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Abstract—Simple topological vulnerability metrics are defined 

for the air transportation system, that are meant to reflect the 

impact levels of potential disruptions including severe weather 

and man-made threats (e.g., cyber attacks).  Specifically, a flow-

vulnerability metric is defined using the Laplacian matrix of the 

air traffic network’s graph.  In turn, event and total vulnerability 

metrics are posited.  The main focus of this study is evaluate and 

parameterize these metrics using simulations of flow-level models 

of the airspace system, together with some formal analysis.  These 

simulations suggest that the vulnerability metrics show promise 

as indicators of disruption impact.  
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I.  INTRODUCTION 

The United States’ air transportation network, collectively 
known as the National Airspace System (NAS), is an 
enormously complex agglomeration of engineered devices, 
cyber systems, and human stakeholders.  The NAS is being 
subject to an increasing diversity of disruptions.  Weather 
remains a primary threat, but man-made events including cyber 
failures and attacks, kinetic attacks on facilities, and new 
operational paradigms (e.g., space-vehicle operations, 
unmanned-system integration) are of increasing concern [1-9].   
These disruptions can impact the NAS at several time horizons.  
At short look-ahead times (a few minutes or less), some 
disruptions may hinder guidance of traffic by controllers, 
directly causing degradation of safety and also potentially 
influencing workload.  Meanwhile, the operational changes 
necessitated by the disruptions (e.g., closure or reduced 
capacity of Sectors or airports, rerouting of traffic, perhaps 
staffing changes) may incur impacts on the tactical 
management of regional traffic by the Air Route Traffic 
Control Center (ARTCC or Center), over a time frame of 
minutes to a couple of hours.  These regional impacts may 
include delay, increased fuel cost, congestion, and indirectly 
perhaps safety concerns remote from the event site.  The 
disruptions to Center operations eventually may have 
propagative impacts across the NAS over a multi-hour period, 
requiring strategic management of traffic (as implemented by 
traffic management initiatives or TMIs).  Thus, the disruptions 
may cause delays and congestion, necessitate ad hoc decision-
making among stakeholders, and increase fuel costs.  Indeed, 
several recent non-weather disruptions, such as the closure of 
the Washington DC Center (ZDC) in summer 2015, had 
propagative impacts across the NAS. 

At the shorter time horizons, resolving disruptions depends 
on the procedures and tools used for air traffic control, along 

with fast remediation of the disruption cause if possible.  
Because of the potential safety implications, much effort has 
been made to robustify the air traffic network to disruption 
impacts at this fast time scale [10,11]. While catastrophic short-
term impacts of disruptions remain a grave concern, the 
protocols in place have been consistently successful in 
preventing such impacts for the recent man-made disruption 
events.  In contrast, the recent disruptions have incurred 
significant impacts at the longer tactical and strategic horizons, 
and severe weather also routinely degrades NAS performance 
at these look-ahead horizons.  Further, disruptions at the longer 
horizons are primarily addressed by human decision-making 
rather than fixed procedures and automation, hence making the 
decisions both amenable to improvement and subject to 
second-guessing.  The economic costs of these longer-horizon 
impacts are significant, and continue to grow as traffic 
densities increase and disruptions become more varied. 

The challenges associated with regional and NAS-wide 
traffic management have motivated a vibrant research and 
development effort, which is primarily focused on decision-
support for management in the face of severe weather [12-25].  
Recently, engineers have also recognized the possible impacts 
of other man-made disruptions [7,10,26,27], and some 
preliminary efforts are underway to examine and resolve these 
impacts.  Broadly, tools for analysis and management design 
depend on models for the traffic in the NAS.  For regional 
tactical management, detailed models that track individual 
aircraft can be used to evaluate performance of management 
schemes, and optimal management design typically resolves to 
a scheduling problem.  At the NAS-wide scale and strategic 
(full-day) horizon, the extent of uncertainty and problem scope 
often dictates the use of flow-level or Eulerian models for 
design of management, whereupon more detailed models can 
be used for simulation.  Model-driven analyses of air traffic 
management are now well established and efforts to design 
management initiatives using the models have also been 
fruitful, although the translation of the results to field 
operations is still piecemeal.  While the focus of this literature 
has been on severe weather, some of the simulation tools can 
be adapted for analysis of man-made disruptions also. 

The methods for analyzing and designing against 
disruptions depend on some forecast knowledge about the 
threat, such as a stochastic forecast of severe-weather futures 
[15,28-31]. As the threats to the transportation network become 
increasingly varied, and include entirely unpredictable events 
like cyber-system failures, analysis and design of management 
strategies that operate robustly across the ensemble of possible 
threats and traffic futures is made difficult.  Additionally, even 
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in the case of forecast disruptions like weather, there is a need 
for management procedures and strategies that are effective 
over many operational scenarios; current approaches struggle 
to achieve such robust designs and even to evaluate and 
monitoring design performance across operational scenarios.  
Analysis of robustness is further complicated by the difficulty 
inherent to quantifying performance, which requires weighing 
and combining multiple factors (e.g., delay, fuel cost, 
implementability, etc).  In short, these concerns make direct 
model-based analysis and design of robust strategies difficult. 

An alternative approach for evaluating robustness and 
building robust designs is based on simple metrics.  The idea is 
that disruption impacts are roughly tied to simple structural 
features of the NAS, and the location of the disruption relative 
to the structure.  Robustness or conversely vulnerability metrics 
that encapsulate these salient features can be compute from 
limited knowledge of the network, and subsequently robust 
designs can be found based on these metrics. In this way, 
robustness/ vulnerability can be understood in a way that that is 
abstracted from the specific modality of the disruption, and the 
details of the infrastructure dynamics. 

The focus of this study is to establish easy-to-compute, 
topology-based vulnerability metrics for the air traffic 
management system.  The metrics that we explore are meant to 
distinguish the following characteristics: 

1) The relative vulnerabilities of different traffic flows, or 
sets of traffic flows, to disruptions. 

2) The spatial and temporal extent of the impact incurred by 
a disruption to a set of flows. 

3) The overall susceptibility of the network to completely 
unknown or stochastically-modeled disruptions. 

 
The metrics that we propose are based on matrix-theoretic 

and graph-theoretic representations of traffic flows in the NAS.  
The rationale underlying the proposed metrics is very simple: 
disruption of a traffic flow has large impact if 1) the nominal 
flow is large, 2) the flow path is subject to congestion, and 3) 
good alternative paths are not available.  Based on this simple 
rationale, robustness metrics for vulnerabilities of individual 
flows are defined based on Laplacian matrix representations of 
the traffic flow network, and nominal traffic flows.  These 
metrics can then be combined to capture overall vulnerability.  
We notice that metrics are aligned with the weather-impacted 
traffic index (WITI) [45], but differ in 1) capturing mixed 
weather and man-made disruptions and 2) explicitly 
considering impacts on traffic flows.  

This initial study on robustness metrics is focused on 
defining the metrics (Section 2), and then testing them using 
more detailed simulations of mixed man-made and weather 
disruptions to an air traffic network as well as limited formal 
analysis (Section 3).  The study is then briefly concluded. 

II. VULNERABILITY METRICS 

Air traffic managers primarily view the airspace at the 
resolution of traffic flows.  Given this perspective, it is natural 
to define building-block metrics for robustness or conversely 
vulnerability in terms of traffic flows, specifically how tolerant 
the airspace is to disruption of individual flows.  Here, simple 
flow vulnerability metrics are defined, that are meant to capture 

the impact (delay, rerouting, workload) caused by blockage of 
individual traffic flows.  In turn, these flow-level metrics are 
used to define aggregate vulnerability metrics for wider NAS-
relevant events (e.g., closure of a Sector, or delay of an 
airline’s fleet due to a cyber problem), as well as a metric of 
overall network vulnerability. 

Precise evaluation of disruption impacts requires 
simulations of detailed air traffic models (e.g. [11]), however 
our aim here is to develop abstract metrics that are based on the 
connectivity of the NAS and nominal flow densities.  
Specifically, our metrics are defined from a flow graph of the 
full NAS, or a region in the NAS of interest, along with 
nominal flow densities.  Formally, traffic flows among a 
network of 𝑛 waypoints or nodes, labeled 1, … 𝑛, are 
considered.  We notice that these nodes may be chosen at the 
appropriate level of aggregation required for the decision-
making task.  In particular, they may represent specific 
waypoints used in reality in the traffic system, or may be 
aggregate constructs representing a set of waypoints.  For 
regional and NAS-wide management problems, often it is 
appropriate to aggregate traffic flows to the Sector resolution, 
in particular using nodes to represent Sector boundaries and 
midpoints [11].  If arrival and departure flows at major airports 
are of interest in the vulnerability analysis, then additional 
nodes can be introduced for each airport.   

Regardless of the chosen model resolution, the flow graph 
Γ is defined as a digraph with 𝑛 vertices, which correspond to 
the 𝑛 network nodes.  A directed edge is drawn from vertex 𝑖 to 
vertex 𝑗 if and only if direct traffic flow is possible from node 𝑖 
to node j.  Thus, the flow graph Γ captures the connectivity of 
the airspace. The flow graph is typically symmetric since 
bidirectional flows are allowed (i.e., if traffic flows are 
permitted between two waypoints in one direction, traffic flows 
in the alternate direction are also permitted at a different 
elevation). The nominal forecasted traffic flow from node 𝑖 to 
node j during a time period of interest is denoted by 𝑓𝑖𝑗.  Even 

though the flow graph is typically symmetric, the flow 
densities 𝑓𝑖𝑗 and 𝑓𝑗𝑖 are usually different.   

In this work, the flow vulnerability metrics are defined 
solely from the flow graph and the nominal traffic flows.  
Particularly, the Laplacian matrix 𝐿 of the flow graph is used 
to define the metrics.  The Laplacian matrix is a useful 
construct for measuring vulnerability, for two reasons.  First, 
the Laplacian is known to directly identify connectivity 
properties of networks [32] that play a key role in deciding 
vulnerability (e.g., the availability of alternative traffic paths 
for a disrupted flow). Second, the Laplacian matrix defines 
linear flow or diffusion dynamics in networks, and hence can 
be used to approximate disruption impacts to network flow 
processes [33].  Formally, the Laplacian matrix of the flow 
graph is an 𝑛𝑥𝑛 matrix, whose entries are specified as follows.  
The entry 𝐿𝑖𝑗  at row 𝑖 and column 𝑗 where 𝑖 ≠ 𝑗 is set to −1 if 

there is an edge from vertex 𝑖 to vertex 𝑗 in the flow graph, and 
is set to 0 otherwise.  Meanwhile, the diagonal entries of the 
directed Laplacian matrix are chosen so that each row sums to 
zero, i.e. 𝐿𝑖𝑖 = − ∑ 𝐿𝑖𝑗𝑗≠𝑖  .  Thus, the directed Laplacian matrix 

captures the connectivity of the airspace, analogously with the 
flow graph.  For the traffic network, the Laplacian is typically 



symmetric. The Laplacian matrix has been used in several 
previous studies of the air traffic system, e.g. [34]. 

The connectivity properties of the flow graph, and hence in 
our case the traffic network, are well known to be related to the 
spectrum (eigenvalues, eigenvectors) of the Laplacian 𝐿.  
Specifically, for a connected graph,, the Laplacian matrix is 
known to have a single eigenvalue at the origin in the complex 
plane, while the remaining eigenvalues are in the open  right 
half plane (i.e., have real parts strictly greater than zero).  In the 
case where the Laplacian matrix is symmetric (which is typical 
in our context), the remaining eigenvalues of the Laplacian are 
real and positive.  Further, the right eigenvector 𝒗 associated 
with the smallest nonzero eigenvalue 𝜆 of the Laplacian matrix 
(called the Fiedler or subdominant eigenvalue), normalized to 
unitl length, is known to characterize the connectivity 
properties of the flow graph.  Relevant to the metric definitions 
pursued here, the absolute difference |𝑣𝑖 − 𝑣𝑗| between entries 

𝑖 and 𝑗of the Fiedler vector is an indicator of the presence or 
absence of alternative short paths between vertices  𝑖 and 𝑗 in 
the graph, and hence between nodes  𝑖 and 𝑗 in the traffic 
network.  Specifically, if the absolute difference |𝑣𝑖 − 𝑣𝑗| is 

small, many short paths are present; conversely, if the 
difference is large, then only sparse and long paths are 
available.  In the case that the Laplacian matrix is asymmetric, 
its eigenvalues are not necessarily real.  In this case, the 
absolute difference in eigenvector components |𝑣𝑖 − 𝑣𝑗| for the 

eigenvector associated with the smallest-magnitude non-zero 
eigenvalue can be used as a measure of connectivity.   

The vulnerability of a traffic flow to disruption is closely 
connected to the nominal density of the flow, and the alternate 
paths available for the flow.  In particular, as the nominal 
density increases and fewer short alternative paths are 
available, the disruption of the flow should have larger impact 
(more constriction and rerouting of traffic, hence larger delays 
and costs).  Thus, this vulnerability can be naturally measured 
in terms of the eigenvector-entry difference for the two ends of 
the flow, along with the nominal flow density.  This motivates 
the following vulnerability metric for the traffic flow from   
node  𝑖 to node 𝑗:  

                   𝑉𝑖𝑗 = 𝑓𝑖𝑗
𝛼|𝑣𝑖 − 𝑣𝑗|𝛽 ,                           (1) 

where the constants 𝛼 and 𝛽 are positive integers that weight 
the sensitivity of the metric to the flows and eigenvector-
component differences, respectively.  In the subsequent 
simulations and formal analysis, we will consider several 
choices for the weighting parameters 𝛼 and 𝛽.  In particular, 
simulations and formal analysis will show that 𝛼 = 1 is often 
the appropriate choice, while there is a rationale for choosing 𝛽 
as either 1 or 2. We notice that the flow vulnerability metric is 
a nonnegative quantity, with larger values corresponding to 
higher vulnerability. 

Most disruptions to the air traffic system, whether man-
made or natural, impact a set of flows rather than a single one, 
and also often are probabilistic in nature at the decision-making 
horizon.  For instance, convective weather may close an airport 
or runway, or reduce the capacity of a Sector thus constraining 
all associated flows. There is significant uncertainty in this 
capacity impact at a strategic or even tactical look-ahead.  

Likewise, the recent cyber- disruptions to the airspace system 
have impacted flows across a wide area (e.g., closure of a 
Center’s airspace, modification of an airline’s traffic flows).  
Generically, a disruption event 𝐸 can be modeled as 
constraining a set of flows 𝑆 (where each flow in the set is 
identified by a pair of nodes).  Abstractly, the event can be 
viewed as constraining a fraction of the flow, or constraining 
the flow with some probability. We designate the fraction or 
probability of impact as 𝑝𝑖𝑗 .The overall impact of the 

disruption event can be estimated by weighting and summing 
the impact due to each constrained flow, as specified by the 
flow vulnerability metric.  Specifically, an event vulnerability 
metric is defined as follows:  

   𝑉𝐸 = ∑ 𝑝𝑖𝑗𝑉𝑖𝑗(𝑖,𝑗)∈𝑆 = ∑ 𝑝𝑖𝑗𝑓𝑖𝑗
𝛼|𝑣𝑖 − 𝑣𝑗|𝛽

(𝑖,𝑗)∈𝑆 .            (2) 

The event vulnerability metric approximates the total impact of 
multiple flow disruptions as the sum of the individual impacts.  
In this sense, it does not explicitly capture higher-order 
interactions among the disruptions; nevertheless, we contend 
that the metric is a good indicator of disruption vulnerability. 

Finally, a total vulnerability metric which represents the overall 
sensitivity of the network to disruption, or the expected impact 
level of a completely unmodeled disruption, can be defined.  At 
first glance, it seems natural to define the total-vulnerability by 
summing the vulnerabilities of each flow in the network. 
However, the flow vulnerability metric only captures the 
relative impacts of different flow disruptions: since the metric 
is based on eigenvector components, absolute information 
about the vulnerability of one traffic network configuration 
compared to another may be lost. To capture the total 
vulnerability, it is therefore useful to also incorporate a 
measure of the overall connectivity of the network.  The overall 
connectivity is reflected in the Fiedler eigenvalue of the 
Laplacian matrix, with smaller eigenvalues corresponding to 
less connected (and hence more vulnerable) networks.  This 
observation motivates the following total vulnerability metric: 

       𝑉𝐸 =
∑ 𝑉𝑖𝑗(𝑖,𝑗)

𝜆𝑐 =
∑ 𝑓𝑖𝑗

𝛼|𝑣𝑖−𝑣𝑗|𝛽
(𝑖,𝑗)

𝜆𝑐 , 

where the summation is taken over all flows in the airspace 
system, and c is a positive constant that will be tuned later 
based on later simulations and formal analysis. 

III. EVALUATING THE METRICS: SIMULATIONS OF CYBER- 

AND WEATHER DISRUPTIONS 

The vulnerability metrics are evaluated using a layered 
dynamical model for the air traffic system, which captures 
traffic at the resolution of flows, cyber and other man-made 
disruptions, and severe weather. The layered model, which was 
originally introduced in [7,12,26], is reviewed (Section III.A).  
Then, simulations and formal analysis of the model are used to 
evaluate the effectiveness of the link vulnerability metric 
(Section III.B).  Finally, the performance of the event and total 
vulnerability metrics is evaluated, via simulation of the layered 
model for complex cyber and weather disruptions (Section 
III.C).  Several examples are considered in the section. 



A. LAYERED NETWORK MODEL 

A network model with three layers is considered: 1) a 
traffic layer which captures air traffic at the resolution of major 
flows and also major controls (e.g. traffic management  
initiatives such as GDPs and AFPs); 2) a cyber- layer that 
abstractly represents the information flow among stakeholders 
(airline dispatch offices, Centers, ATCSCC) required for 
operations, and the impacts of this information flow on traffic; 
and 3) a weather layer that tracks forecasted severe weather 
impacts on traffic and capacities.   The model as whole 
comprises a multi-layer nonlinear flow and queueing network 
model, which has structured interfaces between the layers 
(Figure 1).  The presentation of the layered network model 
closely follows the development in [26], but the discussion is 
enhanced slightly to give a common framework for the 
influence of weather and cyber events on traffic flows. 

The models for traffic flow and weather considered here 
have been widely studied in the literature, hence we only 
briefly review them here.  Specifically, two models for the 
traffic and management layer are considered here, which were 
introduced in [11,13,35,36].  The models fall within the broad 
class of flow- and queueing- models, or Eulerian models, that 
represent aggregate flow densities or traffic counts rather than 
individual aircraft positions [14].  The more sophisticated 
model considered here represents traffic at the resolution of 
inter-Sector flow densities in an area of interest with high 
congestion or severe weather, and at a lower resolution outside 
the area of interest.  Specifically, traffic is modeled using 
overlaid flow networks for different origin-destination (OD) 
pairs, see Figure 1a. Flows are routed at aggregate 
``waypoints”, which represent Sector boundaries in the area of 
interest and are even more aggregate outside. Structured 
queueing elements are used to represent traffic management 
initiatives such as ground-delay programs, airspace flow 
programs, miles-in-trail or minutes-in-trail.  Queues also are 
used to model intrinsic capacity restrictions on airspace 
resources (e.g., Sector capacities, arrival and departure rate 
constraints).  Demand is modeled as having a deterministic 
component which represents scheduled traffic, and a stochastic 
component which reflects schedule uncertainty and pop-up 
traffic [19].  Resource capacities are modulated by forecasted 
weather dynamics, see discussion on the weather layer below.  
Model parameters – including the flow-network structure, 
demand profiles, possible traffic management initiatives, and 
nominal capacities – are obtained from archived data along 
with day-of-operations data. The queueing model has been 
evaluated for several historical bad-weather days, and has been 
shown to provide adequate forecasting of traffic characteristics.  
The model has also been used for tuning of traffic management 
initiatives [20,21].  We refer to the model in brief as the 
nonlinear queueing-network model for the airspace system. 

A simpler linear Eulerian model for the airspace system is 
also considered [35].  This model follows on the Eulerian 
models for traffic flow densities and regional aircraft counts 
developed in [13,14,36].  Specifically, traffic flows or densities 
are modeled at the Sector resolution, as with the queueing 
model.  However, routing and traffic management actions are 
not modeled in detail; instead, traffic is fractionally routed at 
waypoints, and can be viewed as diffusing through the 

network.  The simpler model can be obtained through a 
stochastic linearization of the queueing network model, and 
takes the form of a driven resistive-capacitive circuit model 
(Figure 1a).  The linear model has been shown to be effective 
in estimating the spatial and temporal impact of disruptions, 
see [35].  We refer to the model as the linear Eulerian model. 

a)  

b)  

c)  

Figure 1: a) Nonlinear queueing-network model and linear Eulerian model; b) 
A stochastic automaton is used to generate weather-impact (capacity reduction) 
scenarios that match ensemble forecasts; c)  

Weather significantly modulates en route and terminal area 
air traffic, and hence modeling the traffic management system 
requires modeling of forecast weather.  At the longer decision-
making horizons, weather is subject to significant uncertainty, 
and hence appropriate statistical forecasts of weather are 
needed. Although statistical weather forecasting tools are 
available in the public domain , these tools often do not output 
weather data at the proper resolution for traffic management, 
and also do not capture the regional-scale variabilities and 
uncertainties in forecast weather.  In our previous work, we 
have used a stochastic automaton network known as the 
influence model [27-31] to represent the spatiotemporal 
progression of severe convective weather, so as to forecast en 
route capacity impacts.  The main idea is to parameterize the 
influence model to statistically match public-domain forecasts 
at snapshot times, whereupon the model can be run and 
analyzed to get interpolated forecasts at desired resolutions and 



to capture small-scale variabilities in weather evolution.  The 
convective coverage predicted by the model can then be 
translated to a reduction in the en route capacity.  Meanwhile, 
airport capacity trajectories can be computed from local wind, 
ceiling, and convection variables in ensemble forecasts or 
terminal aerodrome forecasts.  The weather layer of the 
proposed model includes the spatiotemporal models for 
weather evolution, and their translation to airport and en route 
capacities, see Figure 1b.  The weather layer is interfaced with 
the traffic layer in that causes probabilistic reductions in en 
route and terminal area capacities; for the queueing model, the 
reductions are applied explicitly to capacity or queueing 
variables, while for the linear Eulerian model the reductions 
translate to blockages or reductions on link flows  (reduction of 
link conductances, from the circuit equivalent standpoint). 

In our recent work [26], flow-level models for the airspace 
system have been extended to abstractly represent the cyber 
infrastructure, with the goal of modeling disruptions that arise 
via the cyber system.  The cyber model is discussed in detail 
here.  To begin, we note that the modern air traffic system uses 
numerous networked cyber assets for traffic control and 
management. Relevant to this effort, control of aircraft for 
collision avoidance is undertaken by human controllers located 
in about 20 regional offices, known as Air Route Traffic 
Control Centers (ARTCCs or Centers), which are each 
responsible for a partition of the United States’ airspace.  At 
each Center, a small group of controllers (typically 3-5) are 
assigned to each Sector in the Center’s airspace, and are 
responsible for the control of aircraft in the Sector.  The 
controllers for each Center rely on a number of cyber- systems, 
including radar displays of aircraft and weather, collision alert 
tools, and computer systems that provide directives from traffic 
managers.    In similar fashion, controllers for the Terminal 
Radar Approach Control facilities (TRACONs) associated with 
major airports, as well as airport-control tower personnel, have 
numerous cyber tools which provide radar data, filed flight 
plans, and relevant weather data.  Meanwhile, wider-area and 
longer-term traffic management is undertaken via coordination 
of traffic managers at the regional offices, the central command 
center (Air Traffic Control Strategic Command Center or 
ATCSCC), and major commercial airlines.  The personnel 
involved in traffic management also use numerous cyber tools, 
including weather and traffic data sources, telephone as well as 
web-based communication, simulators, etc.   

Holistically, the cyber system acting in support of the air 
traffic system can be viewed as transmitting the information 
that is necessary for effective traffic management and control.  
This cyber system comprises a mixture of specialized 
information transfers for the air traffic system and generic 
information gathering from the broader Internet (e.g., public-
domain weather forecasts).  The systems used by traffic 
managers are very often networked to the broader web, 
whether for required data transmission or for convenience.  To 
the best of our knowledge, cyber systems used in the airspace 
system use only standard protection technologies (e.g., 
standard firewalls and virus-checking software, limited or no 
encryption).  They may be subject both to failures and to 
deliberate software and hardware attacks, and indeed both 
types of threats have been observed. 

In this work, we abstractly model the cyber system as a 
network of information resources that are necessary for control 
and management of traffic, see Figure 1c.  Under nominal 
conditions, each piece of information is modeled as being 
present, which then allows control and management.  The main 
purpose of our cyber-layer model is to represent disruptions to 
the needed information resources (which are the nodes in our 
network model).  These disruptions then cause changes to the 
traffic network, which are modeled as the interface between the 
cyber and traffic layers.   

Formally, an information network with 𝑚 nodes 
labelled 𝑖 = 1, … , 𝑚 is considered, which each node represents 
an information resource needed for traffic management and 
control (e.g., the flight manifest data that are needed by a 
Center’s traffic managers, etc).  Each node is modeled has 
having a nominal state `Normal’ or `N’, which indicates that 
the information content is available and uncorrupted.   During a 
particular operational period of interest, each node may 
transition to a failed state (`Failure’ or `F’) which indicates that 
the information content associated with the node is unavailable, 
whether due to a failure or an attack. The state of node 𝑖 during 
the period of interest is referred to as 𝑥(𝑖). 

Two probabilistic models for failure are considered.  In the 
simpler model, an attack or failure event is modeled as causing 
the state 𝑥(𝑖) of each network node to be `F’ with probability 
𝑝(𝑖), independently of all other nodes.  This simple model for 
failures is descriptive of independent component failures, 
which cause individual information resources to become 
unavailable.  The model also encompasses structured 
deterministic failure scenarios where the failure of a fixed set 
of information resources needs to be evaluated (e.g., during 
post-processing after a failure or event, or for common failure 
paradigms).  The model further captures certain cyber-attacks, 
for which information resources are independently impacted.  
For instance, phishing attacks wherein an attacker sends an e-
mail with a computer-virus file attached to many recipients 
may be modeled in this way.  In this scenario, personnel who 
are responsible for traffic control each have some probability of 
independently receiving and opening the attack e-mail using a 
particular cyber system, causing failure of the system for a 
period of time.  Thus, a model where each cyber resource is 
independently disrupted with some probability is apt. 

A second, more sophisticated model for cyber disruptions is 
also considered.  This second model reflects that information 
flows among resources according to a specified network, and 
hence disruptions of information flow may be correlated.  
Specifically, the model captures that information disruptions 
may propagate through the cyber network.  This type of 
propagative disruption in cyber systems has been studied 
widely, in the context of computer-virus spread, cascading 
failure modeling, and other contexts [38-40].  Numerous 
probabilistic models for propagation or spread have been 
proposed.  Here, a stochastic percolation model for disruption 
propagation is considered.  Specifically, first each node i in the 
network is modeled as probabilistically being infected (having 
a failed status) with some probability, say 𝑝0(𝑖); this is the 
initial stage (stage k=0) of the infection.  In further stages of 
the infection, each node that has just been infected has some 
probability of infecting further nodes.  Specifically, at stage k, 



each node i that was infected at stage k-1 infects any 
neighboring node j with probability 𝑝𝑘(𝑗, 𝑖), where the 
neighbors of a node are specified by the digraph Γ.  The 
infection process continues until no new infections are 
produced.  We notice that the percolation model generalizes the 
simple probabilistic-failure model, by capturing cascading 
impacts of failures in the information-flow network.  The 
percolation model is useful when the failure of one cyber 
system implicates an impact on other information resources 
used in traffic control and management: for instance, the failure 
of systems which store flight manifests may simultaneously 
impact information resources at multiple Centers. 

a)  b)  

c)  

Figure 2: a) Nominal traffic flow densities are diagrammed, in a small 
constructed network with 30 waypoints.  b)  c) The  redistribution of traffic 
caused by the blockage of a flow is shown, for two different flows (red colored 
edge in the graph). 

The cyber- layer of the model is interfaced with the traffic 
layer as follows.  Each information resource is viewed as being 
necessary for operation of some airspace resources over a time 
period of interest– for instance, a major flow or jet route, a 
sector or group of sectors, or one airline’s traffic.   Thus, 
information-resource failures modulate the associated traffic 
resources’ parameters for their nominal values. Specifically, 
airspace resources such as Sector or flow capacities may be 
curtailed, demand patterns may be altered, traffic management 
initiatives parameters (e.g., rates, scope) may be modified, etc.  
Thus, the traffic models parameters and inputs are changed 
over an interval in reflection of the information-layer failures.   

B. EVALUATION OF THE LINK-VULNERABILITY METRIC 

Simulations of the traffic network model are undertaken to 
evaluate whether the defined link-vulnerability metric is 
indicative of the impacts caused by flow disruptions.  Two 
examples are considered, one based on the linear Eulerian 
model and the second based on the detailed queueing-network 
model.  For each, the total impact of individual flow blockages,  

as measured by integrated change in traffic flows across the 
network and the delay imposed, is computed.  These simulated 
impacts are compared with the link-vulnerability metric for 
each flow blockage. In addition to the examples, a formal  

 

 

 

 

 

Figure 3: a) The total disruption impact, in terms of total squared deviation in 
traffic, is illustrated for blockage of each flow in the network.  b) The 
disruption impact is plotted vs. blocked flow number. c) The delay incurred is 
plotted vs. the blocked flow number. d),e) The flow vulnerability metric is 
plotted vs flow number, for two choices of the parameters. 

analysis of the linear Eulerian model is undertaken to give 
insight into the vulnerability metric. 



B.1. Linear Eulerian Model 

First, traffic flow on a constructed network with 30 waypoints 
is simulated using the linear Eulerian model, see Figure 2a.   
Traffic to three destination airports from 10 origin points 
(which may represent either origin airports or points at which 
flows enter from outside the modeled region) is considered. 
The nominal flow densities on the links are shown in Figure 2a. 

The spatial impacts on network-wide traffic of two 
individual flow disruptions are shown in Figure 2.  
Specifically, Figures 2b and 2c show the magnitudes of the 
changes in flow densities due to blockage of a particular flow. 
Simulations of this sort indicate that the most drastic changes 
occur on flows that are proximal to impacted flow, and 
particularly on routes that are alternatives of the blocked flow.  
The transient responses indicate a traveling-wave phenomenon, 
wherein alternative routes are quickly impacted, immediate 
downstream flows show a fast bimodal response (i.e., decrease 
followed by increase), and locations further away have a more 
limited and slower transient. The spatial characteristics of the 
simulated disruptions suggest that, indeed, disruptions of large 
flows with few alternative paths have larger impacts, which the 
defined flow-vulnerability metric should capture. 

In Figure 3, the total flow disruption caused by a blockage 
on each link is compared with the defined flow vulnerability 
metric, for the constructed network.  Figure 3a illustrates the 
disruption impact caused by the blockage of each flow.  
Specifically, the disruption impact is computed by finding the 
integrated squared deviation between the traffic density for 
each flow without and with the blockage, and then summing 
over the flows.  Figures 3b-e compare these disruption impact 
levels as well as delays incurred by the disruption with the 
vulnerability metric for two choices of 𝛼 and 𝛽.  Figure 3b 
shows the disruption impacts for each flow, and Figure 3c 
shows the approximate delay per aircraft for each flow 
blockage (please see [13,35] for the estimation of delays from 
linear Eulerian models).  Figure 3d shows the vulnerability 
metric for 𝛼 = 1 and  𝛽 = 1, and Figure 3e shows the 
vulnerability metric for for 𝛼 = 1 and 𝛽 = 2.  The plots show 
that both metrics correctly identify the five most vulnerable 
flows, i.e. the five flows which incur the largest deviations and 
cause the most additional delay.  While both metrics are able to 
distinguish vulnerable flows, the metric for 𝛼 = 1 and 𝛽 = 2  

better predicts the relative magnitudes of the disruption 
impacts caused by each flow blockage.  Likewise, this form of 
the metric better predicts the excess delay caused by the 
blockage.  Based on the simulations of the linear Eulerian 
model, the flow vulnerability metrics appear promising as 
indicators of flow disruption impacts. 

B.2. Detailed Queueing-Network Model 

The flow-vulnerability metrics are also evaluated using the 

detailed queueing-network model for traffic flow.  Evaluation 

using the more sophisticated model is important, since this 

model has been validated as a tool for predicting delays and 

congestion, and also designing traffic management schemes.  

Here, an example network with 16 waypoints within 6 Sectors 

is considered (Figure 4), which was originally developed by 

Wan and co-workers in [26], and has been considered in 

several further works (e.g., [7,26]).  The example uses a 

realistic demand model for traffic between four origin-

destination pairs, captures Sector and link-level traffic 

constraints, and allows representation of flow-management 

actions (including ground and en route holding, as well as 

rerouting). 

 
Figure 4: The flow-vulnerability metrics are evaluated using the nonlinear 

detailed queueing-network model, for the example shown here  (with 16 

waypoints, 6 sectors, and 4 O-D pairs).  The flow disruption and delay caused 
by the  failure of two links are evaluated, and compared with the flow-

vulnerability metric. 

 

The flow-vulnerability metric has been computed for the 24 

links in the network.  The metric indicates that the three most 

vulnerable flows are 10-14, 1-4, and 2-10, see Figure 4.   To 

evaluate the metric, we compare the performance degradation 

due to the blockage of one of these vulnerable flows (1-4) with 

the degradation caused by another less vulnerable link (1-7), 

see Figure 4.  For each link blockage, a realistic traffic 

management strategy involving re-routing is implemented.  

Specifically, blockage of the flow 1-4 requires re-routing of 

traffic for two O-D pairs (1-11 and 1-16).  This traffic is 

distributed on alternate routes that are already being used, as 

well as via the new route shown with green dashed arrows.  

When the flow 1-7 is blocked, only traffic for the OD-pair 1-

11 needs to be rerouted; this traffic is distributed on the 

available alternate routes.  These strategies reflect the 

corrective actions that might be taken in response to an 

unexpected flow restriction (which might arise e.g. because of 

weather or communication problems between Sector 

controllers). The total deviation in traffic flows from nominal 

and the total delay are compared.  The results are shown in 

Table 1. 
The analysis shows that the vulnerability metrics are 
promising.  In particular, both vulnerability metrics are 
significantly larger for Flow 1-4 as compared to Flow 1-7, and 
indeed the blockage of Flow 1-4 causes a more significant 
impact as compared to the blockage of Flow 1-7.  Specifically, 
the blockage to Flow 1-4 causes an overall modification of 
flows that is about twice as large as the blockage of Flow 1-7.  
Also, the blockage of Flow 1-7 only causes minor excess delay, 
(about 10% more delay), while the blockage of Flow 1-4 
causes much larger delay (almost 300% excess delay).  The 



metrics readily capture the significant increase in the impact. It 
is worth noting that the flow vulnerability metric with 𝛼 = 1 
and 𝛽 = 1 scales comparably to the total flow deviation.  
However, the excess delay is much more sensitive to the 
blocked flow.  The high sensitivity is expected, since delays 
grow in a nonlinear fashion with the flow density when a 
capacity threshold is exceeded. While our initial effort has 
focused on two flows for comparison, a comprehensive study 
of all flow disruptions will be undertaken in a final draft. 

 Delay Total 
Squared 
Deviation 

Metric 
(𝛼 = 1, 
𝛽 = 1) 

Metric 
(𝛼 = 1, 
𝛽 = 2) 

Nominal 17.7 0 N/A N/A 

Flow 1-4 
blocked 

67 7.6E3 0.60 .144 

Flow 1-7 
blocked 

19.2 3.2E3 0.19 .028 

Table 1: The flow vulnerability metric is compared with the delay and total 
squared flow deviation resulting from blockage of the flow.  

B.3. A Formal Justification of the Metric 

The two examples show that the link-vulnerability metric is 

surprisingly effective as an indicator of the impact caused by a 

flow blockage or disruption, particularly for the parameters 

𝛼 = 1 and 𝛽 = 2.  The linear Eulerian model enables a formal 

analysis of the link-vulnerability metric, which gives some 

insight into why the metric is predictive of disruption. 

The disruption impact of a link failure can be computed for 

the linear Eulerian model precisely because of its linear and 

diffusive structure.  In particular, because of the model’s 

linearity, the flow deviation across the network caused by a 

link blockage can be computed via a superposition argument, 

considering only the flow that is blocked.  In particular, it is 

easy to check that total squared deviation of flows across the 

network due to blockage of the flow between nodes i and j is 

given by: 

𝐷 = 𝑓𝑖𝑗(𝑒𝑖𝑗
𝑇 𝑍−1𝑒𝑖𝑗) 

where 𝑒𝑖𝑗 is an 𝑛 𝑥 1 column vector whose ith entry is 1,  jth 

entry is -1, and all other entries are zero; Z is the 𝑛 𝑥 𝑛 

diffusive state matrix governing the Eulerian dynamics, ( )𝑇 

represents the transpose of a vector, and the matrix inverse is 

in fact a pseudo-inverse (notice here that a diffusive matrix 

does not have full rank), see [41,42].  For the Eulerian model, 

the state matrix Z has exactly the same zero pattern and 

structure as the Laplacian matrix L, except for the blocked 

flow.  In fact, the state matrix can be roughly approximated by 

the Laplacian matrix, which yields that the total squared 

deviation is given by: 

𝐷 ≈ 𝑓𝑖𝑗(𝑒𝑖𝑗
𝑇 𝐿−1𝑒𝑖𝑗) 

where the inverse is again technically a pseudo-inverse.  By 

substituting the eigenvalue decomposition for 𝐿 into the 

expression and performing simple matrix algebra, the total 

squared deviation can be written as: 

𝐷 ≈ 𝑓𝑖𝑗 ∑
(𝑣𝑞𝑖 − 𝑣𝑞𝑗)2

𝜆𝑞

𝑛−1

𝑞=1

 

where 𝜆1, … , 𝜆𝑛−1 are the nonzero eigenvalues of L,  

𝑣1, … , 𝑣𝑛−1 are the corresponding eigenvectors, and 𝜆1 = 𝜆 

and 𝑣1 = 𝑣 are the Fiedler eigenvalue and corresponding 

eigenvector.  We notice that 𝜆1 is smaller than 𝜆2, … , 𝜆𝑛−1 by 

definition, and is significantly smaller for many planar graphs 

which are representative of the air traffic network [44].  Thus, 

the total squared deviation can be further approximated as   

                                      𝐷 ≈
𝑓𝑖𝑗(𝑣𝑖−𝑣𝑗)2

𝜆
. 

This expression shows that the relative disruption impact, as 

measured by the total flow deviation, is proportional 

to𝑓𝑖𝑗(𝑣𝑖 − 𝑣𝑗)2.  Thus, the flow vulnerability metric with  

(𝛼 = 1, 𝛽 = 2) is justified. 

 

C. EVALUATION OF THE EVENT AND TOTAL 

VULNERABILITY METRICS 

The event and total vulnerability metrics are also evaluated 

using simulations.  Three examples are considered.  The first 

example is concerned with probabilistic cyber attacks on the 

constructed 30-waypoint network.  The second example, 

briefly developed, is concerned with probabilistic weather and 

cyber disruptions in the Atlanta Center. The third example 

compares the total vulnerabilities of constructed networks with 

different topologies. 

 

C.1. Cyber-Attack Vulnerability Assessment 

The constructed 30-waypoint example developed in Section 

III.B.1 is studied.  Specifically, the linear network model is 

overlaid with the cyber-disruption model, as described in 

Section III.A.  The independent-failure model for cyber events 

described in Section 2 is considered here, as a means to 

capture a phishing attack.  Information disruptions in the cyber 

system are assumed to block flows in the traffic network.  

Specifically, for the example considered here, each 

information resource corresponds to an individual flow in the 

traffic network.  The information resource is modeled as 

failing, according to the random-choice or percolation-type 

model described before. The probability of blockage of each 

flow in the traffic network can be computed via formal 

analysis of the percolation model, and hence the event 

vulnerability metric can be computed.   

 

Monte Carlo simulations have been undertaken of attacks with 

two virulence levels (probabilities of failure of individual 

information resources).  The event vulnerability metric has 

also been computed in each case, for 𝛼 = 1 and 𝛽 = 2.  The 

event vulnerability metric for the more virulent attack is a 

factor of 1.5 larger than the event vulnerability metric for the 

less virulent attack.  In Figure 5, histograms of the percentage 

flow disruption are shown for each attack (using 100 Monte 

Carlo simulations).  The expected flow disruption increases  

from 5% to 13%, which is a similar scaling to the vulnerability 

metric.  We notice that the shape of the histogram changes 

significantly between the low- and high- virulence attacks, 

even though the vulnerability metric and expected disruption 

scale commensurately. 



 

 
Figure 5: Histograms of the flow disruption percentage are shown based on 

50 Monte Carlo simulations of cyber- attacks, for phishing attacks with two 
virulence levels.    The upper plot corresponds to a more virulent attack, and 

the lower plot to a less virulent attack. 

C.2. Weather and Cyber Vulnerability Assessment for ZTL 

We are pursuing computation of event vulnerability metrics 

for ZTL, for cyber- attacks that close high-altitude Sectors as 

well as for forecast weather disruptions for a historical case-

study day.  The analysis is being conducted as follows.  The 

ZTL airspace has been modeled at the resolution of Sector-

midpoint-to-boundary flows, and the construction of the 

associated Laplacian matrix then allows computation of the 

flow-vulnerability metrics.  Event vulnerability metrics are 

then computed from the flow-vulnerability metrics.  In 

particular, cyber-attacks are modeled as closing a Sector’s 

airspace: such closure may result for instance if the radar for 

the Sector’s controllers is attacked, or communications 

between the controllers and aircraft are targeted.  For the 

weather disruptions, the influence modeling tool has been used 

to generate representative weather-impact scenarios for a 

historical weather day, which specify flow-impact fractions 

for each Sector over a time duration (see [28-31], also Figure 

1b).  These fractions will be used to compute the event-

vulnerability metrics.  Results of this analysis, and 

comparisons with detailed simulation and WITI metrics, will 

be included in the final draft.  

 

C.3. Total Vulnerability Metric  

Three different constructed networks with 30 nodes have been 

studied to evaluate the total vulnerability metric.  Specifically, 

for the three networks, the linear Eulerian model has been 

used to determine the expected deviation in flows caused by 

an entirely unknown disruption to the network.  This 

disruption level is compared with the total vulnerability metric 

in Table 2.  For the metric computation, the parameters used 

are 𝛼 = 1, 𝛽 = 2, and 𝑐 = 2.  The value of  𝑐 was to best 

capture the scaling in the expected flow deviation among the 

networks; it was found that  𝑐 between 2 and 3 best captured 

the scaling.   The least vulnerable network shown in Figure 6, 

as a comparison to the most vulnerable one (Figure 3a).  As 

expected, sparsely connected networks with limited routing 

options have higher vulnerability. Indeed the higher 

vulnerability translates to larger expected flow deviations for 

unknown disruption, or equivalently to higher sensitivity to 

disruptions as a whole.  While the results here are for small 

constructed networks, we believe that the total vulnerability 

metric will prove useful for gauging the vulnerability or 

conversely robustness of the full NAS, given weather forecasts 

and planned traffic management strategies. 

 

 Expected 

Flow 

Deviation 

Metric 

(𝛼 = 1, 𝛽 = 2, 

𝑐 = 2) 

Fiedler 

Eigenvalue 

Network 1 21.06% 3.33 0.19 

Network 2 7.43% 1.59 .28 

Network 3 15.17% 2.49 .24 
Table 2: The expected squared deviation in flows due to an unmodeled 
disruption is shown, along with the total vulnerability metric and the Fiedler 
eigenvalue, for three networks. 

 

Figure 6: The constructed network shown above has lower total vulnerability 
compared to the network shown in 3a, per the linear Eulerian model. More 
alternate routes are available for disrupted flows, which reduces the 
vulnerability. 

 

Conclusions: Graph-theoretic metrics have been defined, 
which are meant to give simple insights into the vulnerability 
of the airspace system to natural or man-made disruptions.  
Evaluations of the metrics have been undertaken via 
simulations of flow-level models, and limited formal analysis.  
These evaluation efforts, while preliminary, suggest that the 
metrics are indeed promising as indicators of disruption 
impact.  We posit that the metrics may prove to be useful tools 
for gaining situational awareness about the vulnerability or 
robustness of traffic management solutions, and in turn the 
design of robust management strategies. 
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