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Abstract—The aircraft boarding is always on the critical path of 

the turnaround. Efficient boarding procedures have to consider 

both operational constraints and the individual passenger 

behavior. In contrast to the processes of fueling, catering and 

cleaning the boarding is mainly driven by passengers not by 

airport or airline employees. There are several approaches to 

model and simulate the aircraft boarding. In this paper a 

microscopic approach is used to model the passenger behavior, 

where the passenger movement is defined as a one dimensional, 

stochastic, and time/space discrete transition process. To validate 

the research results achieved in the past years, field trials of 

boarding procedures and measurements of specific processes are 

recorded, analyzed and transferred to the simulation 

environment.  

Keywords-boarding; simulation; field trials; validation; 

improvement 

I.  INTRODUCTION 

Operational systems have to be efficient in both cost and 
operational strategies. The passenger handling at airports 
mainly aims at reliable on-time performance for the boarding 
process. At the aircraft boarding a specific amount of passenger 
trajectories (path along handling stations and corresponding 
timestamps [1]) and the associated aircraft trajectory is brought 
together in one point of space and time. The boarding is the 
final passenger process at the airport with a significant 
potential for influencing the future aircraft trajectory. During 
aircraft turnaround, the aircraft will deboarded, cleaned, (un-) 
loaded, and refueled. Finally the passengers enter the airplane. 
From an operational point of view the passenger boarding is 
getting more important, if an aircraft demands a short 
turnaround time (e.g. delayed flight, slot adherence)[2]. For the 
ATM system the turnaround holds the potential to compensate 
delays and provide a reliable basis for operational planning 
procedure at the day of operations. From the airline 
perspective, the boarding process contains a product (cf. 
priority boarding, passenger convenience) which allows for a 
specific pricing strategy to improve revenues.  

This paper provides a fundamental dataset to model the 
airplane boarding. In the last years more than 400 flights are 
recorded with different level of details: passenger processes 
(e.g. store baggage, seat taking), arrival rates at the aircraft, 

boarding time using different boarding strategies. The recorded 
data are systematically analyzed and used to calibrate the 
stochastic model of the boarding process. The recorded 
operational scenarios are implemented in the existing 
simulation environment and the results will be compared 
against the field measurements. Finally, operational 
improvements (focusing hand baggage), minimal boarding 
time, deboarding and infrastructural changes are addressed. 

A. Status quo 

In the following section a short overview about scientific 
research on aircraft boarding is given. This overview extends 
the modelling background already presented in [18].  

Common goal of those examinations doing simulations is 
to minimize the time that is required for passenger boarding. 
Taking into account different boarding patterns a study by Van 
Landeghem and Beuselinck [3] investigates to what extent 
boarding time can be reduced by applying optimal versus 
current boarding strategies. A similar approach is done by 
Ferrari, P. and Nagel, K. [4] with special emphasis on 
disturbances, such as a certain number of passengers not follow 
their boarding group but boarding earlier or later. The results 
show improved values for the typical back-to-front boarding in 
case of passengers not boarding to their previously assigned 
boarding groups. In contrast, Bachmat and Elkin [5] support 
the classical back-to-front policy in comparison to random 
boarding strategy. On the basis of the individual boarding 
strategy proposed by Steffen, J.H. [21] which considers the 
time a passenger need to store baggage, the model developed 
by Milne and Kelly [6] assigns passengers to seats so that their 
hand baggage is distributed evenly throughout the plane. A 
more practical approach to airplane boarding is done by Chung 
[7] as this study points out that boarding times significantly 
depend on the aircraft seating design and total loading times 
can be significantly reduced. A link between the efficiency of 
airlines boarding policies and the airplane design parameters 
such as distance between the rows is given in a study by 
Bachmat et al. [8]. In this study, results show a higher 
attractiveness of random boarding among row-based policies. 
Focusing on the simulation of deplaning strategies (by group 
and/or column) several equipment types are tested in a study by 
Wald [9].   



Relevant studies about aircraft boarding strategies include 
but are not limited to the following examples. Picking up the 
idea of boarding groups, a study based on an analytical model 
by van den Briel et al. [10] show a significantly improved 
boarding time by group boarding policies over the traditional 
method from back to front. Based on a mathematical model 
that is related to the 1+1 polynuclear growth model with 
concave boundary conditions Bachmat et al. [11] study all 
airplane configurations and boarding group sizes. Results show 
that effectiveness of back-to-front boarding can be increased 
compared to random boarding but drops when having more 
than two boarding groups. Assessing the effectiveness of 
boarding strategies is also a core part of a study by Soolaki et 
al. [12]. Based on an integer linear programming approach 
together with a genetic algorithm they analyze different 
boarding strategies and to assess the effectiveness of their 
model.  

The interference of passengers when boarding an airplane is 
in the focus of a study by Bazargan [13]. The mathematical 
model´s output aims to minimize the interferences and to speed 
up the boarding time as interferences may lead to delays 
especially in single aisle aircraft. The interactions of passengers 
during boarding process (e.g. occupied aisle) are also in the 
focus of a study by Frette and Hemmer [14] and Tang et al. 
[15]. Based on a dynamical model Frette and Hemmer 
calculate the average boarding time when all permutations of N 
passengers are given equal weight. Tang et al. concentrate on 
passengers individual properties and apply this knowledge to 
their numerical model in order to evaluate the benefit of 
different boarding strategies. An experiment conducted in a 
mock Boeing 757 was performed by Steffen, J.H. and 
Hotchkiss, J. [16]. They tested different boarding methods and 
described the potential savings to airline companies due to less 
boarding times.   

B. Model and Simulation 

The proposed dynamic passenger movement model for the 
boarding simulation is based on the asymmetric simple 
exclusion process (ASEP). The ASEP was successfully adapted 
to model the dynamic passenger behavior in the airport 
terminal [1][17]. In this context, the passenger boarding is 
assumed to be a stochastic, forward directed, one dimensional, 
and discrete (time and space) process. To provide both an 
appropriate set of input data and an efficient simulation 
environment the aircraft seat layout is transferred into a regular 
grid with aircraft entries, the aisle(s) and the passenger seats as 
shown in fig. 1(reference: Airbus 320, 29 rows, 174 seats). 
This regular grid consists of equal cells with a size of 0.4 x 
0.4 m, whereas a cell can either be empty or contain exactly 
one passenger. 

 

Figure 1.  Grid based simulation environment – Airbus A320 as reference  

The boarding progress consists of a simple set of rules for 
the passenger movement: a) enter the aircraft at the assigned 

door (based on the current scenario), b) move forward from 
cell to cell along the aisle until reaching the assigned seat row, 
and c) store the baggage (aisle is blocked for other passengers) 
and take the seat. The movement process only depends on the 
state of the next cell (empty or occupied). The storage of the 
baggage is a stochastic process and depends on the individual 
amount of hand luggage. The seating process is stochastically 
modeled as well, whereas the time to take the seat depends on 
the already used seats in the corresponding row. 

The stochastic nature of the boarding process requires a 
minimum of simulation runs for each selected scenario to 
derive reliable simulation results. In this context, a simulation 
scenario is mainly defined by the underlying seat layout, the 
number of passengers to board (seat load factor, default: 85%), 
the arrival frequency of the passengers at the aircraft (default: 
14 passengers per minute), the number of available doors 
(default 1 door), the specific boarding strategy (default: 
random) and the conformance of passengers to follow the 
current strategy (default: 85%). Further details about the model 
and the simulation environment are available in [18]. To model 
different boarding strategies the grid based approach enable 
both the individual assessment of seats and 
classification/aggregation according to the intended strategy.  
In fig. 2 the seats are color coded (gray-scale) and aggregated 
to superior structures (blocks). The boarding takes place in the 
order of the gray-scale value.  

 

Figure 2.  Example for back-to-front and outside-in boarding strategy (darker 

seats are boarded first) modelled in the simulation environment 

II. MEASUREMENTS 

Addressing the bilateral agreements with the concerned 
airlines and airports, the data sets are appropriately aggregated 
to be used in this research context. This section will provide an 
overview about boarding times, boarding/deboaring rates, and 
measurements about the individual passenger behaviors inside 
the aircraft (seat interactions and baggage storage). 

A. Boarding Times 

In figure 34 the measurements of 282 boarding events at 
single aisle aircraft (Airbus 320, Boeing 737) are shown, with a 
minimum of 29 passengers (pax) and a maximum of 190 pax. 
Assuming a linear boarding progress, the boarding time 
increases for each passenger by 4.5 s with an additional offset 
of 2.3 min at average (bold regression line in fig. 3). If the 
boarding time only depends on the amount of passengers (no 
offset) a rate of 5.5 s/passenger has to be used (thin regression 
line in fig. 3). To derive a more sophisticated understanding of 



boarding times the boarding time tB is weighted by the amount 
of passengers np, so the boarding rate is tnB =  tB/np. 
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Figure 3.  Boarding times (282 measured flights) 

In a descriptive statistic summary, tnB can be characterized 
by the following quantiles Q.10, Q.25, Q.50, Q.75, and Q.90 
with values of 4.5 s/pax, 5.0 s/pax, 5.6 s/pax, 6.5 s/pax, and 8.0 
s/pax respectively (positive skew). This descriptive summary 
points out that 80% of tnB is in the range of 4.5s/pax and 8.0 
s/pax (between Q.10 and Q.90). According to the median (Q.50 
= 5.6 s/pax) this is a spread of the boarding time from -19% to 
+44%. For a detailed analysis the linear boarding progress is 
compared against the boarding measurements a Q-Q plot is 
used (see fig. 4). In a Q-Q plot the probability function of two 
distributions are compared using a diagonal line as a reference. 
If the two distribution are the (nearly) the same, all plotted 
points should be on this diagonal line. Comparing the expected 
(linear function with tB = 5.5 s/pax * np) and the measured 
distribution of the boarding time, an entire linear correlation 
seems not to be a valid assumption. 
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Figure 4.  Q-Q plot of boarding time percentiles against a linear boarding 

progress with tnB = 5.5 s/pax 

The Q-Q plot indicates a classification into three sectors: 
fast, medium, and slow boarding progress. In fig. 4 two 
prominent coordinates could be observed at 8.4 min and 
12.1 min at the measured distribution. At 8.4 min the boarding 
time per passenger decreases after a section of a nearly 
constant rate and at 12.1 min an offset indicates a new section 
of boarding rate. If these values are used as section dividers, 
three sections with different boarding rates could be 
introduced. At fig. 5 the result of the classification is shown. 
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Figure 5.  Boarding time classification (fast. medium. slow boarding 

progress). 

On the left side the observed boarding times are separated 
according to the fast, medium and slow boarding progress. On 
the right side the characteristics regarding to the amount of 
passengers according to the classification is pointed out (95 
measurement with fast, 78 with medium, and 109 with slow 
boarding rates). Following the initial approach of linear 
correlation between the amount of passengers and the boarding 
time (defined by slope and constant offset), the accompanied 
slope values are 1.0 s/pax, 1.2 s/pax, 2.2 s/pax and the constant 
offset are 12.3 min, 8.2 min, and 3.5 min respectively for the 
slow, medium and fast classification. In the following tab. I the 
results of the classification are summarized and exemplarily 
chosen to point out the consequence of using a common 
average for scenarios with 80, 110, 140, and 170 passengers. 
According to fig. 5, these scenarios consist a chance to be 
classified as boarding with fast, medium or slow progress. 
Depending on both the scenario and the classification the 
boarding time could accordingly deviate within a corridor of 
± 5.3 min (170 pax: 15.0 min at slow, 9.7 min at fast). 

TABLE I.  BOARDING TIME USING DIFFERENT CLASSIFICATIONS OF 

LINEAR BEHAVIOR (SLOW, MEDIUM, FAST, AVERAGE) 

 

Boarding time (min) 

pax / s 
offset  

(min) 

passengers 

80 110 140 170 

slow 1.0 12.3 13.6 14.0 14.5 15.0 

medium 1.2 8.2 9.9 10.5 11.1 11.7 

fast 2.2 3.5 6.4 7.5 8.6 9.7 

average 5.5 0 7.3 10.1 12.8 15.6 

*average 4.5 2.3 8.3 10.5 12.7 15.0 

 

To emphasize the different boarding progress, three 
boarding scenarios are selected from the recorded data. These 
scenarios reflect one specific flight with nearly the same 
amount of passengers: 99, 104, 100 for scenario A, B, and C 
respectively (see fig. 6). Due to the different arrival of 
passengers, the boarding is completed after 7 minutes at 
scenario A, after 11 minutes at scenario B, and after 15 minutes 
at scenario C. Obviously, late passengers will significantly 
extend the boarding process (scenario C). But also a (constant) 
lower arrival rate of passengers at the aircraft impacts the 
boarding progress negatively.  
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Figure 6.  Boarding progress at different recorded scenarios 

The arrival rate of passengers at the aircraft is mainly 
triggered by the presence of passengers at the boarding gate 
and the service rate at boarding card control. As a consequence, 
an airline should balance the effort/benefit ratio between 
introducing new boarding procedures and faster dispatch/ 
higher availability of passengers at the boarding gate. 

B. Boarding and Deboarding Rates 

As already shown in fig. 6 the arrival of passengers at the 
aircraft mainly drives the boarding time. In the recorded data 
188 flights are available for an analysis of the arrival time at 
boarding and 186 flights for deboarding in a higher level of 
detail. Fig. 7 points out that the arrival rate is not constant over 
the time: the arrival rate decreases during the boarding 
progress. This behavior is shown by using the 25%, 50%, and 

75% quantiles (Q.25, median, and Q.75), the mean value () 
and the rates of covered flights (after 10 min approx. 50% of  
flights already completed their boarding, right scale).  

In the first minute 14 pax/min arrive the aircraft (median 
value) with Q.25 = 12 pax/min and Q.75 = 18 pax/min. These 
ratios decrease to 3 pax/min, 6 pax/min, and 11 pax/min in the 
17

th
 minute for Q.25, median, and Q.75 respectively. At this 

time the boarding is finished at 91% of all recorded flights 
finished. The remaining data possess only a limited 
significance (only few samples per time period) and are not 
included in fig. 6.  
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Figure 7.  Decrease of the arrival rates during aircraft boarding 

The linear lines for in Q.25, median, and Q.75 in fig. 6 
emphasize the declining trend and the increasing spread of the 
arrival rates. If the median is used as a reference with a linear 
behavior, the arrival rate decreases by 0.45 pax/min starting at 
14.1 pax/min. 

An in-depth analysis of interarrival times (the times 
between successive arrivals) provides an additional approach to 
cover the individual passenger behavior during the arrival 
process. In the context of airport operations many processes 
could be mathematically described using a queuing theory 
approach. This is caused by the nature of the specific handling 
processes, which are typically structured by sequential/parallel 
services. Following the queuing approach, the passenger arrival 
at the aircraft door can be modelled as M/M/1 queue with a 
single server and exponential distributed arrival times. As a 
consequence the arrivals will be defined by a Poisson process.  

The cumulative distribution function of the exponential 

distribution is given by (1) where  is the rate parameter 

defined by  =  1 / interarrival time. 

  

The corresponding cumulative distribution function of the 
Poisson distribution is given by (2) where in this case the rate 

parameter  is defined as the reciprocal value of the average 
amount of passengers expected in a given time interval. 

  

To confirm the M/M/1 approach the inter-arrival times of 
128 passengers are recorded and evaluated. The results of the 
evaluation are shown at fig. 8, where the inter-arrival times are 
clustered in intervals of 5 seconds. An appropriate fitting of the 
measured values is achieved with an exponential distribution 

using interarrival time = 3.7 s, which results in a chi-squared test 
value of 0.64 (acceptance level of 14.07, using significance 
level of 5% and 7 degrees of freedom).    
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Figure 8.  Interarrival times clustered in 5 s intervals 



Using this quite good fitting result for the interarrival times 
as a basis, the corresponding Poisson distribution is shown in 

fig. 9. The  value of 0.74 is calculated by 3.7 s average 
interarrival time divided by a 5 s interval (reciprocal value of 
1.35 average passenger arrivals in the 5 s interval). As fig. 9 
qualitatively emphasizes, the associated Poisson distribution 
with a chi-squared test value of 67.2 is not an appropriate 
candidate to describe the measured data (acceptance level of 
11.07 using significance level of 5% and 5 degrees of 
freedom).    
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Figure 9.  Expected arrivals in a 5 s interval 

Whereas the probability of 0 arrivals and 2 per interval 
corresponds to the Poisson distribution, the arrival of 1 pax per 
interval indicates a much higher probability and lower 
probabilities for more than 2 arrivals regarding to the recorded 
dataset. Fig. 9 points out that the observed groups of 
passengers in the airport terminal (cf.[1][17]) also influencing 
the boarding process. Further on it points out the limitation of 
the standard queueing theory (non-group arrival is required) in 
the context of passenger arrivals (also see group extension of 
M/M/1 approach [Zhu1991]).  

The analysis of the deboarding regarding to the measured 
outflow rates will only focus on the aggregated flow rate level. 
In contrast to the boarding process, the outflow rates at the 
deboarding start are significantly higher level with 18 pax/min, 
23 pax/min, and 29 pax/min for Q.25, median, and Q.75 
respectively (see fig. 10). 
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Figure 10.  Outflow rates from the aircraft during the deboarding 

The outflow rate increases at the first three minutes. After 
8 min at 91% of the recorded flights, the deboarding is finished 
(this level was reached after 17 min at the boarding, so 
deboarding is 53% faster than boarding). 

C. Seat Interactions 

Regarding to the possible conditions of the seat rows, a 
different amount of time to coordinate the positions changes 
(seat shuffle) is need. In the worst case, the aisle and the 
middle seat are already used and the arriving passenger wants 
to seat at the window seat. For this constellation 9 movements 
are need for stepping out of the row, (re) enter the row and 
unblock the aisle. The other seat occupation patterns demand 
for 4 (aisle seat blocked) and 5 movements (center seat is block 
and windows seat is the target). If the passenger can enter his 
seat without any interference, the time for enter the seat row is 
defined with 1 movement. The characteristics of the 
accompanied time need to finally unblock the aisle are shown 
in fig. 11. The gray color indicate the measurement the green 
color the results of the modeled distribution [18]. Further on, 
the colored area represents 50% of all values (measured or 
calculated) bounded by the accompanied Q.25 and Q.75 
quantiles. Around these colored areas additional areas are 
defined by bars to cover 80% of all values (with Q.10, Q.90). 
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Figure 11.  Seat interferrence: measurement vs simulation 

During the field trials only a minor quantity of specific 
movements could be recorded (between 10 and 15 measures 
per category). This is mainly caused by the observation 
position at the front/back door of the aircraft, the unpredictable 
seating progress of a specific row and the ability to clearly 
define start and end of the seating process. As a consequence, 
the observers could only concentrate to a limited set of seat 
rows. However, the recorded measurements qualitatively 
confirm the proposed model to calculate the time need to 
unblock the aisle. As a side note, the cabin crews approve the 
order of magnitude of the gathered data as well, but point out 
that specific events during the boarding regularly disturb the 
progress. But these events will not be covered in the model. 
Considering both, the minor quantity of measurements and the 
same order of magnitude of the results, the initial distribution 
for the seat shuffle points out to be an acceptable approach and 
will be still used in the following simulations. 

D. Baggage Storage 

The baggage storage process is parameterized by the time 
to store one piece and the individual amount of baggage pieces. 



During the field trials 323 values are manually recorded. The 
record starts by the time the passenger reaches his seat row and 
finishes if the passenger enters the set row. To mathematically 
fit the measurements the Weibull distribution is used (3) with 

the scale parameter  and the shape parameter . Since the 
minimum time xmin to store the baggage is zero no offset is 
needed to derive the distribution parameter (xmin = 0). 

  

With the parameter  = 1.7 and  = 16.0 s the Weibull 
distribution points out an appropriate level of correlation with a 
chi-squared test value of 3.65 (acceptance level of 12.6. using 
significance level of 5% and 6 degrees of freedom). The prior 
used triangular distribution (see [18]) describes the 
qualitatively the shape of the recorded data, but over estimates 
the time for the baggage storage. The expected average time to 
store the baggage is 13.9 s for the recorded data and 17.5 s for 
the triangular distribution. At fig. 12 the recorded data, the 
results of the fitted Weibull distribution and the prior used 
triangular distribution are shown. In the first section (0-5 s) the 
triangular distribution indicates no values, where the recorded 
data indicate a probability of 12 %. The sections 10-15 s, 20-25 
s, and 25-30 s point out a deviation of 5 % at average.  

As a result of this analysis, further simulations will use the 

derived Weibull distribution with the parameter set  = 1.7 and 

 = 16.0 s. 
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Figure 12.  Measurements of baggage storage times 

III. SIMULATION 

A. Validation of prior Results 

Since the field measurements of the specific sub processes 
of the boarding are analyzed in detail and used to calibrate the 
simulation environment, the validity of the prior simulation 
results will be checked (see [18]). For this purpose the 
additional input parameter are seat load factor (85%) and 
passenger conformance rate according to the assigned seat 
(85%). The random strategy is used as baseline but with the 
calibrated input values, the boarding time and the standard 
deviation changes. So the calibrated random strategy is 8.4% 

faster accompanied with a 5.9% lower standard deviation. The 
following table II points out that the differences of the boarding 
times between non-calibrated and calibrated simulation runs 
are not significant (< 1.5%). As all strategies show a minor 
improvement, the relative order of the strategies is still valid. 
As it was expected, the standard deviations of the boarding 
strategies increase, caused by a higher bandwidth of the 
baggage distribution and the non-constant arrival distribution 
observed in the field.  

TABLE II.  COMPARISSON OF BOARDING PROGRESS USING REAL DATA 

FOR CALIBRATION 

Boarding 

Strategies 

Boarding time (%) 

random outside-in 
back-to-

front 
block 

1 door  100.0 80.9 110.5 96.2 

 real 100.0 79.5 109.2 95.3 

2 doors  74.2 63.8 75.3 76.2 

 real 74.1 62.5 75.0 76.2 

  Standard Deviation (%) 

1 door  7.1 5.5 7.9 6.6 

 real 7.3 5.7 8.1 6.9 

2 doors  4.6 2.9 4.8 5.3 

 real 5.9 5.5 5.9 5.5 

 

IV. MEASUREMENTS VS SIMULATION 

 

A. Airline Trials 1 

Field measurements with an Airline focusing on efficient 
boarding to ensure a convenient boarding procedure 
accompanied with a faster progress. A new strategy was 
developed and tested to emphasize the operational benefits 
under operational condition. Beside the common approach of 
group boarding (back-to-front with 4 blocks, airline-S1 in fig. 
13) a new outside-in strategy was developed (airline-S2 in fig. 
13) to figure out potential operational benefits.  

 
Figure 13.  Airline boarding strategies for validation trials 

 
These measurements are conducted in 2014 aiming at 

business routes with the following restrictions: families were 
not separated, aircraft at gate position, and A320/B738 aircraft. 
The average seat load factor of the 13 recorded flights was 
76%. Since the test based on non-operational strategies the 
boarding progress and group assignment was directly 
supported by the ground staff.  



To allow for an internal comparison the airline linear 
normalized all results to a seat load factor of 90%. But, at the 
prior studies about the impact of the seat load factor on the 
boarding progress ([18]), it was emphasized that the block 
boarding strategy (including back-to-front) shows no linear 
behavior. 

To allow a reliable comparison of the field trials with the 
simulation results two approaches are used. The first 
simulation trial starts with a seat load factor of 90% and the 
second trial starts with 76% SLF with an equal distributed 
variation of ±5% to cover the expected deviation from the 
average load. All simulation uses the validated values for 
arrival times, seat interaction, and baggage storage from 
section II.  

The results of the simulation runs are listed in the following 
tab. III, where the simulation results consist of mean values and 
standard deviation (SD) of the boarding time as well as a five-
number-summary of the boarding time distribution (Quantiles: 
Q.10, Q.25, Q.50, Q.75, Q.90). At the first scenario with 90% 
SLF, the baseline boarding strategy (random) points out only 
minor differences (1%) and the outside-in strategy also indicate 
a reliable simulation approach (4% difference). A different 
picture is given at the back-to-front strategy, where the 
simulated boarding times are 12% higher than the measured 
times at the field trials.  

Considering scaling to 90% SLF, the measured boarding 
times are linearly (re-) scaled down to the initial average SLF 
of 76% and additionally simulated with an assumed equal 
distributed variation of ±5% to cover the assumed operational 
bandwidth. This second approach results in an appropriate 
consistency of field measurements and simulation results. The 
differences of the random and outside-in strategies are slightly 
increased but now, the back-to-front strategy shows the same 
order of magnitude. 

As a side note, the tested outside-in could result in faster 
boarding times, if the 4 blocks are aggregated to 3 blocks (see 
fig. 13, combining the two gray blocks to one gray block). This 
strategy *outside-in leads to additional improvement of approx. 
3%  boarding time and 0.6% standard deviation. 

TABLE III.  COMPARISSON OF BOARDING PROGRESS USING REAL DATA 

FOR CALIBRATION 

Boarding 

Strategies 

Boarding time (%) 
SD 

(%) 

data sim. diff. Q.10 Q.25 Q.75 Q.90 sim. 

random 101.4 100.0 1.4 -8.6 -4.6 4.9 9.5 7.0 

back-to-front 93.7 104.5 -10.8 -9.3 -5.1 5.2 10.2 7.5 

outside-in 87.0 83.8 3.2 -7.4 -4.0 4.4 8.4 6.2 

*outside-in   80.5      5.6 

 Seat Load Factor 76% ± 5% 

random 102.6 100.0 2.6 -10.6 -5.7 6.2 11.8 8.7 

back-to-front 94.8 98.7 -3.9 -11.5 -6.3 6.6 12.7 9.4 

outside-in 88.0 83.4 4.6 -8.9 -4.8 5.2 10.2 7.4 

*outside-in   80.8      6.8 

 

Finally, the simulation runs using the calibrated values and 
cover the observed boarding times at the field. The observed 
times are within the ± 25% environment (between Q.25 and 
Q.75) which emphasizes the validity of the developed model.  

B. Airline Trials 2 

During second airline trial 64 boarding progresses are 
recorded aiming at a deeper understanding of how passengers 
influence the boarding process. The particular trial mainly 
focusses on two strategies (back-to-front with 4 blocks and 
outside-in), two configurations (one door and two doors), and 
A320/B738 aircraft (180-210 seats). For the analysis the flights 
are separated by the seat load factor in three groups: A with 
60%-80% (27 flights), B with 80%-90% (20 flights) and C 
with more than 90% (17 flights). Additionally, for each flight 
the aircraft position (remote, gate, apron), the categorization 
(tourist, EU, Germany) and the amount of pre-boarding 
passengers was recorded (see figure 14).  
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Figure 14.  Amount of pre-boarding passengers 

The position of the aircraft determines the mode of transfer: 
bus shuttle, gangway or walk boarding (see tab. IV).  

TABLE IV.  FLIGHT CLASSIFICATION 

 
Transfer Mode Destination 

bus gangway walk tourist EU Germany no tag 

A 1 14 13 7 7 12 2 

B 0 4 16 6 5 6 4 

C 0 7 10 6 5 5 1 

 

In contrast to the first measurement campaign the 
simulation results point out a different view. The recorded 
boarding times show high deviations which are not covered by 
the simulation results. In fig. 15 the simulation results are 
marked with circles with an error bar indicating the 10% and 
80% quantile. The blue cross mark the block strategy (back-to-
front with 4 blocks) and the red plus mark the outside-in 
strategy separated by one/door configuration.  

In particular, the outside-in strategy is not showing the 
expected benefit. Due to the fact that there are several impact 
factors could influence the result (e.g. aircraft position or 
destination), the number of 64 recorded flights is not sufficient 
for a deeper analysis. As tab. IV shows, only the separation 
into destination or transfer mode leads to classes with less than 
10 values. 
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Figure 15.  Comparission of simulation results and recorded boarding times 

V. NEW PROCEDURES AND INFRASTRUCTURE 

At prior research the results of the B777 and A380 boarding 
confirm the general findings of the A320 analyses (cf. [18]), so 
only the A320 will be used for the following investigations. 
The first approach aims to analyze the impact if a ‘no hand 
baggage’ rule is applied by an airline or if passengers with a 
higher amount of baggage pieces have to board at the rear part 
of the aircraft. Secondly, a new seat design is focused, which 
changes the infrastructure of the aircraft by providing a wide 
aisle during the boarding. Finally, the minimal boarding time 
will be analyzed. 

A. Hand Baggage 

A frequently upcoming statement is that passengers with no 
hand baggage will immediately result in a faster boarding 
progress. The prior analysis mainly focusses on the sequence 
optimization to prevent unfavorable seat row states (see [18]). 
The amount of baggage was taken as an external parameter. 
Besides the negative impact on the individually perceived level 
of service and the need for parallel baggage loading process (in 
some circumstances additionally accompanied by a baggage 
check-in/out procedure), the potential savings in the boarding 
time will be addressed in this section. The initial approach 
assumed at least one piece of baggage per passenger and a 
probability rates for one piece, two pieces, and three pieces 
with 60%, 30%, and 10% respectively [18]. These values are 
taken as baseline with the aim to stepwise reduce the amount of 
baggage from 1.5 to 0 pieces per passenger on average (see tab. 
V).  

TABLE V.  BAGGAGE SCENARIOS 

 Scenarios (probability %) 

bags B1 B2 B3 B4 B5 B6 

0 0 15 30 50 70 100 

1 60 55 50 40 30 0 

2 30 25 20 10 0 0 

3 10 5 0 0 0 0 

avg. amount 

of bags 
1.5 1.2 0.9 0.6 0.3 0.0 

 

The proposed baggage scenarios are simulated using the 
default set of parameters (1 door configuration). In fig. 16 the 
achieved simulation results are shown. The random and block 
boarding nearly linearly benefit from the decreased amount of 
baggage pieces with a slope of 23.5% reduced boarding time 
per piece of bag. The outside-in boarding shows a declining 
behavior of the boarding time between 8.1% and 4.4 % 
changing from scenario B1 to B2 and B5 to B6 respectively. 
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Figure 16.  Reduction of hand baggage 

Finally, if passengers have no baggage to store in the 
overhead compartments, the boarding time reach a minimum of 
65% for random, 62% for block and 57% for outside-in 
boarding accompanied with a minimum variance of 2.9%, 
2.6%, and 1.5%. Addressing an operational implementation the 
strict reduction to one piece per passenger could result in 5%-
15% benefits (scenario S2 and S3) and the avoidance of 
suitcases (only allow few small bagpacks, shoulder bags, or 
similar) result in 20% - 25% benefits (scenario B4 and B5). 

Beside the potential to reduce the amount of baggage pieces 
another boarding strategy regarding to the storage of baggage 
could be to reduce the negative impact to other passengers. All 
following passengers will be negatively influenced if the 
storage process of an individual passenger consumes a 
significant amount of time. The resulting waiting queues could 
be prevented or reduced to a minimum, if the passengers with a 
high amount of baggage pieces seat in the rear part of the 
aircraft. This strategy is a kind of back-to-front strategy, but 
not in terms of the passenger arrival sequence. A dedicated 
pricing strategy could be the precondition of this particular 
baggage distribution in the aircraft. Passengers seated in front 
of the airplane are only allowed to have one piece of hand 
baggage. If a passenger wants to have more than one, he has to 
seat in the rear part of the aircraft. The simulation runs points 
out the clear advantage if passengers are allocated according to 
their amount of baggage. The introduced boarding strategies 
benefit within a range of 6-9%.    

B. Minimum Boarding Time 

To determine the absolute minimum of the boarding time 
the individual strategy points out to be the right candidate. 
Using the prior introduced approach to minimize the time 
consuming baggage storage (no hand baggage will be allowed 
in the aircraft), the individual strategy results in a minimum of 



55.1% boarding time and standard deviation of 1.4% 
(measured in units of random boarding time). A reliable 
indicator for the minimum boarding time is that the application 
of the second boarding door not results in further 
improvements (see tab. VI). 

Reaching a minimum of the boarding time consequently 
demands for an overall picture of passenger process at the 
aircraft which includes the deboarding of the passengers as 
well. The deboarding process needs no arrival and 
conformance rates. As an assumption, each passenger picks his 
baggage using the same probability density function as for the 
storage process but with reduced values for the triangular 
distribution (4) {min, mode, max} with {2 s, 4 s, 6 s}.  

  

This reduction reflects the normal behavior that passengers 
could take their baggage even if they are standing at their seats, 
accompanied with the fact that no additional time for baggage 
rearrangements at occupied overhead compartments are 
needed. Since the interaction between the passengers are 
reduced to a minimum (no seat interferences), only an 
additional rule regarding to the right of way between aisle and 
row movements has to be defined. Because there are no strong 
arguments for the prioritization of aisle or row movements, it is 
defined that passengers follow a balanced approach. This 
approach is implemented by an equally distributed choice of 
prioritization at each crossing of aisle and row. At tab. VI the 
boarding time and corresponding standard deviation is shown 
for the individual strategy [21] and for aircraft deboarding. An 
optimal flow is established, if during the deboarding no hand 
baggage is available.   

TABLE VI.  MINIMUM BOARDING TIME FOR BOARDING AND DEBOARDING 

Boarding strategies 

Boarding time and standard deviation (%) 

1 door 2 doors 

time SD time SD 

random 100.0 7.1 74.1 4.7 

individual (no bags) 55.1 1.4 55.1 1.4 

deboarding 43.0 2.4 23.8 1.6 

deaboaring (no bags) 12.6 0 6.7 0 

 

C. Side-Slip Seat 

Standard approaches to fasten the boarding process mainly 
addresses to manage passenger behavior by generating 
boarding sequences or reducing the amount of baggage. In the 
prior evaluation the use of a second door the board the 
passenger could be understand as a significant change of the 
infrastructure. The most prominent effect on the boarding time 
is accompanied with a blocked aisle due to passengers storing 
baggage or entering their seat row. With the innovative 
approach of a side-slip seat [19], the available infrastructure 

could be dynamically changed to support the boarding process 
by providing an extra space to allow two passengers to pass 
each other in a convenient way. As fig. 17 points out, the aisle 
seat could be moved in the direction of the center seat. The 
aisle seat will be in the initial position until one passenger 
wants to access the center or aisle seat.  

  

Figure 17.  Infrastructural changes using a side-slip seat configuration [2] 

The developed simulation environment has to be adapted to 
allow movements of two passengers along the aisle. 
Furthermore, the dynamic status of the seat row 
(folded/unfolded) is implemented to enable/disable the parallel 
movement of two passengers (see fig. 18). If both sides of the 
aisle are ‘open’, a second passenger can pass without reducing 
the speed. If only one side is ‘open’, the speed is reduced by 
50%. If no side is ‘open’ only one passenger is allowed to 
move at the aisle. At fig. 18 the following passenger can pass 
the orange passenger on the left side, while the orange 
passenger store his belongings and take the seat (orange 
indicates that the passengers wants to take the window seat). 

 

Figure 18.  Modell extension to cover new side-slip seat operations [20] 

To evaluate the benefit of the side-slip seat configuration, 
boarding strategies are analyzed using the default values for a 
one and two configuration. Each analyzed boarding strategy 
significantly benefit from this infrastructural change. The 
specific benefit reaches from 3.0% up to 15.0% reduced 
boarding time using one boarding door with regards to the 
boarding strategy without the side-slip seat. Since the use of the 
second door already realizes significant improvements of the 
boarding progress, the new seats enable additional benefits 
from 0.5% up to 6.4% reduction of the boarding time. The 
standard deviations of the boarding times are also positively 
affected by the new seat configuration. 

The implementation of the side-slip seat holds the potential 
of additional boarding time savings of the order of 10% (one 



door configuration) accompanied with a reduced standard 
deviation. These savings are smaller, when the boarding 
strategy already possesses are higher degree of complexity (e.g. 
individual sequencing or use of two doors). It is expected that a 
combination of the side-slip technology in association with a 
less complex boarding strategy could reliably reduce the 
boarding time even under operational conditions. 

VI. OUTLOOK 

The simulation environment and the aircraft boarding 
model are continuously developed. Currently more than 10 
basic boarding strategies are implemented, which can be 
combined to new strategies (e.g. block + alternation, fig, 19) in 
different scenarios (e.g. procedure/technology changes, fig. 
20). 

 

Figure 19.  Combination of strategies (block + alternation) 

 
Figure 20.  Combination of strategies and technologies (block + ouside-in + 

side-slip seat) 

At standard PC hardware the simulation engine can 
calculate 100.000 simulation runs for one scenario in 2 min. 
Visualization and analysis modules are available for fast post-
processing. In a next step, the gathered experience will be used 
in operational environments to develop dynamic approaches 
supporting airline and airport management systems.  

Further on, the validation of different boarding strategies 
will be focused, but with a more specific level of detail. In this 
process the simulation are used as a pre-check environment to 
identify valuable operational scenarios.  
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