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Abstract— En route inefficiency is measured in terms of extra 

distance flown by an aircraft, above what would have been optimal 

under perfect conditions. Three sources of inefficiency are 

explored: convective weather, horizontal miles-in-trail 

restrictions, and winds. Historical flight records are projected onto 

a small set of nominal trajectories clustered from historical data, 

and compared against the history of the potential causal factors. 

Statistical models reveal the estimated influence of the factors. In 

this case, convective weather was the most influential factor in 

seeming to cause flights to deviate from what would have been a 

less costly trajectory. Winds and miles-in trail restrictions are also 

important for some origin-destination pairs, but less significant 

than convective weather. 

Keywords- enroute inefficiency; trajectory clustering; miles-

in-trail; climatological condition; linear regression; multinomial 

logit model 

I.  INTRODUCTION 

Horizontal en route inefficiency, which evaluates actual 
flight trajectories against a benchmark trajectory, has received 
considerable attention in the literature. It is a fundamental 
measure in the European performance scheme for air navigation 
services [1]. In 2016, the most recent edition of the ICAO Global 
Air Navigation Plan (GANP) listed an en route trajectory metric 
as a recommended indicator for assessing Aviation System 
Block Upgrades (ASBUs) [2]. Although the US does not employ 
targets for trajectory measures, they are still used in many 
applications. They are core to many fuel efficiency benefit 
assessments and the Air Traffic Organization records Airborne 
Holding as part of its reportable delay in OPSNET. For 2017, it 
is expected that the Federal Aviation Administration (FAA), 
with airlines, will assess filed vs. actual flown trajectories or 
assess routings and flows to determine if the best filed options 
are available. 

For all of these projects, metrics can be defined and 
calculated and trends assessed. However, work on linking 
inefficiencies to causal reasons and then determining if they can 

be mitigated through investment in technology, staffing or 
training is more difficult. As a first step, FAA performance 
databases would require improved methods for assigning causal 
factors to trajectory efficiency metrics similar to the manner in 
which causal factors are assigned to reportable delay in 
OPSNET [3] or airline reported delay in ASQP [4]. 

The en route phase of a flight is defined as the portion 
between the 40 nautical-mile circular boundary around the 
departure airport (D40) and the 100 nautical-mile circular 
boundary around the arrival airport (A100). This definition is 
intended to exclude the portions of the flight path that are 
strongly influenced by terminal operations. Ref. [5] calculates 
the horizontal inefficiency based on the extra distance flown in 
the en route phase with respect to an ideal distance known as 
“achieved distance”, which represents the average of how much 
further the flight has gotten from the origin and how much closer 
it has gotten to the destination over the en route portion of the 
flight ( [6], [7]). This method accounts for inefficiency resulting 
from entry and exit points that are not along the great circle path 
between origin and destination, as well as excess distance 
between the entry and exit points, but does not include excess 
distance flown between the runway and the entry/exit points. 
Equation (1) defines the horizontal inefficiency of a flight (HIE) 
where, A  is the actual flown distance and H  is the achieved 
distance. 

 𝐻𝐼𝐸 =
𝐴−𝐻

𝐻
 (1) 

We use the same methodology for calculating en route 
inefficiency as the US-Europe Performance report [8]. In 2015, 
the average horizontal en route inefficiency for flights to and 
from the main 34 airports was 2.92% in Europe compared to 
2.83% in the US. Europe experienced continuous improvement 
of en route efficiency between 2011 and 2014; however, this 
trend reversed in 2015. The US had an overall increase in flight 
inefficiency from 2013 – 2015, which can be linked to airports 
with increased traffic levels (LAX, SEA, DAL). A fire at the 
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Chicago Air Route Traffic Control Center (ARTCC) caused a 
peak in inefficiency during the fall months of 2014. 

For our period of analysis – 2013 – the en route inefficiency 
was 2.91% and 2.71% for Europe and the US, respectively [5].  
The 2013 report also includes statistics about the inefficiency of 
different flight distances. In both regions, inefficiency decreases 
as flight distance increases, mainly because the excess distance 
due to suboptimal entry and exit points is independent of the 
achieved distance. In Europe, the implementation of free route 
airspace (FRA) has improved en route efficiency significantly, 
especially for flights through those areas. 

Current literature exists on horizontal flight inefficiency and 
its causal factors, but none focuses on a combination of 
convective weather, wind, and Miles-in-Trail (MIT) restrictions. 
Ref. [9] provides a look at the methodology for comparing flight 
en route efficiency between the US and Europe before the FAA 
and EUROCONTROL generated regular US-Europe 
performance reports. That paper utilizes an earlier version of our 
approach, including inefficiency indicators based on the 
comparison of radar trajectories and theoretically optimum 
trajectories, and the separation of terminal and en route flight 
portions using a radial distance surrounding the origin and 
destination airports. In more recent literature, [10] develops 
inefficiency metrics that quantify the discrepancy between the 
shortest lateral trajectory and the actual flight trajectory, but does 
not consider the terminal extension inefficiency of the en route 
portion of the flight. That work, which includes terminal 
airspace analysis, suggests that the biggest contributor to 
inefficiency at the time of publication was the airspace 
restrictions observed by standard routes. Congested airspace and 
adverse weather contributed about 13% of the extra track 
distance flown in the US. 

A major criticism of “achieved distance” as the benchmark 
distance for efficiency is that the Great Circle Distance (GCD) 
is not an “optimum” trajectory for most flight operations when 
considering meteorological conditions. Ref. [11] examines the 
benefit of wind-optimal trajectories in transatlantic routes as 
measured by fuel efficiency. In many cases, a flight taking the 
shortest ground path would burn more fuel and sometimes take 
longer, thus underperforming in those standards of efficiency. 
Based on such knowledge, we expect that wind has a strong 
impact on en route inefficiency. 

There is little recent work on the contribution of MIT 
restrictions to en route inefficiency. Ref. [12] concludes that 
MIT restrictions did not appear to have a significant impact on 
airborne delay or flight spacing during the period of analysis 
(May 1-14, 2004). They found that 39% of restrictions involved 
fewer than 6 flights and thus may have been unnecessary. Ref. 
[13] outlines the capability of an MIT Impact Assessment (MIA) 
tool that would allow traffic managers to evaluate MITs prior to 
implementation and prevent the initiation of redundant 
restrictions. Due to the age of these reports and the increasing 
number of MITs implemented in more recent years, it is fair to 
say that very little is known about whether or to what degree 
MIT restrictions contribute to en route inefficiency in the present 
system. 

Comparative assessments typically emphasize macro 
comparisons, however, from the standpoint of senior decision 

makers, such high-level conclusions represent the ultimate 
payoff from vast amounts of data collection and analysis. To 
researchers and scholars, however, they beg more detailed 
questions. Are taxi-out times in the US high everywhere or are 
the results skewed by a few highly-congested airports? 
Similarly, is airborne inefficiency fairly constant across space 
and time, or are there pronounced patterns of variation and, if so, 
what are they? Most importantly, what are the more important 
causes of flight inefficiency, and how can their contributions be 
quantified? Answers to such questions may be equally or more 
relevant to the practical project of improving system 
performance than the macro comparisons. It is for this reason 
that we investigate causal factors for the en route inefficiencies 
observed in the present system. 

The remainder of this paper is organized as follows. In 
Section II, we introduce the data sources and review our 
previous work on micro variations of en route inefficiency. 
Section III describes the methodologies and algorithms. Section 
IV applies statistical models to quantify the impacts of wind, 
convection and MIT on en route inefficiency, and Section V 
offers the conclusions. 

II. PRELIMINARIES 

A. Data Sources and Summary Statistics 

In this project, we used five datasets from different sources. 
The flight event data, which come from the FAA Traffic Flow 
Management System (TFMS) and from the Aviation System 
Performance Metrics (ASPM), contain flight-level records with 
variables including arrival airport, departure airport, aircraft 
type, and D40 to A100 Actual/Great Circle/Achieved distances. 
We obtained flight event data for the calendar years 2013 and 
2014 and found an average inefficiency of approximately 3.4% 
for both years. This data set includes around 12 million records, 
87% of which are domestic flights and less than 1% are diverted 
flights or have missing records. We focused on flights arriving 
at and departing form the main 34 US airports listed in the 2013 
US-Europe performance report. This list includes the 30 core US 
airports and an additional 4 high-traffic airports. The 34 main 
airports handle around 3 million flights per year, which accounts 
for about 50% of the total number of flights in the US. 

The flight tracks dataset, which also comes from TFMS, 
contains information about the position and movement of each 
aircraft throughout its flight. Some fields of interest include: 
latitude, longitude, altitude, groundspeed, and time, with an 
interval of approximately one minute between each track point. 
For the purposes of our current research, we only obtained flight 
tracks between the 8 airport pairs listed in TABLE I for the 2013 
calendar year. During the process to remove erroneous 
trajectories, we excluded tracks where spatial or temporal 
discontinuities were detected and ones that started or ended 
outside of the selected terminal areas. 

Our convective weather data are derived from the Quality 
Controlled Local Climatological Data (QCLCD), which is 
obtained from the National Oceanic and Atmospheric 
Administration (NOAA). The dataset includes hourly 
summaries for convective weather conditions like 
thunderstorms, rain, hail, etc. at 1,600 locations in the US. Each 
record is a vector of binary variables indicating if there was a 



certain type of weather occurring at a specific time and location. 
QCLCD was collected for the same time period as the 8 airport 
pairs – CY2013. While more precise and higher resolution 
weather data are available from other sources, we considered the 
QCLCD data acceptable, as well as easier to work with, for 
performance analysis purposes. 

TABLE I SUMMARY STATISTICS FOR REPRESENTATIVE CITY PAIR INEFFICIENCY 

ANALYSIS 

Airport Pair 

Original 

No. of 

Records 

% of 

Records 

Removed  

Average 

Inefficiency 

((𝐀 − 𝐇)/𝐇 ) 
IAH → BOS 1817 7.59% 4.37% 

BOS → IAH 1883 7.49% 2.58% 

FLL → JFK 4267 6.00% 3.59% 

JFK → FLL 4273 5.38% 3.06% 

ORD → DCA 7574 2.97% 4.11% 

DCA → ORD 7557 2.30% 4.20% 

JFK → LAX 11586 7.43% 2.04% 

LAX → JFK 11543 9.49% 2.43% 

The forecast wind data used in this paper are obtained from 
the North American Mesoscale Forecast System (NAM) of the 
National Centers for Environmental Prediction (NCEP). It 
predicts the high-resolution wind field four times a day; each 
prediction covers a six-hour period. Within each prediction 
cycle, the system produces a forecast for every hour for the first 
three hours, and a forecast for the last hour of the cycle. The 
horizontal resolution is roughly 0.1× 0.1  degree latitude/ 
longitude. The data also have 39 equally spaced vertical isobaric 
pressure levels ranging from 50 mbar to 1000 mbar. By parsing 
all CY2013 wind field data from the NAM website, we obtained 
approximately 8000 data files that include the vertical/horizontal 
wind speed, the position grid, and time.  

The MIT dataset comes from the National Traffic 
Management Log (NTML), and contains information about 
where, when, and why MIT restrictions were implemented. 
Some fields of importance include: providing facility, requesting 
facility, NAS element, start/end time, altitude, and the actual 
MIT spacing parameter. For our study, we excluded restrictions 
that were cancelled before initiation and those whose MIT 
values were less than 0. Similar to the cleaning of the flight 
tracks data set, the MIT restrictions were pre-processed to 
remove erroneous records and entries that we were unable to 
match with trajectories. We only included restrictions with 
known facility and NAS element geometries (ARTCC, 
TRACONS, fixes, and airways). TABLE II provides a few 
summary statistics about MIT restrictions during CY2013. 

TABLE II SUMMARY STATISTICS FOR MIT RESTRICTIONS 

 TOTAL ENROUTE 

Cancelled Before Initiation 

Rate 
2.8% 2.6% 

Number Initiated 186,184 81,294 

Modification Rate (Extended 

or Modified) 
21.3% 19.0% 

Average Duration 2.007 hours 1.861 hours 

Average MIT Value 18.67 MIT 20.52 MIT 

Total Number of MIT after 

cleaning 
151,545 63,142 

Percent lost by cleaning 18.60% 22.33% 

B. Movitation from Previous Work 

In previous work [14], we apply fixed effects regression 
techniques to a two-year flight-level performance dataset to 
quantify how departure/arrival airports and seasons impact en 
route inefficiency. Consistent with the literature, our estimation 
results suggested that long-haul flights are more efficient than 
short-haul flights. Additionally, we find that flights occurring in 
the summer season, when convective weather is more frequent, 
are less efficient than flights during other seasons.  

A deficiency of this work was that our models explained a 
low percentage of the variance in flight inefficiency. We 
observed that variations for a specific airport pair within one 
month were quite pronounced, suggesting the need for a model 
that considers circumstances specific to each flight. Extensive 
literature also suggests that wind and convection have strong 
effects on strategic routing, while en route traffic management 
initiatives affect tactical rerouting significantly. In this paper, we 
investigate inefficiency variation that arises from strategic 
routing choices made by flight operators (often with 
considerable guidance from the FAA). We also analyze the 
impact of convective weather and MIT restrictions on this route 
selection and on flight efficiency.  

III. METHODOLOGIES AND ALGORITHMS 

Our analysis is based on the concept of nominal route. Flight 
trajectories are unique, but most flights for a given origin-
destination (OD) pair fall into one of several groups, or clusters. 
Trajectories within a cluster are quite similar to one another. 
Among the trajectories that form a given cluster, one can identify 
a specific trajectory that is the “center” of the cluster, and which 
we term the nominal route. Much of the variation in flight 
inefficiency can be attributed to variation in the inefficiency of 
the nominal routes. Moreover, one can use nominal routes as a 
basis for determining cluster attributes (for example, exposure 
to convective weather) that help explain to which cluster a given 
flight belongs. As will be shown, this can provide an approach 
to the main problem addressed by this paper: relating en route 
inefficiency to causal factors. To implement this idea, we must 
(a) apply a trajectory clustering algorithm to classify flight 
tracks; (b) identify the nominal route for each cluster; and (c) 
determine, for the departure time of a given flight, the relevant 
attributes of each nominal route. 

A. Trajectory Clustering 

There is an extensive literature discussing the application of 
clustering algorithms to flight trajectories. Ref. [15] proposed a 
three-step framework – linear interpolation, Principal 
Component Analysis (PCA) and k-means [16] – to efficiently 
classify flight tracks into unique groups. Ref. [17] improved the 
work of [15] by constructing a Gaussian kernel dissimilarity 
matrix and applying a variant spectral clustering algorithm. 
However, such a method is computationally expensive. Other 
methods such as way-point-based clustering [18] and partition-
and-group framework for trajectory clustering ( [19], [20]) can 
be applied to some circumstances requiring higher granularity 
(e.g., terminal trajectory clustering). Refer to [21] and [22] for 
further discussions on trajectory clustering. 

For purposes of simplicity and efficiency, we mainly follow 
the framework of [15], but switch from k-means to DBSCAN 



[23] in the final step for three reasons: a) it does not need us to 
predetermine the number of clusters; b) it allows trajectories to 
be classified as outliers (i.e., not belonging to any cluster); and 
c) it can limit the variation within each cluster. After the clusters 
are determined, we further calculate the nominal route for each 
cluster by solving a 1-median problem [24], and we define the 
set of nominal routes as a route choice set. Notice that each 
nominal route is a specific 4D trajectory. 

We apply our clustering framework to the eight OD pairs 
listed in TABLE I. To save space, we only show the clustering for 
flights from IAH to BOS in Fig. 1 and Fig. 2. Other clustering 
results are summarized in TABLE III.  

In Fig. 1, different colors represent different clusters. The 
black trajectories are classified as outliers, and the white curves 
within each cluster are the associated nominal routes. Fig. 2 
shows the boxplot of en route inefficiency for flights within the 
different clusters. While the distributions for natural clusters (r - 
b) are compact, that for outlier group (k) has more variation. 
TABLE III indicates that for most airport pairs, individual flight 
trajectories can be divided into 3 – 5 natural clusters whose 
members are very similar to each other, and at most 21% of the 
trajectories are outliers. However, for traffic between DCA and 
ORD, we find that no matter how we tweak the parameters, there 
is always one dominant cluster that includes more than 95% of 
the total trajectories. In this case, it is inappropriate to model the 
assignment of flights to clusters based on attributes of nominal 
routes. Therefore, we exclude the flights between DCA and 
ORD in our further analysis. 

TABLE III SUMMARY STATISTICS FOR CLUSTERING RESULTS 

City 

Pair 

Cluster ID  

Average Inefficiency/ (Size of cluster in percentage) 

r g m c b 
k 

(outlier) 

IAH 

BOS 

3.80% 

(36.21%) 

6.14% 

(25.25%) 

2.84% 

(30.55%) 

1.76% 

(0.95%) 

3.26% 

(1.13%) 

8.78% 

(5.90%) 

BOS 

IAH 

1.65% 

(51.49%) 

6.48% 

(4.71%) 

2.28% 

(26.41%) 

1.66% 

(4.94%) 

5.63% 

(1.55%) 

6.00% 

(10.91%) 

JFK 
LAX 

0.94% 
(42.45%) 

4.72% 
(2.73%) 

2.50% 
(18.36%) 

2.73% 
(8.37%) 

1.44% 
(9.56%) 

3.74% 
(18.53%) 

LAX 

JFK 

2.25% 

(12.32%) 

1.62% 

(20.64%) 

2.59% 

(3.99%) 

1.96% 

(42.16%) 
- 

4.24% 

(20.89%) 

FLL 

JFK 

2.54% 

(86.49%) 

8.61% 

(10.72%) 

8.10% 

(0.92%) 
- - 

21.12% 

(1.87%) 

JFK 

FLL 

1.85% 

(84.15%) 

11.59% 

(1.11%) 

8.05% 

(9.57%) 

12.28% 

(2.05%) 

15.09% 

(0.64%) 

10.00% 

(2.47%) 

DCA 

ORD 

3.55% 

(95.27%) 

4.01% 

(1.64%) 

14.06% 

(0.28%) 

12.32% 

(0.28%) 

51.94% 

(0.11%) 

25.75% 

(2.41%) 

ORD 

DCA 

3.5% 

(96.43%) 

20.73% 

(1.36%) 

12.75% 

(0.95%) 

8.50% 

(0.14%) 
- 

28.31% 

(1.12%) 

B. Mapping Framework 

We start this section by introducing the general ideas behind 
the algorithms that connect individual trajectories to instances of 
the proposed causal factors behind inefficiency. For each flight, 
we construct a scenario whereby it needs to choose a route from 
a choice set obtained from section III.A. The nominal routes in 
the choice set differ only in the route-specific characteristics, 
such as convective weather exposure, wind and MIT occurrence. 
While the nominal routes as originally identified have unique 
departure times, here we assume they have a common departure 
time which is specified by the flight whose cluster assignment 
we are modelling. Based on this assumption, we determine the 

route-specific features for all nominal routes faced by each 
designated flight. Essentially, we are asking, for a given flight 
and for each of the nominal routes, what would likely have 
happened to that flight, with respect to convective weather, 
miles-in-trail restrictions, and wind, if it had used that route, with 
its original departure time?  Each of these impacts is measured 
using a specific metric, described in the following sections. 

 

 
C. Convective Weather Mapping Algorithm 

The convective weather records obtained from NOAA are 
recorded at individual weather stations, and are represented as 
time-stamped vectors of the form [𝐼t, 𝐼r, 𝐼s], where the binary 
indicator variables {𝐼𝑖}  represent the presence or absence of 
thunderstorms, rain, and squalls, respectively. Each weather 
station is assigned membership in its geographically appropriate 
ARTCC. 

For a given flight and a given nominal route, we compute the 
weather-related impacts using the following steps: 

1. Determine a hypothetical 4-D trajectory for that flight along 
that route by translating in time the 4-D trajectory originally 
associated with that route to the actual departure time of the 
flight. 

 

Fig. 1 Clustering results for flights from IAH to BOS 

 

Fig. 2 Clustering statistics for flights from IAH to BOS 

 



2. From that hypothetical trajectory, determine the time-
stamped sequence of ARTCCs that flight would have 
encountered. 

3. For each track point along the entire route, collect the binary 
weather vectors from stations that are members of the 
subject ARTCCs, with time stamps that are within a 
window ∆𝑡 (default = 1 hour) of the 4-D trajectory time 
stamps. 

4. Average the collected weather vectors across the entire 
route, to give the percentage of relevant weather stations 
along the nominal route reporting weather phenomena of 
each of the three types: thunderstorms, rain, and squalls 

D. Miles-in-trail (MIT) Mapping Algorithm 

The miles-in-trail data from NTML are assembled as 
individual data records with the structure MIT =
{𝑠𝑡, 𝑒𝑡, 𝑟𝑒𝑞𝑓𝑎𝑐, 𝑝𝑟𝑜𝑣𝑓𝑎𝑐, 𝑛𝑎𝑠_𝑒𝑙𝑒𝑚, 𝑎𝑙𝑡, 𝑚𝑖𝑡_𝑣𝑎𝑙𝑢𝑒} , where 
𝑠𝑡  and 𝑒𝑡  are the start and end time of the restriction, 
respectively; 𝑟𝑒𝑞𝑓𝑎𝑐  and 𝑝𝑟𝑜𝑣𝑓𝑎𝑐  are the requesting and 
providing facilities; 𝑛𝑎𝑠_𝑒𝑙𝑒𝑚  represents the NAS element 
where the MIT is enforced (it can be a jet route, TRACON or 
fix); 𝑎𝑙𝑡 is the altitude restriction; and 𝑚𝑖𝑡_𝑣𝑎𝑙𝑢𝑒 is the actual 
mileage between subsequent aircraft imposed by the restriction. 

For a given flight and a given nominal route, we compute the 
MIT-related impacts using the following steps: 

1. Follow step 1 from the weather algorithm above. 

2. Determine the set of MIT restrictions that would have been 
within sufficient geographic proximity of that flight, and 
applying in the same overall direction of travel. This 
required an exhaustive search of all of the MIT records, 
although in a real implementation one might also pre-
compute membership in ARTCCs so as to take advantage 
of the results of step 2 of the weather algorithm. In any case, 
each MIT restriction considered must be assigned an 
influence area: 

a. If the NAS element was a fix, then the influence area we 
used is a circle of radius ~15 nmi around the fix. This 
corresponds to about 0.25 degree of latitude in the 
continental U.S. The trajectory was considered to have 
been a candidate for this MIT if it intersected this circle 
in the same direction of travel for which the MIT was 
specified. 

b. If the NAS element was a jet route, then we defined a 
swath centered on the jet route with overall width 30 nmi. 
The trajectory was considered to have been a candidate 
for the MIT if it intersected this swath for at least 60 nmi, 
in the appropriate direction of travel for the MIT. 

c. If the NAS element was a center / TRACON, we used its 
existing polygonal boundary. The trajectory was 
considered to have been a candidate for the MIT if it 
intersected this polygon in the MIT restriction’s direction 
of travel. 

3. The list of candidate MIT restrictions was filtered for 
timestamps. If the time of intersection of the trajectory and 
the boundary of the MIT restriction was within the interval 

[𝑠𝑡𝑖 , 𝑒𝑡𝑖] for MIT𝑖 , then that restriction was retained as a 
candidate; otherwise it was discarded. 

4. The remaining list of candidate MIT restrictions was 
filtered for altitude. An MIT restriction is assigned one of 
three possible altitude requirements: a) above flight level x, 
b) below flight level x, or c) at flight level x.  If a particular 
MIT involved cases a) or b), then we would filter out that 
MIT if the trajectory altitude at the time of intersection with 
the MIT influence area did not satisfy the requirement. In 
case c), we allowed a 1000-foot buffer around x, and 
discarded MITs if the trajectory altitude did not fall within 
that interval. It should be noted that the filtering steps 2-4 
can be done in any order, and it would be wisest to do them 
in the most efficient order. 

5. We consider that the flight in question, had it flown the 
route in question, would have been impacted by whatever 
MIT restrictions remain after steps 2-4. The magnitude of 
that impact is measured as the sum of the miles in trail 
distances, the sum of the hours in durations, and the sum of 
the MIT stringency imposed by all of the restrictions. This 
additive metric may be refined in subsequent research, as 
aircraft that are well-spaced from one restriction may not 
need much additional spacing to comply with others, unless 
these involve additional traffic. 

E. Wind Mapping Algorithm 

The wind data from NAM are stored in raster files, each of 
approximate size 648 ×428× 34 ≅ 107.  Each raster file 
corresponds to a single geographical snapshot of wind vectors at 
a specific time. For a given flight and a given nominal route, we 
determine the estimated wind-related impacts using the 
following steps: 

1. Construct the 4-D trajectory as in step 1 from Section III.C. 

2. Determine which wind raster file is closest in time to the 
departure time for the subject flight. 

3. Using that raster file, build altitude-specific kd-trees [25] as 
an efficient queryable spatial data structure. 

4. For each point in the prospective trajectory, query the kd-
trees based on latitude, longitude, and altitude, and find the 
wind speed of the nearest raster point. 

5. For each track point, calculate the azimuth 𝜃 with respect 
to the previous adjacent point, then calculate the 

headwind/tailwind by 𝐻𝑇𝑊 = 𝑣⊥𝑐𝑜𝑠𝜃 + 𝑣∥𝑠𝑖𝑛𝜃 , where 

𝐻𝑇𝑊is the headwind/tailwind, 𝑣⊥ and 𝑣∥ are the horizontal 
and vertical wind speed, respectively. 

6. Use the ground speed in the flight track data and headwind/ 
tailwind speed to calculate airspeed, then calculate the 
cumulative summation of the product of airspeed and time 
along the route. 

IV. STATISTICAL ANALYSIS 

In this section, we will investigate how the causal factors 
impact en route inefficiency. 



A. Framework 

By the fact that en route inefficiency is mainly caused by the 
route selection (strategic) and reroute (tactical), we establish two 
separate models, i.e., linear regression (LR) model and 
multinomial logit (MNL) model, for each OD pair to understand 
the mechanism behind the inefficiency. 

The MNL model constructs a scenario whereby each 
designated flight, before departure, chooses one nominal route 
(assignment of cluster) from the route choice set determined in 
III.A. Different nominal routes at a specific designated departure 
time vary in climatological condition and MIT restrictions, and 
a flight is expected to tend toward paths where overall conditions 
are best. Therefore, by including those route specific features in 
the MNL model, we can capture their impacts on en route 
inefficiency in the strategic routing phase. 

We observe from Fig. 2 that flights vary in en route 
inefficiency even though they belong to the same cluster 
(meaning they choose the same nominal route). This might be 
attributed to tactical reroute, such as avoiding unpredictable 
convection activities or traffic, during cruising phase. Therefore, 
we use a linear regression model, in which flight level en route 
inefficiency is the dependent variable, to further capture such 
effects. 

We end this section by introducing our metrics for causal 
factors in the models: 

a) Convection activities 𝑊𝑥: In the MNL model, this metric 
agrees with what we have described in section III.C. 
However, since we don’t produce a nominal route for the 
outlier cluster, we set Wx = 0  for all alternatives in the 
outlier group. In the LR model, we first exclude the outlier 
alternative for each flight, then use the weighted average of 
Wx for all alternatives as an indicator of weather condition 
in the airspace, where the weights are determined by the 
cluster size in TABLE III, but excluding the outlier group. 

b) Wind 𝑊𝐷: We use wind distance, which is defined as the 
cumulative summation of the product of airspeed and time, 
to evaluate the wind effect. Notice that we only include the 
wind distance in the MNL model, due to the fact that wind 
affects the inefficiency mainly through strategic routing. 

c) MIT 𝑀𝐼𝑇_𝑆𝑇𝑅: We use MIT stringency, which is defined as 
the inner product of the MIT value (in miles) and MIT 
duration (in hours), as the metric. Similar to the convective 
weather, we include this metric both in the MNL model and 
the linear regression model. 

B. Model Specifications 

In the linear regression model, the dependent variable is the 
flight en route inefficiency. There are four categories of 
independent variables in the model. The first category includes 
variables related to convective weather activities. Among the 
variables are thunderstorm, rain, squall, hail, and ice. Since a 
flight may extend its route to avoid convection, we expect that 
those variables will have positive effects on the en route 
inefficiency. The second category of variables includes MIT 
stringency. Due to the fact that aircrafts may be vectored to 
comply with the MIT restrictions, we expect that this variable 
will also have positive sign. The third category pertains to the 

route structure. Fig. 2 indicates that while the within-cluster en 
route inefficiency maintains a small variation, the cross-cluster 
inefficiencies tend to have significant difference. Therefore, we 
include the cluster memberships as the fixed effects in the 
model, and set the outlier cluster membership as the baseline. 
We expect that the order of estimates for different clusters 
should match the order of the averages of within-cluster 
inefficiencies. The final set of variables relate to the departure 
time. We include both the departure seasons and departure busy 
hour indicator (10 am – 8 pm) as control variables to further 
capture the seasonal patterns and traffic effect, respectively. As 
indicated in [14], flights in the summer season tend to be more 
inefficient, and a higher volume of traffic in the airspace will 
also induce unnecessary maneuvers; thus, we expect that the 
estimate for summer season indicators should be systematically 
higher than the other four seasons, and the estimate for the busy 
hour should also be positive. The formula for the LR model is 
shown below, where the β′s are the coefficients that need to be 
estimated. The explanatory variables and their notations are 
listed in TABLE IV. 

InEff(%)=β0 + β1⋅TS + β2⋅R + β3⋅SQ + β4⋅Ice + β5⋅Hail 

 + β6⋅MIT+β7⋅BH + ∑ βCL⋅Dep_ArrCLCL  
+ ∑ β𝑘

𝑠 ⋅Seasonkk  (2) 

TABLE IV DESCRIPTION OF EXPLANATORY VARIABLES 

Category 

Explanatory 

variable 

notation  

Variable description 

Convective 

weather 

activities 

𝐓𝐒 Thunderstorm exposure 

𝐑 Rain exposure 

𝐒𝐐 Squall exposure 

𝐈𝐜𝐞 Ice exposure 

𝐇𝐚𝐢𝐥 Hail exposure 

Route 

structure 
𝐃𝐞𝐩_𝐀𝐫𝐫𝐂𝐋 

𝐃𝐞𝐬 represents departure airport, 𝐀𝐫𝐫 

represents for arrival airport, and 𝐂𝐋 
represents for cluster membership, 

which can be found in TABLE III 

Departure 
time 

𝐁𝐇 

Busy hour indicator, equals to 1 if 
local departure hour is between 10 am 

and 8 pm 

𝐒𝐞𝐚𝐨𝐧 

Seasonal indicator. Equals to “winter” 
if local departure month is from 

December to February; “spring” if 

from March to May; “summer” if 
from June to August; “fall” otherwise 

Wind 𝐖𝐃 Wind distance (1000 nautical miles) 

MIT 𝐌𝐈𝐓 MIT stringency (1000 mile×hour) 

In the multinomial logit model, the clusters (nominal routes) 
are the choice set, and a flight chooses a cluster to which it 
belongs. Apart from the weather activities and departure time 
variables, we also include two additional covariates – wind 
distance and MIT stringency – in the utility functions. Due to the 
nature of the MNL model, we expect that the coefficients of the 
weather, wind distance, and MIT variables should all have 
negative signs, since higher values of those covariates will 
always tend to degrade the attractiveness of a route. The utility 
formulas are shown from (3) to (5) below, where 𝑉𝑗 , 𝑗 ∈

{1,2, … , 𝑁 − 1} is the utility for the 𝑗th alternative, and 𝑉𝑁 is the 
utility for the outlier group. The 𝐴𝑆𝐶𝑗 , 𝑗 ∈ {1,2, … , 𝑁 − 1} is the 

alternative specific constant, and 𝑊𝑗,𝑖 , 𝑗 ∈ {1,2, … , 𝑁}  

represents the 𝑖th weather activity listed in TABLE IV. 



 V1 = ASC1 + β1,0⋅Season + ∑ βw,i
5
i=1 ⋅W1,i + βwd,6⋅WD1 

 + βmit,7⋅𝑀𝐼𝑇1 

 V2 = ASC2 + β2,0⋅Season + ∑ β𝑤,i
5
i=1 ⋅W2,i + βwd,6⋅WD2

 + βmit,7⋅𝑀𝐼𝑇2 

 V𝑁 = ∑ 𝛽𝑤,𝑖
5
𝑖=1 ⋅W𝑁,i + βwd,6⋅WDN + βmit,7⋅MI𝑇𝑁 

C. Estimation Results 

TABLE V reports the complete estimation results for the 
linear regression model. To save space, TABLE VI only reports 
the coefficients of factors that interest us the most for the 
multinomial logit model; other covariates, while most of which 
are significant, are not presented in the paper. For both tables, 
each column presents the estimations for the airport pair shown 
in the header. 

TABLE V ESTIMATION RESULTS FOR LR MODEL 

Var. 

Airport Pair 

(Est./ Std.) 
IAH 

BOS 

BOS 

IAH 

FLL 

JFK 

JFK 

FLL 

JFK 

LAX 

LAX 

JFK 

𝑇𝑆 25.76*** 11.61*** 5.49** 7.27*** 30.72*** 41.35*** 

 (2.87) (2.68) (2.30) (1.27) (1.66) (2.24) 

𝑅 1.35*    1.55*** 3.70*** 

 (0.81)    (0.45) (0.52) 

𝑆𝑄     226.72***  

     (65.32)  

𝑀𝐼𝑇  1.06*** 0.86** 1.29***  4.10*** 

  (0.32) (0.36) (0.25)  (0.30) 

𝐵𝐻  0.15** 1.05*** 0.13** 0.04* 0.54*** 

  (0.06) (0.10) (0.05) (0.02) (0.03) 

𝐶𝐿_𝑟  -4.56*** -4.14*** -18.04*** -8.03*** -2.69*** -1.85*** 

 (0.15) (0.10) (0.35) (0.17) (0.03) (0.06) 

𝐶𝐿_𝑔 -2.22*** 0.58*** -12.14*** 1.42*** 1.13*** -2.31*** 

 (0.15) (0.16) (0.37) (0.30) (0.07) (0.05) 

𝐶𝐿_𝑛 -5.42*** -3.49*** -12.82*** -1.92*** -1.15*** -1.64*** 

 (0.16) (0.11) (0.59) (0.19) (0.04) (0.09) 

𝐶𝐿_𝑐 -7.03*** -4.18***  2.21*** -1.08*** -2.31*** 

 (0.36) (0.16)  (0.25) (0.05) (0.04) 

𝐶𝐿_𝑏 -5.14*** -0.4  5.11*** -2.23***  
 (0.35) (0.25)  (0.36) (0.04)  

Spring -0.04 0.09 0.26** 0.14** -0.03 0.24*** 

 (0.10) (0.09) (0.13) (0.07) (0.03) (0.05) 

Summer 0.19* -0.04 0.21 -0.08 -0.21*** -0.20*** 

 (0.10) (0.09) (0.15) (0.09) (0.04) (0.05) 

Fall 0.05 0.08 -0.04 -0.03 0.01 0.01 

 (0.10) (0.09) (0.14) (0.08) (0.03) (0.05) 

Const. 8.00*** 5.56*** 19.74*** 9.65*** 3.48*** 3.39*** 

 (0.17) (0.12) (0.37) (0.18) (0.04) (0.05) 

𝑅2 0.63 0.65 0.54 0.76 0.53 0.33 

Obs. 1664 1732 3988 4021 10637 10367 

Standard errors in parentheses; * p<.1, ** p<.05, ***p<.01 

TABLE VI ESTIMATION RESULTS FOR MNL MODEL 

Var. 

Airport Pair 

(Est./ Std.) 

IAH 

BOS 

BOS 

IAH 

FLL 

JFK 

JFK 

FLL 

JFK 

LAX 

LAX 

JFK 

𝑇𝑆 -31.52*** -43.10*** -17.92*** -9.92*** -22.72*** -39.64*** 
 (4.64) (5.00) (3.12) (3.078) (2.38) (2.89) 

𝑅 -9.25*** 
-

11.04*** 
-3.92*** -6.67*** -5.86*** -5.62*** 

 (1.36) (1.41) (1.49) (1.15) (0.71) (0.68) 

𝑆𝑄     -211.03** -146.69* 
     (81.95) (79.04) 

𝑊𝐷 -16.43*** -11.76***   -13.64*** -12.78*** 
 (1.096) (1.38)   (0.52) (0.64) 

𝑀𝐼𝑇   
-1.38*** 

(0.47) 

-1.39*** 

(0.35) 
  

Standard errors in parentheses; * p<.1, ** p<.05, ***p<.01 

The vast majority of the coefficients in the LR models are 
significant, and their signs match our expectations in general. 
First of all, the estimates for thunderstorm confirm that it 
increases en route inefficiency for all six pairs considered, and it 
has the largest impact on flights from LAX to JFK. However, 
rain only has a minor positive impact on IAH to BOS, JFK to 
LAX and LAX to JFK flights, and squall only influences flights 
from JFK to LAX. The large coefficient of squall is mainly 
caused by the considerably low occurrence of squall activities. 
Second, MIT restrictions increase the inefficiency for BOS to 
IAH, FLL to JFK, JFK to FLL and LAX to JFK flights, which 
could be explained by the vectoring of flights subject to MITs. 
Third, the estimates for cluster membership fixed effects are all 
significant, and their order matches the statistics shown in 
TABLE III, which reemphasis the effects of route selection. For 
instance, the estimate for CL_r in IAH to BOS case implies that 
if a flight decides to follow the path in cluster “r”, then its 
inefficiency will be systematically 4.56% lower than flying an 
outlier path. Busy hour flights tend to be less efficient for most 
pairs except IAH to BOS case, which can be attributed to the 
higher volume of traffic in the airspace. Finally, estimates for 
summer season fixed effects are somewhat surprising. While we 
expect that their estimates to be positive, JFK to LAX and LAX 
to JFK both report significant and negative sign coefficients. 
This is probably because the effect of summertime convective 
weather is explicitly accounted for in these models, and thus 
does not contribute to the summer fixed effect. 

In general, the estimates for the MNL model agree with the 
LR model. Thunderstorm and rain have largely negative impacts 
on route utility, indicating that in the strategic planning phase, a 
flight will tend to fly a route that has less convective weather. 
Squall only has significant effects for long haul flights between 
JFK and LAX, mainly due to its low frequency. The estimates 
for wind distance are only significant for flights between IAH 
and BOS, JFK and LAX, and their negative signs imply that 
flights have a tendency to choose routes with favorable winds. 
After investigating the wind field map in the US, we find that 
there is a strong jet stream in the lower 48 US states, which 
covers most of the routes for the four pairs mentioned above. 
However, for flights between FLL and JFK, possibly because of 
the comparably shorter distance and lower wind activities, wind 
is not an important factor on the route selection. Finally, MIT 
restrictions have negative and significant coefficients only for 
traffic between JFK and FLL, indicating that they are important 
in strategic route choice for some but not all OD pairs.  

D. Contributions of Causal Factors 

We further use the models described in IV.B to quantify the 
contributions of wind, convection and MIT restrictions. We first 
use the MNL models to estimate the probabilities of different 
routes in the choice set, given the current wind, weather and MIT 
conditions in the original dataset. Then we plug the probabilities 
into the LR model, and further calculate the expected en route 
inefficiency for each record in the original dataset. Then we 
construct a counter factual case in which the convection 
variables and MIT stringency are set to 0 (i.e., no convective 
activities and no MITs), and wind distances are set to the great 
circle distance of nominal routes (i.e., no wind), respectively. 
Finally, we estimate the route choice probabilities and expected 
en route inefficiency by the new data. The percentage change in 



the expected inefficiency is defined as the contribution of the 
corresponding factor. The framework above is described in the 
formula below, where ℰ(Ineff|F, CL)  is the expected 
inefficiency given factor and cluster membership, P(CL|F) is the 
probability of cluster CL given factor condition. 

𝐸𝑤𝑖𝑡ℎ𝐹𝑎𝑐𝑡𝑜𝑟 = ∑ ℰ(𝐼𝑛𝑒𝑓𝑓|𝐹, 𝐶𝐿)𝑃(𝐶𝐿|𝐹)𝐶𝐿  (6) 

𝐸𝑛𝑜𝐹𝑎𝑐𝑡𝑜𝑟 = ∑ ℰ(𝐼𝑛𝑒𝑓𝑓|𝐹 = 0, 𝐶𝐿)𝑃(𝐶𝐿|𝐹 = 0)𝐶𝐿  
      (7) 

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 = %𝛥 = |
𝐸𝑤𝑖𝑡ℎ𝐹𝑎𝑐𝑡𝑜𝑟−𝐸𝑛𝑜𝐹𝑎𝑐𝑡𝑜𝑟

𝐸𝑛𝑜𝐹𝑎𝑐𝑡𝑜𝑟
| 

      (8) 

The contributions for wind, convection (including 
thunderstorm, rain and squall) and MIT restrictions are 
summarized in TABLE VII. The first column is the expected en 
route inefficiency in the current condition. The two columns of 
each of the following panels are the expected en route 
inefficiency without a specific factor and its corresponding 
contribution, respectively. The table shows that if there were no 
weather impact, flights would be 7-18% less inefficient, 
depending on the OD pair. If winds did not influence flight 
routing, inefficiency would decrease from 0-11%, while the 
impact of eliminating MITs would be to decrease inefficiency 
from 0-5%. 

TABLE VII CONTRIBUTIONS OF WEATHER AND WIND 

City 

Pair 

Base- 
line 

Weather Wind MIT 

With-

out 

Contri-

bution 

With-

out 

Contri-

bution 

With-

out 

Contri-

bution 

IAH 

BOS 
4.36% 3.93% 9.99% 4.13% 5.26% 4.36% 0.00% 

BOS 
IAH 

2.58% 2.21% 14.28% 2.51% 2.75% 2.53% 1.87% 

FLL 

JFK 
3.59% 3.30% 8.08% 3.59% 0.00% 3.46% 3.54% 

JFK 

FLL 
3.06% 2.83% 7.43% 3.06% 0.00% 2.92% 4.66% 

JFK 

LAX 
2.43% 1.73% 15.42% 1.82% 11.26% 2.05% 0.00% 

LAX 

JFK 
2.05% 2.00% 17.74% 2.30% 5.21% 2.31% 4.97% 

V. CONCLUSIONS 

This research demonstrates a practical means for fusing FAA 
trajectory performance databases with thunderstorm, wind and 
Miles-In-Trail (MIT) sources for the purpose of obtaining an 
improved estimate of flight trajectory efficiency. Trajectory 
clustering methods are presented which can be used for any 
application where it is useful to group traffic into manageable 
flows.  

The results in this paper present a first step in ascribing en-
route trajectory inefficiencies to causal factors. In our 
framework, the inefficiency of a trajectory is modeled as 
resulting from an assignment process through which the 
trajectory “chooses” among several trajectory clusters based on 
attributes of the nominal routes for each cluster, and a tactical 
process in which flight inefficiency for trajectories a given 
cluster is related to composite conditions. Using this approach, 
the contributions of wind, connective weather, and MIT 
restrictions to flight inefficiency are estimated. Results vary 

across OD pairs, but in general convective weather makes the 
greatest contribution, followed by winds and MIT restrictions. 

In addition to its scientific contribution, this paper has a 
number of practical applications. First, it helps target 
interventions to reduce flight inefficiency, by identifying which 
causes of inefficiency are the most important for different OD 
pairs. Equally important, it estimates the extent to which flight 
inefficiency, as defined in this paper, is an illusion arising from 
the choice of routes with favorable winds but longer ground 
distances. Finally, it reveals the degree to which inefficiency is 
not the result of any of any identifiable cause. This inefficiency 
“dark matter” is presumably attributable to features of the NAS 
route structure, which may also be targets for intervention. 
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