the percentage of delay that each of 
the three elements introduces at each hour. θ allows us to 
understand the evolution of the level of saturation at each stage 
throughout the day (Fig. 17) and also to evaluate the principal 
contributor to the total delay at each hour (Fig. 18). As the 
previous metric, this indicator can be used at an “a posteriori” 
analysis or as a “real-time” evaluator. 

5) Global performance indicator (an application of the 
Lerner Index [70]) 

This indicator seeks to measure delay concentration 
throughout the day, assigning greater importance to the hours 
when the system has been more congested. This allows 
evaluating if the actions taken during these periods of 
saturation have been correct in terms of reducing delay. To 
calculate the value of this indicator, we use three parameters: γ 
(the influence coefficient of each hour), <ADi> (average delay 
at hour i), <ADt> (average delay over the day). To assign an 
objective weight to each hour, γ is defined as follows: 

(7) 

Then, the global index η is defined as: 
 

(8) 

(9) 

This indicator compares the system performance at a given 
hour against the daily operation. It also assesses if the 
operational procedures are reducing the level of saturation: if γ 
is high (i.e. this hour represents a lot of traffic from the daily 
total), but <ADi> is low (i.e. the system is generating little 
delay), it is a symptom that the actions to reduce delay are 
adequate (Fig. 19). 

Moreover, if we compare the total delay obtained without 
the weights with the total delay obtained by this method, the 
result illustrates how fractional the generation of delays has 
been throughout the day. 

 
Figure 17.  Evolution of the turnaround stage saturation throughout the day 

(01/07/2015) 

 
Figure 18.  Contribution of each stage to the total delay throughout the day 

(01/07/2015) 

The definition of these indexes may allow policy makers or 
airport operators to establish a taxonomy that classifies the 
system’s capacity to “receive and transmit” the expected 
aircraft flows. It also enables us to make time projections of 
future delays throughout the day. 
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Figure 19.  γ aginst hourly average delays throughout the day (01/07/2015) 

C. Predicting departure delay (a causality analysis) 

Finally, the study is completed with a causality analysis 
through a Bayesian Network approach, which aims to 
understand the interdependencies between factors influencing 
performance and delay. 

Bayesian networks (BNs) are graphical probabilistic 
models used for reasoning under uncertainty [71]. A BN is a 
directed acyclic graph (DAG), in which each node denotes a 
random variable, and each arc denotes a direct dependence 
between variables (nodes that are not connected symbolize 
variables that are conditionally independent of each other) [72]. 
The DAG that results from the construction of a BN is 
quantified through a series of conditional probabilities based on 
data or information available on the system or problem and 
defines a factorization of a joint probability distribution over 
the variables represented in the DAG [73] [74]. The 
factorization is represented by the directed links in the DAG 
[75]. That is, each node is associated with a probability 
function that takes, as input, a particular set of values for the 
node's parent variables, and gives (as output) the probability (or 
probability distribution, if applicable) of the variable 
represented by the node [73]. Therefore, the BN model 
structure (nodes and arcs) encodes conditional dependence 
relationships between the random variables. Each random 
variable is associated with a set of local probability 
distributions (parameters in the Conditional Probability Tables 
(CPT)). Probability information in a BN is specified via these 
local distributions [74]. Therefore, a BN is a pair (G, P), where 
G is a directed acyclic graph (DAG) defined on a set of nodes 
X (the random variables), and P = {p (x1│π1), …, p (xn│πn)} is 
a set of n conditional probability densities (CPD), one for each 
variable. Πi is the set of parents of node Xi in G. The set P 
defines the associated joint probability density of all nodes as 
(the chain rule for BN) [71] [72]: 

 

(10) 

 

The graph G contains all the qualitative information about 
the relationships between the variables, no matter which 
probability values are assigned to them. Additionally, the 
probabilities in P contain quantitative information, i.e., they 
complement the qualitative properties revealed by the graphical 
structure [73] [74]. 

A BN can be constructed either manually, based on 
knowledge and experience acquired from previous studies and 
literature, or automatically from data [72]. In this study, the 
selection of variables (Table IV) is constrained by the availably 
of data. We use the elements (timestamps, aircraft data and 
airport information/configuration) that have been analyzed 
through the study. The first step is to generate the correlation 
matrix for the variables involved, to assess the correlation 
among pairs. Subsequently a data-driven process was applied 
to build the BN, following a Bayesian Search Algorithm [76] 
[72]. The final architecture presented in Fig. 20 was determined 
by applying this algorithm (including variable discretization 
and validation) and refining it with previous knowledge. 
Therefore, our model is built applying a combination of data-
driven process with practical adjustments, in order to obtain a 
model reflecting reality. We develop a statistical significance 
test on pairs of nodes connected by an arc in the BN: 
associations between the nodes were statistically significant at 
level 0.05 (p-value test). 

TABLE IV.  LIST OF VARIABLES REPRESENTED IN THE MODEL 
(VARIABLES) 

Node Meaning 
1 Arrival delay for the operation 
2 Turnaround delay for the operation 
3 Taxi-Out delay for the operation 
4 Total delay for the operation 
5 Average total delay of the previous 20 flights 
6 Delay indicator (Ki) for the operation 
7 ALDT (Actual Landing Time) 
8 Arrival Runway 
9 Departure Runway 
10 Route origin (national, UE Schengen, international) 
11 Route destination (national, UE Schengen, international) 
12 Terminal Area (T123, T4T4S) 
13 Wake-turbulence category (H, M, L) 
14 Aircraft size (narrow body, wide body) 
15 Taxi-In process duration 
16 Taxi-Out process duration (scheduled) 
17 Taxi-Out process duration (actual) 
18 SOBT-SIBT (scheduled turnaround) 
19 AOBT-AIBT (actual turnaround) 
20 ATOT (Actual Take Off Time) 
21 TOAT (Taxi-Out Approval Time) 
22 AOBT-SOBT (delay in the Off-Block process) 
23 ASRT-AOBT 
24 ASRT-ASAT 
25 TSAT-ASAT 

Due to the conditional dependence relationship of the 
variables within the BN, it is possible to derive posterior 
probability from prior probability (forward analysis) as well as 
implementing backward reasoning to evaluate the influence of 
the variables for a target result. Therefore, two main scenarios 
reflect the utility of the model: 

 Scenario 1 (forward/inter-causal scenario). The model 
predicts departure delay (output-child node) by setting 
the probability of having certain configuration, i.e. by 
setting one or more parent-input nodes. 

 Scenario 2 (backward inference). The model delivers 
a particular configuration in the parent nodes by 
setting the delay node to a target value. It allows 
understanding who are the main contributors to delay 
(if delay is settled to a high positive value) or finding 
the configuration that optimize operations (if delay is 
settled to a negative value). 



A sub-sample of 90% of the observations was selected to 
build the model structure and to estimate parameters (a test 
sample to establish the model’s ability to explain delay 
propagation). The remaining 10% of the data was set aside to 
test the accuracy of the predictions made by the model (a 
sample to test the model’s predictive capacity).  

The scenarios tested provided promising results regarding 
the model’s ability to reduce uncertainty (by explaining system 
performance and predicting delay propagation). The test error 
ranged from 20% - 35%, and the average value was 27%. 

 

 
Figure 20.  BN model to understand the interdependencies between factors influencing performance and delaya [76]. 

a. The thickness of an arc represents the strength of influence between two directly connected nodes. 

 

IV. CONCLUSIONS 

This paper develops a functional analysis of the operations 
that represent the aircraft flow through the airport-airspace 
system. In this analysis, we use a dynamic spatial boundary 
associated with the E-TMA concept, so a linkage between 
inbound and outbound flights can be proposed. The aircraft 
flow is characterized by several temporal milestones related to 
the A-CDM method and structured by a hieratical task analysis, 
providing a BPM for the rotation stage. 

The application of the methodology to a case study of 1,500 
turnarounds (registered at the peak month of 2015) at Madrid 
Airport showed that arrival delay increases and accumulates its 
impact over the day, due to network effects. But departure 
delay does not follow this pattern, which implies that the 
airport-airspace system is somehow capable of absorbing a 
fraction of the arrival delay across the rotation stage. We 
analyze this aptitude by studying and characterizing the 
different processes that were previously identified with the 
BPM and the milestone approach. This evaluation of the 
system level of saturation is completed by the definition of 
different indexes and performance indicators. 

Finally, the relationships among the factors that influence 
the aircraft flow are evaluated to create a probabilistic 
graphical model, using a BN approach. This model predicts 
outbound delays given the probability of having different 
values at the causal control variables. Moreover, by setting a 
target to the output delay, the model provides the optimal 
configuration for the input nodes. 

 

The proposed methodology has several applications: 

  Achieve a comprehensive understanding of 
operations. 

 Detect possible incidents or irregularities that may 
occur during processes. 

 Define the different operational actions that may 
correct the inefficiencies identified. 

 Investigate the impact of changes in tactical decisions 
and policies on the management and propagation of 
delays in the E-TMA system. 

 The propagation model and the proposed indicators 
may be used to ensure that all agents collaborate in 
reducing delays, guaranteeing some target levels of 
efficiency. 

 Using “forward” analysis it is possible to estimate the 
final departure delay (settlement of buffer time and 
optimal rotation times). 

 Using “backward” analysis it is possible to identify 
the main contributors (causes) to a final delay (locate 
inefficiencies). 

Future work needs to focus on improving the accuracy of 
the model (more complete testing data and methodological 
improvements), and to assess whether the model is suitable for 
use in other airports. We also need to analyze potential 
response strategies (reduce delays, mitigate inefficiencies and 
optimize operations), and apply the propagation model to other 
types of incidents (not just delays). 
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