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Abstract—Federal, state and local aviation planners rely on air 
traffic forecasts for workforce staff planning (particularly for air 
traffic controllers), evaluation of current and future technological 
improvements at airports, planning of airport capacity 
expansion, and evaluation of federal funding requests for airport 
infrastructure improvements. While most existing forecasting 
models are econometric or statistical in nature, incorporating a 
more behavioral understanding of airline competition into the 
forecasts and planning process represents a significant 
opportunity to improve their efficacy. To this end, we develop a 
two-stage game-theoretic model for predicting airline capacity 
allocation decisions under competition. We first demonstrate 
desirable theoretical properties and computational tractability of 
our model, and then exploit them to develop solution algorithms 
with very fast convergence properties to enable rapid generation 
of forecasts, requiring only a few seconds of run-time. We then 
solve our model to equilibrium of the two-stage game using a 
real-world dataset based on an 11-airport, four-airline network 
from the western United States. The out-of-sample validations of 
traffic predictions at the airport and OD (origin-destination) level 
indicate a good fit to real-world traffic data for various look-
ahead times and at various levels of granularity. We thus 
demonstrate that a behaviorally consistent two-stage game model 
of airline competition provides a good fit to observed airline 
operations at various levels of aggregation, in turn highlighting 
its potential for accurate air traffic forecasting. 

Keywords- Air Traffic Forecasts; Game Theory; Airline 
Competition; Nash Equilibrium; Frequency and Fare Competition. 

I. INTRODUCTION 

Air traffic growth in an airport, city or region benefits the 
neighboring communities by enhancing access, by improving 
passenger convenience, and by stimulating economic activity. 
On the other hand, unforeseen traffic growth accompanied by 
insufficient planning to handle this growth can lead to 
worsening of undesirable outcomes, including congestion, 
delays, noise and pollution. Therefore, anticipating and 
proactively responding to changes in air traffic volumes is an 
important priority for aviation planners at the airport, city, state 
and federal levels. To this end, the Federal Aviation 
Administration’s (FAA) official forecast of the U.S. aviation 
activity, called TAF-M (Modernized Terminal Area Forecast), 
combines statistical and econometric models to forecast flows 
of passengers and aircraft at various levels including OD 
market level, route level, segment level and airport level [1]. 
The reader is referred to [2] for a brief review of the major 
statistical approaches to air traffic prediction, as used within 
the FAA and outside. The TAF-M tool is used to understand 
the impacts of NEXTGEN on airports, passenger routings, and 
aircraft networks. NEXTGEN (Next Generation Air 

Transportation System) here refers to the FAA’s vision and 
associated technologies and procedures for transforming 
United States’ National Airspace System (NAS) in general, and 
the air traffic control in particular. TAF-M is used in a variety 
of ways to help in understanding the effects of policies, 
procedures and environmental regulations underlying 
NEXTGEN. For example, within the FAA, TAF-M forecasts 
are used by the Office of Airports (ARP) for evaluating airport 
investments, by the Air Traffic Organization (ATO) for NAS-
wide simulations using airport-level operations, and by the 
Office of Energy and Environment (AEE), for evaluating noise 
and pollution at the airport and en route. Currently TAF-M is 
primarily an unconstrained demand forecasting tool that lacks 
prediction of airline behavioral response which is needed to 
predict changes in their flight frequencies. Thus, there exists a 
need to develop behavioral models of airline decision-making 
to augment and enhance current forecasting tools. This is the 
aim of our research. 

Airline decisions are made in a competitive environment, 
and can be divided into capacity and fare decisions. Capacity 
decisions, including decisions about seats-per-flight and service 
frequency, affect both the operating costs and revenues of 
airlines. These decisions have significant implications for the 
performance of the air transportation system as a whole: over- 
and under-allocation of airline capacity has been shown to 
result in billions of dollars in additional costs to airlines and 
passengers, wastage of system resources, passenger 
inconvenience and environmental damages. Airline frequency 
competition in particular has been shown to be a major driver 
of increased airport congestion. Prediction of the frequency 
component of capacity allocation decisions is of particular 
interest to us for a variety of reasons. First, unlike seats-per-
flight decisions, these decisions significantly affect schedule 
attractiveness to passengers, because frequency allows 
passengers greater scheduling flexibility. Additionally, these 
decisions show far greater variability across time and across the 
network than do the seating capacity decisions [3]. Therefore, 
in this paper, we will focus on predicting only the frequency 
component of capacity allocation decisions, while leaving 
predictions of seats-per-flight as a potential direction for future 
research. 

Frequency and fare decisions of an airline are dependent on 
each other, and hence neither can be modeled in isolation. A 
higher frequency, for example, typically increases passenger 
attractiveness, thus enabling the airline to sell tickets at a 
higher price. Additionally, decisions of different airlines are 
interdependent as well: a higher frequency or a lower fare than 
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competing airlines can typically attract more passengers to an 
airline, while reducing the demand for the competitors. These 
interdependencies are well-captured by game-theoretic models. 

Decisions about frequency and fare are typically made 
sequentially, on different timelines. Frequency decisions are 
often made weeks or months in advance of the flights in 
question, with only an approximate understanding of future 
fare decisions. On the other hand, fare decisions can be made 
days or even minutes in advance, with exact knowledge of 
frequency decisions. Moreover, these two kinds of decisions 
are made by very different departments within an airline that 
typically do not jointly optimize their decisions. Therefore, 
two-stage game-theoretic models, rather than single-stage 
game-theoretic models, are much more behaviorally adequate 
for describing these two kinds of decisions by the airlines. 

In summary, the frequency and fare decisions are 
interdependent and are important factors affecting the 
performance of the air transportation system as a whole. 
Therefore, it is important to develop tractable models and 
solution concepts that accurately describe their dynamics. In 
this paper, we present a two-stage game-theoretic model of 
airline competition, demonstrate its tractability across a range 
of assumptions and parameter values, and validate its 
predictions against observed airline behavior. This two-stage 
game approach accounts for both the interdependence of 
competing airlines’ behaviors and the sequential nature of 
frequency and fare decisions by the airlines as observed in 
practice. Each airline is assumed to pick a frequency value in 
each segment during the first stage of the game, in order to 
maximize its own profit. In the second stage, each airline 
decides the fare to be charged in each market, again while 
maximizing its own profit. 

In this paper, we first present desirable theoretical 
properties, namely concavity and submodularity, for a 
simplified version of our game model. These properties are 
vital to ensure the availability of fast solution approaches for 
our model, especially since large-scale game-theoretic models 
can be very difficult to solve without such properties. We then 
extend our model by relaxing several of our assumptions, and 
demonstrate numerically that for a wide range of realistic 
values of model parameters, concavity and submodularity 
properties hold in an approximate way. These analytical results 
enable us to employ a tractable solution algorithm for finding 
an equilibrium of this game, and ensure that it converges 
rapidly. We use this algorithm to generate forecasts for a real-
world case study network consisting of four major airlines 
making frequency decisions across a network of 11 airports in 
the western United States. The frequency forecasts from our 
equilibrium solution are then validated against the observed 
frequencies of these airlines over the same period. We then 
examine frequency predictions at various levels of aggregation, 
including individual airline-segment pairs, individual 
segments, individual airports, individual airlines, airline-
segment types, and the overall network for look-ahead horizons 
at various time scales, and find that our predictions 
approximate airline behavior with good accuracy. Decision-
makers within the air transportation system may thus find 
refinements of our model useful for forecasting and scenario 

analysis at various scenario granularities of practical 
importance. 

II. AIRLINE COMPETITION BASICS  

Profitability maximization is typically considered to be the 
primary objective behind an airline’s decisions, and an 
airline’s passenger share in a market is an important 
determinant of its profitability. Airlines strive to gain market 
share by offering itineraries that are most attractive to 
passengers. Itinerary attractiveness is a function of attributes 
such as fare, departure time, itinerary elapsed time, number of 
stops, connection time, as well as some other factors such as 
baggage fees, frequent flyer programs, on-board amenities, 
etc. Fare and schedule convenience are widely acknowledged 
to be the two most important attributes that affect passenger 
itinerary choice, and flight frequency (or the number of flights 
per day on a nonstop segment) is considered to be the most 
important dimension of schedule convenience. With more 
frequency, more passengers are likely to find an itinerary 
whose departure and arrival times match the passenger’s travel 
preferences. However, the likelihood of a passenger choosing 
a particular itinerary is dependent on the attributes of that 
itinerary as well as the attributes of other itineraries, including 
itineraries of the other airlines, in that same market. Therefore, 
many existing studies have taken a game-theoretic approach to 
modeling airline competition on decisions related to schedule 
convenience and fares. 

Most existing studies on airline competition have focused 
on formulating and solving game-theoretic models using the 
concept of Nash equilibrium or one of its extensions. Some 
studies have solved realistic-sized case study instances using 
successive optimization based algorithms, while others have 
proved desirable analytical properties of these games using 
simplified (stylized) models. However, most existing studies 
do not attempt to use these game models for predictions and 
forecasting. Others which do use them for forecasting show 
mixed results in terms of prediction accuracy. In one of the 
first studies in airline frequency competition, Hansen solved a 
frequency competition game using a successive optimizations 
algorithm for a network including 52 U.S. airports and 28 
airlines, but model predictions showed some significant 
deviations from the empirical data [4]. Adler modeled airline 
competition on network construction in the first stage, and on 
frequency, seats, and fares in the second stage, but did not 
provide any results on solution tractability or empirical 
validation [5] [6]. Adler, Pels, and Nash solved a single-stage 
frequency, seats, and fares game, but did not validate the 
results empirically [7]. In a series of studies, Vaze and 
Barnhart studied single-stage frequency-only game [8] [9] 
[10], and found (in [8]) reasonable agreement between 
equilibrium predictions and observed frequencies. Multiple 
prior studies (e.g., [11], [12], [13]) formulated and solved a 
single-stage frequency-fare game, but did not provide any 
empirical validation of their results. Wei and Hansen solved a 
simplified single-stage frequency and seat allocation game 
through enumeration [14], while Brueckner analytically solved 
a simplified model of single-stage game of frequency, seats, 
and fares [15]. 



Very few past studies have focused on two-stage 
frequency-fare games, which is the focus of present research. 
First, Dobson and Lederer used heuristics for solving a two-
stage frequency-fare game [16]. Then Schipper, Rietveld, and 
Nijkamp analyzed the shift from monopoly to duopoly 
following airline deregulation by simulating a two-stage 
frequency-fare game [17]. Then, Brueckner and Flores-Fillol 
analytically compared the properties of the two-stage 
frequency-fare game with a single-stage frequency-fare game 
[18]. All three of these studies focused only on the simple case 
of one market with two airlines. None of these studies 
attempted to solve the game for real-world networks, nor did 
they empirically validate their models. Recently, Hansen and 
Liu noted the difficulty of solving two-stage games 
analytically, and instead just presented a small numerical 
example [13]. Several studies have stressed the need to 
develop two-stage frequency-fare game-theoretic models in 
order to account for the sequential nature of these decisions 
(e.g., [13], [16], [17], [18], [19]), but to our knowledge, no 
study has successfully bridged analytical, computational, and 
empirical approaches for such models. This is the goal of our 
present research project. In this particular paper, we will 
briefly describe our analytical and computational results, but 
focus specifically on the empirical validation and forecasting 
applications. For more detailed discussion of the analytical 
and computational components, the reader is referred to [3]. 

Two-stage game models, while behaviorally consistent, 
present several practical challenges. The major solution 
concept available for two-stage games, that of subgame 
perfect Nash Equilibrium, can be difficult to analyze 
mathematically, and intractable to compute in practice. In 
general, Nash equilibria may not exist for certain games, or 
multiple equilibria may exist in certain others. Even when 
equilibria do exist, they can be prohibitively expensive to 
compute even for simple models, let alone for extended many-
player networks (e.g., [20]). Furthermore, game-theoretic 
models in this area can be difficult to calibrate as a result of 
their intractability. Accurate prediction of behavior is also a 
challenge: among the game-theoretic studies of airline 
competition that do attempt to validate equilibrium results and 
empirical behavior, predictions often significantly diverge 
from observed behavior (e.g., [4]). We address many of these 
challenges in this research project. 

III. MODEL  

As mentioned in Section II, our two-stage frequency-fare 
model is most consistent with the actual airline decision-
making behavior. In this model, the frequency decisions of all 
airlines in all nonstop segments are assumed to be made in the 
first stage, while the average fare decisions for all airlines in 
all markets are assumed to be made in the second stage. A 
Subgame-Perfect Nash Equilibrium (SPNE) is the most 
commonly used solution concept for solving such two-stage 
games. The SPNE solution concept, in the context of our two-
stage frequency-fare game, states that for any given set of 
frequency decisions of all airlines, the fares are modeled in the 
second stage using the classical Nash equilibrium concept, 
which states that each airline sets its own fares to maximize its 
own profit. Next, building on this idea, SPNE concept dictates 
that the first-stage frequency decisions of each airline are 

made to maximize that airline’s own profit, while explicitly 
accounting for the corresponding fare decisions as dictated by 
the second-stage fare equilibrium. 

Our model uses the following notation. We define a 
market as an origin-destination pair of airports, and denote by 
𝐾𝑎 the set of markets in which an airline 𝑎 competes. The set 
of competing airlines is denoted by 𝐴. Revenue for an airline 
𝑎 in market 𝑚 is computed as  

𝑅𝑒𝑣𝑎,𝑚 = min(𝑀𝑚 ∗ 𝑀𝑆𝑎,𝑚, 𝑓𝑎,𝑚 ∗ 𝑠𝑎,𝑚) ∗ 𝑝𝑎,𝑚    (1) 

where 𝑀𝑚 is the size of the market 𝑚. 𝑠𝑎,𝑚 is the seating 

capacity per flight, and 𝑀𝑆𝑎,𝑚 is the market share, for airline 𝑎 

in market 𝑚. We model market share using a multinomial 
logit model, an approach widely used in prior literature on air 
travel demand modeling [21]. We use two alternative utility 
specifications in terms of the relationship between utility and 
frequency, one based on the often-cited “S-curve” relationship 
between frequency share and market share, and the other 
based on the concept of schedule delay, defined as the 
difference between the actual flight departure time and 
passengers’ most desired departure times. In the former, utility 
is given as a linear combination of fare and a logarithmic 
transformation of frequency, consistent with the S-curve 
model of the relationship between market share and frequency 
share ([10], [13]). Let the set of airlines competing in market 
𝑚 be 𝐴𝑚. Let positive parameters 𝛼 and 𝛽 respectively 
indicate passengers’ sensitivity to frequency and fare changes. 
Let 𝑁𝑚 be the exponential of the utility of the no-fly 
alternative. Then the market share of airline 𝑎 in market 𝑚 can 
be expressed as: 

 𝑀𝑆𝑎,𝑚 =
exp(𝛼 ln(𝑓𝑎,𝑚)−𝛽𝑝𝑎,𝑚)

𝑁𝑚+∑ exp(𝛼 ln(𝑓𝑖,𝑚)−𝛽𝑝𝑖,𝑚)𝑖∈𝐴𝑚

           (2) 

 
With equal fares and in the absence of a no-fly alternative, 

market share in (2) is a function of only the frequency share, 
following an S-curve whose shape is modulated by 𝛼. Market 
share can also be captured using the schedule-delay model, as 
discussed in [13]. In this case, market share for airline 𝑎 takes 
the following form: 
 

 𝑀𝑆𝑎,𝑚 =
exp(−φ𝑓𝑎,𝑚

−𝑟−𝛽𝑝𝑎,𝑚)

𝑁𝑚+∑ exp(−φ𝑓𝑖,𝑚
−𝑟−𝛽𝑝𝑖,𝑚)𝑖∈𝐴𝑚

           (3) 

 

Here φ and 𝑟 are positive parameters modulating the 
utility of frequency. Hansen and Liu argue that this model 
describes a more plausible relationship between frequency 
share and market share [13]. For instance, market share in this 
model depends on both frequency share and competitor 
frequency, such that an airline cannot simply dominate the 
market share of an already high frequency market by 
arbitrarily increasing its own frequency, unlike in the S-curve 
formulation. 

We assume operating costs to be linear in frequency, i.e., 
𝐶𝑜𝑠𝑡𝑎,𝑚 = 𝑐𝑎.𝑚 ∗ 𝑓𝑎.𝑚 for airline 𝑎 and market 𝑚, where 𝑐𝑎,𝑚  

is the cost per flight for airline 𝑎 in market 𝑚. The overall 
payoff (or profit) function of airline 𝑎 is then given by: 

    π𝑎 = ∑ (𝑅𝑒𝑣𝑎,𝑚 − 𝐶𝑜𝑠𝑡𝑎,𝑚)𝑚∈𝐾𝑎
           (4)  



IV. ANALYTICAL RESULTS 

Using the airline payoff function given by (4), we first 
analyzed a simplified version of our model, with a single 
market, two airlines, no connecting passengers, unlimited 
seating capacity, and the absence of no-fly alternative (i.e., all 
passengers in the market have to choose one of the two 
airlines). The purpose of analyzing this simplified model was 
to generate insights into the analytical and tractability issues 
underlying this model formulation. For this simplified model, 
we proved the following three analytical properties, for both 
the S-curve model and the schedule delay model. In this paper, 
we simply state them without proving. Interested readers are 
referred to [3] for more details and proofs. 
 

Mathematical Property 1: The second-stage fare game 
always has a unique pure strategy Nash equilibrium. 

Mathematical Property 2: For the first stage game, each 
airline’s payoff is concave in its own frequency strategy. That 
is, the second derivative of each airline’s payoff in its own 
frequency is negative. 

Mathematical Property 3: For the first stage game, each 
airline’s profit function is submodular in the overall frequency 
space. That is, the cross derivative of each airline’s payoff, 
with respect to the frequencies of both airlines is negative. 

These results are significant because they demonstrate that 
subgame-perfect Nash equilibrium is a credible and tractable 
solution concept for our simplified two-stage game. In 
particular, the existence and uniqueness results indicate the 
suitability of using pure strategy Nash equilibrium as a 
solution concept for the second-stage game. Submodularity of 
the first-stage game ensures that the existence of a pure-
strategy Nash equilibrium is guaranteed, and a broad class of 
adaptive learning dynamics (including successive 
optimizations algorithm, and fictitious play) converge to the 
interval bounded by the Nash Equilibria with the largest and 
smallest frequencies ([22], [23]). If there is a unique 
equilibrium, these dynamics converge to it. Concave first-
stage payoffs, as proved by us here, are not guaranteed for 
one-stage frequency models ([4]). For our two-stage model, 
however, they ensure that first stage payoff maximization 
problems (as part of a successive optimizations algorithm, for 
instance) are efficiently solvable and have a unique optimum. 

This analysis implies that a two-stage game approach to 
modelling frequency and fare competition induces properties 
in the payoff functions that improve the credibility and 
tractability of subgame perfect Nash equilibrium. In other 
words, a more realistic approach to the modeling of the 
sequential nature of airline decision-making makes the 
corresponding game-theoretic model more attractive, both 
computationally and behaviorally. The existence of these 
properties in this simple case suggests that more complex 
models may also show some similar favorable properties. 
However, analytical approaches become substantially more 
difficult when the strong assumptions of this simplified form 
of our model are progressively relaxed. Therefore, we turn to 
numerical and computational approaches to extend our results 
to more realistic models. The following section describes these 
approaches and their results. 

V. NUMERICAL EXTENSIONS 

In this section, we present results of a series of numerical 
experiments for solving the more realistic full version of our 
model (as against the simplified version solved analytically). 
We now relax the five assumptions (namely, single market, 
two airlines, no connecting passengers, no no-fly alternatives, 
and unlimited seats) of our simplified model one by one, and 
numerically test the existence, uniqueness, concavity and 
submodularity results for a range of parameter values. In order 
to do this, we use polynomial approximations of second-stage 
payoffs as functions of frequencies of all airlines in that 
market. These functions provide a very good fit to the exact 
payoff functions, and allow for convenient evaluation of game 
properties. Additionally, in the real-world, airlines can make 
frequency decisions with only an approximate knowledge of 
what the likely fare levels will be in the future. Therefore, a 
reasonable approximation of payoff functions that captures the 
gross properties of these functions seems justified.  

A. Solving the Second-Stage Game 

We first compute equilibrium fare solutions of the second-
stage game for any given combination of plausible first-stage 
frequency decisions. Second-stage equilibria were computed 
by initializing fares for all players (i.e., airlines) at $100 
(arbitrarily), and numerically optimizing each player’s payoff 
(given by (4)) one by one with respect to that player’s fare. 
This iterative optimization algorithm was repeated until fares 
for all player converged to within a small threshold (that is, 
within a change of less than $0.1 from the previous iteration). 
This was done for both S-curve and schedule delay market 
share functions; for 1, 2 and 3 player markets; for varying 
numbers of seats-per-flight; with and without connecting 
passengers; for varying values of the exponential of the utility 
of the no-fly alternative (i.e., for varying values of 𝑁𝑚); and 
for varying values of the utility parameters for frequency and 
fare (i.e., for varying values of 𝛽 and 𝛼 for the S-curve model, 
and φ and 𝑟 for the schedule-delay model). Ranges of varied 
parameters were chosen to encompass values found in 
literature and in practice. Tables I and II list the ranges tested 
for each parameter and the increments in which these 
parameters were varied for the S-curve and schedule-delay 
models respectively. 

TABLE I.  PARAMETER RANGES AND INCREMENTS FOR THE S-CURVE 

MODEL 

Parameter Range Tested Testing Increments 

N 0 to 1 0.1 

𝛼 1 to 2 0.1 

𝛽 0.001 to 0.01 0.001 

Seats-per-flight (S) 25-250, and unlimited seating 25 

TABLE II.  PARAMETER RANGES AND INCREMENTS FOR THE SCHEDULE 

DELAY MODEL 

Parameter Range Tested Testing Increments 

N 0.0001 to 0.005 0.0001 

𝑟 0.1 to 1 0.1 

Φ 1 to 10 1 

𝛽 0.001 to 0.025 0.001 

Seats-per-flight (S) 25-250, and unlimited seating 25 



For these numerical experiments, market size 𝑀𝑚 was set 
at 1000 passengers and operating cost was set at $10,000 per 
flight. For computational feasibility, parameters were varied 
one at a time for each of the cases with 1, 2 and 3 players. The 
following default values of parameters, all set according to the 
prevailing estimates in the existing literature, were used: 
𝛼 = 1.29, 𝛽 = 0.0045, and 𝑁𝑚 = 0.5 for the S-curve model, 
and 𝑟 = 0.456, φ = 5.1, 𝛽 = 0.012 (as per [13]), 𝑁𝑚 =
0.005. The default number of seats was set to 125 for both 
models. In all cases, this successive optimizations algorithm 
converged to an equilibrium, suggesting that second-stage fare 
equilibria for our model exist in practice across a broad range 
of scenarios. These results are consistent with the analytically 
demonstrated existence and uniqueness result of the 
Mathematical Property 1 even for a broader landscape of more 
realistic but analytically intractable scenarios. 

B. Polynomial Approximations of Payoff Functions 

For each frequency combination and parameter 
combination, we recorded equilibrium payoffs π𝑖 for 𝑖 ∈ 𝐴. 
For each player, we assumed that the plausible frequency 
values are all integers between 0 and 20. Then, for each 
parameter combination and for each player, this generated 20 
payoff data points for a monopolistic market, 400 data points 
for a two-player market, and 8000 data points for a three-
player market. We then fit polynomial functions of frequency 
values to each payoff function using simple linear regression. 
Polynomial (specifically quadratic) payoff coefficients were 
estimated for the following functional forms. For a 
monopolistic market, the profit of airline 1, π1, operating a 
daily frequency of 𝑓1 was modeled as follows: 

       π1 ~ γ
0
+  γ

1
f1+γ

2
f1

2
           (5) 

For two-player markets, the profit of airline 1, π1, 
operating a daily frequency of 𝑓1 against a competitor 
operating a daily frequency 𝑓2, was modeled as follows: 

        π1 ~ 𝛾0 +  𝛾1𝑓1 + 𝛾2𝑓2 + 𝛾3𝑓1
2 +  𝛾4𝑓2

2 + 𝛾5𝑓1𝑓2      (6) 

Polynomial payoff approximations for markets with more 
than two players were constructed similarly. Table III gives an 
illustrative example of regression results for a two-player non-
stop S-curve model. In this case, utility parameters are held at 
defaults (𝛼 = 1.29, 𝛽 = 0.0045, 𝑁𝑚 = 0.5) and the number 
of seats-per-flight are varied to include various aircraft sizes. 

TABLE III.  EXAMPLE REGRESSION COEFFICIENTS AND MODEL R2 
FOR 

TWO-PLAYER NON-STOP S-CURVE MODEL 

𝑺 𝜸𝟎 𝜸𝟏 𝜸𝟐 𝜸𝟑 𝜸𝟒 𝜸𝟓 R2 

250 122200 18135 -17856 -494 686 -533 0.96 

225 122250 18130 -17861 -494 686 -532 0.96 

200 122400 18115 -17876 -493 686 -532 0.96 

175 122640 18095 -17901 -493 687 -531 0.96 

150 123470 18030 -17989 -492 689 -529 0.96 

125 125340 17925 -18214 -490 696 -523 0.95 

100 129430 17885 -18838 -495 716 -514 0.94 

75 136710 18277 -20301 -512 773 -518 0.93 

50 142620 20224 -22355 -567 865 -578 0.93 

25 104880 27814 -18929 -743 773 -846 0.97 

 

The coefficient of determination (R
2
) for fitted models 

remained > 0.9 for nearly all tested parameter combinations, 
ranging from close to 0.9 on the low end (in three-player 
games with 25 seats per flight, an extreme parameter value) to 
very close to 1. Fig. 1 shows an example quadratic fit to 
second stage profits values in a two-player game following the 
S-curve market share formulation with 𝛼 at 1.29, 𝛽 at 0.0045, 
𝑁𝑚 at 0.5, and 125 seats. 

Exceptions were found in extreme or nonsensical 
parameter combinations: for example, in one-player markets 
with the S-curve model and very high 𝛽 (0.009 or 0.01), R

2 

dipped to 0.88 and 0.87 respectively, while in one-player and 
three-player markets with the S-curve model and 𝑁𝑚 = 0 (i.e., 
in the absence of the no-fly alternative), R

2 
fell to 0.08 and 

0.89 respectively. The uniquely poor fit found in the 
monopolistic markets with no no-fly alternative is not 
surprising, because in such markets an airline unrealistically 
has strong incentive to charge extremely high ticket prices. 
The generally found high R

2 
values suggest that in nearly all 

cases, a quadratic function of player frequencies is able to 
capture a significant portion of the variation in equilibrium 
profits, and can provide a good numerical approximation of 
the payoff functions described in (4), irrespective of whether 
we assume an S-curve model or a schedule delay model. This 
gives us a tool to probe the robustness of the concavity and 
submodularity properties described in Mathematical Property 
2 and 3. 

Examining quadratic approximated payoff functions, we 
find that in all cases with high R

2
 (>0.9), the signs of 

estimated coefficients are consistent with both submodularity 
and concavity properties. For example, for the two-player 
case, 𝛾3, the coefficient of the square of player 1’s daily 
frequency, and 𝛾5, the coefficient of the interaction term 𝑓1𝑓2, 
are both negative, consistent with the concavity and 
submodularity properties respectively. Note that this is the 
case across the range of all seat values in Table III. 

 
Figure 1.  Player 1 payoffs at fare equilibria for various frequency 

combinations in a two-player game, with S-curve model, 𝛼 = 1.29, 𝛽 =

0.0045, 𝑁𝑚 = 0.5 and 125 seats per aircraft 



While longer computational times precluded extensive 
parameter sensitivity tests for more than three players, some 
limited testing of four-player games revealed similar results: 
good quadratic function approximations with high R

2
, and 

coefficient estimates consistent with concavity and 
submodularity properties. We also examined higher order 
polynomial approximations for even closer fits to payoff 
functions: quartic approximations tested on several models 
retained submodularity and concavity properties. For the 
remainder of this paper, however, we will focus on quadratic 
approximations, as these allow for generally good 
approximations while remaining convenient for quick 
evaluation of function properties and keeping the number of 
parameters in check when calibrating models with real-world 
data. 

C.  Game Dynamics and Convergence Properties with 
Approximated Payoff Functions 

The robustness of submodularity and concavity properties 
in approximated payoff functions across a wide range of 
scenarios and parameter values extends the analytical results 
of Mathematical Properties 1 and 2 to a much richer and more 
realistic class of models. These results suggest that in general, 
sub-game perfect Nash equilibrium remains a highly tractable 
and credible solution concept for our game. That the property 
of submodularity extends to more complex scenarios is 
consistent with the observation that games with this property 
tend to arise in strategic situations where there is competition 
for a resource [24]. In case of our problem of airline 
competition, that resource is market share. While beyond two-
player games, successive optimizations algorithm convergence 
cannot be implied simply by submodularity, analogy with the 
two-player case, as well as a growing body of literature on 
games of strategic substitutes (e.g., [24], [25]) provide us with 
a baseline for further exploration of the convergence 
properties for submodular games with more than two players. 

 Concave payoffs still ensure existence of first-stage 
frequency equilibrium, and our quadratic approximations 
provide a simple mechanism for checking the uniqueness of 
first-stage equilibrium using Rosen’s diagonal strict concavity 
condition [26]. We find that with a few exceptions in extreme 
parameter values, e.g., high 𝛼 values (> 1.7), estimated 
coefficients across our tested parameter ranges are consistent 
with guaranteed unique first-stage equilibrium. Furthermore, 
concavity means that individual players’ optimization 
problems give unique optimal solutions, and can be easily 
solved to optimality. Thus, the successive optimizations 
algorithm can be deployed efficiently to find equilibria, even 
in large-scale scenarios and networks. Thus, on the one hand, 
for the two-player case, we can use submodularity and the 
uniqueness of first stage Nash equilibrium to guarantee the 
rapid convergence of a broad class of adaptive dynamics to 
Nash equilibria in the first-stage game (following [2]) with our 
approximated payoff functions. On the other hand, for the 
games with more than two players, we can use concavity, 
submodularity, the polynomial nature of approximated 
payoffs, and results from Jensen [25] to demonstrate the 
convergence of successive optimizations algorithms. 

The convergence of successive optimizations algorithm in 
games with our approximated payoff functions is reassuring 

both from an intuitive and a computational perspective. It 
allows us to model, using the concept of Nash equilibrium, 
even those situations where the airlines in our game make 
decisions in a less-than perfectly rational way. Even if the 
airlines are not deemed to possess the infinite rationality that 
generally underlies the Nash equilibrium solution concept, the 
convergence property of the myopic approach involving 
successive optimizations ensures that the Nash equilibrium is 
reached even with myopically rational players. From a 
computational point of view, fast convergence of easily 
implementable successive optimizations algorithm and easily 
solvable individual payoff maximizations enable efficient 
solutions, experimentation, and calibration of our model when 
comparing its predictions to observed airline behavior. In the 
next section, we exploit these properties to apply our model to 
a real-world airline network. 

VI. AIRLINE NETWORK CASE STUDY 

To test the tractability and forecasting accuracy of our 
model in practice, we apply our game-theoretic model to a 
network of airports in the western United States. The test 
network consists of 11 airports, namely, Seattle-Tacoma 
International Airport (SEA), Portland International Airport 
(PDX), San Francisco International Airport (SFO), San Diego 
International Airport (SAN), Los Angeles International 
Airport (LAX), Las Vegas McCarran International Airport 
(LAS), Phoenix Sky Harbor International Airport (PHX), 
Oakland International Airport (OAK), Ontario California 
International Airport (ONT), Sacramento International Airport 
(SMF), and Mineta San Jose International Airport (SJC). Our 
datasets spans across the eight year period of 2007-2014. We 
estimate the daily non-stop flight frequencies of the four major 
airlines in this network during this period, namely, Alaska 
Airlines (AS), United Airlines (UA), US Airways (US), and 
Southwest Airlines (WN) in the markets in which they are 
present by computing the first-stage Nash equilibrium using 
concave, submodular quadratic functions to approximate the 
payoffs. 

A. Data Sources 

Quadratic payoff functions were constructed for each valid 
airline-market combination depending on the number of 
airlines in the market, based on actual cost and market size 
data taken from the Bureau of Transportation Statistics (BTS) 
records. Payoff function approximations computed for default 
parameters and market sizes were transformed by the 
operating costs and demands in each particular market, a 
simple transformation given the functional form of (4). 
Operating costs and airborne hours for different aircraft for 
different airlines was obtained from the Schedule P-5.2 tables 
from the BTS website [27]. Data on market size, observed 
frequencies and flight distances was obtained from the T100 
Segments tables on the BTS website [28]. Data from 
unidirectional markets containing the same airports were 
averaged, such that, for example, PDX-SAN and SAN-PDX 
were treated identically for payoff function generation and 
frequency estimation purposes, as passenger flows, observed 
frequencies, and other data were generally quite similar for 
differently ordered airport pairs. For simplicity, airline-market 
combinations with an airline’s market-share of less than 10% 



or average daily frequency of less than 0.5 were removed from 
consideration. 

B.  Network Payoff Functions 

We used the successive optimizations algorithm, justified 
analytically and numerically by the results in Sections IV and 
V, to solve the polynomial approximation of the first-stage 
game. Within each individual optimization, an airline decides 
its vector of frequencies over all its nonstop segments to 
maximize the sum of the payoff functions across all its 
markets. Given the large proportion of nonstop passengers in 
our dataset, we assumed all markets to be nonstop, and simply 
used segment passenger flows as market demands for this case 
study. The iterative algorithm was run until estimated 
frequencies of all airlines converged to within a tolerance 
threshold. We constrained the feasible frequency decisions by 
the estimated availability of various aircraft types to the airline 
within the network. To estimate aircraft availability within the 
network, airlines were assumed to generally utilize aircraft 
close to the limits of availability. Thus, the number of aircraft 
of type 𝑘 available to a certain airline 𝑎 was calculated as: 
 

𝐹𝑘,𝑎 =
∑ 2∗𝑓𝑘,𝑎,𝑚∗(𝑏𝑎,𝑚+𝑡)𝑚∈𝑀𝑘,𝑎

𝑇
          (7) 

 

Here, 𝑀𝑘,𝑎 the set of segments where airline 𝑎 uses aircraft 

type 𝑘, 𝑓𝑘,𝑎,𝑚 is the observed frequency of airline 𝑎 in segment 

𝑚 using aircraft type 𝑘, 𝑡 is the turnaround time of the aircraft 

(taken to be 30 minutes in all cases), 𝑏𝑎,𝑚 is the average 

number of block hours per flight of airline 𝑎 on segment m, 
the factor of 2 accounts for the two directed segments 
corresponding to a particular airport pair, and 𝑇 is the number 
of hours of available flying time in the day, which we assume 
to be 18 on average. During each individual airline profit 
maximization problem, these fleet size restrictions were 
applied such that: 

∑ 2 ∗ 𝑓𝑘,𝑎,𝑚 ∗ (𝑏𝑎,𝑚 + 𝑡)𝑚∈𝑀𝑘,𝑎
≤ 𝑇. 𝐹𝑘,𝑎             (8) 

In (8), 𝑓𝑘,𝑎,𝑚 is the model estimated frequency on segment 

𝑚 for airline 𝑎 using aircraft type 𝑘. In all, our network had 68 
combinations of airlines and segments for which the frequency 
estimation was conducted. When the successive optimizations 
algorithm is run, the players are assumed to allocate flight 
frequencies across their respective networks by solving a 
constrained quadratic optimization problem during each 
iteration, continuing until convergence. Frequency decision 
vectors for each player were initialized at 0. The model 
typically converged in 6-7 iterations (with each iteration 
consisting of four optimizations, one for each airline), and is 
solved in less than one second using MATLAB quadratic 
programming functions.  

C.  Payoff Calibration and In-Sample Performance 

In order to calibrate our model, we adjust payoff 
polynomial coefficients to minimize the Mean Absolute 
Percentage Error, or 𝑀𝐴𝑃𝐸, between estimated and observed 
frequencies over the networks of all airlines. 𝑀𝐴𝑃𝐸 is 
calculated as: 

𝑀𝐴𝑃𝐸 =
∑ |𝑓̂𝑎𝑠−𝑓𝑎𝑠|𝑎𝑠∈𝐴𝑆

∑ 𝑓𝑎𝑠𝑎𝑠∈𝐴𝑆
           (9) 

Here, AS is the set of all airline-segment combinations. 𝑓𝑎𝑠 
is the estimated frequency, and 𝑓𝑎𝑠 is the observed frequency, 
for the airline-segment combination 𝑎𝑠. For the purposes of 
calibration, airline-segment combinations were divided into 
four groups: three-player markets, two-player markets where 
both airports were hubs for the airline, other two-player 
markets, and monopolistic markets. The resulting 11 payoff 
function coefficients (the linear, quadratic, and interaction 
term coefficients) were adjusted simultaneously before 
transformation by cost and market size data for each airline-
segment combination. 

These coefficients were adjusted using a gradient 
approximation algorithm called SPSA (Simultaneous 
Perturbation Stochastic Approximation, from [29]) to 
minimize overall 𝑀𝐴𝑃𝐸. Specifically, during each iteration of 
SPSA, a single game was solved, with payoff coefficients 
perturbed according to an approximated gradient with respect 
to the 𝑀𝐴𝑃𝐸 loss function.  SPSA was chosen for its ability to 
approximate gradient using only two measurements of the 
𝑀𝐴𝑃𝐸 loss function, independent of the number of variables 
being optimized. The 11 coefficients were initialized using 
values estimated by fitting quadratic functions of frequency to 
payoff using the S-curve market share model with𝛼 = 1.29, 
𝛽 = 0.0045, 𝑁𝑚 = 0.5 and unlimited seating. The game was 
then run repeatedly until approximate convergence of 𝑀𝐴𝑃𝐸, 
over the course of roughly 10,000 iterations. The best 
performing coefficients were then used to estimate frequencies 
across the network, from which we can evaluate in-sample and 
out-of-sample model performance. 

First, we used the data from the first quarter of 2007 to 
calibrate the model and then compared the calibrated model’s 
𝑀𝐴𝑃𝐸 performance against the actual frequency values for 
the same quarter. This gave us an estimate of the in-sample 
prediction accuracy of our model. Fig. 2 compares actual 
frequencies (x-axis) and these predicted frequencies (y-axis). 
The 45º blue line represents perfect predictions, i.e., the line 
where the observed and predicted frequencies are equal. Most 
data points indicating segment predictions are near this line. 
An overall in-sample 𝑀𝐴𝑃𝐸 of 18.4% is achieved: more 
concretely, this corresponds to 49% of absolute prediction 
errors being less than 1, and 78% being less than 2. Notable 
outliers were the three highest frequency segments, all hub-to-
hub airport segments flown by Southwest Airlines (circled in 
Fig. 2). 
 

 
Figure 2.  Actual versus model-predicted frequency, for Q1 of 2007 



D. Out-of-Sample Predictive Performance 

We can use these same calibrated coefficients to then make 
out-of-sample frequency predictions for future quarters. We 
call the dataset used for calibration of the model coefficients 
as the training dataset and the dataset used for testing the 
prediction accuracy as the testing dataset. For example, 
coefficients calibrated using SPSA on data from Q1 of 2007 
(the training dataset) can be used to predict frequencies for Q4 
of 2007 (the testing dataset). For this training-testing pair, we 
found an out-of-sample testing 𝑀𝐴𝑃𝐸 of 20.6%, 
corresponding to 47% of absolute frequency errors being less 
than 1, and 73% being less than 2. However, we can leverage 
our knowledge of training errors when making out-of-sample 
predictions to further improve this performance. By adjusting 
our testing predictions for a given airline-segment by the error 
for that same airline-segment in the training dataset (and 
simply performing no adjustment to airline-segments that did 
not exist in the training dataset), we can substantially reduce 
our out-of-sample 𝑀𝐴𝑃𝐸: 𝑀𝐴𝑃𝐸 in our Q4 2007 predictions 
falls to just 11.2%, corresponding to 72% of absolute 
frequency errors being less than 1, and 92% being less than 2. 

A more concrete illustration of this model’s out-of-sample 
prediction accuracy can be found by looking at a new market 
that arises between Q1 and Q4 of 2007. PDX-SFO is not seen 
in the training data, yet in Q4 it is a duopoly market shared by 
AS and UA. The frequencies predicted for this market are a 
good approximation for observed behavior, with an overall 
𝑀𝐴𝑃𝐸 of 16.5%, as seen in Table IV. 

We can take a another view of out-of-sample prediction 
accuracy by looking at more aggregate measures of prediction 
performance, at the airline, coefficient category (one-player, 
two-player hub-hub, other two-player, three-player), market 
and airport levels. In our Q4 2007 predictions based on Q1 
calibration data, we find excellent predictions at all of these 
levels, both unadjusted and adjusted according to training 
error as described above. With respect to total frequencies 
allocated by each airline, we find an 𝑀𝐴𝑃𝐸 of 2.0%, or 1.5% 
adjusted (corresponding to average absolute errors of 2.71 and 
2.11 flights, respectively). With respect to total frequencies 
allocated within each coefficient category, we find an 𝑀𝐴𝑃𝐸 
of 3.0%, or 2.5% adjusted (corresponding to average absolute 
errors of 4.2 and 3.42 flights, respectively). With respect to 
total frequency by market (across the 41 markets for which 
estimates were made in the network), we find an 𝑀𝐴𝑃𝐸 of 
14.4%, or 6.3% adjusted (corresponding to average absolute 
errors of 1.95 and 0.86 flights, respectively). With respect to 
total frequency by airport (across the 11 airports in the 
network), we find an 𝑀𝐴𝑃𝐸 of 7.8%, or 2.6% adjusted 
(corresponding to average absolute errors of 7.75 and 2.59 
flights, respectively). Predictions at each of these levels of 
aggregation may be of interest for airlines, airports and other 
policy makers. 

TABLE IV.  OUT-OF-SAMPLE PERFORMANCE ON A NEW MARKET 

PDX-SFO, Q4 2007 
With coefficients 
calibrated on Q1 2007 

Observed 
Frequency 

Predicted 
Frequency 

Absolute 
Error 

UA 6.11 7.34 1.22 

AS 3.02 2.74 0.28 

 
Table V displays the (rounded) error adjusted predictions 

and actual total daily flights for each airport in our network for 
Q4 2007, while Fig. 3 shows a visual representation of this 
table. Note that at airports where a significant increase in 
traffic levels between Q1 and Q4 was observed (e.g. LAS), 
our model was able to predict this increase. As discussed in 
Section I, these types of airport-level traffic forecasts are used, 
for instance, by the FAA in workforce staff planning, and 
evaluation of airport capacity expansion and technological 
development. 

In order to examine the predictive accuracy of our model 
more broadly, we can examine in-sample and out-of-sample 
prediction across years and for varying degrees of look-ahead 
in prediction. In order to do this, we calibrated our 11 
coefficients on every quarter from 2007 to 2014, giving us 32 
sets of coefficients. Then, we used these coefficients to predict 
frequencies for every quarter after each of these calibration 
quarters. In this expanded set of data, we include new major 
airlines and new hubs in the network as appropriate for the 
time period in question. Examining the adjusted 𝑀𝐴𝑃𝐸 at 
varying look-ahead values (i.e., at varying differences between 
the quarters corresponding to the training and testing datasets), 
we find an almost monotonic increase in median error. 

TABLE V.  OUT-OF-SAMPLE PREDICTIONS OF DAILY FLIGHTS AT AN 

AIRPORT LEVEL: Q1 2007 FOR TRAINING AND Q4 2007 FOR TESTING 

Airport Observed 
Flights Q1 

Observed Flights 
Q4 

Predicted Flights 
Q4 

LAX 137 128 132 

SJC 60 64 61 

LAS 154 167 168 

SAN 101 108 110 

SMF 70 71 70 

SEA 98 105 104 

PDX 33 41 43 

SFO 67 92 99 

ONT 61 61 62 

PHX 159 159 153 

OAK 88 88 85 

 

Figure 3.  Visual representation of Table V data. Left panel shows airports 

where flight numbers remained roughly the same, the middle panel airports 
where flights decreased, and the right airports where flights increased. 



Fig. 4 shows 𝑀𝐴𝑃𝐸 for each possible training-testing 
combination (red circles) in our 8-year dataset, and the median 
𝑀𝐴𝑃𝐸 for that look-ahead value in blue, with error bars at one 
standard deviation. Fig. 5 shows the same information as that 
in Fig. 4, but focuses only on new markets, which did not exist 
in the training dataset but do exist in the testing dataset. Fig. 6 
is similar, but shows aggregate 𝑀𝐴𝑃𝐸 values calculated on 
airport level. Median 𝑀𝐴𝑃𝐸 remains below 15% across all 
markets, remains around 20% for the new markets, and 
remains below 10% for the airport level aggregation, for 
several quarters out, suggesting reasonable predictive accuracy 
in the short and medium terms. 

VII. CONCLUSIONS 

This study investigates a two-stage frequency-fare game-
theoretic model of airline competition which is behaviorally 
consistent with the sequential nature of airline frequency and 
fare decisions. For simple cases, the analytical qualities of this 
model indicate well behaved and tractable games, with unique 
equilibria and convergence properties. Using polynomial 
payoff function approximations, these properties can be shown 
numerically to extend to more realistic formulations of the 
game. In practice, when applied to a real airline network, the 
model converges quickly and generates daily frequency 
predictions that closely approximate actual airline decisions, 
both in-sample and out-of-sample, within a short-to-medium 
term time horizon. 

We believe that our model presents multiple avenues for 
application and future research within air traffic forecasting 
and related decision-making. To the best of our knowledge, 
this is the first study to investigate the favorable properties 
discussed within the context of a two-stage model of airline 
competition, providing analytical, computational, and 
empirical results for a game-theoretic approach that has 
received limited attention in the airline competition literature. 
We hope that our results presented here can serve as a 
foundation for a further research into sequential models of 
airline decision-making under competition. Furthermore, the 
predictive performance of our model on real world data 
suggests that refinements of the model could serve as a 
scenario analysis tool to aid in planning, forecasting and 
policy-making decision support. The tractability of this model 
and the flexibility with which different scenarios can be tested 
suggest its potential for rapid and interpretable 
experimentation in even large-scale airline networks. Here we 
have considered a relatively simple model of airline 
competition, without taking into account factors such as 
market segmentation between business and leisure passengers, 
passenger loyalty, behavioral differences between airlines and 
between the other amenities that they provide, and 
characteristics of markets beyond cost, observed passenger 
flow, and hub presence. The fact that our simple model 
provides a good approximation of airline frequency allocation 
suggests that more flexible parameterizations in calibration 
and prediction could be promising avenues for practitioners. 

 
Figure 4.  MAPE values (adjusted for calibration error) for varying look-

ahead durations for all markets 

 

Figure 5.  MAPE values (adjusted for calibration error) for varying look-

ahead durations for new markets 

 

Figure 6.  Airport level aggregated MAPE values (adjusted for calibration 

error) for varying look-ahead durations 
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