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Abstract—This paper describes a mechanism for determining
consensus service level expectations to be used in designing
air traffic management initiatives (TMIs). Our approach, which
employs the Majority Judgment voting mechanism, enables those
flight operators impacted by a potential TMI to provide service
level preference information to an air navigation service provider
(ANSP) that initiates the TMI. The output of the process is a
numeric vector that specifies performance goals for the TMI
enabling the ANSP to tradeoff competing performance criteria,
when designing the TMI. Earlier work has described key compo-
nents of the overall approach. This paper gives a comprehensive
view and also gives the results of a fast-time simulation benefits
assessment and a human-in-the-loop simulation.
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I. INTRODUCTION

Over the past 15 or more years, collaborative air traffic
management (CATM) has become a fundamental principle
underlying all new air traffic management (ATM) system
development both in the U.S. and Europe. Its origins go back
to the deployment of Collaborative Decision Making (CDM)
information exchange and resource allocation mechanisms for
planning and controlling ground delay programs (GDPs) in the
U.S. [1]–[3] and similar information exchange and distribution
mechanisms focused on flows into, through and out of an
airport in Europe (A-CDM) [4]. In the U.S., GDP decision
support tools evolved and became more sophisticated and
the underlying GDP ideas were transferred to the enroute
environment with the development of airspace flow programs.
A variety of other tools, based on CATM paradigms, have
been developed and adopted or are on their way to adoption
both in the U.S. and Europe.

It is probably safe to say that the bulk of the CATM-
based research in the U.S. has focused on tools and processes
to support very specific ATM operational decisions, e.g. as-
signing ground delay to a specific flight during a GDP. At
the same time, there is a very important strategic planning
aspect to the daily execution of ATM. Specifically, FAA
traffic managers consult with airline/flight operator operational
personnel at both the local and national levels in planning
operational strategies for the day. These take the form of
strategic planning telecoms (SPTs). To be sure, the SPTs
should be considered a very important part of the general
trend toward the widespread use of CATM. They perform a
very legitimate, and even vital, function in the overall traffic
management process. Specifically, flight operators have key
information not known by the FAA, including air carrier
business objectives and economic tradeoffs and the status of
aircraft and personnel, just to name a few. However, while
CATM initiatives have produced a host of innovations specific
to how traffic management initiatives (TMIs) are planned and
controlled, very little innovation has been directed toward the
operation of SPTs [4]. While this per se may not necessarily
be bad, there are several concerns and issues related to SPTs
and more generally strategic planning on the day-of-operations
that merit research attention:

1) The SPTs are free form and highly unstructured and so,
at times, can devote an inordinate amount of time to
unimportant topics.

2) Due to their free-form nature, the SPTs do not attempt
to assign priority to the various flight operators based
on objective measures. Thus, the more persistent and/or
“loudest” flight operators tend to have the most influence.



3) The operational concept for the Next Generation
Air Transportation System (NextGen) calls for a
performance-based ATM system. One embodiment of
this concept calls for the separation of strategic ATM
planning into: i) service level expectation setting; and ii)
planning of an operational response [5]. Flight operator
input should be provided and the air navigation service
provider (ANSP) should then optimize based on the
output of service level expectation setting step. Today’s
SPT’s generally do not discuss performance expectations,
focusing instead on specific TMI parameters.

The proposed system – COuNSEL, CONsensus Service
Expectation Level setting – described in this paper addresses
the service level expectation (SLE) setting problem and, in
so doing, seeks to eliminate the deficiencies discussed above.
The initial COuNSEL concepts were introduced in [6], the
mathematical models underlying a key component (candidate
vector generation) are provided in [7]. For other related work,
see [8] and [9]. In this paper, we provide an overview of the
concept and processes, and give the results of human in the
loop experiments and benefits assessment based on fast-time
simulation.

II. BACKGROUND AND LITERATURE REVIEW

Our work on COuNSEL started with a very broad-based
concept development in which several alternative conceptual
approaches were considered. For example, an initial proposal
viewed the problem from the perspective of investments in
performance categories and portfolio selection. This concept
and others were viewed as inferior to those generally based
on the notions of voting and multi-criteria optimization. A
key criterion that led to the chosen approach was to seek
a mechanism in which the various parties (flight operators)
were incentivized to provide inputs consistent with their actual
business goals and to not seek to strategically “game” the
process.

Voting, in particular, and social choice in general, is con-
cerned with aggregating evaluations over a multitude of voters,
in ways such that the final outcome has appeal to a large cross-
section of the decision-makers. After investigating various al-
ternatives, we chose the recently developed Majority Judgment
(MJ) procedure [10]. It is defined as a social decision function.
It involves grading – instead of preference rankings – of each
candidate, by all voters, in a common language. It is a natural,
rich preference elicitation method, already being practiced in
spirit in many contests and juries around the world, as well as
a few political elections. It has many good properties; among
them, high resistance to strategic voting.

Aside from voting methods, the past work most relevant to
this paper is from the literature of multi-criteria decision mak-
ing (MCDM), especially the group version of it. The decision-
making framework in the general MCDM involves a decision
maker evaluating a set of candidates on multiple criteria or
attributes. [11] categorizes MCDM problems into two streams
based on the characteristics of the feasible space: (1) multiple
criteria discrete alternative problems where sets of alternatives

typically consist of a modest number of choices, e.g., choosing
the location for a new airport, selecting a computer network,
electing a political leader, and identifying which nuclear power
plant to decommission; and (2) multiple criteria optimization
problems where feasible sets of alternatives are usually defined
by systems of equations and inequalities, e.g., engineering
component design, portfolio selection, capital budgeting and
R&D project selection. The focus of this paper falls into
the second category with additional consideration of group
decision making. We note in particular the Analytic Hier-
archy Process (AHP), a multi-criteria decision making [12]
approach, which has been extended to the group setting, e.g.
[13]–[15]. It relies on pairwise comparisons over a set of
alternatives, eliciting preference rankings on several criteria or-
ganized in a hierarchy on a nine-point scale. The group version
of AHP usually consists of the following three approaches:
(1) consensus, (2) vote or compromise, and (3) geometric
mean of the individuals’ judgments [16]. Consensus refers to
the achievement of a consensus of group participants in jointly
conducting an AHP. If a consensus cannot be reached, the
group may then choose to vote on a decision. If a consensus
cannot be achieved and the group is unwilling to vote or
to compromise, then a geometric average of the individuals’
scores can be calculated.

There is perhaps a philosophical difference in our approach
to group decision making using MJ and one approach found
in the literature on consensus building typically using AHP
and/or fuzzy systems. The consensus literature typically as-
sumes that participants do not have precise knowledge of
their own preferences or value functions. Preferences and
values are quantified through an iterative process. In the
group setting there is typically a goal of achieving consistency
among the preferences of the various participants. In fact,
there is a literature on consistency metrics and consistency-
improving processes, e.g. [14], [17], [18]. In our MJ-based
approach we address applications where it may be possible to
precisely estimate value (grading) functions and we make no
attempt to resolve any inconsistencies among such functions.
In strategic air traffic management applications, it is possible
(at least conceptually) to relate a flight operator’s grading
function to the expected financial performance that flight
operator would receive under candidate vectors in question.
In this application, it is also the case that the participants
are competitors. So, in many cases, there would be little or
no incentives for the participants to cooperate or to seek a
consensus. The underlying philosophy is that the participants
have agreed to abide by the MJ winner criterion and that the
general incentive-compatibility properties of MJ will ensure
that participants provide inputs leading to results with the
anticipated properties.

A multi-criteria decision analysis based approach was
adopted in a strategic decision making context by Eurocon-
trol [19]. Similar to our setting, the problem involved the
ANSP and the airlines collaboratively arriving at a common
decision for selecting operational improvements. Further, the
decision was subject to constraints like safety and environ-
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mental impact, and was expected to improve on objectives
like predictability and efficiency. However, unlike our problem
that seeks to evaluate at a day-of-operations level, Eurocontrol
was faced with a one-time strategic decision. In the parlance
of multi-criteria decision making, they were faced with an
evaluation decision problem, while we are handling a design
decision problem.

III. SYSTEM CONCEPTS AND OPERATION

The basic mode of operation for COuNSEL is fairly
straight-forward, however, it is quite different from the SPTs
because its basic output is different. As discussed above,
the system seeks to set service level expectations. Another
process, not the subject of this paper, takes the further step of
converting the service level expectations into planned TMIs.
Note that SPTs talk directly in terms of TMIs, e.g. discussing
which TMIs should be run and which parameter setting should
be used. The SLE problem can be viewed as one of setting
constraints or guidelines to be used in determining those TMIs
and their parameters. A basic question then is what form
should the output of a SLE setting process take.

The TMI planning process is viewed as a design problem
that requires performance goals. The output of COuNSEL is
a set of such goals. In the follow-on step, traffic management
specialists carrying out the design process are faced with
decisions that require trading off one performance criterion
with another. The performance goals provide the designers
with the necessary information to do this. As discussed above,
this second step is not discussed in this paper: only the first
goal-setting step is addressed.

a) Performance Metrics: Before describing the exact
nature of the output, it is worthwhile to consider an appropriate
set of performance criteria. The global ATM community
working through International Civil Aviation Organization has
agreed upon a set of eleven service expectation categories [20].
These were considered carefully in the context of the SLE
setting problem and a set of three was identified to be the
most relevant to the TMI design and control problem. These
are discussed below.

Capacity measures the number of flight operations that the
overall system or constituent subsystems can process safely
over a specified time-period. In the context of a GDP, an
important capacity metric is the number of arrivals that can
be accepted by an airport per hour. Capacity is perhaps the
most visible and important performance category as it directly
relates to flight delays and more generally the ability of an air
carrier to maintain its schedule.

Predictability has multiple interpretations depending on
the time frame in question. For planning-specific TMIs, pre-
dictability refers to the degree to which flight operators know
in advance resources available to them and, more generally,
the intentions and planned actions of the ANSP. An ANSP
could increase predictability by announcing farther in advance
its intention to carry out specific TMIs, and giving earlier
indications of the ground delays assigned to flights, earlier
announcements of the open/closed status of airways, etc.

Efficiency refers to the cost-effectiveness of individual flight
operations from the perspective of the flight operator. During
a GDP, a policy that leads to high amounts of airborne holding
would be less efficient than one that converted that airborne
delay into less costly ground delay.

TMI design strategies very often trade off these performance
criteria either explicitly or implicitly. For example, one GDP
strategy might limit the amount of assigned ground delay,
when compared to others. Such a strategy would tend to
send a larger number of flights to the airport earlier in
hopes that the weather would clear earlier than expected or
that a slightly higher than planned acceptance rate could be
accommodated. Such a strategy on the average would lead
to higher rates of arrival throughput, increasing the capacity
metric, but larger amounts of airborne holding, decreasing
the efficiency metric [21]. Another strategy might announce
and implement early in the day certain TMI actions, such
as ground delays and reroutes. These would provide ample
time for the flight operators to plan for the day’s operations,
allowing them, for example, to cancel strategic flights and to
take early steps to re-accommodate passengers. On the other
hand, such a strategy would likely impose unnecessary ground
delays or reroutes. Thus, it would tend to have a higher level
of predictability but lower levels of capacity and efficiency.

The SLE setting problem is to provide guidance to Traffic
Flow Management specialists on how to trade off TMI perfor-
mance in the three performance categories given above. The
approach chosen to do this involves choosing a specific metric
for each of the three categories and specifying a goal for each
of those metrics. Thus, the output of COuNSEL is a vector
of size three that contains a goal for each of the metrics. The
metrics chosen are normalized to be between 0 and 1, with 1
being the best possible value and 0 the worst. One can view
a value of 1 as indicating the best performance level for that
performance category on a perfect-weather day. Of course, a
very simplistic solution to this goal setting problem would be
to choose a goal of 1 for each metric. However, a vector of
three 1’s provides little insight or tradeoff guidance. Rather one
should view the process as starting with an assessment of the
weather and traffic conditions. This in turn implies constraints
on the set of feasible goal vectors. For example, it would
generally be the case that on a poor weather day, it would
be impossible to achieve a vector of three 1’s. In general, the
constraints implied by the day’s conditions would generate an
efficient frontier of possible vector values. Conceptually any
such vector could be achieved on the day given an appropriate
TMI. In fact, the choice between these vectors represents the
choice among TMI strategies and provides exactly the tradeoff
information that is sought. For example, suppose that the SLE
vector was ordered as follows:

(capacity metric, predictability metric, efficiency metric)
Consider the following possible vectors chosen from the

efficient frontier:
A: (.95, .90, .91), B: (.90, .94, .89), C: (.97, .87, .89)
Suppose a particular flight operator had a very heavy em-

phasis on capacity. That flight operator when given the choice
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Fig. 1. Efficient Frontier of Performance Metric Vectors.

between A and B might choose A, indicating a willingness
to increase capacity and to a less extent efficiency, while
sacrificing predictability. That flight operator might further be
given the choice between A and C and choose C again in order
to increase capacity while further sacrificing predictability and
efficiency. In this way, by choosing a particular vector, a flight
operator is forced to make key performance tradeoffs.

Given this choice of three performance categories one is
still left with the problem of choosing three specific metrics.
Obviously, the choice of specific metrics is very fundamental
and a key driver to the effectiveness of the system. However,
the development and/or choice of metrics is not a focus of
the research activity summarized here and so specific metric
definitions will not be provided in this paper. Henceforth, it is
assumed that metrics for capacity (C), predictability (P) and
efficiency (E) have been provided. The output of COuNSEL
is a vector of metric values: (mC , mP , mE), where each of
mC , mP , and mE is between 0 and 1.

The output vector represents goals for the metric values that
the ANSP should seek on the day in question. The “feasible”
values for (mC , mP , mE) depend on the conditions of the
day so that on poorer weather days, the possible values will
tend to be lower (closer to 0) than on better weather days.

b) Feasible Metric Vectors : COuNSEL seeks to gener-
ate a consensus among the flight operators. As such, an iter-
ative process is required where each flight operator evaluates
and compares possible vectors. Flight operators are also given
the opportunity to generate candidate vectors. Fig. 1 illustrates
the domain of feasible vectors, flight operator preferences and
a consensus vector, in the case where there are two (rather
than three) metrics.

On any given day of operations there would be many
feasible vectors. However, the flight operators and the ANSP
should only consider vectors on the efficient frontier. These
dominate the others in the sense that for a vector on the
efficient frontier, it is not possible to increase one metric
value without decreasing another. Generally, it is the case
that each flight operator would have a preferred vector. The
consensus vector would tend to represent a compromise among
the vectors preferred by each flight operator.

Fig. 2. Illustration of Majority Judgment.

c) Choosing a Consensus Vector: As discussed in Sec-
tion II, we have chosen to use Majority Judgment (MJ) as the
basis for defining and choosing a consensus vector. It can be
viewed as a voting mechanism because it can, and has been,
used to run elections in which a single candidate is chosen
from a list of several without the need for a runoff election.
It more properly is defined as a social decision function. It
involves grading – instead of preference rankings – of each
candidate, by all voters, using a common language. This
viewpoint illustrates its broader usefulness, e.g. to combine
the scores from several judges in sporting competitions. It
has many good properties; among them, high resistance to
strategic voting/grading. In fact, there is a rich theory, which
supports its strong properties as a voting and consensus
grading mechanism.

In our application, we wish to choose a consensus metric
vector. We illustrate the use of MJ by assuming we have a
small set of candidate vectors we wish to choose among. Each
flight operator is asked to assign a grade to each candidate
vector. A grade is a value between 0 and 100, 100 being the
best possible and 0 the worst. The flight operators/voters are
free to interpret and assign grades as they see fit. However,
in concept, grades should vary in proportion to the value, or
inverse of cost, that a vector brings to the flight operator. MJ
takes the grades given by the voters, and produces a Majority-
grade of each candidate as an output. The Majority-grade
of a candidate is the highest grade approved by an absolute
majority of the voters. In case of an odd number of voters, it is
the median of the grades; if there are even number of voters,
then it is the lower middlemost of the grades.

Fig. 2 illustrates the MJ mechanism using three candidate
vectors together with the grades assigned by seven flight
operators/voters. The assigned grades are ordered from lowest
to highest so that the majority grade for each is the one that
appears in the fourth column. Note that a given column will
usually not correspond to the same flight operator so that a
given flight operator might have assigned the grade in column
6 to the 1st vector, the grade in column 2 to the 2nd and
the grade in column 4 to the 3rd. Thus, the majority grades
for vectors 1, 2 and 3 are 78, 70 and 75 respectively and
the winning vector is vector 1. It is possible for ties to occur
and there are a set of tie-breaking rules, which will not be
discussed here. Our example also assumed that each flight
operator had a single vote. In a typical ATM application, it
makes sense to allow the voting weight of flight operators
to vary based on their number of involved operations or some
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Fig. 3. COuNSEL Architecture.

other metric. Such weights can be viewed as giving each flight
operator more or fewer votes to cast. In our experiments so
far, weights have increased with the number of operations but
the increase is at a less than linear rate.

d) System Architecture and Candidate Generation: The
example and discussion of the previous section assumed that
MJ was executed over a small set of candidate vectors. This
is potentially problematic since, as has been discussed, a
candidate vector could be any one drawn from a (continuous)
space of feasible vectors, i.e. the set of candidates is in
concept infinite. Fig. 3 provides an architecture of the overall
system. Note that there is an iterative loop in which candidates
are generated, candidates are graded by flight operators and
a winner is chosen based on the MJ criterion. The loop
might be executed a few times until a final winner is chosen.
There are multiple options for candidate generation. A simple
one is simply to ask the flight operators for their preferred
candidate. In fact, we have developed an underlying theory
that automatically generates candidates by estimating flight
operator preferences based on their voting history. Underlying
this theory is an optimization model that computes the MJ
winner over the entire (infinite) set of candidate vectors, given
explicit knowledge of the flight operator preference functions
[7].

In our context, MJ proceeds by asking flight operators
to grade candidate metric vectors until one is found that
represents a consensus. The “evaluation” of a metric vector
on the part of a flight operator involves assigning a “grade” to
the vector. The flight operators will be asked to grade many
vectors and given the opportunity to generate new vectors,
including providing their most preferred vector. Over time, it is
expected that flight operators will develop formal approaches
for grading vectors and generating candidate vectors. We
foresee eventually automated systems for grading. Automatic
generation of candidate vectors by the flight operators is also
possible although the system can operate without operator-
generated candidate vectors.

Since the COuNSEL process produces the equivalent of a
consensus strategic plan on the day-of-operation, it is impor-
tant for it to have very fast response time. As discussed above,
in the long run, it should be the case that all processes both
on the ANSP and flight operator sides should be automated so
that the entire process, including multiple iterations, should be

Fig. 4. Benefits Assessment Process.

completed in a matter of minutes, if not seconds. In the initial
stages of implementation, there may be human involvement in
the grading so that response time could be slower. However, a
total response time of less than 30 minutes should be possible.

IV. BENEFIT MECHANISMS AND BENEFITS ASSESSMENT

To evaluate the benefits of applying COuNSEL to TMI
design compared with the existing approach, we developed
an FAA/airline integrated simulation platform to facilitate
our analysis. For our benefits assessment, we focus on GDP
as a representative example of TMIs. The overall benefits
assessment process is depicted in Fig. 4. Note that this fast-
time simulation-based framework does not assess the full
functionality of COuNSEL: it evaluates a simplified situation
where the number of candidates is only a handful. The airlines
grade all the candidates in a single round and then the MJ
winner is identified. In the following Section V, we will discuss
the result of a human-in-the-loop (HITL) experiment with
actual flight operators and FAA air traffic controllers where
the iterative candidate generation is adopted.

The simulator contains a GDP design module which allows
setting appropriate values for different GDP parameters such
as planned start time, planned end time, program rate (the
arrival rate during the duration of the GDP), and program
scope (the set of departure airports affected by the GDP). Once
we fix the GDP design, the FAA Ration by Schedule (RBS)
module assigns ground delays to impacted inbound flights.
Based on this anticipated delay information, each airline runs
its recovery module, marked as Active Recovery Module in
Fig. 4, to reduce adverse impacts of delays and disruptions
through recovery operations such as flight cancellations, flight
re-timings, aircraft swaps, etc. This Active Recovery Module
employs a mixed-integer linear programming model to com-
pute the optimal recovery operations. We refer readers to [22]
for the details and solution methods for the model. Due to
intra-day airport capacity uncertainty, these recovery opera-
tions may not get executed as planned. The active recovery
module is based on the assumption that the capacity forecast
at the time of designing the GDP is accurate. However, as the
day progresses, the actual realized weather conditions might
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be different than initially anticipated, thus rendering some
of the planned recovery operations infeasible. For instance,
if it turns out that the forecast underestimated the extent of
bad weather then some flights would have additional airborne
delays beyond those forecasted at the time of GDP design. This
may cause some of the aircraft and passenger connections,
which were initially deemed feasible in the recovery plan,
to get disrupted. In such cases, airlines may require using
additional recovery actions to get their schedules back on
track. We model this step in the Passive Recovery Module. We
call it “passive” because such disruptions caused by inaccurate
delay information often require urgent fixes, and hence the
airlines usually don’t have enough time to come up with a
sophisticated new active recovery plan. Such plans need to be
simple in nature, and thus can be less effective compared to the
recovery plans developed by the Active Recovery Module. Due
to this reason, we model the Passive Recovery Module such
that it simply propagates all the delay to downstream flights if
the aircraft connection in the original recovery plan becomes
infeasible due to delays to the previous flight. The Passive
Recovery Module also re-accommodates the passengers if their
itineraries are disrupted due to these additional unplanned
delays to their schedules. The details of the logic in the Passive
Recovery Module can also be found in [22] .

Using this evaluation framework described in Fig. 4, we
simulate airlines’ responses to different GDP designs and
evaluate their resultant delay costs. As a case study, we use
actual flight schedules for a representative day in the summer
of 2007 at San Francisco International Airport (SFO). 10
domestic airlines are involved. We assume that SFO operates
at its Visual Flight Rules (VFR) capacity level before the bad
weather period starts; operates at its Instrument Flight Rules
(IFR) capacity level during the bad weather period; and then it
returns to its VFR capacity level once the bad weather clears
up. We set up 14 candidate GDPs. The planned duration of
each GDP, the difference between planned start and end times,
is varied from 3 through 9.5 hours in steps of one half-hour
each (i.e., 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, and
9.5 hours). We model the actual capacity reduction duration
as a discrete uniform distribution over 3, 4, 5, 6, 7, 8, 9 and
10 hours, where each value has 1/8 probability. Hence, a GDP
with a planned duration of 3-hours is considered to be a highly
aggressive design in the sense that with high probability, the
airport capacity is over-estimated by the GDP design. On the
other hand, a GDP with a planned duration of 9.5 hours is
highly conservative because with a high probability, capacity
is under-estimated by the GDP design. Our goal here is to
compare the airport-wide delay costs under the GDP design
suggested by COuNSEL with that suggested by the existing
approach. Here, existing approach refers to centralized GDP
decision-making methods such as [23], and [24], just to name
a few. The common objective of these methods is to minimize
the sum of expected airborne delay costs and ground delay
costs for all the flights heading into the GDP-affected airport.
We call this cost the centralized cost value. Thus, the GDP
design out of the 14 candidates with the least centralized cost

Fig. 5. Airport-wide Total Cost and Centralized Cost Value under 14
Candidate GDP designs.

value serves as our baseline. In this case, it is the one with
planned duration of 8 hours (see red line in Fig. 5, where we
plot the centralized cost value as a function of the planned
duration of the GDP).

To apply COuNSEL in this case study, we first calculate
each airline’s expected delay costs under all 14 candidate
GDP designs using the recovery module. We then use a linear
transformation to convert all the airlines’ delay costs into
grades with a maximum grade of 100 and a minimum grade of
0. The weight of an airline is calculated based on the number
of impacted operations it has during the GDP. Since the
airline with the largest number of impacted operations (United
Airlines) has over half of the total operations, we should not
directly use the number of operations as the weight if we
want to avoid United Airlines dictating the outcome. Hence we
use a power transformation to fix the largest airline’s (United
Airline’s) proportion of total weight at 40%. Suppose oi is the
number of operations of airline i and omax is the number of
operations of the largest airline. Under this weighting scheme,
we would choose α such that oαmax∑

i∈N oαi
= 0.4, where N is the

set of airlines involved in the GDP, and oαi is the weight of
airline i which we use in COuNSEL. With these weights and
grades, the majority winner GDP design turns out to be the one
with planned duration of 7 hours. Interestingly, this coincides
with the design which has the least airport-wide total delay
cost as shown by the blue line in Fig. 5. The airport-wide
total delay cost is calculated by summing over all involved
airlines’ delay costs. Thus, the GDP design with planned
duration of 8 hours is the most preferred design according to
the existing centralized approach, with the total airport-wide
cost of $825,808. The COuNSEL design, also the one with the
lowest airport-wide cost, has a planned duration of 7 hours and
with the total cost of $809,297, which is 2.0% less than the
centralized design. Note that since each minute of airborne
delay is usually much more expensive than each minute of
ground delay (roughly in a 3:1 ratio), the centralized decision-
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Fig. 6. Percentage Cost Increase over Each Airline’s Most Preferred Design.

making approach is very conservative regardless of what kind
of airline composition the airport under consideration has.
Thus, the delay cost reduction could be even larger if in certain
airports at certain periods of time, the majority of the airlines
prefer aggressive GDP designs.

An interesting additional analysis is summarized in Fig.
6 that shows how much each airline is worse-off compared
to its most preferred design under the centralized design and
the COuNSEL design. The average percentage cost increase
under the COuNSEL design is 19.06%, which is almost 6%
smaller than that under the centralized design. The standard
deviation under the COuNSEL design is 19.78%, which is also
about 2% smaller than that under the centralized design. These
results suggest that by incorporating airlines’ preferences, the
COuNSEL design also produces more equitable GDP designs
in terms of distributing delay costs.

In summary, we find in this specific case study at the
SFO airport that the system is better-off in both reducing
costs and enhancing inter-airline equity if operated under
a slightly more aggressive approach than what the existing
centralized approaches would suggest. This benefit gained
from the COuNSEL design is due to its ability to incorporate
not only the trade-offs between airborne and ground delays,
but also most importantly, airlines’ diverse preferences over
GDP designs due to their different business objectives and
operating characteristics.

V. RESULTS OF HITL AND IMPLEMENTATION
CHALLENGES

The COuNSEL system was the subject of a human-in-
the-loop (HITL) simulation. The goals of the HITL were
to familiarize flight operators and FAA analysts with the
system and SLE concepts underlying it, obtain feedback from
flight operators on both the general concept and the SLE
software, assess the ability of flight operators to provide inputs
required for the SLE, and identify high-priority areas for future
research.

Held on July 10, 2014, the HITL included participants
from American Airlines, United Airlines, Delta, United Parcel

Service (representing air cargo operators), the FAA, and the
university research team. After several familiarization brief-
ings, there were three HITL sessions, two involving problems
at EWR and on at SFO. The day concluded with a structured
feedback session. Also, after conclusion of the HITL, FAA and
flight operator participants were given a web-based survey to
gauge their feedback in a more systematic manner.

A given scenario was specified by a decision time, at which
a demand forecast and a weather forecast for the remainder of
the day were provided. The demand and weather were such as
to warrant a GDP, which was to be planned using COuNSEL.
The specific planning process varied from session to session.
For example, in the first EWR session, FAA initially submitted
candidate SL performance vectors, from which a winner was
selected using the Majority Judgement algorithm. Next, each
airline submitted two candidates, from which the FAA selected
several which, along with the first round winner, were graded
in the second round. Finally the winner of that round, along
with some new candidates entered by the FAA, were graded
in a third round.

A major effort in conducting the HITL was to construct the
performance goal tradeoff curves in a plausible manner con-
sistent with real world conditions. Note that the performance
goals and associated metrics are expectations over different
capacity scenarios. At a high level, we employed the following
process:

1) For a given weather forecast, we identified three historical
days with a similar forecast and found the arrival capacity
profile for each of these days.

2) We then devised 71 possible GDPs which, given, the
demand and capacity profiles, would give a broad but
reasonable range of performance in terms of throughput,
efficiency, and predictability

3) We then assessed the throughput, efficiency, and pre-
dictability performance of each GDP under each capacity
profile.

4) Finally, assuming that each capacity profile is equally
likely, we determined the expected performance of each
GDP.

5) We now had 71 performance vectors, from which we
constructed continuous tradeoff curves by taking the
convex hull.

Airline participants were provided with various aids to
assist them in their grading and candidate generation. One
such aid was a set of curves showing the tradeoffs between
the three performance goals of capacity utilization, efficiency,
and predictability. Second, individual airlines were presented
with estimates of the expected airborne delay, ground delay,
passenger delay, and cancellations from different performance
vectors, and estimates of the associated monetary costs. These
were based on the benefit models described in Section IV.
These aids were provided to compensate for participants’
lack of experience with COuNSEL, and also to mimic the
proprietary decision support tools that might eventually be
developed to support individual flight operator grading and
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candidate generation.
User feedback was generally encouraging. Airline HITL

participants mentioned four valuable and useful features. The
first is that COuNSEL would allow each flight operator to
specify a corporate policy, established at the executive level,
for the relative importance of the difference performance
goals. A second, related, benefit is that the system would
make explicit the heretofore implicit performance tradeoffs
faced in TMI decision making. Third, participants lauded the
recognition of predictability as an important performance goal.
Last, participants stated that COuNSEL would enable a more
systematic and efficient decision making process.

Participants (as well as COuNSEL developers) recognized
the challenge of translating the consensus performance vector
into a TMI plan. This led to discussion of how COuNSEL
might be used without a formal translation step. Possibilities
identified included using the system to output TMI parameters
directly, or having its output performance goals be used as
input to FAA subjective decision making.

If COuNSEL assumed the latter role—systematically find-
ing consensus advice for decisions that would remain
subjective—participants noted that it could be used in a
broader set of decision contexts than planning GDPs or AFPs.
Specific examples included planning transcontinental routes
and developing broader regional strategies, for example for
the NY Metroplex or South Florida.

Other major outcomes of the post-HITL discussion in-
cluded:

1) Concern that COuNSEL outcomes for certain airports
and types of problems might be controlled by the same
coalition of flight operators in each problem instance.

2) Need to recognize the extra burden in using COuNSEL in
light of the high workload of airline operations personnel
on high delay days.

3) Need to think carefully about how to assign operator
weights, including basing them on factors other than the
number of flights (for example, also consider to cost of
delay for different flights)

4) Concern about cases where several performance vectors
have consensus grades that are very close, in which
case some other “near-tie-breaking” criteria might be
employed by FAA.

5) Concern that other stakeholders, including sub-carriers,
general aviation, and airports, be given an appropriate
role in the process.

The post-HITL survey included four sets of closed-ended
questions. While administered to both flight operator and FAA
participants, we focus here on the results for the former
group (n=4). The first questions concerned the importance
of different COuNSEL features. Flight operator participants
considered the most important features to be that “TMI de-
cisions are tied explicitly to performance vectors” and that
“Flight operators provide structured input to the TMI planning
process.” The least important feature was that “Less time and
effort are required for the TMI planning telecons.” From the
second set of questions, which gauged participant agreement

with a set of statements about COuNSEL, we learned that
participants generally agreed that the performance goals used
in COuNSEL are appropriate. The third question set asked
participants to compare COuNSEL with the current TMI
planning process. Respondents believed that COuNSEL was
between somewhat better and much better in most respects.
The final set of questions pertained to the COuNSEL software.
From these questions we learned that participants considered
it easy to submit grades and candidate goal vectors, but were
less enthusiastic about the clarity with which information
was presented and how the various screens and layouts were
structured.

VI. CONCLUSIONS AND NEXT STEPS

We recognize that COuNSEL represents a somewhat radical
departure from existing approaches to TMI planning. It pro-
vides a solution to a problem (service level expectation setting)
that today is not solved or is solved implicitly or informally.
Yet, the explicit definition of this problem as an important
step in future TMI planning is clearly laid out in NextGen
documents. Moreover, our discussions with experts and the
HITL results clearly show that flight operator and ANSP traffic
management specialists recognize that TMI design requires
performance tradeoffs to be made. The implication is that
these tradeoffs today are being made in an ad hoc, implicit
or subjective manner. The results of this paper show that
COuNSEL provides an effective solution to the service level
expectation setting problem and it can provide measurable
benefits to flight operators.

Additional work is required before COuNSEL could be used
in practice. First, TMI planning tools are required to make
use of the output from COuNSEL. The underlying problem
to be solved can be called performance-based TMI planning.
In fact, there is on-going research in this general area [9].
It is also the case that it is conceptually possible to develop
heuristic rules or high-level tools to convert the COuNSEL
performance goals into parameter settings for existing TMI
planning tools. There is other research on COuNSEL itself and
the auxiliary processes required to make it work in practice.
More work is required to assist the flight operators in providing
COuNSEL inputs. For the HITL, certain tools and information
resources were generated. These must be refined based on
feedback from the HITL, better modeling of airline operations
and monitoring of flight operator use. It is important to further
investigate the potential for “gaming”. For example, it seems
important to prohibit flight operator collusion. More broadly
there needs to be a set of rules governing flight operator
use of COuNSEL. Otherwise, further refinements of various
COuNSEL components certainly should be pursued.
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