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Abstract—Reducing fuel consumption is a unifying goal across 

the aviation industry. One fuel-saving opportunity for airlines is 

the possibility of reducing contingency fuel loading. Airline flight 

planning system (FPS) provides recommended statistical 

contingency fuel (SCF) for dispatchers. However, due to 

limitations of the current SCF estimation procedure, the 

application of SCF is limited. In this study, we propose to use 

quantile regression based method to estimate more reliable SCF 

values. Utilizing a large fuel burn dataset from a major U.S. 

based airline, we find that the proposed quantile regression 

method outperforms airline’s FPS. We also quantify the impact 

of implementing improved SCF values in fuel saving. While 

maintaining a same safety level, it has been found that for our 

study airline, the benefit of applying improved SCF models is 

estimated to be in the magnitude of $8 million annual savings as 

well as 89 million kilogram CO2 emission reduction. This study 

also builds a link between SCF95 estimation and aviation system 

predictability in which the proposed models can also be used to 

predict benefits from reduced fuel loading enabled by improved 

air traffic management (ATM) targeting on improved system 

predictability.  
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I.  INTRODUCTION  

Reducing fuel consumption is a unifying goal across the 
aviation industry. Air transportation contributes 8% of 
transportation greenhouse gas (GHG) emissions in the U.S. [1] 
and 10.6% of transportation emissions globally [2]. The global 
GHG emissions by 2020 from aviation are projected to be 
around 70% higher than in 2005 even if fuel efficiency 
improves by 2% per year [3]. Moreover, fuel cost accounts for 
about 15.5% of total operating expenses for U.S. passenger 
airlines [4]. As these shares are expected to increase 
dramatically, there is consequently intense focus on reducing 
fuel consumption from many stakeholders (e.g. governments, 
aircraft manufacturers, and airlines), who have undertaken a 
wide range of efforts and initiatives. On the government side, 
enhanced air traffic management (ATM) aiming at aviation 
system efficiency has been estimated to provide 6% to 12% 
savings in fuel consumption [5]. For instance, the benefit of the 
enhanced capacity of Next Generation Air Transportation 
System (NextGen) in the United States has been estimated at 

$132.5 billion from delay savings and environmental emissions 
reductions over the period 2013–2030 [6]. Another way of 
reducing fuel consumption is through improved fuel efficiency 
by employing alternative fuels or new designs of aircraft and 
engines. One example in this regard is that the addition of 
winglets to the wingtips of aircraft has been shown to improve 
the aerodynamics of aircraft and hence reduce fuel burn by 
2.5%-5% [6]. However, given the difficulty, cost, and long 
timeline of reducing aviation fuel and GHG emissions with 
new procedures, new technologies, and alternative fuels, 
airlines are turning to a simple method to reduce fuel 
consumption: reducing aircraft weight [7]. Since the lighter the 
aircraft is, the less thrust is required from the engine and hence 
the less fuel would be consumed. For instance, airlines are 
purchasing aircraft made with lightweight materials [8], and 
charging passengers for luggage [9]. Other efforts include 
accommodating lighter weight seats and galleys and reducing 
drinking water loads [10]. However, though the biggest source 
of excess weight added to the aircraft is excess fuel [11, 12], 
there has been little discussion on reducing unnecessary fuel 
loading in flight fuel planning. Among very few studies in this 
regime, reference [7] finds that reducing unnecessary fuel 
loading by dispatchers could result in fuel savings on the order 
of $400 million per year based on the analysis of a major U.S. 
airline. In line with [7], by levering fuel loading and 
consumption data from six major U.S. airlines, reference [13] 
estimates that annual cost to carry unused fuel would range 
from $59 million to $667 million across airlines. Motivated by 
the significant fuel saving potentials of reducing unnecessary 
fuel loading, the goal of this paper is to explore fuel saving 
opportunities in fuel planning stage. Specifically, we will target 
on one key aspect of fuel loading, named contingency fuel (to 
be discussed in details later). By estimating reliable 
recommendation values for contingency fuel using quantile 
regression based method, we show that our study airline could 
achieve better fuel performance in terms of monetary saving 
and GHG emission reduction. In the next section, we will 
introduce fuel planning basics and identify opportunities to 
improve upon current contingency fuel loading practice. 

II. INDUSTRY PRACTICE  

In practice, airlines rely on flight dispatchers to perform the 
duty of flight planning including fuel planning. US Federal 
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Aviation Regulations [14] (FARs) require a domestic 
commercial flight to uplift enough fuel to complete the flight to 
the intended destination airport (mission fuel), as well as fly 
from the destination airport to the alternate airport (if required 
based on the weather forecast at the scheduled time of arrival) 
and hold in the air for 45 min at normal cruising speed (reserve 
fuel). These quantities are automatically calculated by the 
airline’s flight planning system (FPS) after the dispatcher 
chooses a route of flight among several possible routes. Even 
though it is not required by the FARs, on top of mission fuel 
and reserve fuel, airline dispatchers uplift contingency fuel to 
be on the aircraft to hedge against various uncertainties (e.g. 
weather uncertainty, traffic congestion uncertainty, air traffic 
control uncertainty etc.) to ensure flight safety and reduce the 
risk of diversions. Contingency fuel uplift is based on a 
combination of corporate fuel policies and airline dispatchers’ 
own experience and judgment. Fuel uplifted for alternate 
airports that are not required can serve much the same purpose 
as contingency fuel if the alternate is dropped from the flight 
plan during the course of the flight. (In rare instances, which 
are not considered here, extra fuel is loaded because it is less 
expensive to carry fuel into particular airports for subsequent 
use than it is to purchase it at these airports. This is known as 
“tinkering”.)   

To provide consistent and objective fuel planning, some 
FPS provides recommended contingency fuel numbers based 
on a statistical analysis of historical fuel consumption for 
similar flights. Carriers usually term this Statistical 
Contingency Fuel (SCF) [7, 15]. When a dispatcher goes to 
dispatch a flight (about 2 hours prior to departure), the FPS 
pulls historical data (the number of years prior to be specified 
by the airline) of all flights between the same Origin-
Destination (OD) pair that were scheduled to depart in the 
same “hour bank” or time window specified by the airline. For 
each historical flight, the difference between the actual trip fuel 
consumption and the planned mission fuel consumption is 
calculated. If this difference is negative, it is then called 
“under-burn”; otherwise, it will be termed as “over-burn”. We 
will call this the under/over-burn value. The FPS converts the 
under/over-burn value in pounds to minutes and estimates a 
normal approximation of the distribution of this excess 
required fuel burn. The 95th and 99th percentiles of the 
distribution, which are also called the SCF95 and the SCF99, 
will be provided to dispatchers by the FPS as guidelines for 
contingency fuel loading. The interpretation of SCF95 (SCF 
99) is that based on historical fuel consumption, loading the 
quantity of contingency fuel specified by SCF95 (SCF99) 
would result in a flight being able to land without dipping into 
any reserve fuel 95% (99%) of the time. More details regarding 
SCF could be found in references [7, 15, 16].  

SCF has been widely used in airline industry. Based on a 
survey [17], many airlines have SCF estimation functionalities 
(as described above) embedded in their FPSs. These include 
Air India, British Midland International, United Airlines, 
Virgin America, Virgin Atlantic, SAS Group of Airlines, to 
name a few. In the case of our study airline (a major U.S.-based 
network carrier), when it comes to compute SCF value, the set 
of similar historical flights are defined as those that took place 
over the previous year and have the same OD and scheduled 

hour of departure. However, there are several limitations of the 
current SCF estimation procedure. First of all, from a statistical 
perspective, the procedure assumes that under/over-burn is 
normally distributed, which may not be the case. Second, 
unless the sample is quite large, the estimate of a 95

th
 or 99

th
 

percentile based on the sample mean and standard deviation is 
subject to considerable sampling error. Likewise, it is of course 
impossible to calculate SCF values in the case of serving a new 
OD market with no similar historical flights. Thirdly, although 
the SCF calculation has implicitly accounted for weather and 
other events in history by using actual fuel consumption 
information [15], dispatchers might still have low confidence 
in applying those numbers due to oversimplified grouping 
criterion (e.g. OD-hour). For example, aircraft type is missing 
from the grouping criterion, even though the aircraft 
performance models used for different aircraft types may have 
varying predictive performance. Additionally, in order to 
increase the confidence level of dispatchers in SCF values, 
weather forecast should also be explicitly taken into account. 
While the high percentiles used in SCF are intended to account 
for adverse weather, dispatchers are reluctant trust SCF values 
in such conditions. A previous analysis based on the same 
study airline reveals that dispatchers would almost always load 
extra fuel above recommended SCF values [7]. As a result, it 
has been found that 1.04% of the fuel consumed by an average 
flight is due to carrying additional contingency fuel above a 
reasonable buffer. Similar behavior has also been observed in 
other airlines. For instance, based on a survey of 50 U.S. pilots 
and dispatchers about their fuel loading practices, reference 
[18] finds that airline dispatchers and pilots always load 
contingency fuel above the suggested contingency value by the 
airline. 

A companion paper on the behavioral aspect of dispatchers’ 
contingency fuel loading decisions finds that contingency fuel 
loading is related to weather uncertainty as well as aviation 
system predictability [16]. These results suggest that since 
contingency fuel reflects a dispatcher assessment of flight 
uncertainty, improving system predictability can lead to 
reduction in contingency fuel loading. In this paper, instead of 
modeling the contingency fuel decision directly, we consider 
how to provide reliable SCF values that dispatchers believe. 
Ideally, their faith in these values would be such that they 
would generally adhere to them in setting contingency fuel. To 
overcome the limitations of widely used SCF estimation 
method described above, we propose a new SCF estimation 
procedure that relies on quantile regression models, focusing 
on SCF95. Quantile regression models have several desirable 
properties: 1) it models the 95

th
 quantile of under/over-burn 

value directly rather than employing simplified grouping 
criterion and assuming a normal distribution; 2) it allows 
covariates to be added into the estimation function so that 
characteristics such as weather and traffic can be explicitly 
controlled for; 3) this method also allows us to estimate SCF 
values for flights where the old method cannot be used because 
there is not an adequate sample of similar flights.  

III. METHODOLOGICAL APPROACH 

The widely used SCF95 estimation method relies on a 

simplified grouping criterion and normal approximation. In this 



section, we propose to use quantile regression based machine 

learning techniques to tackle these issues.  

A. Data Collection 

Data were collected from three sources: the fuel and flight 
statistics data from a major U.S.-based air carrier, the flight 
level performance data from the Federal Aviation 
Administration (FAA) Aviation system Performance Metrics 
(ASPM) database, and the terminal weather forecasts (TAF) 
information for major airports from the National Oceanic and 
Atmospheric Administration (NOAA) database. A major U.S.-
based airline provided data for this study. This carrier operates 
an extensive domestic network. The dataset provided from the 
airline includes all U.S. domestic flights between April 2012 
and July 2013. There are altogether 663,757 flights with eight 
major aircraft types. In addition to basic flight operation 
characteristics (i.e. aircraft type and OD airports), this dataset 
also contains flight-level fuel uplift, aircraft pushback weight, 
planned mission fuel (in minutes and pounds), contingency 
fuel, alternate airport and corresponding alternate fuel, reserve 
fuel, tinkering fuel. It also provides actual fuel burn quantities 
(in pounds and minutes) by flight phase, including taxi-out, 
airborne, and taxi-in. The FAA ASPM flight level database 
includes individual flight data for the 77 large airports in US. 
This dataset is used to capture historical traffic conditions. For 
a given flight in the airline data, we look at historical flights 
with same OD pair, scheduled departure hour, and month that 
occurred in the previous year. Then we calculate the mean and 
standard deviation of airborne time based on these historical 
similar flights. By assuming stable weather patterns for a given 
OD, month, and hour of day, this historical airborne time 
information will provide good approximation of possible 
weather conditions for a current flight. The deviation of 
historical airborne times and the corresponding flight plan 
airborne times serves as another measure of flight time 
variability. Hence, we also compute the mean and standard 
deviation of the difference between actual airborne time and 
planned airborne time based on a current flight’s previous 
year’s counterparts. The TAF data contains forecasted 
information about ceiling, visibility as well as indicators of the 
presence of thunderstorms and snow by hour, date, and airport. 
The most recent updated TAF weather data at the time of two 
hours prior to scheduled departure time has been merged with 
airline data to recreate the conditions seen by dispatchers 
during the time of flight planning.  

In this study, we do not include tinkering fuel flights since 
it is an economic decision with less influence from dispatchers’ 
personal behavior. After merging all three datasets, we end up 
with 335,394 flights with SCF95 values. There are also 31,261 
flights with no SCF95 values in our dataset which presumably 
due to the difficulty of applying old SCF estimation method in 
those cases. 

B. Summary Statistics 

The relationship between contingency fuel loading and its 

corresponding SCF95 value is shown in Figure 1. The 

minimum observed SCF95 is 10 minutes. For each SCF95 

category, its corresponding contingency fuel in general varies 

considerable and is found to be systematically higher than 

SCF95. This is consistent with the findings from reference [7] 

that dispatchers seldom trust recommended SCF95 values. 

Table 1 presents the mean, standard deviation, and 95
th
 

percentile of under/over-burn statistics for eight aircraft types. 

It can be observed that fuel performance differs across aircraft 

types. This also suggests the need to incorporate aircraft type 

into SCF estimation. It is also noted that the standard 

deviations of the under/over-burn distributions for different 

aircraft types stay relatively constant. 

 

 

Figure 1 Contingency fuel loading (Minutes) vs SCF95 (Minutes) 

TABLE 1 UNDER/OVER-BURN SUMMARY (IN MINUTES) 

Aircraft type Mean  Standard Deviation 95th percentile 

A319 -9.5 9.4 5.9 

A320 -7.6 9.7 8.1 

B737-800 -4.0 9.8 12.7 

B757-300 3.4 8.9 17.7 

B757-200 5.0 10.1 21.7 

DC9 7.2 7.6 19.6 

MD88 7.5 9.0 22.2 

MD90 1.4 8.0 14.2 

C. Quantile Regression Method 

In this section, we introduce our SCF95 estimation 
procedure based on quantile regression method. The dependent 
variable Y is the under/over-burn value (in minutes). The 
covariates X  include terminal area weather forests, historical 
traffic conditions, aircraft types, departure hour window, 
departure month, and dummies for major airports. We focus on 
three techniques: 1) parametric quantile regression (QR); 2) 
gradient boosting machine (GBM) based quantile regression 
tree; 3) random quantile forests (RQF). Just as standard linear 
regression models conditional mean functions )|( XYE , a 

quantile regression can be used to model conditional quantiles 

of Y : )|( XYQq and q denotes a specific quantile. It can be 

shown that the quantile regression estimator for q-th quantile 
minimizes the following loss function [19]: 
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where )()( )0(  tq qtt . In our case, we choose q to be 

0.95. If we specify  ii xxf ),( , minimizing (1) with respect 

to  would produce parameter estimates of the q-th conditional 

quantile function. Sometimes, in order to achieve better 
prediction performance, we could also leverage machine 
learning algorithms like gradient boosting machine (GBM) to 

estimate ),( ixf in a non-parametric manner [20]. GBM is an 

ensemble learning algorithm which combines different base 
learners in a sequential fashion and gradually improves model 
fit, see equation (2). 
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The main idea of applying GBM in the quantile regression 
setting is to iteratively add simple regression tree models 

)( k
t xh (also called base learners) to existing model 1

ˆ
tf so that 

the updated model tf̂ can further reduce the quantile loss 

function specified in equation (1). Here, )( k
t xh is constructed 

based on a splitting variable kx which reduces the loss function 

the most at iteration t. is called learning rate and it is usually 

set to be a small value. We use  = 0.005 in this paper. 

Number of iterations is a tuning parameter that we need to 
determine. If we set iteration to be a large number, we will be 
likely to overfit the data. Algorithm details could be found in 
[21].  

Another powerful ensemble learning algorithm is called 
random forests (RF) which has been widely used in the area of 
conditional mean prediction. The idea of RF is to average the 
prediction outputs from a large number of decision trees [22]. 
For conditional mean, the prediction of a single decision tree 
for a new data point X = x is the mean response of Y in a 
particular leaf that contains X = x. Then, RF computes a final 
prediction by averaging predictions from all trees. Drawing 
analogy to conditional mean, when it comes to predicting 
conditional quantiles, instead of using mean response of Y in a 
leaf, we can report q-th empirical quantiles of Y in that leaf and 
then average the obtained quantiles across all trees. This 
algorithm is called random quantile forests (RQF) which has 
been proposed by [23]. The tuning parameter is RQF is the 
minimum node size which is related to how deep we should 
grow a decision tree. If we set the minimum node size to be a 
small number, then we would obtain a deep tree which is very 
likely to overfit the data.   

To test the performance of three proposed quantile 
regression based models, in line with common practice in 
machine learning literature, we randomly divide flights with 
SCF values (335,394) into training set (60%), validation set 
(20%), and test set (20%). The 31,261 flights without SCF95 
values will also serve as another test set. The idea is to build 
models using training set, select optimal tuning parameters 
with validation set, and compare model performance on test 
set. To evaluate the performance of new SCF95 predictions as 
compared to FPS SCF95, we will look at a loss function based 
goodness-of-fit measure [24]: 
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where ))(( fJ q  is the value of loss function on test set using 

SCF95 estimation function )(f . )(
~
f  is used to denote a 

model with the constant term only which is equivalent to use 
95

th
 quantile of Y in the training set as prediction for every 

flight. Three proposed SCF95 estimation models plus FPS 
SCF95 will be measured against a constant only model 
developed using the training set. Regarding tuning parameters, 
in order to achieve the best prediction performance on test set, 
we should avoid overfitting the training data. Therefore, we 
need to find the optimal number of iterations in GBM and the 
minimum node size in RQF. Parameter tuning results will be 
provided in later sections. 

IV. ESTIMATION RESULTS  

In this section, we will present the estimation results and 
prediction performance of three proposed methods: QR, GBM, 
and RQF. Parametric QR model gives us the best model 
interpretation compared to machine learning models, thus we 
will focus on parameter estimates in the QR model. Prediction 
performance on test set across three models will also be 
discussed.  

The estimation results of QR model are presented in Table 
2. A positive parameter estimates means that an increase in the 
variable results in higher SCF95 prediction and vice versa. 
Regarding aircraft type, A319 is treated as baseline. The 
relative magnitudes of parameter estimates are consistent with 
Table 1 which suggests that heavy aircraft in general has higher 
SCF95 than smaller aircraft. Longer flights are also found to 
result in higher SCF95. This is partly because longer flights are 
more likely to experience en-route weather and traffic 
uncertainty. The signs of parameter estimates of historical 
traffic condition variables are all positive except for the mean 
airborne time which is statistically insignificant. Since we don’t 
have en-route weather forecast information, historical traffic 
predictability measures can serves as a good proxy for weather 
condition for a current flight assuming stable weather patterns 
for a given OD, month, and hour of day. The estimated results 
suggest that if historical traffic condition is less predictable as 
represented by large standard deviation of mean airborne time 
and large deviation between actual and planned airborne time, 
then SCF95 is higher. This also indicates that SCF95 could be 
reduced through enhanced ATM targeting on improving 
system predictability. Forecasted weather conditions for 
destination airports are found to have bigger impact than origin 
airports. Among terminal area weather forecast, forecasted 
thunderstorm is found to have the biggest impact on SCF95, 
followed by forecasted low ceiling and low visibility condition. 
The construction of low ceiling and low visibility variables is 
in accordance with the adverse weather definition of FARs. 
FARs require a flight to carry enough fuel to travel to an 
alternate airport if the weather conditions are such that 
visibility is less than 3 miles and the ceiling at the destination 
airport is less than 2000 feet at the flight’s estimated time of 
arrival plus/minus 1 hour. Forecasted low visibility and 



thunderstorm indicators at origin airports also have positive 
impact of SCF95. However, forecasted snow event at origin 
airports is found to have a counter-intuitive sign. One possible 
explanation is that snow effects at origin airports are very small 
and being cancelled out/or even reversed by month effects. 
Month indicator is also included in the model to capture 
seasonality effects. It can be found that winter season requires 
relative higher SCF95 to account for wind effects.  

TABLE 2 ESTIMATION RESULTS FOR QUANTILE REGRESSION MODEL 

Category Variable  Estimates T-stat 

-- Intercept -6.851 -8.00 

Aircraft 

type 

(Baseline is 
A319) 

A320 2.110 10.48 

B737-800 1.019 4.54 

B757-300 11.458 42.86 

B757-200 13.868 65.97 

DC9 16.133 49.13 

MD88 17.157 88.12 

MD90 9.427 44.18 

Distance  Flight distance (in nautical miles) 0.004 3.21 

Historical 

traffic 

condition 

Mean of historical airborne time -0.047 * -1.57 

Standard deviation of historical 

airborne time 
0.022 2.62 

Mean of difference between 

historical actual and planned 

airborne time 

0.235 8.24 

Standard deviation of difference 
between historical actual and 

planned airborne time 

0.188 13.31 

TAF 

weather 

forecast for 

destination 

airports  

Low visibility indicator (1-if 
lower than 3 miles, 0-otherwise) 

4.249 7.51 

Low ceiling indicator (1-if lower 

than 2000 feet, 0-otherwise) 
5.293 25.67 

Thunderstorm indicator (1-if 
thunderstorm presents, 0-

otherwise) 

9.534 17.49 

Snow indicator (1-if snow 

presents, 0-otherwise) 
3.579 15.20 

TAF 

weather 

forecast for 

origin 

airports 

Low visibility indicator (1-if 

lower than 3 miles, 0-otherwise) 
0.482 2.45 

Low ceiling indicator (1-if lower 

than 2000 feet, 0-otherwise) 
-1.087 * -1.40 

Thunderstorm indicator (1-if 

thunderstorm presents, 0-

otherwise) 

0.692 2.28 

Snow indicator (1-if snow 

presents, 0-otherwise) 
-0.480 -2.69 

Month  

(Baseline is 

January) 

February -0.374 * -1.50 

March -1.926 -8.66 

April -0.580 -2.86 

May -0.118 * -0.57 

June -1.533 -6.43 

July -1.301 -5.20 

August -1.255 -5.39 

September -1.755 -7.91 

October -1.430 -6.89 

November -1.780 -8.69 

December -0.384 * -1.71 

Number of 

observations 
201,236 

Note:  
1) To save space, airport fixed effects and departure hour fixed effects 
estimates are not presented in this table. 
2) * denotes insignificant at 95% confidence level. 

Turning to GBM training results, we have tested the 
number of iterations ranging from 1000 to 15000, and 8000 

iterations is found to produce the smallest loss value on 
validation set. Regarding the node size selection in RQF, 50 is 
found to achieve the smallest validation set error. In addition, 
200 decision trees are trained in RQF. Using the best model 
tuning parameters, the goodness-of-fit measure of three 
proposed models on test set and non-SCF flights test set are 
presented in Table 3. RQ, GBM and RQF are found to have 
similar model fitting performance, although RQF performs 
slightly better than the other two. Airline’s FPS SCF95 is 
found to provide a poor fit on test set. As another performance 
comparison, if we load contingency fuel exactly as the 
recommended SCF95 values, our proposed methods yield a 
smaller percentage of flights landing with reserve fuel being 
used compared to airline’s FPS (almost half of the FPS 
percentage). This demonstrates that our proposed models 
outperform airlines’ FPS estimation procedure. 

TABLE 3 GOODNESS-OF-FIT MEASURE 

 Test set Non-SCF test set 

 Goodness-
of-fit 
measure 

Percentage 
of landing 
with reserve 
fuel being 
used 

Goodness-
of-fit 
measure 

Percentage 
of landing 
with reserve 
fuel being 
used 

Quantile 
Regression 

0.216 1.6% 0.205 1.6% 

Gradient 
Boosting 
Machine 

0.220 1.6% 0.205 1.6% 

Random 
Quantile 
Forests 

0.235 1.3% 0.219 1.5% 

Airline FPS 
SCF95 

0.073 3.0% -- -- 

 

In Figure 2, we plot predicted SCF95 values against airline’s 
FPS SCF95 values. We also consider the breakdown of 
terminal weather conditions. A weather impacted flight is 
defined as a flight with the following TAF weather forecast at 
destination airport: forecasted ceiling below 2000 feet, or 
visibility below 3 miles, or forecasted thunderstorm presence. 
For weather impacted flights, the quantile regression based 
models tend to predict higher SCF95 values than FPS. This is 
because terminal weather forecast has been explicitly taken 
into account in the SCF95 estimation process. This property is 
desirable for dispatchers because more confidence will be 
gained in making contingency fuel decisions. For non-weather 
impacted flights, three proposed methods tend to predict lower 
SCF95 values than FPS. Again, by adding weather, traffic, 
aircraft type information into SCF estimation, dispatchers can 
also potentially loading less contingency fuel which would 
lead to less fuel consumption. It is also noted that some SCF95 
predictions are negative. In these few cases, the fuel burn 
predicted by the FPS will be high than the actual fuel burns 
more than 95% of the time. However, in order to evaluate 
potential fuel saving of applying the new SCF95, we will 
follow our study airline’s SCF practice and set SCF95 values 
to be exactly 10 minutes if the corresponding prediction is less 
than 10.  



Weather RQF GBM QR 

Weather 

impacted 
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the test 

set 
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Figure 2 Model Predicted SCF95 v.s FPS SCF95 

 
 

V. BENEFIT ASSESSMENT  

In this section, we consider the possible fuel saving of 
implementing new SCF95 estimation procedure. As suggested 
in Figure 1, dispatchers in general load more contingency fuel 
than the SCF95 recommendation. Here we assume that because 
the SCF95 values obtained from our model are more believable 
(for example by being higher then there is adverse weather), 
dispatchers will follow them. Thus, the difference between 
contingency fuel loading and new SCF95 value defines our 
opportunity in fuel saving. This is because if we reduce 
contingency fuel loading, then the cost to carry contingency 
fuel would also decrease. If the difference is negative, we set it 
to zero. By assuming dispatchers follow new SCF95 
recommendation perfectly in loading contingency fuel, we can 
compute fuel saving in terms of cost-to-carry (CTC) 
contingency fuel reduction. CTC is defined as the pounds of 
fuel consumed per pound of fuel carried per mile and it varies 
across aircraft types and flight distance. We borrow the 
estimated CTC factors from reference [7]. Those factors were 
estimated using Piano-5, an aircraft analysis tool and its 
estimates are not airline-specific. Therefore, the estimated CTC 
factors have wide applicability.  

For a given flight i with aircraft type a, flight distance d (in 
miles), weight m (in pounds), and gate-to-gate fuel consumed b 
(in pounds), its CTC factor (in lbs/lbs-mile) is estimated by 
reference [7] in the following way. Gate-to-gate fuel 

consumption is assumed to a function of distance and weight as 
shown in equation 4. 

aiaaiaiaaiaai ddmmb ,,3,,,2,,1,  

   

      (4) 

Then, the CTC factor can be expressed as 
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where 1  and 2 are parameters associated with mass and 

mass-distance. Another way to interpret the fuel saving is in the 
form of CO2 emission. We utilize the U.S. Environmental 
Protection Agency conversion factor for Jet Fuel [25] to 
translate fuel saving into the saving in CO2 emission, in the 
unit of kg. For weather impacted flights in the regular test set 
and non SCF value test set, the per flight saving of fuel ranges 
from 109 to 121 lbs across different prediction methods. The 
estimated fuel savings for non-weather impacted flights are 
more consistent across three methods which are systematically 
higher than the saving estimates of weather impacted flights. 
This suggests that the current contingency fuel loading might 
be too conservative in good weather conditions hence leaving 
us more fuel saving opportunities. Since RQF performs slightly 
better than the other two methods on test set, we present the 
total savings in fuel consumption and CO2 emission based on 



the RQF estimates. Since the test set is only a 20% random 
sample from the merged data set, if we extrapolate back to the 
original dataset with operations over 14 months for our study 
airline, we can further estimate an airline-wide total saving. 
The extrapolation is carried out is the following way: we first 
compute per flight basis weighted average CTC savings based 
on RQF estimates shown in Table 4 with number of flights as 
weights. By using $2/gallon as jet fuel price, we can 
extrapolate to airline-wide monetary saving by flight count. 
The airline-wide benefits are about $24 million fuel saving as 
well as 256 million kilogram CO2 emission reduction. More 
careful extrapolation differentiating aircraft types, or airports 
would be an interesting future research direction; however, it is 
not the focus of this study, which concentrates on the flight-
level impact.  

Safety is a dispatcher’s major consideration in contingency 
fuel loading. As shown in Table 3, if we load contingency fuel 
exactly as the proposed SCF95 values, we would still 
encounter a small proportion of flights using reserve fuel which 
is undesirable to airlines. To better apply our proposed SCF 
estimation method in practice, we try to find a safe buffer on 
top of proposed SCF95 that guarantees a same safety margin 
for our study airline. The safety benchmark is the percentage of 
flights landing with some reserve fuel being used based on 
actual contingency fuel loading. Based on the combined test set 
(including non-SCF value test set and regular test set), this 

safety benchmark is 0.10%. If we add a 15 minutes buffer to 
SCF95 prediction, we can reach a similar safety level (see 
Table 5). In Table 6, we compute the second order fuel saving 
by adding 15 minutes fuel to recommend SCF95 values. Based 
on RQF estimates, we can still achieve an airline-wide benefit 
of $8 million fuel saving as well as 89 million kilogram CO2 
emission reduction. 

TABLE 5 SAFETY CHECK 

Test set + Non 
SCF test set 

Percentage of flights landing with reserve fuel being used 

Use predicted SCF95 as 
contingency fuel 

Use predicted SCF95 + 
15 minutes as 

contingency fuel 

Quantile 
Regression  

1.62% 0.12% 

Gradient 
Boosting 
Machine 

1.61% 0.11% 

Random 
Quantile 
Forests 

1.41% 0.11% 

Benchmark:  
Contingency 
fuel  

0.10% 

 

TABLE 4 FIRST ORDER FUEL SAVING ESTIMATES 

Data set 

Fuel savings (lbs) 

Number 

of flights 

Estimates based on RQF 

Quantile 
Regression 

Gradient 

Boosting 

Machine 

Random 

Quantile 

Forests 

Test set 

Monetary 

savings ($) 

Test set CO2 

emission 

(kg) 

Airline-wide 

Monetary savings 

($) 

Airline-wide CO2 
emission (kg) 

Test 

set 

Weather 

impacted flights 
110.5 115.8 122.1 9,812 51055.3   

61070.3   

71045.2   81056.2   

Non-weather 

impacted flights 
125.6 126.3 124.8 57,267 61013.2   

71022.2   

Non-
SCF 

test set 

Weather 

impacted flights 
111.4 116.3 116.3 3,591 51025.1   

61030.1   

Non-weather 

impacted flights 
118.9 119.4 118.2 27,670 51076.9   

71002.1   

TABLE 6 SECOND ORDER FUEL SAVING ESTIMATES 

Data set 

Fuel savings (lbs) 

Number 
of flights 

Estimates based on RQF 
Quantile 

Regression 

+ 15 
minutes 

Gradient 

Boosting 

Machine + 
15 minutes 

Random 

Quantile 

Forests + 
15 minutes 

Test set 
Monetary 

savings ($) 

Test set CO2 
emission 

(kg) 

Airline-wide 
Monetary savings 

($) 

Airline-wide CO2 

emission (kg) 

Test 
set 

Weather 

impacted 
flights 

38.0 41.5 47.6 9,812 51039.1   
61045.1   

61056.8   71094.8   

Non-weather 

impacted 

flights 

43.3 43.7 43.7 57,267 51047.7   
61080.7   

Non-
SCF 

test set 

Weather 

impacted 

flights 

28.0 28.1 23.1 3,591 41048.2   
51059.2   

Non-weather 
impacted 

flights 

32.1 33.2 32.7 27,670 51070.2   
61082.2   

 



VI. CONCLUSIONS 

This analysis shows the possibility to reduce fuel 

consumption through an improved SCF95 estimation 

procedure. A quantile regression based SCF95 estimation 

procedure has been proposed. Three estimation models 

including parametric quantile regression, gradient boosting 

machine, and random quantile forests are found to 

outperform airline’s FPS in SCF95 estimation. RQF is also 

found to perform slightly better than the other two proposed 

models. The new SCF estimation procedure overcomes the 

limitations of the widely used SCF estimation method which 

relies on simplified grouping criterion and normal 

approximation. The proposed method can also incorporate 

terminal weather forecast and historical traffic condition 

into the SCF95 estimation. 

With the help of cost-to-carry factors proposed by 

reference [7], we are also able to calculate the extra fuel 

burn to carry the difference between actual contingency fuel 

and new SCF95 value based on model prediction. The extra 

fuel burn then can be translated into monetary costs and 

CO2 emission. The estimated benefit pool for our study 

airline is in the magnitude of $24 million fuel saving and 

256 million kilogram CO2 emission reduction over 14 

months operation. We further investigate the impact of 

adding a practical safety buffer (15 minutes) which helps 

achieve a similar safety level, as measured by the fraction of 

flights landing without their full 45 minute fuel reserve, as 

the current practice for our study airline. Even after adding 

15 minutes, the estimated benefits are still significant: $8 

million fuel saving and 89 million kilogram CO2 emission 

reduction. In addition, this study also builds a link between 

SCF95 estimation and aviation system predictability in 

which the proposed models can also be used to predict 

benefits from reduced fuel loading enabled by improved 

ATM. 

In this study, we focus on SCF95 estimation. A similar 

analysis based on SCF99 also deserves further investigation. 

Our proposed method can be easily extended to other SCF 

estimation problems including SCF99. Based on the fuel 

burn data obtained from a major U.S.-based airline, a 

significant benefit has been estimated by improving SCF 

estimation. It is also expected that a large scale system-wide 

benefit could also be gained by applying new SCF 

estimation in flight fuel planning. Moreover, given the link 

between system predictability and SCF95 estimation, a 

system-wide fuel saving benefit due to improved ATM 

could also be assessed. 
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