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Abstract—The field of air traffic management (ATM) has
a strong interdisciplinary nature, combining of technological,
management, economic and regulatory aspects. The fully un-
derstanding of the structure and the dynamics underlying the
system continue to be significant challenges in the field. Here
we present a novel framework for the study of the structure
and dynamics of the air transport system building upon the
recent advancement of network science and big data science,
as well as taking into account of the unique operation practical,
thus bridging the gaps between academic field and operational
world. We show that the structure of the air transport system can
be captured by four interdependent networks including airlines
network, airport networks, air route networks, and air traffic
management networks. In particular, we present the initial results
on spatial-related dynamics of the system using one-year flight
data records. We find that by analyzing flight delay data that
(i) airports with similar geographical locations exhibit similar
dynamics; (ii) unlike other spatial-embedded complex systems,
the propagation of flight delays and failure in the system decay
slowly, and the correlations of the failure nodes reaching to 0
when the distance between them approaching to ∼ 1, 000km.

Index Terms—Air traffic management, multilayer network, big
data, spatial correlation, cascading failure

I. INTRODUCTION

The last decade has witnessed the improvement of air
traffic management (ATM) system in its safety, capacity,
and efficiency. Great efforts have been made to enhance the
performance of ATM system, ranging from the introduction
of new operational concepts, through the deployment of the
advanced automation systems, to the long-term research ac-
tivities. Due to its interdisciplinary nature, the predictability
and controllability of such complex social-technical system
remain great challenge. Up until now, not much is known about
the complete picture of the structure and the dynamics of the
system. This is the focus of the present article.

Like much other complex systems, the air transport system
is composed of a huge number of interlinked subsystems
which operate with their own mechanisms. Network sciences
has been significantly advanced our understanding and man-
agement of real complex systems since the beginning of last
century, ranging from physics, chemistry, through economy,
to human social science [1]. It provides a theoretical and
algorithmic framework for us to understand the origins and

characteristics of complexity of the systems. The available of
operating records – data on flight tracks, operational infor-
mation, and aircraft performance – has created unprecedented
opportunities for investigating air transport system, allowing
the analyzing of the structure and the dynamics at any scale
from various perspectives.

The structure of the air transport is typically studied from
complex networks by constructing an aggregate network from
flights data, where the nodes represent airports, and a edge
will be added between two nodes if there is a direct flight
between the two airports. The network can be directed and
weighted when considering the directions and the volume of
flights or passengers in a given time period. Guimerà et al.
have suggested that at a long range scale, the connections of
airport network are almost symmetrical, therefore there is no
need to consider arc directions[2]. Given the importance of air
transport in the propagation of epidemics such as influenza and
severe actuary respiratory syndrome, there are considerable
number of studies focus on the airport networks structure[3],
[4], and their roles in the prediction and predicability of
global epidemics[5]. Recent advances towards quantifying
delays propagation in the US air transportation system have
shed light on the systematic investigation of delays from
network perspective [6], [7]. Although the approach of com-
plex networks has been immensely successful, it still has less
impact on the ATM field due to the fact that it disregards
much important information contained in the operational data.
Network researchers have turned their attention on the time-
varying and multilayer nature of networks. A recent review on
the multilayer network can be found in [8]. As an example of
the application of multilayer network theory, the air transport
network are commonly considered as the aggregated layers of
airlines networks [9], [10]. One of the core component of the
air transport system – air traffic management system – is still
missing.

The dynamics occurring on the top of the structure of the
system preserve enrich information on how system operates.
One of the most studied dynamical process in air transport
is flight delay. Flight delay can be modeled as the dynamical
interaction of a set of flights flying between the connected
airports. It is unclear, however, how delay propagate in the



air transport network. To date, there have been extensive work
looking into the many aspects of flights delay. Many pioneer-
ing works on delay propagation use empirical data to explore
the the cause for initial and primary delays[11], [12], [13],
[14]. The primary delays can trigger a cascade of secondary
delays which may spread over the airline networks and airport
networks. The delay introduced by the upstream delay are
called reactionary delays. A comprehensive study given by
Jetzki et al. has analyzed reactionary delays in European
airports using the data collected by the Central Office for
Delay Analysis [15]. The airline network structure is suggested
to play an important role in absorbing delay. Optimizing
flight turnaround process by dynamical scheduling buffer time
proved to be useful for minimizing delay propagation[12].

In other instances, further realism has been introduced by
the use of queueing theory to analytical study airport delays
or enroute delay[16], [17], [18], [19], [20]. Pyrgiotis et al.
developed an analytical queuing and network decomposition
model called Approximate Network Delays (AND) model to
study the delay propagation in the US air transport network
[6]. The delay propagation algorithm is to capture the ”ripple
effect” by tracing individual flight affected by local congestion
and updating flight profiles when flights delays occur at the
upstream airports. Fleurquin et al. proposed the measures to
quantify the macro-scale behavior of the delay dynamics. They
examine a variety of graph metrics like degree distribution and
coefficients. Interconnected airports are identified to assess
the level of ATS system congestion and the importance of
network connectivity in the unfolding of the delay spreading
mechanism. Ingredients of their model are aircraft rotation,
passenger connectivity, and airport congestion. Using data-
driven approach, an agent-based model was developed which
is able to reproduce the delay patterns captured in the US air
transport network [21], [22].

Another aspect that remains little addressed is the cascading
failure in air transport system, although much focus are given
either to the robustness and vulnerability of the system [23],
or to the propagation of flight delays through airlines net-
work. Reports from many fields have demonstrated that small
disruptions in the network can trigger unexpected domino-
like cascade failure [24]. The very “famous example” is the
power grid system blackout in the north eastern U.S. and
eastern Canada in 2003[25]. To prevent such cascading failure
happening, two questions have been recently risen, are how the
failure propagate through the system and how should we build
a “safety wall” to stop the propagation?

In this article, we first show that the structure of air
transport system can be represented by the four interdependent
networks, namely the airline network, airport network, air
route network, and air traffic management network (i.e. sector
network). We give our attention on the flight delay at the
airport level rather than individual flight delay to study the
dynamics of air transport system. In particular, we define the
failure of airports/route point (sector was not analyzed yet due
to limitation of empirical data) according to the aggregated
flights delay at the node. Interestingly and surprisingly, it

found that the spatial correlations of failure are quite similar
in the airport network and air route network. The correlations
approach to zeros when the distances between nodes over
1, 400km and 900km for the airport network and air route
network respectively. We discuss both the implications of the
current results and opening questions left to be answered.

II. THE STRUCTURE OF THE MULTILAYER AIR TRANSPORT
SYSTEM

A. Airport Network

The pioneering work on the study of the structure of
air transport system was from statistical physics, focusing
on analysis of topological characteristics the system from
complex networks theory [26]. The structure of the system
was abstracted to a directed/undirected, weighted/unweighted
network which normally referred as airport network, with
nodes are the airports and edges are determined by the flights.
Table I summarizes analytical results of the airport networks
worldwide.

One of the drawbacks of using flights to study air transport
system is that much information encoded in the flights data is
missing. To overcome this difficulty, the temporal information
must be taken into consideration. Topological changes of the
network were measured with characteristics that focus on the
degree distribution which have been used in prior research
on network dynamics. The degree distribution of a graph is
defined as a discrete probability distribution that expresses
that probability of finding a node with degree k. He et al.
studied Chinese airport network in 2004 and concluded that
the network is small-world without scale-free property since
the degree distribution of nodes is exponential rather than
heavy tailed[27]. In a weekly cycle, the Chinese airport net-
work exhibits scale-free properties, and the weekly cumulative
degree distribution of nodes follow Pareto law [28]. At a even
more small time scale, we could see the transformation of the
network in Fig. 1a and Fig. 1b. There are few flights flying
in the early morning between 0600 and 0700, while traffic
demands increase sharply after 0700AM. To examine the
temporal evolution of the networks, we construct the airport
networks using every 2 hours flight data. Across the database,
there are 396× 12 networks generated. The cumulative nodes
degree distributions are plotted in Fig. 1c. It is clearly shown
that the networks are quite different before and after 0600.
Before 0600, the network node degree distributions obey
power law decay, while more airports are connected after
0600AM with daily air transport starts. These results agree
with previous findings that Chinese airport network is small-
world with scale-free properties. Other properties such as
community structure are still under investigation.

B. The air route network

Another widely investigated network in air transport field
is the air route network or air navigation route network[29].
Normally, flights will fly along the route structure thus bring
the system into life. One may trace the flight back to its origin
along the route. In the following section, we will compare the



TABLE I
TOPOLOGY CHARACTERISTICS OF DIFFERENT AIR TRANSPORTATION NETWORK

Network investigated # Nodes/#Edges Average path length Clustering coefficient Degree distribution

da Rocha et al. Brazil 142/- 2.34 0.63 power-law distribution
Guida et al. Italy 42/310 - 0.1 double power law distribution

Bagler India 79/442 2.26 0.657 power-law distribution
Li-Ping Chi US 215/- 2.4 0.618 double power law distribution
Barrat et al. North American 935/- 4 - power-law distribution

Guimerà Worldwide 3883/27051 4.4 0.62 double power law distribution
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Fig. 1. The structures of airport networks in different time periods. (a)
and (b) are the geographical plots of Chinese airport networks, while (c) is the
degree distribution of the hourly airport network. Networks are constructed
from flights data from operation center of Civil Aviation Administration of
China between 1st August 2012 to 31 August 2013.

characteristics of the air route network and airport network. In
fact, the optimization of network flow can be done at this layer.
The propagations of airspace congestion and flights delay in
the air route network requires research effectors.

The recent shift of focus from investigating a single layer
network to the multilayer network has also been improving the
understanding of air transport system as well. Special attention
is given to decompose the airport network into many layers
according to different air carriers[9], [10], [30]. Due to lack
of knowledge of air traffic control, there is still one important
component missing in the previous work, i.e. the air traffic

management layer. It is the core structure of the air transport
system from the operation point of view. All the air traffic
controllers in charge of their own sectors inter-linked form
the backbone of the air transport system, working with staff
from airports and airline to provide air transport service to
customers.

C. The 5 interdependent layers of air transport system
In Fig. 2, we show the interdependent layers of the air

transport system. As can be seen from the figure, the basic
component of the system is the network formed by the flights
operated by a single aircraft. It should be mentioned that air
crew should be taken into account when one tries to analyze
the propagation of flight delay. It is however out of the scope
of current study.

The idea of the decomposition of the structure of the
air transport system is inspired from the idea collaborative
decision making (CDM). As the three main parties of the
CDM are airports, airlines, and air navigation service providers
(ANSP), each of them can be represented as one layer of the
networks. Zanin et al. and Du et al. have studied the multilayer
air transport network with each airline’s network as a single
layer. The air traffic management layer is disregarded.

Sector is the operation unit of air traffic management,
controlled by one or two air traffic controllers. The dynamics
of each sector is vital to the whole air transport systems.
When there is not enough capacity for handling incoming
traffic, traffic flow management initiatives will be issued
which results in flight delay. Therefore, the structure of air
traffic management layer can be represented by the sector
network. The nodes of the network are all the sectors including
tower/approach/ground control sectors, approach sectors, and
enroute sectors, while the determination of the edges will
depend on the letter of agreements (LOA) between differ-
ent ANSPs or air traffic control units which states detailed
information on flights transfer between sectors. There is an
edge between two nodes if there is flights transferred between
the two sectors. Otherwise, there is no edges between the
two sectors even they are physically adjacent. Sector network
can be directed and weighted networks when considering the
directions of transferring traffic and the volume of traffic flow
between them.

In Fig. 3, we show the degree distributions of the three
main networks of Chinese air transport system, airport net-
work, air route network, and sectors network. The statistical
information on the 3 networks are given in table II. As it



can be seen from the figure and the table, sector network and
air route network demonstrate similar characteristics which
are significantly differing from airport network. Although the
number of nodes in air route networks or sector network is
much more than the total nodes in the airport network, both
the average degree of the nodes and the maximum degree
are quite smaller than that in the airport network. The airport
network can be characterized with small network properties
and scale free feature while the other two are not. This could
be the main reason that study of airport network from complex
networks has little impact in the air transport field.

Here we have just present our view on the structure of
airport system, opening a new avenue for the study of the
fundamental structure of air transport system. Still, there are
great work to be done in order to uncover the properties of
the multilayer of the air transport system.

III. THE DYNAMICS OF THE AIR TRANSPORT SYSTEM

The advancement of big data science together with the
availability of large operational datasets allow us to unreal the
hidden dynamics of air transport system. The occurrence of
flight delay suggests that there are disruptions happening in the
system. Our interest is to study the dynamics occurring on top
of the networks that are described in Section II by the analysis
of flight delay. One big question here is that how flight delays
spatially distributed in the network? It is directly related to
the resilience and vulnerability of air transport system [26].
In the following, we show our initial analytical results on the
spatial correlations of flight delay in airport network and the
cascading failure behavior of both airport network and air route
network.

A. The correlations on flight delay between airports.

Pearson correlation coefficient is used to capture the cor-
relations between flight delays in different airports. To make
the time series data sets comparable, we use 15mins as the
sampling rate to calculate departure flight delays at each
airport. Let Xi(t) represents the departure delay at ith airport
at tth time slot, while T is the number of time slots that are
observed in a traffic scenario.

To compute the correlation ρij between ith airport and jth

airport, one can use the following equation

ρij =
E(XiXj)− E(Xi)E(Xj)√

E(Xi
2)− E2(Xi)

√
E(Xj

2)− E2(Xj)
, (1)

where ρ ∈ [−1, 1].
To study the correlation of the flight delays in airport

network, we calculate the cross-correlation matrix C of airport
delays series data according to eq 1. It is very interesting to
find that the most correlated airports in both two countries have
quite similar characteristics. Fig. 4 plots the most correlated
airport pairs in the two air transport systems.

Newark airport, LaGuardia airport and Kennedy airport are
all located in New York metroplex area, while Boston Logan
airport and Philadelphia airport have close relationships with

these three airports. Due to similar operational environments
and geographical locations, flight delays in these airports also
show similar characteristics. Likewise, Baltimore airport and
Washington National airport are located in the Washington
area, Fort Lauderdale airport, Orlando airport and Tampa
airport are located in the Miami area. The other six airports
with a high correlative degree are located in the western
coast. In China, the correlation coefficients of airports between
Guangzhou and Shenzhen, Shanghai Pudong and Shanghai
Hongqiao, Changchun and Harbin, are much larger than the
other airport pairs. It indicates that geographical locations as
the external factors have huge impact on dynamics of air
transport system.

B. Cascading failure behavior of the air transport system

The understanding of the temporal-spatial characteristics
of the cascading failure of the network systems has been
recognized as an important step to predict and minimize the
cascading failure. A very small failure in one of system may
lead to catastrophic consequences[31]. Similar to other spatial-
embedded system, we try to understand how far the “failure”
can propagate in the system so that we may be able to set up
a “safety wall” to prevent the failure.

First, the aggregated average flight delay at each airport at a
given time window [t1, t2] is calculated. Then, we decide the
failure of node i. xi = 1 if the average flight delay is higher
than predefined threshold (α in minutes per flight). Otherwise,
xi = 0. The concept of spatial correlations, C(r) is introduced
to quantify the relation between failures separated at a distance
r. C(r) is calculated as

C(r) =
1

δ2

∑
ij,i∈F (xi − x̄)(xj − x̄)δ(rij − r)∑

ij,iinF (rij − r)
(2)

where δ() is a selecting function to select the nodes whose
Euclidean distance to the failure node is r (or within a range).
Positive values of C(r) means positive correlations between
nodes suggesting the tendency of failures to be close to each
other, while negative values indicate anti-correlations.

We calculate the daily spatial correlations based on the
hourly delay at the airport as the function of r. Fig. 5a
and 5b are the averaged correlation results over one year
for the airport network and air route network respectively.
The time period [t1, t2] seems to be no effects on trend of
correlation results since all the curves of C(r) exhibit similar
shapes as shown in the figures. These results are significant
different from the other complex systems, such as power grid
system and road traffic system. Instead of decaying in the
form of power-law, C(r) decrease dramatically at the initial
few steps. It is in agreement with the findings in previous
section that airports with similar geographical locations show
similar behavior. However, in airport network, C(r) fluctuates
around 0.03 before it drops blow 0 when r > 1, 350km. In
the air route network, C(r) decreases almost linearly with the
increasement of r.



Fig. 2. The 5 interdependent layers of the air transport system.
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TABLE II
THE STATISTICAL CHARACTERISTICS OF THREE NETWORKS

Airport Network Air Route Network Sector Network

Number of Nodes 167 763 428
Number of Edges 1900 1415 973
Network Density 0.14 0.005 0.01
Average Degree 22.75 3.60 4.55
Maximum Degree 124 12 17
Average Shortest Path Length 2.07 9.84 6.55
Network Diameter 4 28 16
Assortativity -0.36 0.02 0.05
Average Clustering Coefficient 0.70 0.15 0.21
Average Betweeness 0.006 0.01 0.01
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Fig. 4. The correlation coefficients of airport pairs. Flights data was
obtained from operationa and management center of CAAC and Bureau of
Transport Statics.

The effect of α is examined through the whole dataset. The
three main patterns are plotted in Fig. 5c, 5d, and 5e. In
the morning, α and r have coupling effect on the correlation
results; while in the afternoon, α seems has little influence on
the yresults when r > 1, 900km. In the evening, there will be
more anti-correlated nodes when α is small while r is large.

Although the approach used here is simple, it still can
capture the instinct dynamics of air transport system. The
determination of failure of the node should be more realistic
by considering the capability of the node. To validate this
findings, a theoretical model is going to be developed in our
future work.

IV. DISCUSSIONS

The filed of air traffic management has a strong interdis-
ciplinary nature, combining of technological, economic and
regulatory aspects. A great number of contributions have
emerged from the interactions between scientists trained in
different fields, ranging from computer science, through math-
ematics, to psychology. Researchers and operation experts
have contributed to the improvement of the capability and
efficiency of the system. However, there are still emerged

unanswered questions. To ensure the safety of the system, one
must have the ability to predict and control the air transport
system. Thus, the knowledge on the structure and dynamics
of the system is a significant issues for practical control of air
transport system.

The recent surge of physicists into the realms of social
science and other scientific fields has been fuelled largely by
the availability of huge empirical data. The combination of the
statistical mechanics theory and the observations of system
behavior have arisen in part to fulfil the particular need of
quantitative illustration of system structure and dynamics. In
this work, we have investigated the structure and dynamis
of air transport system from the operation point of view,
providing a framework allowing the applications of theoretical
findings into real world systems.
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