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Abstract— Decision support tools in the London Area Control 

Centre rely on trajectory prediction to provide the Air Traffic 

Control Officers (ATCO) with a manner to quickly identify 

potential interactions between aircraft. These tools are 

underpinned by a trajectory predictor. 

Research has shown that more accurate inputs to these TP 

algorithms yield more accurate results. Previous research has 

focussed on aircraft mass and more accurate meteorological data.  

This study investigated the effect of including downlinked Mode 

S Indicated Airspeed (IAS) as a Calibrated Airspeed (CAS) value 

into the TP calculation. The effect was measured on the accuracy 

and stability of the prediction during the climb portion of each 

flight.  Five potential approaches were implemented in a 

MATLAB test harness and the performance was compared 

against the accuracy and stability of the Eurocontrol Base of 

Aircraft Data (BADA) baseline implementation. 

Analysis of 2,219 climb segments from 715 flights which departed 

from UK airports resulted in almost 280,000 performance points, 

distributed over the six TP models.  These results show that the 

effect of including Mode S IAS on the vertical accuracy is 

marginal.  The along track accuracy shows significant 

improvement when Mode S IAS is included.  The inclusion of 

Mode S IAS does have a detrimental effect on the TP CAS 

stability as the CAS is no longer a constant. 

Of the five approaches, a one dimensional Kalman filter shows 

most promise in terms of trade-off between TP accuracy and 

CAS stability.  Furthermore the Kalman filter should be easier to 

prove in a safety environment and expanded to include other 

parameters in order to provide better accuracy and performance. 

Keywords Aircraft Trajectory Prediction, Conflict Detection 

and Resolution, Mode-S, Speed Intent 

I.  INTRODUCTION 

Controllers at NATS London Area Control Centre are 
supported by a suite of electronic tools to assist in the 
management of UK en route air traffic and the provision of 
separation between aircraft. The three principle components 
underpinning these electronic decision support tools are 
Trajectory Prediction (TP), Medium Term Conflict Detection 
(MTCD) –sometimes referred to as conflict detection and 

resolution (CDR) - and Flight Path Monitoring (FPM). The TP 
uses a simple point-mass model [1] that is integrated in time to 
create four dimensional prediction paths of up to 18 minutes in 
length. This trajectory is of sufficient length to assist the ATCO 
in separating and monitoring aircraft for their particular area 
and traffic flows of responsibility. The MTCD compares a set 
of trajectories for each aircraft against all others deemed to be 
of interest for that airspace sector. A set of pairwise potentially 
interacting aircraft are then identified which  is then distilled 
down using rules from standard operating methods for ATC 
and others, to yield a set of valid interactions that enable the 
ATCO to both monitor aircraft and makes good decisions if 
tactical intervention is required. This final filtered interaction 
list is then displayed to the ATCO using plotting techniques 
that are specific to the task begin performed by the ATCO at 
that time. The FPM function monitors for aircraft deviations 
from route and deviations from current ATC clearance (if 
issued). The FPM creates its own prediction class of TP 
allowing it to be compared alongside all other trajectory classes 
in MTCD, this approach allows the tools to consistently 
provide a full level of monitoring and decision support even in 
situations of multiple deviations e.g. in cases of strong winds 
aloft. 

Relevant information from the TP, MTCD and FPM is 
presented to the ATCO in a number of tools; the most 
significant being the separation monitoring display (SM) and 
the level assessment display (LAD). The SM maintains an 
accurate picture of when and where pairs of relevant aircraft 
will be closest to one another, with plotting rules distinguishing 
between predicted losses of separation, potential losses of 
separation (using a predicted trajectory uncertainty) and no loss 
of separation. The LAD populates when aircraft are selected by 
the ATCO and is an aid to enable the ATCO to make good 
judgements when instructing level changes to aircraft, this has 
been seen to enable earlier and more efficient climb clearances 
and more optimal descent profiles while ensuring the safe 
operation of the sector. 

The greater the accuracy of an initial aircraft state, the less 
uncertainty will be propagated with the nominal prediction(s); 
less uncertainty will ultimately present fewer potential 
interactions for the ATCO to monitor and understand in a given 



scenario for the toolset described above. It is a generally 
accepted hypothesis that ATCOs, by using such a system, will 
be able to control more aircraft (i.e. increase the capacity of the 
airspace) and/or provide more efficient profiles to airlines 
(reducing fuel burn and CO2 emissions). Such benefits are not 
constrained to a tactical timeframe, with strategic functions, 
such as network, flow and queue management able to take 
advantage of reduced prediction uncertainty also.  

The initial aircraft state and aircraft intent are approximated 
using the aircraft performance model, radar information, ATC 
instructions (if issued) and route information. Atmospheric 
conditions (temperature and wind forecasts) are also estimated, 
as derived from a forecast MET model. The ground based 
prediction system does not use any specific aircraft data for a 
given flight, including any updates from the aircraft when in 
flight that can be used to improve the TP accuracy (although 
FPM will benefit from SFL data sent via Mode-S). 
Approximations for aircraft mass and speed then must be made 
(amongst others), but these are neither operator nor route 
specific, which leads to significant prediction uncertainty in 
order to maintain the required level of prediction containment 
useful to the ATCO. Flight deck throttle setting, bank angle, 
rate of climb/descent etc, as required by the performance 
model, are all approximated in a similar way. As such the 
reference data that is currently available to ground systems for 
TP has the potential to be greatly improved; any such 
improvements will in turn facilitate greater accuracy in the 
nominal predictions and associated reductions in prediction 
uncertainty. 

When the aircraft and ground systems are equipped to 
facilitate downlinked data the ability to share the on-board 
trajectory data according to the contract terms of the Air 
Navigation Service Provider (ANSP), will be possible. One 
example of this is the ADS-C EPP ‘extended projected profile’ 
concept which has seen some promise in studies [2], [3] and in 
flight trails [4] and is an important part of the SESAR Concept 
of Operations serving the European ATM Masterplan[5], 
however the deployment target for EPP as part of the ATN B2 
services is 2024, leaving some years before European airspace 
can benefit from such equipped flights. 

The Aircraft Intent Description Language [6] formalised 
the aircraft intent for transmission to the ground systems. This 
meta-language for aircraft intent description is a vastly scalable 
approach which suits the needs of current ATC and the needs 
of a future, more automated ATC system. However 
transmission of this data also relies on established air-ground 
data sharing links, such as ATN B2, which are not yet 
available. 

Improving the accuracy of the mass, speed and met data for 
aircraft will produce the greatest benefits in the near term. 
Machine Learning has been applied to improve the accuracy of 
mass [7] and speed predictions [8] to good effect and has done 
so using only data that is currently available to the ground 
system. Aircraft compliant with Aircraft equipped with Mode-
S Enhanced Surveillance (EHS) are now prevalent in UK 

airspace and provide the basic functionality features and eight 
downlinked aircraft parameters; this data includes aircraft 
indicated airspeed (IAS), ground speed (GS) and Vertical Rate 
(VR). Using Mode-S derived winds aloft data from the aircraft, 
met predictions are expected to benefit greatly here [9], [10], 
which will improve ground based TP.  

This study presents a simple treatment for using Mode S 
downlinked IAS to improve the ground based trajectory 
prediction used by a decision support tool set for the ATCO, 
this is assessed using accuracy and stability metrics defined 
herein. This paper compares the performance of a standard TP 
implementation with the performance of five other approaches 
that utilise Mode-S IAS for the climb phase only. The paper 
will first discuss the method used to undertake the analysis, 
followed by a description of the evaluated approaches. The 
results are in section III followed by conclusions and 
recommendations for further work  

II. METHODOLOGY 

The merits of five approaches to incorporate downlinked 
Mode-S IAS into the trajectory prediction calculation were 
investigated.  To evaluate the merits of each approach the 
effects on prediction accuracy and stability were measured on a 
representative sample of data. As outlined in Figure 1, the 
investigation was undertaken in a specifically developed a 
software pipeline. The software pipeline (written in the 
MATLAB environment) extracted the relevant flight 
information, selected valid flight segments and computed the 
TPs: 

A. Filtering Criteria 

In order to evaluate a representative sample that would test 
the performance of downlinked aircraft parameters, data was 
extract from a “typical” busy period of UK air traffic activity. 
The analysis was limited to include only flights during 
climbing phase as the procedures during descent are 
significantly more complex. In total a total of 715 flights taking 
off from eight UK airports were included in this study.  Nearly 
75% of the flights departed from London Heathrow or London 
Gatwick and just over 50% were A319 or A320 type aircraft.  
The distribution of aircraft types is shown in Figure 2 This 
distribution is typical for flights departing in the London FIR. 

B. Valid Segment Detection  

Figure 1 Overview of the data extraction pipeline. 



Figure 3 shows the way a valid segment was selected.  
During a flight aircraft typically receive multiple clearances.  
Each new clearance invalidates at least a portion of the 
previous clearance.  The portion of the prediction that occurs 
after a subsequent clearance was issued can no longer be 
evaluated as its relevancy was superseded. The portion of flight 
between two ATC instructions is known as a “valid segment”. 

The majority of aircraft types are in UK airspace are limited 
to 250KIAS when below 10,000ft.  Furthermore when the 
conversion altitude is reached the aircraft no longer maintain a 
constant CAS.  Therefore the study focussed on clearances 
which were issued above 10,000ft and before conversion 
altitude was reached.  In this study the conversion altitude is 
the altitude where the CAS starts decreasing consistently. 

A restriction was placed on the length of the valid segment 
to ensure there was enough meaningful data to analyse.  A 
segment was only considered for analysis if it lasted for at least 
30 seconds.  This process resulted in 2,219 valid segments over 
the 715 flights. 

C. Trajectory Prediction 

To predict trajectories with various speed models a baseline 
TP was developed within the MATLAB numerical 
environment.  This allowed for an environment in which a new 
concept could easily be implemented and evaluated.  The TP 

implementation was based on the EUROCONTROL Base of 
Aircraft Data (BADA) version 3 [1]. BADA is a point mass 
total energy model. The model uses lookup values for speed, 
mass and other performance parameters.  The nature of the TP 
means the prediction does not adapt if the aeroplane deviates 
from its nominal performance behaviour [11]. 

The standard BADA approach decides on a value for climb 
CAS from a lookup table, based on a set of input parameters.  
This study investigated the effect of integrating the Mode S 
IAS into the TP calculations for the climb portion; therefore the 
implementation had to be modified.  The implementation used 
for this study allowed different ways to calculate a value for 
climb CAS.  The different approaches to calculate a climb CAS 
are described in Subsection II.D. 

To assess the influence of the introduction of Mode S IAS 
on the predicted climb profile the data for each approach was 
generated.  This step is shown in Figure 1 (c).  Each of the 
2,219 segments has lateral, vertical and speed clearance 
information as well as the radar data covering the segment.  A 
trajectory was generated for each radar return. Each radar 
return was taken as the initial condition of a TP.  The results 
from this step were used in Section III for the error calculation. 

D. Proposed Methodologies for CAS Calculation 

During the TP, the calculation is initialised with a CAS 
value which is kept constant throughout the climb portion of 
the prediction.  This leads to the true airspeed (TAS) increasing 
with the aircraft altitude.  The predictions in this study end 
when the transition altitude is reached, as per II.B. 

In theory, once the 250kts speed restriction at 10,000ft is 
lifted the aeroplane’s crew or FMS chooses an airspeed value 
and a power setting based on mass, economy settings and 
potentially other operator preferences. The autopilot then 
maintains this airspeed by pitching up or down.   

In reality, the profile of an aeroplane in a climb typically 
looked like Figure 4. This plot shows the received Mode S IAS 
during a climb for a Boeing 777-200 from London Heathrow to 
Kotoka, Ghana.  The Mode-S IAS remained constant at the 
250KIAS mark until the aeroplane reached 10,000ft at which 
point the aeroplane accelerated to 270KIAS at t=350s.  A 
further 100 seconds later (t=450s) the aeroplane accelerated 
further to 295KIAS.  The CAS component of the TP has to 
accommodate these changes in Mode-S IAS during the climb.  
In addition to the big step changes, which are less common, the 
Mode S IAS graph shows higher frequency noise in the 
segments where the Mode S IAS would be considered constant. 

For the analysis six approaches were implemented in the 
MATLAB test harness.  Each of these approaches is described 
below: 

1. BADA: This is the baseline speed model. A value is 

selected based on the circumstances from a lookup table.  

The CAS value is assumed to remain constant throughout 

the climb until the conversion altitude is reached.  Any 

other CAS approaches were compared against the results 

generated by this approach. 

2. S-CAS (Stable CAS): is an engineering approach which 

chooses either the Mode S IAS as CAS or the BADA 

Figure 3 Valid segments during the climb portion of a flight 

Figure 2 Ten most prevalent aircraft types in the dataset 



CAS.  The chosen value remains constant throughout the 

climb.  The algorithm first determines whether the 

downlinked Mode S IAS is stable. This is the case if the 

value has been within a certain threshold for a number of 

samples.  If these conditions are met the stable Mode S 

IAS value is selected as the climb CAS.  If the Mode S 

IAS fluctuated too much the algorithm reverts back to 

using BADA CAS as the selected value for the climb 

CAS. 

3. IAS In this approach the latest downlinked Mode-S IAS 

is directly used as the climb CAS.  No signal conditioning 

is performed.  Unfiltered CAS (IAS): In this approach the 

algorithm uses the last received Mode S IAS value as the 

initial CAS value for the prediction. 

4. LPF: The Low Pass Filter method uses a combination of 

a finite and an infinite impulse response (FIR, IIR) filter. 

The FIR filter has been designed to eliminate the higher 

frequency noise of the Mode-S IAS value.  When step 

changes are detected a tuned IIR filter deals with the low 

frequency changes.  The filters were designed by doing a 

frequency spectrum analysis on the raw CAS values. 

Filter parameter values were chosen using the MATLAB 

Filter Builder which is part of the DSP System Toolbox. 

5. Kalman Filter: A value for the initial CAS is generated 

by calculating a weighted average between the previous 

state estimation and the downlinked value.  The relative 

importance of the new measurement depends on the 

covariance of previous measurements and is updated on 

each iteration.  This study evaluated the use of a one 

dimensional Kalman filter. The Kalman filter only 

included estimated a value for CAS based on downlinked 

Mode S IAS. 

6. GMA: The final approach is the Growing Mean Average 

(GMA). This algorithm is similar to the S-CAS algorithm.  

The method uses the stable Mode S IAS value if the 

received value has been within a certain threshold from 

the other readings.  If the threshold is crossed the method 

reverts to using the raw value of the downlinked value. 

Figure 5 shows the same example speed profile from Figure 
4.  The baseline BADA model predicts 310kts CAS throughout 
the whole valid segment.  The S-CAS line shows the 
discontinuities in CAS values when the aeroplane accelerates 
and the model has to temporarily revert back to BADA CAS. 

The LPF and GMA approaches show a value which follows 
the raw Mode-S IAS quite closely but eliminates some of the 
higher frequency responses.  The Kalman filter’s response can 
be seen to be slower; however, the filter’s parameters were 
specified deliberately to achieve this in order to investigate the 
effect of an increased delay but improved CAS stability by 
focussing on eliminating the higher frequency noise. 

III. RESULTS 

A measurement of the trajectories using all the six models 
to calculate a more appropriate CAS estimate resulted in 
roughly 280,000 data points.  The performance of the TP on 
ATC operations was evaluated using a set of metrics.  The 
metrics measure accuracy and stability.  In this section the 
results are shown per metric.   

The main way to demonstrate the result is by using 
boxplots.  The chosen format for these boxplots was to use the 
whiskers at the 5

th
 and 95

th
 percentile. The box itself shows the 

quartile and the ‘+’ sign indicates the mean of the dataset. 

A. Normalised vertical error 

To assess the vertical error of the prediction, a normalised 
vertical error metric was designed.  The metric was designed to 
compensate for the difference in length of the segments.   

𝜀�̂�𝑒𝑟𝑡𝑖𝑐𝑎𝑙 =
|𝑇𝑟𝑎𝑝𝑒𝑧𝑜𝑖𝑑𝑎𝑙 𝐴𝑟𝑒𝑎 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝐶𝑢𝑟𝑣𝑒𝑠|

(𝑉𝑅𝐷𝐷 × 𝑉𝑅𝑃𝐿)
 

ε̅𝑒𝑟𝑟𝑜𝑟 𝑡𝑦𝑝𝑒 =
𝑛1𝜇1 + 𝑛2𝜇2 + 𝑛3𝜇3 + ⋯ + 𝑛𝑝𝜇𝑝

𝑛1 + 𝑛2 + 𝑛3 + ⋯ 𝑛𝑝

=
∑ 𝑛𝑝𝜇𝑝

𝑄
𝑝=1

∑ 𝑛𝑝
𝑄
𝑝=1

 



Figure 5 A typical Mode S IAS profile 
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The calculation of the vertical error metric is shown in 
Figure 7 and reflected in (1).  The difference between the 
prediction and the actual altitude profile from radar is 
integrated over time. This resulting value is scaled for its length 
by dividing it by the Valid Remaining Down track Distance 
(VRDD) and the Valid Remaining Prediction Lifetime 
(VRPL).  This makes the measure dimensionless and allows for 
longer and shorter segments to be compared.  The errors are 
combined through a weighted average using (2). 

Figure 6 shows that there is no significant difference 
between the BADA baseline and the methods which 
incorporate Mode S IAS. The errors in the BADA baseline 
equate to approximately 500 feet/min, whereas for models 
using Mode-S data, the means range from 464 – 468 feet/min.  
Each of the new methods results in a 13-15% reduction of the 
median error value and an 11% reduction of the mean error.  

B. Along track error 

The along track error is measured in the time domain.  The 
prediction is compared against the flown radar track.  The radar 
samples are compared to the prediction by calculating at which 
predicted time the prediction is abeam the location of the 
sampled radar point at that time according to (3).  The 

geometry is shown in Figure 8.  The errors are measured in 
sec/min. 

εalong track =
|Radar time − TP time|

(TP look ahead time )
 

The time errors are normalised by dividing the error by the 
TP look-ahead time. This means that the error becomes a 
fraction of the length along the trajectory.  The relative error is 
averaged over all the evaluation points along the trajectory for 
each prediction using (2). 

The along track error distribution is shown in Figure 9. The 
result shows that including the Mode-S IAS in the TP 
algorithms shows a significant reduction in error.  The standard 
BADA TP has a mean error of 4.6 sec/min whereas including 
the Mode S speed reduces this to a values ranging from 2.2 
sec/min to 1.9 sec/min.  Also the spread in results is much 
reduced for the algorithms which include Mode S IAS. 

C. CAS stability 

Figure 9 shows how a more accurate estimate for CAS 
results in a significantly improved along track predictions 

Figure 9 Along Track Errors 

Trajectory Prediction

Radar Track

Radar Reference Point

[radarPoint, radarTime]

TP Abeam Point

[TPpoint, TPtime]

D, ΔT

Figure 8 Along Track Error Calculation 

Figure 6 Vertical Error for each of the approaches 

A
lt

it
u

d
e

VRPL

VRDD

Normalised Vertical Error 

Calculation

5th prediction

Radar 

Valid Prediction 

Altitude Horizon

Figure 7 Normalised vertical error calculation 



generated by the TP.  A value for CAS which fluctuates is 
likely to result in predictions where the along track position 
over time may vary accordingly from one prediction to the 
next.  This can have a significant impact on relative geometries 
for given times when multiple aircraft trajectories are 
compared.  It is anticipated that a value for CAS which does 
not fluctuate will generate  

The CAS stability is calculated according to (4).  The 
current CAS value is compared to the previous one. The 
relative increase or decrease in CAS is the metric. One sample 
was used per prediction point. 

𝜀𝑛 = 100 ×
𝐶𝐴𝑆𝑛 − 𝐶𝐴𝑆𝑛−1

𝐶𝐴𝑆𝑛

 

The results for this metric are shown in Figure 10.  The 
BADA baseline has a value of 0 which is to be expected as a 
single value is chosen for the whole climb.  The S-CAS 
algorithm generated an interesting shape as the median 
coincides with the 0% line.  This means at least a quarter of the 
predictions had a 0% CAS stability value. This is not surprising 
as the algorithm reverted back to BADA CAS when the Mode 
S IAS is not stable. The S-CAS approach also shows the largest 
spread. This wide containment interval is easily explained by 
the switching from Mode S CAS to BADA CAS and back. 
These switches are expected to generate large relative errors. 

The raw IAS shows as expected the largest variation in 
stability.  The containment is similar to the S-CAS method.  
The Kalman filter model has a decidedly narrower interquartile 
range. The LPF and GMA approach are even narrower.  The 
containment between Kalman, LPF and GMA is similar. 

D. Vertical and Along Track Bias 

The bias calculations are simple metrics to assess general 
trends in the TP behaviour. The metric consists of the fraction 
of prediction points that are either above or below the radar 
altitude profile. In a similar manner the prediction points that 
are early or late are counted as well and then the taken as a 
fraction of the total count. 

Figure 11 shows that there is a clear negative vertical bias 
which equates to all the algorithms predicting a profile which is 
mainly below the actual flight path.  The along track metric 
shows a positive bias. This positive bias indicates that the 
majority of predictions are ahead of the actual aircraft 
behaviour. 

IV. DISCUSSION 

The results showed that all the methods of incorporating 
Mode S IAS in the TP calculations had an effect on accuracy 
and stability against the baseline BADA approach.  The 
normalised vertical error did not change significantly, but all 
approaches which included Mode S IAS showed a significant 
improvement of the along track accuracy.  The results are also 
more contained. 

Since including the Mode S IAS to generate an estimate for 
the CAS changed the value from prediction to prediction the 
stability of the CAS value deteriorated as expected.  The raw 
IAS showed the worst results and largest spread. The second 
worst performing was the S-CAS approach despite a large 
subset of the predictions showing a good, 0% CAS variability.  
The containment between the 5th and 95th percentile of the 
latter approaches was comparable.  The Kalman, LPF and 
GMA approach showed significantly less variation and 
narrower containment intervals which indicated a more stable 
CAS value. 

The nature of the downlinked Mode S IAS shows the 
variability of the signal. This means a trade-off needs to be 
sought between CAS stability and prediction accuracy. 

All the predictions, baseline and new methods, shared the 
same bias of under predicting the vertical profile and over 
predicting the along track progress against radar observations.  
In the investigated sample the actual climb profiles flown by 
the aircraft tended to be steeper than the predictions. 

This section discusses the relevance of these metrics and 
results on the controllers tools used in the NATS operation and 
the expected impact of some of these improvements on the 
controller tools 

Figure 10 CAS stability results 
Figure 11 Vertical and Along Track Prediction bias 



General consensus for ATC human factors is to manage the 
ATCO workload to ensure it is kept at the right level. Figure 12 
shows a set of distilled situations on the separation monitor.  
Sub plots (a), (b) and (d) show an interaction indicating that in 
nine minutes time, two aircraft will have their closest approach 
point (CAP) where they are separated by 7nm.  In the ideal 
situation (a), as time moves on, the interaction will move to the 
left and eventually, when the two aircraft diverge again, the 
interaction disappears.  If this situation is assured, the ATCO 
merely has to monitor this interaction until it disappears.  

Figure 12 (b) & (c) show the effect of along-track imperfect 
accuracy on the interaction on the separation monitor.  
Reduced accuracy in a prediction can cause severe interactions 
to become less severe, but also the other way around, less 
severe actions to become more severe.  Situation (c) will lead 
to an inconvenience for the ATCO where the cause of the 
interaction needs to be established and in the worst case an 
unnecessary clearance is issued resulting in a suboptimal use of 
airspace.  The situation shown in (b) can have safety 
implications causing the ATCO to have to act reactively to 
avoid a loss of separation. 

The underlying effect of this behaviour is the need for the 
ATCO to adapt to using the tools. The behaviour caused by the 
uncertainty means that the ATCO will probably spend more 
time monitoring these interactions causing more workload and 
reducing the number of aircraft that the ATCO can handle at 
any given time. 

Figure 12 (d) shows the effect of unstable trajectory 
predictions on the behaviour of an interaction on the separation 
monitor. The interaction moves from reasonably benign to a 
sever interaction and then reverts back to a benign interaction. 
Given potential large discontinuities in the value for CAS (i.e. 
when the algorithm reverts back to BADA CAS if no stable 
value can be extracted from Mode S IAS) this behaviour could 
occur instantaneously.  In reality an ATCO is very likely to 
issue remedial action the moment the interaction becomes more 

severe despite this not being necessary. Again this leads to 
extra workload, suboptimal use of airspace, and reduced trust 
in the available tools. 

The bias towards under prediction in the climb has an effect 
on airspace use and controller workload.  When a prediction is 
used to judge how far an aeroplane should be allowed to climb 
whilst maintaining separation the ATCO will typically remain 
on the cautious side and re-assess the situation when the climb 
is underway.  Typically an aeroplane will have a continuous 
climb, but to achieve this will need continuous active 
monitoring and multiple clearances to be issued which again 
increases the ATCO’s workload. 

The simple metrics do not constitute full fitness for purpose 
metrics. Optimising one or more metrics could cause issues 
elsewhere in the system.  The results show that each method 
requires compromises.  A decision on which method is chosen 
requires understanding what’s important not just in terms of 
performance but also in a safety context.  

Given that the solutions which provide a good balance 
between stability and accuracy are the LPF, Kalman and GMA 
approaches. Of these three approaches the LPF and GMA 
require more elaborate state models and mode switches. A 
Kalman filter on the other hand is a well understood, 
mathematical approach. The characteristics of the whole 
history of a state are maintained in one variable which makes 
the updates between iterations more straightforward. It is 
anticipated that these characteristics make for an easier 
validation. 

The Kalman filter can also easily be expanded to cover 
multiple states. Including more available information can 
further improve accuracy, stability and bias. 

V. CONCLUSIONS AND FURTHER WORK 

This study investigated the effect of five methods for 
including Mode S IAS in the trajectory prediction calculation 
for aircraft climbs. These five methods were tested on a limited 
data set and compared against the BADA baseline.  Analysis of 
715 flights showed that including Mode S IAS has no 
significant effect on the predicted accuracy of the vertical 
profile.  The along track prediction does become significantly 
more accurate. Furthermore it was shown that including the 
Mode S IAS makes the CAS profile significantly less stable in 
all methods.   

The controller tools need a combination of both accuracy of 
trajectory prediction.  Of the five approaches the Kalman filter 
showed the most promise to provide a balance between 
accuracy and stability. Furthermore the Kalman filter is also 
simple to implement, straightforward to validate and provides 
the possibility to expand. 

This has been a limited study which shows some promise in 
the field of improving TP metrics therefore it is recommended 
to expand on this research in the following ways: 

 Expand the analysis to cover various seasons and 

more aircraft types and compare the results with the 

findings of this study. If the results are consistent, 

Figure 12 Separation Monitor examples: (a) shows the ideal 

behaviour of an interaction; (b) and (c) show the effect of 

accuracy on the prediction on the interaction - The interaction 

gets gradually better or worse; (d) shows the behaviour of an 

unstable interaction 



implement the Kalman filter into the tools and 

validate with ATCOs 

 Investigate the use of the Mode S ROCD to improve 

the vertical accuracy of the TP during climb in a 

similar way to how Mode S IAS is used 

 Perform regression analysis using ‘Big Data’ 

concepts and investigate incorporation of this 

information in the Kalman filter and other parts of the 

TP algorithms. 
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