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Abstract—In this work, we model the impact of weather 
condition on ground delay program (GDP) incidence using 
support vector machine (SVM) and logistic regression. We use 
SVM to analyze how spatial patterns of convective weather affect 
GDP occurrence and produce heatmaps to visualize the impact. 
Additionally, the SVM results are combined with local airport 
weather variables and airport traffic level indicator to yield a 
logistic model that considers both local conditions at the airport 
and convective weather in the surrounding area. We apply our 
methods to five airports: Newark Liberty International airport, 
John F. Kennedy International airport, LaGuardia airport, 
Philadelphia International airport, and Atlanta International 
airport. We find that the importance of convective weather 
depends on both its distance and direction from the airport. 
From the logistic regression we learn that both regional 
convective weather, as captured by the weights found in the 
SVM, and local weather are statistically significant. Convective 
weather is, however, the most important factor. Our models are 
found to have high accuracy and low false positive rates, but also 
low true positive rates because of the imbalance in our data. 
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Support Vector Machine; Logistic Regression 

I.  INTRODUCTION 
Ground delay programs (GDPs) are commonly used in the 

United States when there are imbalances between flight 
demand and capacity at individual airports, or multi-airport 
metroplexes. When a ground delay program is implemented, 
flights bound for the affected airports are assigned controlled 
times of departure so that arrival demand at the destination 
does not exceed a specified rate. Most ground delay programs 
are the result of adverse weather that reduces airfield or 
terminal capacity. When instituted, ground delay programs 
severely impact flight operations, with delays as long as several 
hours as well as large numbers of flight cancellations. In 2011, 
1065 GDPs were issued in the US, which imposes delay 
totaling 26.8 million minutes to 519,940 flights, an average of 
52 minutes per impacted flight [1].  

The purpose of this paper is to predict the incidence of 
GDPs based on weather conditions. The motivation is three-
fold. First, flight operators would benefit from having greater 
foreknowledge of GDPs, so that they can plan their responses 
further in advance. This is an incidence of a broader desire to 

increase “predictability” in the national airspace system, which 
has been widely recognized [2; 3; 4; 5]. Second, FAA 
specialists responsible for GDP decision making would value a 
predictive model of GDP incidence both in order to anticipate 
when they may have to implement a GDP, and also to know 
when conditions are such that in the past a GDP would often 
have been implemented. In today’s system, many FAA 
specialists have limited experience, and a model relating GDP 
incidence to weather conditions is an economical way of 
conveying to them GDP decisions made in the past. Finally, as 
will become clear later, the analytics used in developing model 
convey where weather matters for a particular airport, which 
can in turn be used to assess the similarity between weather 
conditions of a historical day to a given day of operation. 
Knowledge of what traffic management actions were taken on 
a similar historical day, and how well they worked, can also 
augment the personal experience of traffic management 
specialists [6]. 

While, as discussed in Section II, other researchers have 
also investigate the links between weather and GDP 
occurrence, our analysis is unique in its attention to the spatial 
patterns of convective weather. Using the support vector 
machine (SVM) technique applied to convective weather maps 
on a 1x1 square mile grid, we identify regions in which 
convective weather is associated with GDPs at a particular 
airport. In addition to confirming the importance of convective 
weather in the immediate area around the airport, our results 
identify more distant regions in which convective weather also 
has an influence. Additionally, the SVM results are combined 
with local airport weather variables such as wind and visibility 
to yield a model that considers both local conditions at the 
airport and convective weather in the surrounding area. In light 
of our focus on convective weather, we focus on attention on 
airports in the eastern US where convective weather is believed 
to be an important cause of GDPs. 

Our work focuses on the relation between current realized 
weather and GDP occurrence. While for most practical uses 
weather forecasts would be required, our ability to accurately 
predict weather in future hours is continually increasing. Use of 
our models with weather forecasts, rather than realized 
weather, will reduce their reliability to some extent, but we will 
not address this problem in this research. Nor will we consider 



explicitly the fact that GDP decisions are themselves based on 
weather forecasts. The complex dynamics of “what did they 
know and when did they know it” are not readily observable; 
our working assumption is that the realized weather is a 
reasonable proxy for what was anticipated by GDP decision 
makers. 

The remainder of this paper is organized as follows. In 
Section II, we review previous work on GDPs and in particular 
efforts to relate GDP occurrence to weather and traffic 
conditions. Our data and methodology are described in Section 
III. In Section IV we present our results. Conclusions and 
directions for future research are presented in Section V. 

II. LITERATURE REVIEW 
Most of the research on GDPs has focused on setting GDP 

parameters, such as GDP start time and GDP scope, using 
simulation approach or mathematical modeling assuming a 
GDP is needed [7; 8; 9; 10]. Recently, the aviation community 
has begun applying machine learning methods to understand 
how and why GDP decisions were made using historical data 
[11; 12; 13; 14].  

Reference 11 used ensemble bagging decision tree (BDT) 
to predict GDP revision event and Neural Network (NN) to 
predict the GDP duration. The predictions were made at actual 
GDP initiation time. Their models employed the following 
variables: actual airport weather data from aviation system 
performance metrics, forecast of weather impacted traffic 
indexes (WITIs), and air traffic data such as scheduled arrivals. 
For convective weather, they considered two WITIs: en-route 
convective weather WITI with a scope of approximately 
500NM range and local convective weather WITI with a scope 
less than 100 NM. 

Reference 12 used logistic regression and decision tree to 
predict GDP occurrence at an hourly level for Newark Liberty 
International airport (EWR) and San Francisco International 
airport (SFO). Predictor variables in the models include actual 
weather condition variables, such as visibility and ceiling, and 
variables reflecting traffic condition at the airport, such as 
nominal queueing delay and demand capacity ratio. Convective 
weather in the airport belonged air route traffic control center is 
considered by using WITI. They found that logistic regression 
model outperforms the decision tree model in terms of 
prediction performance on the test data set where they used 
area under receiver operating characteristic curve as the 
performance metric. They also found that while WITI of New 
York Center (ZNY) is an important factor impacting GDP at 
EWR, the Oakland Center (ZOA) WITI does not have such a 
strong influence on GDPs at SFO.  

Reference 13 used random forest and inverse reinforcement 
learning (IRL) to predict GDP initiation, cancellation and GDP 
parameters if a GDP is predicted to be in place. They modeled 
the GDP decisions in two submodels: first they predicted 
whether or not a GDP would be implemented for a given hour; 
then they predict GDP parameters such as GDP scope and 
GDP start time if a GDP is predicted as needed. The model is a 
simplification of reality in that it requires that a GDP plan 
either progress as planned or be canceled (no modifications or 
extensions are permitted). The predictable variables are the 

same for the two submodels except that the GDP parameter 
model does not have previous GDP plan as a variable: actual 
and predicted weather condition, traffic schedule, actual and 
predicted airport arrival rate, runway configuration, departure 
queue, reroute variables and ground and air buffers. The 
models left out convective weather variables and thus did not 
consider the impact of convective weather on GDP decisions. 
They applied their methods to EWR and SFO airports. They 
found that while random forest was better than IRL in 
predicting hourly GDP implementations at the two airports, 
both models struggled to predict the initiation and cancellation 
of GDP. 

Reference 14 used random forest to predict hourly GDP 
incidences for the three airports in the New York area: EWR, 
John F. Kennedy International airport (JFK), and LaGuardia 
airport (LGA). The features considered in the model included 
scheduled arrivals, weather forecast for crosswind speed, 
visibility, thunderstorm, rain and snow, and distance from New 
York city to three levels of precipitation: very high level, high 
level, and moderate level. The three distance variables, which 
to some degree reflected convective weather, turned out to be 
the most important factors.  

III. DATA AND METHODOLOGY 
We model hourly GDP incidences using three types of 

information: actual convective weather condition, actual airport 
local weather condition and airport busy hour indicator. We use 
two data mining techniques: SVM and logistic regression. We 
use SVM to understand and quantify the impact of convective 
weather on GDP incidences where convective weather is 
represented using geo-referenced image. We use logistic 
regression to model GDP incidences using SVM output, airport 
local weather variables and airport busy hour indicator 
variable. We apply our analysis to five airports: EWR, JFK, 
LGA, Philadelphia International airport (PHL), and Atlanta 
International airport (ATL). The data range covers 2012 to 
2014 with occasional gaps due to missing or incomplete data in 
one of the data sources for any of the airports. Below, we will 
introduce data used in this study, how data is processed to 
generate our variables including the dependent variable, and 
how SVM and logistic regression are employed in our analysis. 
We will introduce SVM algorithm together with convective 
weather. 

A. GDP Label 
The dependent variable in both SVM and logistic 

regression is a GDP occurrence indicator taking value 1 if GDP 
is in effect in a given hour for a given airport and 0 otherwise. 
We collect the GDP occurrence data from FAA’s National 
Traffic Management Log.  

B. Convective Weather Data and SVM Algorithm 
The convective weather data come from the national 

convective weather forecast (NCWF) product, designed and 
implemented by the National Center for Atmospheric 
Research. NCWF provides current convective hazards, with 
locational information and a 6-level intensity scale of detected 
hazards, updated every 5 minutes, with the direction of 
movement and storm tops. The forecast of the evolution of 
convective hazard areas based on the thunderstorm 



identification tracking and nowcasting [15] algorithm are 
provided as well for a 1-hour forecasting horizon. Level 3 and 
higher levels are considered as significant hazard intensity 
justifying in-flight rerouting and other TMIs including GDPs. 
NCWF provides coverage at national airspace system level. 
Polygonal representations of convective areas provided in 
NCWF are discretized into geo-referenced image spanning the 
areas around the selected five airports. A range of area sizes 
and resolutions were evaluated experimentally, resulting in a 
squared area of 200x200 square miles centered at the airport of 
interest, with a resolution of 200x200 pixels and one pixel per 
1x1 square mile. In this study, we use realized convective 
weather data at a beginning of an hour to predict GDP in the 
next hour. While we have observed that the forecasting 
performance drops with increasing the lead time (see Fig. 1 and 
a discussion below), the use of the longer-term forecast and 
different lead times would not impact the methodology and we 
are analyzing this in our on-going research. 

A binary SVM classifier is used and NCWF data are 
transformed into indicator variables signifying the presence 
intensity level of 3 and higher for each pixel. The resulting 
hourly feature vectors x of binary covariates are used as inputs 
of a linear soft-margin SVM [16]. The number of samples is 
25310. GDP label data are used as outputs. SVM learns a set of 
weights w and an offset b that lead to the decision function 
f(x)=wx+b that minimizes misclassification rate of the decision 
rule sign(f(x)) under a maximum margin separation criterion 
and a given trade-off hyper-parameter C. In the selected feature 
representation, the component of the weight vector w 
corresponds to the weight that the presence of a convective 
weather within a given 1x1 square mile location carries on the 
incidence of a GDP. The analysis of the spatial variability of w 
also carries valuable information for GDP decisions. In 
addition, the convective weather score wx+b reflects the 
likelihood of GDP at a given airport and can be used as a 
predictor in the logit models.  

SVM scores (denoted as wx) were used as covariates along 
with the airport-level variables within a logistic regression 
model presented below. The choice to use SVM exclusively for 
convective-weather imagery data with no extra airport-level 
variables is due to the imbalance in the dimensionality of the 
feature space that such addition creates. By adding an 
additional variable of potentially different levels of importance 
as compared to the convective weather binary variables would 
require tuning an extra hyper-parameter to account for this 
difference. It would also complicate the usability and 
interpretability of the weights from SVM. 

C. Local Weather Variables 
We consider six local weather variables: visibility (in 

statute miles), ceiling (in feet), instrument meteorological 
conditions (IMC) dummy, crosswind (in knots), tailwind (in 
knots), and headwind (in knots). We find values for the local 
weather variables from aviation system performance metrics 
(ASPM) database. More specifically, we pulled actual local 
weather information from the daily weather by hour report of 
ASPM Efficiency. The relevant columns in this report are 
visibility, ceiling, wind magnitude, wind direction and IMC 
indicator. We decompose wind to crosswind and 

tailwind/headwind according to the main runway direction at 
the airport. For the five airports: EWR, LGA, JFK, ATL and 
PHL, the main runways are selected as 22, 31, 31, 27 and 27. 
When the wind is tail wind, we set headwind to zero, and vice 
versa.  

D. Busy Hour Indicator Variable 
At an airport, traffic level tends to have strong correlation 

with hour of the day and adverse weather can be recurrent. 
Considering this and the focus of our paper—modeling impact 
of weather conditions on GDP, we employ only a dummy 
variable to reflect the busy level of an airport. The variable is 
set as 1 when the hour is between 7 am and 10 pm [6]. 

E. Model Specification and Estimation  
To quantify how local weather and regional convection 

activities impact on GDPs, we construct a set of airport-
specific binary logit models where the dependent variable is 
whether a GDP was implemented. 

As described before, three types of variables are included: 
local weather variables, regional convection weather variables 
and traffic demand proxies (i.e., busy hour indicator). The 
description on these variables is summarized in Table I. The 
specification can be written as below, where 𝑉 is the utility 
where a GDP is observed, 𝛽′𝑠 are the corresponding 
coefficients:  

 𝑉 = 𝛽! + 𝛽! ⋅𝑊𝑥 + 𝛽! ⋅ 𝐼𝑀𝐶 + 𝛽! ⋅ 𝐶 + 𝛽! ⋅ 𝑉𝑖𝑠 +
𝛽! ⋅ 𝑇𝑊 + 𝛽! ⋅ 𝐻𝑊 + 𝛽! ⋅ 𝐶𝑊 + 𝛽! ⋅ 𝐵𝐻  (1) 

The probability of a GDP for airport 𝑗 is then quantified as: 

 𝑃𝑟! 𝑌! = 1 = !
!!!"#  (!!!)

   (2) 

TABLE I.  DESCRIPTION OF EXPLANATORY VARIABLES IN THE LOGIT 
MODEL 

Category Explanatory 
variable notation  Variable description 

Local weather 
activities 

𝑰𝑴𝑪 
Dummy variable. = 1 if 
instrumental meteorological 
condition 

𝑪 Ceiling (in 1000 ft) 

𝑽𝒊𝒔 Visibility (in mile). = 10 if very 
good visibility condition 

𝑻𝑾 Tailwind speed (knot), = 0 if the 
wind is headwind 

𝑯𝑾 Headwind speed (knot), = 0 if the 
wind is tailwind 

𝑪𝑾 Crosswind speed (knot) 

Traffic demand  𝑩𝑯 
Busy hour indicator, equals to 1 if 
local departure hour is between 7 
am and 10 pm 

Regional 
convection 
activities 

𝑾𝒙 Convective weather score obtained 
from SVM model 

IV. RESULTS 

A. Parameter Selection in SVM  
Selecting the parameter C in the SVM model involves 

using multiple criteria. First, note that the dimensionality of the 
feature space (200x200) is higher than the number of data 
samples (25310) meaning that there exists a linear binary 
classifier that produces perfect separation for any random 



designation of GDP labels. It means that the metrics based on 
accuracy alone can be misleading and should not be applied in 
order to avoid over-fitting. In addition to accuracy, precision 
and recall, we have used the F1-score, and the area under the 
receiving operating characteristic curve (AUC) in our analysis 
for selecting C [17]. Sample 5-fold cross-validation surface of 
AUC metric for EWR for a range of C and lead times is 
presented in Fig. 1. To estimate 5-fold cross-validation AUC 
performance, we partition the sample into five equal sized 
subsamples and each time we use four subsamples to train the 
model and record the AUC performance on the fifth fold. We 
repeat the model training and testing five times where each 
time the AUC performance is reported on a different 
subsample. The 5-fold cross-validation AUC is then the 
average AUC over different subsamples. The plot suggests an 
optimal choice of C in the range of 1e-4, as well as degrading 
performance with increasing lead time (as mentioned before, 
lead time impact is not a focus of this paper.). 

A second consideration in setting C is that any near-
identical weather pattern can result in GDP or no GDP given 
other factors. This means that the samples of the two classes 
can overlap heavily in the feature space, favoring use of lower 
values of C, and, hence models that tolerate misclassification 
[16]. Also, the problem is imbalanced as there is a higher 
number of non-GDP hours. Finally, the analysis of the spatial 
pattern of w (for instance, Fig. 2 for EWR) provides useful 
insights on the choice of C. Considering all these reasons, we 
use a combination of metrics and criteria in selecting C [18] 
and resulting in the values of C=1e-4 for all 5 airports.  

 
Figure 1. Average Area under ROC Curve over 5-fold Cross-validation for the 

EWR, as a function of hyper-parameter value C (in log scale) and GDP lead 
time (hour) 

B. Convective Weather Impact on GDP Incidences  
We evaluate the impact of convective weather on GDP 

incidence based on the weight vector w from SVM models. 
Spatial variability of the components of the weight vector w for 
EWR at C = 1e-4 is shown in a heatmap in Fig. 2. Higher 
values of w indicate a positive impact of the presence of the 
convective weather of intensity 3 and higher at a given location 
on the likelihood of GDP activation at a given airport. One can 
observe spatially contingent pattern centered on the EWR and 
spread along the main east coast corridors. For the range of 
parameters C from 1e-4 to 1e-5, we have observed a similar 
pattern for all of the five airports.  

 
Figure 2. Map overlay of the convective weather weight vector w for the 

EWR model at C=1e-4 
 

Fig. 3 illustrates the consistency of this pattern for all the 
airports of New York metroplex. While Fig. 3 confirms that 
weather closer to the airport (located at the center of the figure) 
is more important, it also reveals that the area of high impact is 
elongated along the northeast/northwest axis. This belies the 
assumption that weather impact depends only on the distance 
from the airport. 

 
Figure 3. Weight vectors for the three airports of the NY metroplex 

demonstrating consistency in the spatial pattern 



C. Logistic Rregression Estimation Results  
Table II summarizes numbers of GDP and no GDP hours at 

the five airports and Table III reports the estimation results for 
the airport-specific logit models. Coefficients for regional 
convective weather are highly significant with positive signs 
for all five airports considered, meaning positive impact of 
convection activities on GDP incidences. For the three airports 
within New York area, the magnitude of the convective 
weather variable is comparable. ATL has the largest coefficient 
for convective weather variable indicating strong impact of 
convective weather on GDP at ATL. Also, as expected, 
increased ceiling and visibility reduces the likelihood of GDP 
incidence, while the presence of IMC increases the likelihood 
of GDP. All the effects of local weather variables are as 
expected. The tailwind seems to have mixed effects on GDP 
for different airports, but headwind and crosswind both 
increase the likelihood of GDP, except for ATL. The estimates 
for busy hour indicator, which is a proxy for traffic demand, 
are positive and significant, indicating that GDPs are more 
likely during higher demand period. 

TABLE II.  NUMBERS OF GDP AND NO GDP HOURS 

 EWR JFK LGA PHL ATL 

NO GDP 20305 (82.1%) 23160 
(91.9%) 

21588 
(86.6%) 

22521 
(90.3%) 

24355 
(98.6%) 

GDP 4418 
(17.9%) 

2055 
(8.1%) 

3354 
(13.4%) 

2426 
(9.7%) 

355 
(1.4%) 

 

TABLE III.  ESTIMATION RESULTS FOR AIRPORT-SPECIFIC LOGIT 
MODELS 

Variable 
Airport 

Est./ (Std.) 
EWR JFK LGA PHL ATL 

𝑊𝑥 3.893*** 4.511*** 3.369*** 2.773*** 9.660*** 

 (0.12) (0.13) (0.11) (0.10) (0.41) 
𝐼𝑀𝐶 0.789*** 0.798*** 1.366*** 1.526*** 0.23  

 (0.07) (0.09) (0.06) (0.08) (0.20) 
𝐶 -0.280*** -0.750*** -0.716*** -1.627*** -0.903*** 

 (0.05) (0.08) (0.07) (0.09) (0.23) 
𝑉𝑖𝑠 -0.104*** -0.044*** -0.090*** -0.178*** 0.061 

 (0.01) (0.01) (0.01) (0.01) (0.03) 
𝑇𝑊 0.017*** 0.096*** 0.024*** -0.034*** -0.058** 

 (0.01) (0.01) (0.01) (0.01) (0.02) 
𝐻𝑊 0.046*** 0.065*** 0.056*** 0.044*** -0.038* 

 (0.00) (0.01) (0.00) (0.01) (0.02) 
𝐶𝑊 0.088*** 0.033*** 0.054*** 0.071*** -0.047** 

 (0.00) (0.01) (0.01) (0.01) (0.02) 
𝐵𝐻 2.284*** 2.267*** 2.466*** 3.767*** 2.546*** 

 (0.07) (0.12) (0.08) (0.16) (0.37) 
Constant -0.942*** -1.354*** -1.746*** -2.489*** 2.399*** 

 (0.14) (0.20) (0.15) (0.20) (0.60) 
Observations 24723  25215 24942  24947  24710  
 Note: *p<0.1; **p<0.05; ***p<0.01 

We further quantify the contributions for different factors 
considered in the logit model. We construct a counter factual 
scenario in which each factor is set to the value in the dataset 
that would minimize the GDP probability, and use the logit 
model to predict the corresponding GDP probability for each 
record. The percentage change between the expected and 
current GDP probability is defined as the factor contribution. 
Mathematically, the percentage change is formulated as: 

 %𝛥 = !"   !"# !![!" !"# |!"#$%&'()]
!"   !"#

  (3) 

Table IV and Fig. 4 show the GDP predictions and factor 
contributions, respectively. The first row of Table IV is the 
baseline predictions, which agree with the percentage of GDP 
incidences in our dataset, and the rest of the table is the logit 
model predictions based on the scenarios described above. 
From Fig. 4, we find that regional convection activities are by 
far the most important factor to the GDPs, especially for New 
York area airports, which agrees with [12]. Other factors, such 
as ceiling and wind, play important roles in GDP incidences for 
PHL; while the wind seems to also have a significant effect for 
ATL. The general conclusion is that convective weather 
information is indispensable to predicting GDPs, while local 
weather variables improve predictive performance marginally. 

TABLE IV.  PREDICTION OF GDP INCIDENCES  

Variable Airport GDP Prediction 

EWR JFK LGA PHL ATL 
Baseline 17.87% 8.15% 13.45% 9.72% 1.44% 

𝑊𝑥 0.10% 0.23% 1.29% 2.48% 0.00% 

𝐼𝑀𝐶 15.81% 7.11% 9.84% 6.92% 1.39% 

𝐶 16.32% 5.69% 9.62% 4.14% 1.04% 

𝑉𝑖𝑠 16.51% 7.75% 12.31% 7.89% 1.15% 

𝑇𝑊 17.44% 6.43% 13.03% 5.64% 0.68% 

𝐻𝑊 16.27% 7.00% 11.73% 8.86% 0.89% 

𝐶𝑊 12.63% 6.87% 10.49% 7.35% 0.73% 
 

Figure 4. Factor contributions 

D. Prediction Performance of SVM and Logistc Regression 
We compare prediction performance from SVM and 

logistic regression in Table V. To provide further insights into 
the performance of the final logistic regression models, we also 
report the true positive and false positive rates. While there is 
no much difference in accuracy from SVM and logistic 
regression, F1-score and AUC performances are considerably 
better in the logistic regression. Lower scores for SVM partly 
reflects the tuning of the SVM model, which was based on 
multiple criteria specified to produce the convective index as 
an output of the SVM model rather than to solely maximize its 
predictive performance. This tuning results in an interpretable 
convective weather impact maps and scores, but the results are 
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biased toward no-GDP if used as raw predictions. The AUC 
disparity, however, is considerably less, implying that SVM 
scores track GDP probabilities almost as well as the logistic 
regression.  

TABLE V.  5-FOLD CROSS-VALIDATION RESULTS FROM SVM AND 
LOGISTIC REGRESSION 

 
 

EWR JFK LGA PHL ATL 
SVM Accuracy  0.83 0.92 0.86 0.90 0.99 

F1-score 0.08 0.07 0.09 0.05 0 

AUC 0.61 0.64 0.62 0.63 0.59 
Logistic 
Regression 

Accuracy  0.84 0.94 0.89 0.92 0.99 

F1-score 0.38 0.41 0.45 0.48 0.60 

AUC 0.83 0.86 0.86 0.90 0.90 

True positive rate 0.26 0.28 0.33 0.38 0.46 

False positive rate 0.16 0.06 0.11 0.06 0.01 

 

V. CONCLUSIONS AND FUTURE RESEARCH 
This paper has attempted to predict the incidence of GDPs 

combining spatially detailed convective weather information in 
the region surrounding the airport with airport local weather 
data. Our two-stage method combines using SVM to compute a 
weather score based on the location of convective weather in 
the airport region with a logistic regression that combines that 
score with local weather variables. We apply our method to 
five airports: EWR, JFK, LGA, PHL and ATL. 

We find that the SVM, when properly tuned, provides a 
reasonable and spatially coherent picture of where convective 
weather is important. While, as expected, the area near the 
airport has the highest weights, the pattern is not purely a radial 
one. Thus the importance of convective weather depends on 
both its distance and direction from the airport. 

From the logistic regression we learn that both regional 
convective weather, as captured by the weights found in the 
SVM, and local weather are statistically significant and have 
the expected signs. Convective weather is, however, the most 
important factor. Without it, our models predict that the vast 
majority of GDPs would not occur.  

The model is able to predict GDP incidence with high 
accuracy and a low false positive rate. On the other hand, true 
positive rates are low. If the model predicts a GDP, it is likely 
to happen, but it does not predict the majority of GDPs that 
actually occur. This results from the unbalanced nature of the 
data set, in which the vast majority of hours do not have a 
GDP. In practice, a user of the model could choose some lower 
threshold than 50% in order to increase the true positive rate, 
albeit at the cost of also increasing the false positive one. The 
high AUC scores for the models indicate the combinations of 
true and false positive rates they can provide. These scores are 
in the 0.83-0.9 range, which in academic terms, correspond to a 
grade of B to A-. 

Future research should be geared to improving the model 
and testing it in a more real-world setting. One basic 

improvement is to couple the SVM tuning and logistic 
regression estimation in order to obtain the optimal tuning 
parameters for the application. Secondly, it is desirable to 
incorporate air traffic demand more explicitly into the model, 
rather than simply using a dummy variable for busy hours. 
Another important step, already underway for the SVM, is to 
determine how to use forecast rather than realized weather in 
the analysis, and find how use of forecasts, which will be 
unavoidable in real world application, affects model 
performance. Together with this, we are also testing the impact 
of lead time on GDP prediction performance. With these 
enhancements, the model presented here has great potential to 
enable flight operators when to expect GDPs, and FAA 
specialists when to consider implementing them. 
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